
Linear-Time Arguments with Sublinear Verification
from Tensor Codes

Jonathan Bootle
jonathan.bootle@berkeley.edu

UC Berkeley

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Jens Groth
jens@dfinity.org

Dfinity

Abstract. Minimizing the computational cost of the prover is a central goal in the
area of succinct arguments. In particular, it remains a challenging open problem to
construct a succinct argument where the prover runs in linear time and the verifier
runs in polylogarithmic time.
We make progress towards this goal by presenting a new linear-time probabilistic
proof. For any fixed ε > 0, we construct an interactive oracle proof (IOP) that,
when used for the satisfiability of an N -gate arithmetic circuit, has a prover that
uses O(N) field operations and a verifier that uses O(N ε) field operations. The
sublinear verifier time is achieved in the holographic setting for every circuit (the
verifier has oracle access to a linear-size encoding of the circuit that is computable
in linear time).
When combined with a linear-time collision-resistant hash function, our IOP im-
mediately leads to an argument system where the prover performs O(N) field
operations and hash computations, and the verifier performs O(N ε) field opera-
tions and hash computations (given a short digest of the N -gate circuit).

Keywords: interactive oracle proofs; tensor codes; succinct arguments

1 Introduction

Succinct arguments are cryptographic proofs for NP in which the number of bits ex-
changed between the argument prover and the argument verifier is much less than the
size of the NP witness (e.g., polylogarithmic in the size of the NP witness). Succinct
arguments originate in the seminal works of Kilian [Kil92] and Micali [Mic00], and
have now become the subject of intense study from theoreticians and practitioners, with
a great deal of effort invested in improving their asymptotic and concrete efficiency.

The main efficiency measures in a succinct argument are communication complexity
(the number of bits exchanged between the prover and the verifier), as well as the running
time of the prover and the running time of the verifier. Over the last decade there has been
much progress in improving the communication complexity and verifier time for succinct
arguments whose prover runs in quasilinear time. These advances have, in particular,
enabled real-world deployments of succinct arguments as part of security systems where
the succinct argument is used to certify correctness of certain medium-size computations
(e.g., [Ben+14]).

There are, however, exciting envisioned applications where the succinct argument is
used to prove the correctness of large-scale computations (see [OWWB20] and references

therein). While a proving time that is quasilinear is arguably asymptotically efficient, the
polylogarithmic overheads severely limit the sizes of computations that can be supported
in applications, because proving time quickly becomes a bottleneck.

This state of affairs motivates the fundamental problem of constructing linear-time
succinct arguments: succinct arguments where the prover runs in linear time and, ideally,
also where the verifier runs in sublinear (e.g., polylogarithmic) time. In this paper we
present new constructions that make progress on this problem.

Challenges. There are different approaches for constructing succinct arguments, yet
essentially all of them follow the same high-level pattern: first, arithmetize the computa-
tion whose correctness is being proved; second, probabilistically check the arithmetized
problem via the help of cryptography. Typically, the first step alone already costs more
than linear time because it involves, in particular, encoding the computation as a polyno-
mial, an operation that can be performed in quasilinear time thanks to the Fast Fourier
Transform (FFT) but is not believed to have a linear-time algorithm. This means that
many of the algebraic techniques that have proven useful to construct succinct arguments
seem inapplicable in the linear-time regime.

Prior work. Few works achieve some form of succinct argument without using FFTs,
and none of them resolve the problem of constructing linear-time succinct arguments.
We briefly review these works below, and also compare their main features in Figure 1
(alongside the arguments that we construct in this paper).

Several works [BCCGP16; BBBPWM18; WTSTW18; XZZPS19; Set20] forego the
use of FFTs by using homomorphic commitments to realize a “cryptographic arithmeti-
zation”, but in doing so also introduce quasilinear work in the cryptography. In some
works the quasilinear costs, due to the cryptography [XZZPS19] or an FFT [ZXZS20],
can be isolated to the witness of the non-deterministic computation and thereby achieve
linear work if the witness is sufficiently small; but, in general, the witness may be as
large as the computation.

While the above works achieve polylogarithmic communication complexity but not
linear-time proving, Bootle et al. [BCGGHJ17] achieve linear-time proving with square-
root communication complexity (and verification): an argument system for arithmetic
circuit satisfiability where, for an N -gate circuit, the prover performs O(N) field opera-
tions and hash computations while the verifier performs O(

√
N) field operations and

hash computations, with a communication complexity of O(
√
N). Crucially, the hash

function is only required to be collision resistant, for which there are linear-time candi-
dates (e.g., assuming the intractability of certain shortest vector problems [AHIKV17]),
which leads to a linear-time prover.

Overall, the construction in [BCGGHJ17] remains the only argument system for NP
known to date where the prover runs in linear time and where communication complexity
is sublinear. Improving on the square-root communication complexity, and ideally also
the square-root verifier time, is an open problem.

Linear-time IOPs suffice. The approach used by Bootle et al. [BCGGHJ17] to obtain
their linear-time argument system highlights a natural target for improvement, as we
now explain. First, they construct an interactive oracle proof (IOP) with prover time
tp = O(N), query complexity q = O(

√
N), and verifier time tv = O(

√
N). (An IOP is

a “multi-round PCP” [BCS16; RRR16], as we will review later on.) Second, they apply

2

the “commit-then-open” paradigm of Kilian [Kil92], by using a collision-resistant hash
function to transform the IOP into an argument system where communication complexity
is O(q · logN). In this latter step, if one can evaluate the hash function in linear time,
the resulting argument prover runs in time O(tp) and O(tv). We see here that, given
linear-time hash functions, the problem of constructing linear-time succinct arguments
reduces to constructing linear-time IOPs with small query complexity (and verifier time).

In other words, the target for improvement is the IOP. Our goal in this paper is
to construct an IOP with linear-time prover whose query complexity and verifier time
improve on the prior art, which would yield an argument system with corresponding
improvements. For example, improving query complexity to be polylogarithmic would
yield the first linear-time argument with polylogarithmic communication complexity.

We conclude here by noting that the above approach has the additional benefit of
being plausibly post-quantum, as the underlying linear-time hash function candidate is
based on a lattice problem [AHIKV17].

1.1 Our results

We construct, for any fixed ε > 0, an argument system where the prover performs O(N)
field operations and hash computations, communication complexity is O(N ε), and the
verifier performs O(N ε) field operations and hash computations. We achieve this by
improving the state of the art in linear-time IOPs (see Figure 2): our main result is a
public-coin IOP where, for any fixed ε > 0, the prover performs O(N) field operations,
query complexity is O(N ε), and the verifier performs O(N ε) field operations. These
costs are when proving the satisfiability of an N -gate arithmetic circuit defined over any
field of size Ω(N).1

In more detail, we focus on constructing protocols for rank-1 constraint satisfiability
(R1CS), a standard generalization of arithmetic circuits where the “circuit description”
is given by coefficient matrices.2

Definition 1 (informal). The R1CS problem asks: given a finite field F, coefficient
matrices A,B,C ∈ FN×N each containing at most M = Ω(N) non-zero entries, and
an instance vector x over F, is there a witness vector w over F such that z := (x,w) ∈
FN and Az ◦Bz = Cz? (Here “◦” denotes the entry-wise product.)

Theorem 1 (informal). For every positive constant ε > 0, there is a public-coin holo-
graphic IOP for R1CS, over any field of size Ω(M), with the following parameters:
– round complexity is O(1/ε+ logM);

1 The sublinear time of the argument verifier is achieved in the preprocessing setting, which
means that the verifier receives as input a short digest of the circuit that can be derived by anyone
(in linear time). Some form of preprocessing is necessary for sublinear verification because the
argument verifier just reading the circuit takes linear time. In turn, preprocessing is enabled
by the fact that our IOP is holographic, which means that the IOP verifier has oracle access
to a linear-size encoding of the circuit that is computable in linear time. See [CHMMVW20;
COS20] for more on how holography leads to preprocessing.

2 Recall that satisfiability of an N -gate arithmetic circuit is reducible, in linear time, to an R1CS
instance where the coefficient matrices are N ×N and have O(N) non-zero entries.

3

– proof length is O(M) elements in F;
– query complexity is O(M ε);
– the prover uses O(M) field operations; and
– the verifier uses O(M ε) field operations, given access to a linear-time encoding of

the coefficient matrices.

Our theorem directly follows from two results of independent interest. First, we
construct a proof protocol for R1CS with a linear-time prover, but in an intermediate
model that extends the type of queries that the verifier can make in an IOP. Second, we
efficiently “implement” this intermediate model via a standard IOP. We summarize each
of these two results below. The formal statement of Theorem 1 is given in the full version
of this paper .

We remark that our result, unlike many other results about efficient probabilistic
proofs, holds over any field F that is large enough (linear in M) without requiring any
special structure (e.g., smooth subgroups).

(1) IOP with tensor queries for R1CS. We use the notion of a tensor IOP, which is
an IOP where the verifier can make tensor queries to the proof strings sent by the prover,
as opposed to just point queries as in a standard IOP. To make a tensor query to one of
the received proof strings, the verifier specifies a vector with prescribed tensor structure
and receives as answer the inner product of the tensor vector and proof string.

Definition 2 (informal). A (F, k, t)-tensor IOP modifies the notion of an IOP as follows:
(a) the prover message in each round i is a string Πi in F`i·kt for some positive integer
`i; (b) a verifier query may request the value 〈a0⊗a1⊗· · ·⊗at, Πi〉 for a chosen round
i and chosen vectors a0 ∈ F`i and a1, . . . , at ∈ Fk.

The first part to our proof of Theorem 1 is a (F, k, t)-tensor IOP for R1CS with a
O(M)-time prover, constant query complexity, and a O(M1/t)-time verifier (who has
tensor-query access to the coefficient matrices).

Theorem 2 (informal). For every finite field F and positive integers k, t, there is a
(F, k, t)-tensor IOP for R1CS that supports coefficient matrices in FN×N with N = kt

and up to M = O(N) non-zero entries and has the following parameters:
– soundness error is O(M/|F|);
– round complexity is O(logN);
– proof length is O(N) elements in F;
– query complexity is O(1);
– the prover uses O(M) field operations; and
– the verifier usesO(M1/t) field operations, given tensor-query access to the coefficient

matrices.

We sketch the ideas behind this result in two steps: in Section 2.4 we describe a
tensor IOP for R1CS achieving all efficiency parameters except that the verifier explicitly
reads the coefficient matrices and uses O(M) field operations; then in Section 2.5 we
describe how to extend this tensor IOP to the holographic setting, achieving a sublinear
verifier time when the verifier is granted tensor-query access to the coefficient matrices.
The corresponding technical details are provided in the full version of this paper . From a

4

technical perspective, our construction builds on tools from several papers, such as linear-
time scalar products in [BCGGHJ17], linear-time sumchecks in [Tha13; XZZPS19], and
linear-time look-ups in [Set20; GW20].
(2) From tensor queries to point queries. We prove that any tensor IOP can be
efficiently implemented as a standard IOP, by way of a subprotocol that “simulates”
tensor queries via a collection of point queries.

In more detail, we provide a transformation that receives as input a tensor IOP and
any linear code represented via a circuit for its encoding function, and produces as output
a point-query IOP that decides the same language as the tensor IOP up to an additional
soundness error.

The key efficiency feature of the transformation is that prover complexity is preserved
up to the number of tensor queries, the code’s rate, and the code’s encoding time. In
particular, if the prover in the tensor IOP uses a linear number of field operations and the
verifier makes a constant number of tensor queries, and the code is linear-time encodable,
then the new prover in the standard IOP uses a linear number of field operations. In the
following theorem, and throughout the paper, we use “Big O” notation such as Oa(·),
which means that the parameter a is treated as a constant.

Theorem 3 (informal). There is an efficient transformation that takes as input a tensor-
query IOP and a linear code, and outputs a point-query IOP that has related complexity
parameters, as summarized below.

– Input IOP: an (F, k, t)-tensor IOP with soundness error ε, round complexity rc, proof
length l, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv.

– Input code: a linear code C over F with rate ρ = k
n , relative distance δ = d

n , and
encoding time θ(k) · k.

– Output IOP: a point-query IOP with soundness error Oδ,t(ε) +O(dt/|F|), round com-
plexity Ot(rc), proof length Oρ,t(q · l), query complexity Ot(k · q), prover arithmetic
complexity tp+Oρ,t(q · l) ·θ(k), and verifier arithmetic complexity tv+Ot(k ·q) ·θ(k).

Moreover, the transformation preserves holography up to the multiplicative overhead θ
induced by the encoding function of C and factors that depend on ρ and t.

We stress that the only property of the code C used in the above transformation is that
it is linear over F, and in particular the code C need not be efficiently decodable, satisfy
the multiplication property (entry-wise multiplication of codewords is a codeword in a
related code), or even be systematic. We believe that developing techniques that work
with a wide range of codes will facilitate further IOP research. For example, known
linear-time encodable codes meeting the Gilbert–Varshamov bound are not systematic
[DI14]; also, efficient zero knowledge (not a goal in this paper) is typically achieved by
using non-systematic codes.

We sketch the ideas behind this result in Sections 2.2 and 2.3. The technical details
are in the full version of this paper . From a technical perspective, our transformation
builds on ideas from several papers: the sumcheck protocol for tensor codes in [Mei13];
the ILC-to-IOP compiler in [BCGGHJ17] that works with any linear code; the proximity
test for the Reed–Solomon code in [BBHR18]; and the code-switching technique in
[RR20] for systematic linear codes.

5

preprocess
circuit cost

prover cost verifier cost
communication

complexity
plausibly

post-quantum

[BCCGP16] &
[BBBPWM18]

n/a
O(N) F-ops
O(N) G-exps

O(N) F-ops
O(N) G-exps

Oλ(logN) 7

[WTSTW18] n/a
O(N) F-ops
O(N) G-exps

O(D logW) F-ops
O(N ε +D logW) G-exps

Oλ(N
1−ε

+D logW)
7

[XZZPS19] n/a
O(N) F-ops
O(N) G-exps

O(D logW) F-ops
O(logW) pairings

Oλ(D logW) 7

[Set20]
O(N) F-ops
O(N) G-exps

O(N) F-ops
O(N) G-exps

O(log2N) F-ops
O(log2N) G-exps

Oλ(log
2N) 7

[BCGGHJ17]
O(N) F-ops
O(N) hashes

O(N) F-ops
O(N) hashes

Oλ(
√
N) F-ops

Oλ(
√
N) hashes

Oλ(
√
N) 3

this work
O(N) F-ops
O(N) hashes

O(N) F-ops
O(N) hashes

Oλ(N
ε) F-ops

Oλ(N
ε) hashes

Oλ(N
ε) 3

Fig. 1: Comparison of several sublinear argument systems that do not use FFTs. The stated
costs are for the satisfiability of an N -gate arithmetic circuit over a cryptographically-large
field F; for argument systems that achieve sublinear verification we also report the cost
to preprocess the circuit. We report separate costs for field operations, group operations,
and (collision-resistant) hash invocations; ε is any positive constant and λ is the security
parameter. Provers for arguments in the top part of the table run in superlinear time. Indeed,
O(N) exponentiations in G result in ω(N) group operations: O(log |F| ·N) group opera-
tions if performed naively, or else O(log |F|

log log |F|+logN
·N) if using Pippenger’s algorithm

[Pip80]. On the other hand, provers in the bottom part of the table run in linear time. Indeed,
as observed in [BCGGHJ17], by using the hash functions of [AHIKV17] one can ensure
that O(N) hash invocations are equivalent, up to constants, to O(N) operations in F. The
argument systems in [WTSTW18; XZZPS19] specifically require the circuit to be arranged
in layers; the reported costs are for a circuit with D layers of width W , in which case
N = D ·W ; furthermore the term “O(D logW) F-ops” in the verifier cost assumes that
the circuit is sufficiently uniform and, if not, increases to “O(N) F-ops” (i.e., linear in
computation size).

point-query IOPs encode circuit cost prover cost verifier cost query complexity

[BCGGHJ17] O(N) F-ops O(N) F-ops O(
√
N) F-ops O(

√
N)

this work O(N) F-ops O(N) F-ops O(N ε) F-ops O(N ε)

Fig. 2: Comparison of known IOPs with a linear-time prover. The parameters are for an
N -gate arithmetic circuit defined over a field F of size Ω(N); and ε is any positive constant.
The sublinear verification in both cases is achieved in the holographic setting (the verifier
has oracle access to an encoding of the circuit).

2 Techniques

We summarize the main ideas behind our results. We begin by elaborating on our main
result, Theorem 1, which is a new protocol within a proof model called Interactive
Oracle Proof (IOP) [BCS16; RRR16].

6

Recall that an IOP is a proof model in which a prover and a verifier interact over
multiple rounds, and in each round the prover sends a proof message and the verifier
replies with a challenge message. The verifier has query access to all received proof
messages, in the sense that it can query any of the proof messages at any desired location.
The verifier decides to accept or reject depending on its input, its randomness, and
answers to its queries. The main information-theoretic efficiency measures in an IOP are
proof length (total size of all proof messages) and query complexity (number of read
locations across all proof messages), while the main computational efficiency measures
are prover running time and verifier running time.

In this paper we study IOPs because they directly lead to corresponding succinct
arguments, via cryptography that introduces only constant computational overheads
(and in particular preserves linear complexity).3 Namely, following the paradigm of
Kilian [Kil92], any IOP can be “compiled” into a corresponding interactive argument
by using a collision-resistant hash function. The argument’s communication complexity
is O(q log l), where q and l are the query complexity and the proof length of the IOP.4

Moreover, with a suitable choice of hash function (e.g., [AHIKV17]), the running times
of the argument prover and argument verifier are the same, up to multiplicative constants,
as those of the IOP prover and IOP verifier.5

The rest of this section summarizes the proof of Theorem 1. We proceed in three
steps. First, we describe an intermediate proof model called tensor IOPs; we elaborate
on this model in Section 2.1. Second, we devise a transformation that, using an arbitrary
linear code, efficiently “implements” any tensor IOP as a point-query (standard) IOP; this
is our Theorem 3, and we discuss the transformation in Sections 2.2 and 2.3. Third, we
construct a tensor IOP with linear-time prover, constant query complexity, and sublinear-
time verifier; this is our Theorem 2, and we discuss this construction in Sections 2.4
and 2.5.

2.1 IOPs with tensor queries

In this work we rely on an intermediate model, informally introduced in Definition 2,
called tensor IOPs. Below we briefly elaborate on why we introduce this model, and
also compare it with other existing models.
Point queries are for efficiency. The verifier in an IOP makes point queries to proof
messages received from the prover: the verifier may specify a round i and a location j

3 We stress that this is a non-trivial property, in the sense that other approaches to construct
succinct arguments introduce super-constant multiplicative overheads. For example, the trans-
formation from algebraic proofs to succinct arguments in [CHMMVW20] introduces a linear
number of exponentiations (which translates to a super-linear number of group operations).
These approaches seem unlikely to lead to linear-time succinct arguments, and hence we focus
on IOP-based succinct arguments.

4 The “big O” notation here hides a dependence on the output size of the collision-resistant hash
function.

5 We remark that the more restricted proof model of Probabilistically Checkable Proofs (PCPs)
also directly leads to a succinct argument with only constant computational overheads, however
the problem of designing linear-time PCPs, with any non-trivial query complexity, seems far
beyond current techniques.

7

and then receives as answer Πi[j] (the j-th value of the proof message Πi sent in round
i). Our main result (Theorem 1) is about point-query (standard) IOPs because, as we
explained, they lead to succinct arguments via constant computational overheads.

Beyond point queries. Researchers have studied variants of the IOP model where the
verifier makes other types of queries. For example, Boneh et al. [BBCGI19] study linear
IOPs, where the verifier may specify a round i and a vector q and then receives as answer
the linear combination 〈q,Πi〉, over a field F. These F-linear queries are a “richer” class
because linear combinations can, in particular, select out chosen locations.

From the perspective of this paper, variants such as linear IOPs offer an opportunity
to reduce our goal (a certain point-query IOP) into two sub-problems. First, design
an efficient IOP with a richer class of queries. Second, devise a way to efficiently
“implement” the rich class of queries via only point queries. The former becomes easier
as the class of queries becomes richer, while the latter becomes harder. Thus, the class
of queries should be chosen to balance the difficulty between the sub-problems, so that
both can be solved.

Tensor queries. In this paper we do not use linear queries because we do not know how
to implement linear queries via point queries in the linear-time regime.6 Nevertheless,
we identify a rich-enough sub-class of linear queries for which we are able to solve both
of the aforementioned sub-problems: tensor queries. These types of linear combinations
were used in the sumcheck protocol for tensor codes [Mei13] and also to construct
IOPs with proof length approaching witness length [RR20] (the latter work defines an
intermediate model that, informally, is an IOP where the verifier is allowed a single
tensor query to the witness).

Informally, in a (F, k, t)-tensor IOP, the verifier may specify a round i and a list
(q0, q1, . . . , qt) and then receives as answer the linear combination 〈q0⊗q1⊗· · ·⊗qt, Πi〉,
where q1, . . . , qt ∈ Fk and the 0-th component q0 of the tensor vector may be a vector
of any length defined over F. The other t components must have fixed lengths k. The
fixed lengths impose a recursive structure that we will exploit, while the free length
accommodates proof messages of varying sizes. For simplicity, in the rest of the technical
overview, we will ignore the 0-th component, assuming that all proof messages have the
same length (kt elements in F).

We formalize the notion of a tensor IOP in the full version of this paper . In fact, we
formulate a more general notion of IOP where queries belong to a given query class
Q, which specifies which (possibly non-linear) functions of the proof messages are
“allowed”. Via suitable choices of Q, one can recover the notions of point-query IOPs,
linear IOPs, tensor IOPs, and more. Our definitions also account for features such as
holography and proximity (both used in this paper). We consider the formulation of IOPs
with special queries to be a definitional contribution of independent interest that will
help the systematic exploration of other query classes.

6 Bootle et al. [BCGGHJ17] show how to implement the Ideal Linear Commitment (ILC) model
in linear time, which is reminiscent of, but distinct from, the linear IOP model. As noted in
[BBCGI19], these are reducible to one another, but with losses in parameters. (Applying the
transformation of [BCGGHJ17] to an ILC protocol obtained from a linear IOP does not preserve
linear time.)

8

2.2 From tensor queries to point queries

We discuss the main ideas behind Theorem 3, which provides a transformation that takes
as input an IOP with tensor queries and a linear code and outputs an IOP with point
queries that has related complexity parameters. (Details of the transformation can be
found in given in the full version .) The main challenge in designing this transformation is
that we need to construct an IOP that efficiently simulates a strong class of queries (tensor
queries) by using only a weak class of queries (point queries) and the linearity of the
given code. Our transformation combines ideas from several works [Mei13; BCGGHJ17;
BBHR18; RR20], as we later explain in Remark 1.

Now we discuss our transformation. Below we denote by (P,V) the (F, k, t)-tensor
IOP that is given as input to the transformation. The other input to the transformation is
a linear code C over the field F with rate ρ = k/n and relative distance δ = d/n (the
code’s message length k and alphabet F match parameters in the tensor IOP). We denote
by (P̂, V̂) the point-query IOP that we construct as output. This latter has three parts:
(1) a simulation phase; (2) a consistency test; and (3) a proximity test. We summarize
each in turn below.

Part 1: simulation phase. The new prover P̂ and new verifier V̂ simulate P and
V, mediating their interaction with two modifications. First, whenever P outputs a
proof string Π ∈ Fkt that should be sent to V, P̂ sends to V̂ an encoded proof string
Π̂ := Enc(Π) ∈ Fnt

, for an encoding function Enc: Fkt → Fnt

that we discuss shortly.
Second, whenever V outputs a tensor query q1⊗ · · · ⊗ qt for one of the proof strings Πi,
V̂ forwards this query (as a message) to P̂, who replies with a “short” proof message
that contains the answer 〈q1 ⊗ · · · ⊗ qt, Πi〉 ∈ F; then V̂ simply reads this value and
returns it to V as the query answer (so V̂ can continue simulating the execution of V).

Observe that if P̂ really answers each tensor query truthfully in the simulation then
V̂ inherits the soundness of V, because in this case the tensor IOP (P,V) is perfectly
simulated. However, a malicious P̂ need not answer each tensor query truthfully. The
goal of the consistency test and the proximity test (both described below) is to prevent
the prover P̂ from misbehaving. Namely, these additional parts of the point-query IOP
(P̂, V̂) will enable V̂ to check that the values received from P̂ as answers to V’s tensor
queries are consistent with the received (encoded) proof strings.

On the encoding function. The encoding function Enc used in the simulation phase
must be chosen to facilitate the design of the consistency proximity tests. We choose
Enc: Fkt → Fnt

to be the encoding function of the t-wise tensor product C⊗t of the
“base” linear code C, where t matches the parameter in the tensor IOP. The function
Enc is derived from the encoding function enc: Fk → Fn of C. Completeness and
soundness of (P̂, V̂) will ultimately work for any linear code C. Crucially to our results
on linear-time protocols, prior work [DI14] provides linear-time encodable codes with
constant rate over any field F, ensuring that Enc is computable in linear time when t is a
constant. Such codes achieving the best known parameters are non-systematic.

Checking the simulation phase. In the simulation phase, P̂ has sent several words
Π̂1, . . . , Π̂` ∈ Fnt

that allegedly are codewords in the tensor code C⊗t ⊆ Fnt

, in which
case they encode some proof strings Π1, . . . ,Π` ∈ Fkt . Moreover, P̂ has also claimed

9

that a list of values (vq)q∈Q are the answers to a corresponding list of tensor queries Q;
namely, if q = (i, q1, . . . , qt) then vq = 〈q1 ⊗ · · · ⊗ qt, Πi〉.

Informally, we seek a sub-protocol for V̂ with the following guarantee: (1) if there
is a word Π̂i that is far from C⊗t then V̂ rejects with high probability; (2) if all words
Π̂1, . . . , Π̂` are close to C⊗t but one of the answers is inconsistent with the underlying
(unique) encoded messages then V̂ also rejects with high probability. A technical
contribution of this paper is the design and analysis of such a sub-protocol.

Our sub-protocol is a black-box combination of a consistency test and a proximity
test. In the consistency test, the prover P̂ sends, in one round, proof strings that are
partial computations of all the tensor queries, and the verifier V̂ leverages these to check
that the answers to tensor queries are correct. The consistency test assumes that all proof
strings are close to certain tensor codes and so, in the proximity test, the prover P̂ and the
verifier V̂ interact, over t rounds, in a protocol whose goal is to ensure that all received
proof strings are close to the appropriate codes. We now provide more details for each of
the two tests.

Part 2: consistency test. For simplicity of exposition, we describe the consistency
test for the simple case where there is a single tensor query or, more generally, a single
“extended” tensor query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F`·kt to the “stacking” of all proof strings.
Namely, P̂ claims that the stacked word Π̂ := Stack(Π̂1, . . . , Π̂`) ∈ F`·nt

can be
decoded to some stacked proof string Π := Stack(Π1, . . . ,Π`) ∈ F`·kt such that
v = 〈q0 ⊗ q1 ⊗ · · · ⊗ qt, Π〉.7 Below we view Π as a function Π : [`]× [k]t → F, and
Π̂ as a function Π̂ : [`]× [n]t → F.

In the special case where the code C is systematic, the sumcheck protocol for tensor
codes [Mei13; RR20] would yield a consistency test that “evaluates” one component
of the tensor query at a time. For the general case, where C can be any linear code,
we provide a consistency test that consists of a sumcheck-like protocol applied to the
“interleaving” of tensor codes. While it is convenient to present the main ideas behind
the prover algorithm by speaking of decoding (whose cost may exceed our linear-time
goal), we stress that the prover need only perform efficient encoding operations. We
will denote by (C⊗t)` the `-wise interleaving of the code C⊗t, where a single symbol of
(C⊗t)` is the concatenation of ` symbols of C⊗t-codewords.

Proof messages. For each r ∈ [t], the prover P̂ computes and sends words {cr : [k]×
[n]t−r → F}r∈[t] where cr is allegedly an interleaved codeword in (C⊗t−r)k. Intuitively,
c1, . . . , ct will help V̂ perform the consistency check that the value v ∈ F is the answer
to the tensor query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F`·kt .

– For r = 1, the word c1 ∈ (C⊗t−1)k is derived from Π̂ ∈ C⊗t via a “fold-then-decode”
procedure, which uses the component q0 ∈ F` of the tensor query. For γ ∈ F`,
we denote by Fold(Π̂; γ) : [n]t → F the function

∑`
i=1 γi · Π̂i (sum the values of

Π̂ : [`] × [n]t → F over the domain [`] with coefficients determined by γ). Then,
c1 ∈ (C⊗t−1)k is obtained by partially decoding Fold(Π̂; q0) (by viewing the values

7 Extended tensor queries capture tensor queries to specific proof strings: for any desired i ∈ [`],
one can choose q0 ∈ F` to be all zeros except for a 1 in the i-th entry so that 〈q0 ⊗ q1 ⊗ · · · ⊗
qt, Π〉 = 〈q1 ⊗ · · · ⊗ qt, Πi〉.

10

of Fold(Π̂; q0) : [n]t → F over the first component [n] of its domain as C-codewords,
and decoding them).

– For each subsequent r ∈ {2, . . . , t}, the word cr is derived via a similar procedure
from cr−1 and the component qr−1 ∈ Fk of the tensor query. Namely, cr is the
codeword in (C⊗t−r)k obtained by partially decoding Fold(cr−1; qr−1) ∈ C⊗t−(r−1)
over the first component of its domain as above.

Each round reduces the rank by 1 and, in the last round, the word ct is a fully decoded
message vector in Fk. The tensor query answer 〈q0 ⊗ q1 ⊗ · · · ⊗ qt, Π〉 is the successive
folding of Π by components q0, . . . , qt. The r-th message cr is an encoding in C⊗t−r of
Π after it has been folded up to the r-th component by q0, . . . , qr.

Query phase. The verifier V̂ tests the expected relation between messages across
rounds at a random point, and that the execution is consistent with the claimed answer
value v. Namely, since each round’s messages are expected to be partial decodings of
foldings of the prior round’s messages, for an honest prover P̂ the following equations
relate words across rounds:

– for r = 1, enc(c1) = Fold(Π̂; q0);
– for each r ∈ {2, . . . , t}, enc(cr) = Fold(cr−1; qr−1).

Above, enc is the encoding function for the base linear code C applied to the first
coordinate of a function with domain [k]× [n]t−r (for some r), and the identity on all
other coordinates.

The above equations motivate a natural consistency test for the verifier. Namely, V̂
samples a random tuple (j1, . . . , jt) ∈ [n]t and checks all of the relevant equations at
this tuple:

– for r = 1, enc(c1)(j1, . . . , jt) = Fold(Π̂; q0)(j1, . . . , jt);
– for each r ∈ {2, . . . , t}, enc(cr)(jr, . . . , jt) = Fold(cr−1; qr−1)(jr, . . . , jt).

To compute, e.g., Fold(cr−1, ; qr−1)(jr, . . . , jt) and enc(cr)(jr, . . . , jt), V̂ makes k
queries to cr−1 and cr.

Finally, V̂ checks consistency with the answer value v via the equation v =
Fold(ct; qt).

These consistency checks guarantee that when Π̂ , c1, . . . , ct−1 are all codewords in
their respective codes, then they encode consistent partial computations of the tensor
query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F`·kt on the message Π ∈ F`·kt encoded in Π̂ ∈ F`·kt .
However, we must ensure that V̂ will reject in the case that any of Π̂ , c1, . . . , ct−1 are
far from being codewords. This will be guaranteed by our proximity test.

Part 3: proximity test. We discuss the proximity test, again for the simple case of a
single tensor query. In the simulation phase the prover P̂ has sent words Π̂1, . . . , Π̂`

allegedly in C⊗t; this means that Π̂ := Stack(Π̂1, . . . , Π̂`) is allegedly in (C⊗t)`. In
the consistency test the prover P̂ has sent words c1, . . . , ct where cr allegedly is in
(C⊗t−r)k. The proximity test will ensure that all these words are close to the respective
codes.

A reasonable starting point to design such a test is to remember that tensor codes are
locally testable [BS06; Vid15; CMS17]: if a word c is ∆-far from C⊗t then a random

11

axis-parallel line of c fails to be a codeword in C with probability proportional to ∆.
Since we wish to test interleaved tensor codewords, a natural strategy is to apply the
axis-parallel test to a random linear combination of the tested words. This strategy does
produce a proximity test, but has two drawbacks. First, a calculation shows that the query
complexity is non-trivial only for t > 2, while we will design a test that is non-trivial
for t > 1.8 Second, the axis-parallel test has poor tradeoffs between query complexity
and soundness error.9 Hence we take a different approach inspired by the proximity test
for the Reed–Solomon code in [BBHR18]; at a modest increase in proof length, our test
will work for any t > 1 (and thereby subsume the prior work in [BCGGHJ17]) and will
have better query-soundness tradeoffs.

We now describe our proximity test, which has t rounds of interaction, followed by a
query phase.

Interactive phase. In round r ∈ [t], V̂ sends to P̂ random challenges αr, βr ∈ Fk,
and P̂ replies with a word dr : [k] × [n]t−r → F (computed as described below) that
is allegedly a codeword in (C⊗t−r)k. Intuitively, for r ∈ [t − 1], the word dr will be
close to a codeword in C⊗t−r if and only if cr−1 and dr−1 are both close to codewords
in C⊗t−(r−1), up to a small error probability.

– In the first round, the word d1 is derived from Π̂ via the same “fold-then-decode”
procedure that we have already seen. This time, the folding procedure uses the random
challenge α1 ∈ F`. Then, d1 is the codeword in (C⊗t−1)k obtained by partially
decoding Fold(Π̂;α1) ∈ C⊗t.

– In each subsequent round r = 2, . . . , t, the word dr is derived via a similar procedure
from cr−1 and dr−1, and the random challenges αr, βr ∈ Fk. Namely, dr is the
codeword in (C⊗t−r)k obtained by partially decoding Fold(cr−1, dr−1;αr, βr) ∈
C⊗t−(r−1).

Each round reduces the rank of the tensor code and, in the last round (when r = t), the
words ct and dt are fully decoded message vectors in Fk.

Query phase. The verifier V̂ tests the expected relation between messages across
rounds at a random point. Since each round’s messages are expected to be partial
decodings of foldings of the prior round’s messages, for an honest prover P̂ the following
equations relate words across rounds:

– for r = 1, enc(d1) = Fold(Π̂;α1);
– for each r ∈ {2, . . . , t}, enc(dr) = Fold(cr−1, dr−1;αr, βr).

As in the consistency test, the above equations motivate natural checks for the verifier.
Namely, V̂ samples a random tuple (j1, . . . , jt) ∈ [n]t and checks all of the relevant
equations at this tuple:

– for r = 1, enc(d1)(j1, . . . , jt) = Fold(Π̂;α1)(j1, . . . , jt);
8 Query complexity for the strategy using local testing would be O((`+ kt) · n), while that for

our test will be O(`+ kt).
9 Let δ = d/n be the relative distance of C. By incurring a multiplicative increase of λ in query

complexity, the strategy using local testing gives a soundness error of, e.g., O(dt/|F|) + (1−
δO(t) ·∆)λ when applied to an input of distance ∆ from C⊗t. In contrast, the test in this work
will give a soundness error that is (approximately) O(dt/|F|) + (1−∆)λ.

12

– for each r ∈ {2, . . . , t}, enc(dr)(jr, . . . , jt) = Fold(cr−1, dr−1;αr, βr)(jr, . . . , jt).

Similarly to before, to obtain the values needed to perform these checks, V̂ makes `
point queries to Π̂ and k point queries to cr and dr for each r ∈ [t− 1].
Efficiency. The tensor IOP (P,V) given as input to the transformation has proof
length l, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv. Now we discuss the main information-theoretic efficiency measures of
the constructed point-query IOP (P̂, V̂).

– Proof length is Oρ,t(q · l). Indeed, in the simulation phase P̂ encodes and sends all the
proof strings produced by P, increasing the number of field elements from l = ` · kt
to ` · nt = nt

kt · ` · k
t = ρ−t · l. (Plus the q answers to the q tensor queries.) Moreover,

in the consistency and proximity tests, P̂ sends, for each of the q queries, O(nt) field
elements in total across t rounds. The sum of these is bounded by O(ρ−t · q · l).

– Query complexity is O(`+ t · k · q). In the simulation phase, V̂ reads the q answers
to the q tensor queries of V as claimed by P̂. In the consistency and proximity tests,
V̂ makes a consistency check that requires point queries on each of the ` words
Π̂1, . . . , Π̂`, plus O(t · k) point queries for each of the q tensor queries. The sum of
these is bounded by O(`+ t · k · q).

Note that the tensor IOP that we construct has query complexity q = O(1) (see Sec-
tion 2.4), which means that the multiplicative overheads that arise from the number of
queries are constant.

Next we discuss computational efficiency measures. These will depend, in particular,
on the cost of encoding a message using the base code C. So let θ(k) be such that θ(k) ·k
is the size of an arithmetic circuit that maps a message in Fk to its codeword in C. In this
paper we focus on the case where θ(k) is a constant.

– Verifier arithmetic complexity is tv + Ot((` + θ(k) · k) · q). The first term is due
to V̂ simulating V in the simulation phase. In addition, in executing the proximity
and consistency tests, V̂ makes, for each of q queries and for each of t rounds, an
encoding operation that costs θ(k) · k plus other linear combinations that cost O(k)

field operations, and O(`) field operations in the first round. Thus in total, V̂ performs
O((`+ t · θ(k) · k) · q) field operations in the proximity and consistency tests.

– Prover arithmetic complexity is tp + Oρ,t(q · l) · θ(k). The first term is due to P̂

simulating P in the simulation phase. In the simulation phase, P̂ also has to encode
every proof string output by P. This costs O(ρ−t · θ(k) · l) field operations, as can
be seen by observing that the cost of encoding a single proof string Πi ∈ Fkt to its
corresponding codeword Π̂i ∈ Fnt

in C⊗t is O(ρ−t · θ(k) · kt). Establishing a good
bound on the cost of P̂ in the consistency and proximity tests requires more care, as
we now explain.
In the consistency and proximity tests, P̂ must compute each of the functions
c1, . . . , ct and d1, . . . , dt. Each cr and dr is defined in terms of the previous cr−1 and
dr−1 via a “fold-then-decode” procedure. However, we do not wish for P̂ to depend
on the cost of decoding the base code C, because for the codes that we eventually
use ([DI14]), where θ is constant, no linear-time error-free decoding algorithm is

13

known. (Only the error-free case need be considered when designing an honest prover
algorithm. Indeed, we never use a decoding algorithm of any sort for C at any point in
this work.) Thankfully, since P̂ knows the message Π encoded in Π̂ , P̂ can compute
cr and dr for each r ∈ [t] from scratch from Π by partially re-encoding, which
contributes an additional term of O(ρ−t · θ(k) · kt) per query.

Remark 1. Our construction of a point-query IOP from a tensor IOP and a linear code
builds on several prior works. Below, we highlight similarities and differences with each
of these works in chronological order.

– The ILC-to-IOP transformation in [BCGGHJ17] shows how any protocol in the Ideal
Linear Commitment (ILC) model can be implemented via a point-query IOP, using
any given linear code C as an ingredient. Crucially, if C has a linear-time encoding
procedure, then computational overheads in the transformation are constant. This
is what enables [BCGGHJ17] to obtain a linear-time IOP with square-root query
complexity.
Our construction also relies on an arbitrary linear code C as an ingredient but con-
siders a different implementation problem (tensor queries via point queries), which
ultimately enables much smaller query complexity in the resulting point-query IOP.
The interactive phase of our construction could be viewed as a recursive variant of the
transformation in [BCGGHJ17].

– The “FRI protocol” in [BBHR18] is an IOP for testing proximity of a function to
the Reed–Solomon code. The interactive phase consists of a logarithmic number of
rounds in which the proximity problem is reduced in size; the reduction relies on a
folding operation defined over subgroups that has small locality, and a low probability
of distortion. The query phase consists of a correlated consistency check across all
rounds.
Our proximity test could be viewed as an analogue of the FRI protocol for (the
interleaving of) tensor codes. Our consistency test could then be viewed as an analogue
of using “rational constraints” and the FRI protocol to check the claimed evaluations
of the polynomial committed in a Reed–Solomon codeword.

– The sumcheck protocol for the tensor product of systematic codes [Mei13] can simu-
late a tensor query to a proof string via point queries, via the code-switching technique
in [RR20]. This preserves the linear time of the prover, and so could be used to prove
Theorem 3 for the special case of a systematic code. Our protocol can be viewed as
a non-interactive variant that also works for the interleaving of codewords from the
tensor product of non-systematic codes (as required by Theorem 3). As discussed in
Section 1.1, the ability to freely choose any linear code allows better rate-distance
tradeoffs and enables the zero-knowledge property to be achieved more efficiently.
Further, at the cost of a moderate increase in proof length, our query complexity
and verifier complexity scale better with soundness error when doing soundness
amplification.10

10 Consider the setting in [RR20], which is a single tensor query (q = 1) to a single tensor
codeword (` = 1). The sumcheck protocol in [RR20] branches at each recursion, and has query
complexity λt and verifier time poly(λt, t, k) to achieve soundness error 2−Ω(λ). By contrast,
we achieve query complexity O(λ · kt) and verifier time O(λ · θkt), where θ is a constant.

14

2.3 On soundness of the transformation

The theorem below informally states the security guarantees of the transformation given
in the previous section. Details can be found in the full version of this paper . In the rest
of this section, we provide some intuition behind the structure of the soundness analysis
and the origin of each term in the soundness error.

Theorem 4 (informal). If (P,V) is an (F, k, t)-tensor IOP with soundness error ε and
C is a linear code with rate ρ = k/n and relative distance δ = d/n, then the point-query
IOP (P̂, V̂) has soundness error

ε+O

(
dt

|F|

)
+O

((
1− δt

2

)λ)

when the query phases of the consistency and proximity tests are repeated λ times.

The first term ε is inherited from soundness of the original protocol; P̂ may attempt
to cheat by accurately simulating a cheating P in a tensor IOP protocol. The remaining
terms are upper bounds on the probability that V̂ will accept when the messages of P̂
fail to accurately simulate tensor queries to P’s messages.

The second term is related to a phenomenon of linear codes known as distortion. It
is important to consider distortion in the soundness analysis of the proximity test. Given
interleaved words W = (w1, . . . , w`) ∈ F`×n with blockwise distance e := d(W, C`),
we use a result from [AHIV17] that shows that the probability that a random linear
combination w of w1, . . . , w` satisfies d(w, C) < e (distortion happens) is O(d/|F|). In
other words, for a random linear combination α, Fold(· ;α) preserves distance with
high probability. The term O(dt/|F|) in the soundness error comes from bounding the
probability of distortion for each code C⊗t−r for r ∈ [0, . . . , t− 1], which has minimum
distance dt−r, as P̂ sends and folds words that are allegedly from each of these codes in
the proximity test. Combining the distortion result with a union bound gives probability
O((dt + dt−1 + · · · + d)/|F|) of distortion occurring anywhere in the protocol. The
geometric series is asymptotically dominated by its largest term, hence the bound.

The third term comes from the probability that V̂ rejects in the proximity test, given
that P̂ sends cr or dr which are far from C⊗t−r or that V̂ rejects in the consistency test,
given that cr or dr contain messages which are inconsistent with earlier c and d words.
In either case, the fraction of indices on which the verification equations do not hold is
then related to the relative distance of C⊗t, which is δt. Here, λ is the number of entries
at which V̂ makes the verification checks in the consistency and proximity tests.

The above is an intuitive summary, and in the paragraphs below we elaborate further
on our analysis.

Soundness analysis. The proof that our transformation is sound is rather involved, and
is a key technical contribution of this paper. The proof is split into two main parts; the
analysis of the consistency test and the analysis of the proximity test. The proximity test
comprises the most complex part of the analysis.

Our proximity test is recursive, which initially suggests an analysis that recursively
applies ideas from [BCGGHJ17]. However, a notable feature of our proximity test is

15

that the verification checks for each r ∈ [t] are correlated. Namely, the verifier V̂ does
not check e.g. Fold (cr−1, dr−1;αr, βr) = enc(dr) for a random point independently of
the other verification equations for other values of r. Rather, V̂ samples (j1, . . . , jt) ∈
[n]t and checks whether Fold(Π̂;α1)(j1, . . . , jt) = enc(d1)(j1, . . . , jt). Then, for the
verification check that e.g. Fold(cr−1, dr−1;αr−1, βr−1) = enc(dr), V̂ will truncate
(j1, . . . , jt) to (jr, . . . , jt) and check that Fold(cr−1, dr−1;αr−1, βr−1)(jr, . . . , jt) =
enc(dr)(jr, . . . , jt).

We take inspiration from the soundness analysis for the Reed–Solomon proximity test
in [BBHR18]. The analysis in [BBHR18] handles their entire protocol with all correlated
consistency checks in one single analysis, and avoids a multiplicative dependence on the
number of rounds, which was important in [BBHR18] whose protocol had non-constant
round-complexity. The same approach informs our analysis, which has the same structure
as that of [BBHR18], but is adapted to the combinatorial setting of tensor codes rather
than the algebraic setting of Reed–Solomon codes, and modified to reflect the fact that
we wish to perform a proximity test for alleged tensor codewords Π̂ , c1, . . . , ct−1 of
different ranks in the same protocol (rather that one codeword).

Our analysis is divided into cases, depending on the behavior of a malicious prover
P̂.

Proximity test soundness. First, suppose that, for some r ∈ [t], P̂ has sent words cr−1
and dr−1 that are far from being interleaved C⊗t−(r−1)-codewords. Yet, through unlucky
random choice of αr or βr ∈ Fk, one of the intermediate values Fold(cr−1, dr−1;αr, βr)
is close to C⊗t−(r−1). Then, there exists a valid partial decoding dr that satisfies consis-
tency checks at a large fraction of entries, potentially causing V̂ to accept even though P̂
has not simulated any inner prover P. Since Fold(cr−1, dr−1;αr, βr) is a random linear
combination of words far from C⊗t−(r−1), this implies that distortion has occurred. We
apply upper bounds on the probability of distortion.

Second, assume that distortion does not occur in any round. Suppose that the prover
P̂ has sent cr−1 which is far from being an interleaved C⊗t−(r−1)-codeword. Consider
the latest round r for which P̂ behaves in this way. Then enc(dr) is close to C⊗t−(r−1),
but Fold(cr−1, dr−1;αr, βr) is far from C⊗t−r. Using this fact, the analysis of this case
follows from a simpler sub-case. In this sub-case, suppose that P̂ has behaved honestly
from the (r+1)-th round of the consistency phase onwards, but V̂ makes checks at entries
correlated with positions where Fold(cr−1, dr−1;αr, βr) is not a C⊗t−(r−1)-codeword.
We show that V̂ will reject.

Consistency test soundness. Suppose that the prover P̂ has sent cr−1 that is close to
an interleaved codeword, but encodes a message that is not consistent with Π . Consider
the latest round r for which P̂ behaves in this way. Then, enc(cr) and Fold(cr−1; qr−1)
are close to different codewords of C⊗t−(r−1). This means that for a large fraction
of entries (jr, . . . , jt) ∈ [n]t−r which is related to the relative distance of the code,
Fold(cr−1; qr−1)(jr, . . . , jt) 6= enc(cr)(jr, . . . , jt), causing V̂ to reject.

Finally, suppose that, for each r ∈ [t], P̂ has sent cr that is an interleaved C⊗t−r-
codeword except for noise at a small number of positions, and all encode messages
consistent with queries on Π . In this case, P̂ has essentially simulated an inner prover
P correctly, in the sense that an “error-correction” of the words sent by P̂ are a correct
simulation. The soundness error is then inherited from the original protocol (P,V).

16

2.4 Checking constraint systems with tensor queries

Our transformation from tensor queries to point queries (Theorem 3) introduces a multi-
plicative blow-up in prover arithmetic complexity (and proof length) that is proportional
to the number q of tensor queries. So, for us to ultimately obtain a point-query IOP with
linear arithmetic complexity, it is important that the tensor IOP given to the transforma-
tion has constant query complexity and a prover with linear arithmetic complexity.

Towards this end, we now turn to Theorem 2, which requires a suitably-efficient
tensor IOP for the problem of rank-1 constraint satisfiability (R1CS), a generalization of
arithmetic circuits given in Definition 1; recall that N is the number of variables and M
is the number of coefficients in each coefficient matrix.

A natural starting point would be to build on interactive proofs for evaluating lay-
ered arithmetic circuits [GKR08], whose prover can be realized in linear time [Tha13;
XZZPS19]. Indeed, the verifier in these protocols only needs to query the low-degree
extension of the circuit input, which can be realized via a tensor query to a proof string
containing the input sent by the prover. Moreover, the verifier in these protocols is
sublinear given oracle access to the low-degree extension of the circuit description.
These oracles can be implemented via a sub-protocol if the circuit is sufficiently uniform
[GKR08] but, in general, this would require a holographic subprotocol that supports
arbitrary circuits (not a goal in those works).

We take a different starting point that is more convenient to describe our holographic
tensor IOP for R1CS (and recall that R1CS is a generalization of arithmetic circuits). First,
as a warm-up in this section, we discuss a simple construction that fulfills a relaxation of
the theorem: a tensor IOP for R1CS with linear proof length l = O(N), constant query
complexity q = O(1), a prover with linear arithmetic complexity tp = O(M), and a
verifier with linear arithmetic complexity tv = O(M). After that, in Section 2.5, we
describe how to modify this simple protocol to additionally achieve sublinear verification
time (incurring only minor losses in the other efficiency parameters). Along the way, we
uncover new, and perhaps surprising, connections between prior work on linear-time
IOPs [BCGGHJ17] and linear-time sumcheck protocols [Tha13].

In the paragraphs below we denote by (P,V) the (F, k, t)-tensor IOP that we design
for R1CS. We outline its high-level structure, and then describe in more detail the main
sub-protocol that enables linear arithmetic complexity, which is for a problem that we
call twisted scalar product (TSP).
High-level structure. The R1CS problem asks whether, given coefficient matrices
A,B,C ∈ FN×N and an instance vector x over F, there exists a witness vector w over
F such that z := (x,w) ∈ FN satisfies Az ◦ Bz = Cz. Using a similar approach to
other proof protocols for R1CS, it suffices for the prover P to send the full assignment z
and its linear combinations zA, zB , zC ∈ FN , and convince the verifier V that zA = Az,
zB = Bz, zC = Cz, and zA ◦ zB = zC in linear time and using O(1) tensor queries.

To check the first three conditions, the verifier sends a random challenge vector
r ∈ Fnrow with tensor structure. Multiplying on the left by rᵀ reduces the first three
conditions to γA = 〈rA, z〉, γB = 〈rB , z〉, and γC = 〈rC , z〉; here γA := 〈r, zA〉 and
rA := rᵀA, and similarly forB andC. The verifier can directly obtain the inner products
γA, γB , γC through tensor queries to zA, zB , zC . Moreover, both the prover and verifier
can locally compute the three vectors rA, rB , rC by right-multiplication by A,B,C

17

respectively, which entails performing a number of arithmetic operations that is linear
in the number M of non-zero entries of the matrices.11 Note that this is the only place
where the verifier has to read the entries of A,B,C. The verifier must now check the
scalar products γA = 〈rA, z〉, γB = 〈rB , z〉, γC = 〈rC , z〉.

Thus, to check R1CS satisfiability, it suffices to check three scalar products and
one Hadamard product. (We must also check that z = (x,w), but this is not the main
technical challenge.) We solve both scalar and Hadamard products with a common sub-
routine for twisted scalar products that has a linear-time prover and a constant number of
tensor queries, as we discuss below. We refer the reader to the full version of this paper
for the details.

Twisted scalar products. The main technical contribution in our tensor IOP construc-
tion is the design of a protocol for verifying twisted scalar products (TSP).

Definition 3. The twisted scalar product of two vectors u = (u1, . . . , uN) and v =
(v1, . . . , vN) in FN with respect to a third vector y = (y1, . . . , yN) in FN is defined
to be 〈u ◦ y, v〉 =

∑N
i=1 uiyivi. In other words, the i-th term uivi contributing to the

scalar product 〈u, v〉 has been multiplied, or “twisted”, by yi.

Standard scalar products (which we need for γA = 〈rA, z〉, γB = 〈rB , z〉, and
γC = 〈rC , z〉) follow by setting y := 1N . To handle the Hadamard product zA◦zB = zC ,
we pick a random vector y, and up to a small error over the random choice of y, checking
the Hadamard product is equivalent to checking the twisted scalar product 〈u ◦ y, v〉 = τ
with u = zA, v = zB and τ = 〈zC , y〉. In sum, to check the R1CS relation we will
check four appropriate instances of the twisted scalar product.

Our result for twisted scalar products is as follows.

Lemma 1 (informal). For every finite field F and positive integers k, t, there is a (F, k, t)-
tensor IOP for twisted scalar products that supports vectors of length N = kt and twists
of the form y = y1 ⊗ · · · ⊗ yt, and has the following parameters:
– soundness error is O(logN

|F|);
– round complexity is O(logN);
– proof length is O(N) elements in F;
– query complexity is O(1);
– the prover and verifier both use O(N) field operations.

Lemma 1 follows from prior work: the linear-time sumcheck of [Tha13; XZZPS19]
can be applied to the multi-linear extension of the two vectors in the scalar product, and
the verifier’s queries to those extensions can be implemented as a tensor query. (The
twist can also be handled by “folding it” into a tensor query.)

Below we give an alternative proof inspired by the linear-time protocols of [BCG-
GHJ17], themselves based on [Gro09]. This is interesting because this latter predates

11 We remark that one can improve this cost from linear in the number M of non-zero entries in
A,B,C to linear in the cost of right multiplication by A,B,C. By the transposition principle
(see e.g., [KKB88]), this latter is closely related to the cost E of left multiplication by A,B,C,
which could be much less than M . For example, if A is the matrix corresponding to a discrete
Fourier transform, then E = O(N logN) is much less than M = Θ(N2).

18

[Tha13] and formerly appeared to be a totally distinct design strategy for interactive
protocols. In contrast we show a sumcheck-based protocol inspired by these works, and
show that they are a different application of the same linear-time sumcheck. From a
technical point of view, our scalar-product protocol invokes the linear-time sumcheck on
polynomials that encode information in their coefficients rather than in their evaluations
(as is usually the case). This leads to modest opportunities for optimization and may
have applications when used in combination with polynomial commitments not known
to support the Lagrange basis (such as [BFS20]). Below we sketch our construction;
details are in the full version of this paper . For simplicity, below we explain the case of
scalar products without a twist. Readers who are comfortable with Lemma 1 may skip
the rest of this section.

Strawman construction. Before our construction, we first present a simple linear
IOP (an IOP with linear queries as defined in Section 2.1) for scalar products, and then
highlight the challenges that we need to overcome to obtain our protocol.

The verifier V has linear query access to two vectors u = (u0, . . . , uN−1) and
v = (v0, . . . , vN−1) in FN . The prover P wishes to convince the verifier V that
〈u, v〉 = τ for a given τ ∈ F. Define the two polynomials U(X) :=

∑N−1
i=0 uiX

i

and V (X) :=
∑N−1
i=0 viX

N−i (the entries of v appear in reverse order in V (X)). The
product polynomial W (X) := U(X)V (X) has 〈u, v〉 as the coefficient of XN−1,
because for any i, j ∈ [N], the powers of X associated with ui and vj multiply to-
gether to give XN−1 if and only if i = j. With this in mind, P sends to V the vector
w := (w0, . . . , w2N−2) of coefficients of W (X).

Next, V checks the equality W (X) = U(X) · V (X) at a random point: it samples a
random ρ ∈ F; constructs the queries ν1 := (1, ρ, ρ2, . . . , ρN−1), ν2 := (ρN−1, ρN−2, . . . , 1),
and ν3 := (1, ρ, ρ2, . . . , ρ2N−2); queries u, v, w respectively at ν1, ν2, ν3 to obtain
γu = 〈u, ν1〉 = U(ρ) , γv = 〈v, ν2〉 = V (ρ) , γw = 〈w, ν3〉 = W (ρ); and checks that
γu · γv = γw. By the Schwarz–Zippel lemma, this is test is unlikely to pass unless
U(X) · V (X) = W (X) as polynomials, and in particular, if the coefficient of XN−1 in
W (X) is not equal to 〈u, v〉. Finally, V constructs the query ν4 := (0, . . . , 1, 0, . . . , 0),
which has a 1 in the N -th position of the vector; then queries w at ν4 to get wN−1 =
〈w, ν4〉, and checks that it is equal to τ .

This approach gives a linear IOP for verifying scalar products, with O(1) queries
and proof length O(N). One can easily convert it into a linear IOP for verifying twisted
scalar products by using ν1 ◦ y instead of ν1. With additional care, these queries can
even be expressed as tensor queries. However, the main problem with this approach is
that P requires O(N logN) operations to compute W (X) by multiplying U(X) and
V (X).

Scalar products via sumcheck. We explain how to obtain a tensor IOP for scalar prod-
ucts where P uses O(N) operations. First, we explain how to redesign the polynomials
U(X) and V (X). Then, we explain how to verify that the scalar product is correct via a
sumcheck protocol on the product of these polynomials.

We embed the entries of u and v ∈ Fn into multilinear polynomials U(X1, . . . , Xl)
and V (X1, . . . , Xl) over F. Namely, in U(X), we replace the monomial Xi, which has
coefficient ui, with a monomial in formal variables X1, X2, . . . , XlogN , choosing to
includeXj if the j-th binary digit of i is a 1. For example, u0, u1, u2 and u3 are associated

19

with monomials 1, X1, X2, and X1X2. Thus, each coefficient ui is associated with a
unique monomial in X1, . . . , XlogN . As with the strawman solution, the coefficients of
V (X) are associated with the same monomials, but in reverse order. For example, v0 and
v1 are associated with monomials X1X2 · · ·XlogN and X2 · · ·XlogN . This time, the
product polynomial W (X1, . . . , XlogN) := U(X1, . . . , XlogN) · V (X1, . . . , XlogN)
has 〈u, v〉 as the coefficient of X1X2 · · ·XlogN , since for any i, j ∈ [N] the monomials
associated with ui and vj multiply together to give X1X2 · · ·XlogN if and only if i = j.

Now V has tensor-query access to u and v, and P must convince V that 〈u, v〉 = τ ,
which now means checking that CoeffX1···Xl

(W) = τ . We turn this latter condition into
a sumcheck instance, via a new lemma that relates sums of polynomials over multiplica-
tive subgroups to their coefficients; the lemma extends a result in [BCRSVW19] to the
multivariate setting.

Lemma 2 (informal). Let H be a multiplicative subgroup of F and p(X1, . . . , Xl) a
polynomial over F. Then for every integer vector ~j = (j1, . . . , jl) ∈ Nl,

∑
~ω=(ω1,...,ωl)∈Hl

p(~ω) · ~ω~j =

 ∑
~i+~j≡~0 mod |H|

p~i

 · |H|l .
Above we denote by p~i the coefficient of Xi1

1 · · ·X
il
l in p and denote by ~ω~j the product

ωj11 · · ·ω
jl
l .

Set H := {−1, 1}, p := W , and ~j := (1, . . . , 1). Since W has degree at most 2 in
each variable, the only coefficient contributing to the sum on the right-hand side is the
coefficient of X1 · · ·Xl, which is 〈u, v〉.

In light of the above, the prover P and the verifier V engage in a sumcheck protocol
for the following claim: ∑

~ω∈{−1,1}l
U(~ω)V (~ω) · ~ω~1 = τ · 2l .

During the sumcheck protocol, over l rounds of interaction, V will send random chal-
lenges ρ1, . . . , ρl. After the interaction, V needs to obtain the valueU(ρ1, . . . , ρl)V (ρ1, . . . , ρl).
We show that, in our setting, V can obtain the two values in this product by making
tensor queries to u and v, respectively.

We are left to discuss how P can be implemented in O(2l) = O(N) operations.
Recall that the problem in the strawman protocol was that P had to multiply two

polynomials of degree N . Now the problem seems even worse: P cannot compute W
directly as it has a super-linear number of coefficients (W is multi-quadratic in l = logN
variables). However, in the sumcheck protocol, P need not compute and send every
coefficient of W and can compute the messages for the sumcheck protocol by using par-
tial evaluations U(ρ1, . . . , ρj , Xj+1, . . . , XlogN) and V (ρ1, . . . , ρj , Xj+1, . . . , XlogN)
without ever performing any high-degree polynomial multiplications. This is indeed the
logic behind techniques for implementing sumcheck provers in linear time, as discussed
in [Tha13; XZZPS19], which, e.g., suffice for sumchecks where the addend is the product
of constantly-many multilinear polynomials, as is the case for us.

20

The full details, which give explicit tensor queries for evaluating U and V , and how
to incorporate the “twist” with y ∈ FN into the sumcheck to get our TSP protocol, are
given in the full version of this paper .

Remark 2 (binary fields). The astute reader may notice that setting H = {−1, 1} in
Lemma 2 is only possible when the characteristic of F is not equal to 2. Nevertheless, a
statement similar to Lemma 2 holds for additive subgroups, which in particular we can
use in the case of binary fields. Our results then carry over with minor modifications to
binary fields as well (and thus all large-enough fields).

2.5 Achieving holography

Thus far, we have discussed ingredients behind a relaxation of Theorem 1 with no
sublinear verification. Namely, (1) an IOP with tensor queries where the verifier receives
as explicit input the R1CS coefficient matrices A,B,C; and (2) a transformation from
this tensor-query IOP to a corresponding point-query IOP.

We now describe how to additionally achieve the sublinear verification in Theorem 1
via holography.

In a holographic IOP for R1CS, the verifier V no longer receives as explicit input
A,B,C. Instead, in addition to the prover P and the verifier V, a holographic IOP for
R1CS includes an additional algorithm, known as the indexer and denoted by I, that
receives as explicit input A,B,C and outputs an “encoding” of these. The verifier V
then has query access to the output of the indexer I. This potentially enables the verifier
V to run in time that is sublinear in the time to read A,B,C.

Achieving such a verifier speed-up and thereby obtaining Theorem 1, however,
requires modifications in both of the aforementioned ingredients. Below we first discuss
the modifications to the transformation, as they are relatively straightforward. After that
we dedicate the rest of the section to discuss the modifications to the tensor-query IOP,
because making it holographic requires several additional ideas.

Preserving holography in the transformation. Informally, we want the modified
transformation to “preserve holography”: if the tensor-query IOP given to the transfor-
mation is holographic (the verifier has tensor-query access to the output of an indexer),
then the new point-query IOP produced by the transformation is also holographic (the
new verifier has point-query access to the output of the new indexer). Moreover, the
transformation should introduce only constant multiplicative overheads in the cost of
indexing and proving.

So let I be the indexer of the tensor-query IOP. The new indexer Î for the point-query
IOP simulates I and encodes its output using Enc, just as the new prover P̂ encodes the
messages from P. (Recall from Section 2.2 that Enc is the encoding function for the
tensor code C⊗t.) Subsequently, in the simulation phase of the transformation, whenever
the verifier V wishes to make a tensor query to the output of I, the new verifier V̂
forwards this query to the new prover P̂, who responds with the answer. After that, we
extend the consistency and proximity tests in the transformation to also ensure that P̂
answers these additional tensor queries correctly. These tests will require the new verifier
V̂ to make point queries to the encoding of the output of I, which is precisely what V̂

21

has query access to because that is the output of Î. The constant multiplicative overheads
incurred by the transformation still hold after these (relatively minor) modifications.
A holographic tensor IOP. In the non-holographic tensor-query IOP outlined in
Section 2.4, the verifier V, receives as input coefficient matrices A,B,C explicitly, and
must perform two types of expensive operations based on these. First, V expands some
random challenges r1, . . . , rt ∈ Fk into a vector r = r1⊗· · ·⊗rt ∈ Fkt , which requires
O(kt) arithmetic operations. Second, V computes the matrix-vector product rA := rᵀA,
which in the worst case costs proportionally to the number of non-zero entries of A.
Similarly for B and C.

Viewed at a high level, these expensive operations are performed as part of a check
that zA = Az (and similarly forB andC), which has been referred to as a “lincheck” (see
e.g. [BCRSVW19]). Thus, it is sufficient to provide a “holographic lincheck” subprotocol
where V has tensor query access to a matrix U (which is one of A, B, or C), an input
vector v, and an output vector vU, and wishes to check that vU = Uv.
Challenges to holography. To illustrate the challenges of obtaining a linear-time
holographic lincheck, we first present a simple strawman: a sound protocol that falls
(far) short of linear arithmetic complexity. First we describe the indexer, and after that
the interaction between the prover and verifier.

– Indexer. The indexer receives as input a matrix U over F, which for simplicity we
assume has dimension kt × kt; we can then identify the rows and columns of U via
tuples (i1, . . . , it) ∈ [k]t and (j1, . . . , jt) ∈ [k]t respectively. The indexer outputs
the vector u ∈ Fk2t such that ui1,...,it,j1,...,jt is the entry of U at row (i1, . . . , it) and
column (j1, . . . , jt). The verifier will have (F, k, 2t)-tensor-query access to u.

– Prover and verifier. To check that vU = Uv, for the verifier it suffices to check that
〈r, vU〉 = 〈rᵀU, v〉 for a random r = r1 ⊗ · · · ⊗ rt in Fkt (up to a small error over
the choice of r). Since rᵀUv = 〈r ⊗ v, u〉, the verifier wishes to check whether
〈r, vU〉 = 〈r ⊗ v, u〉. The verifier makes the (F, k, t)-tensor query r to vU to obtain
the left hand side. To help the verifier obtain the right hand side, the prover computes
e := r ⊗ v ∈ F2t and sends it to the verifier. Since u need not have a tensor
structure, the verifier cannot directly obtain 〈e, u〉 via a (F, k, 2t)-tensor query to
e; instead, the verifier can receive this value from the prover and rely on a scalar-
product protocol to check its correctness. The verifier is thus left to check that indeed
e = r ⊗ v. Note that for any s = s1 ⊗ · · · ⊗ st and s′ = s′1 ⊗ · · · ⊗ s′t it holds
that 〈s ⊗ s′, e〉 = 〈s, r〉〈s′, v〉 = 〈s1, r1〉 · · · 〈st, rt〉〈s′, v〉. The verifier checks this
equality for random s and s′: it directly computes 〈si, ri〉 for each i ∈ [t]; obtains
〈s′, v〉 via a (F, k, t)-tensor query to v; obtains 〈s⊗ s′, e〉 via a (F, k, 2t)-tensor query
to e; and checks the expression.

Crucially, in the protocol described above, the verifier performs only O(kt) field opera-
tions. In particular, the verifier did not have to incur the cost of reading the matrix U ,
which is much greater in general.

However, the foregoing protocol falls (far) short of achieving linear proving time:
the indexer outputs a vector u that specifies the matrix U via a dense representation of
k2t elements, and this leads to the prover having to compute vectors such as e ∈ F2t,
which costs O(k2t) operations. On the other hand, in order to represent U , it suffices to

22

specify its non-zero entries. Hence, unless U is a dense matrix (with Ω(k2t) non-zero
entries), the foregoing protocol does not have a linear-time prover (and also does not
have a linear-time indexer).

Our goal here is thus a holographic protocol that is efficient relative to a sparse
representation of the matrix U , for example the triple of vectors (valU , rowU , colU) ∈
FM × [kt]M × [kt]M such that valU is a list of the values of the M non-zero entries of
U , and rowU , colU are the indices of these entries in U (i.e., for all κ ∈ [M] it holds that
U(rowU(κ), colU(κ)) = valU(κ)). This is (essentially) the best that we can hope for, as
the indexer and the prover must read a description of U .

Efficiency relative to the sparse representation was achieved in [CHMMVW20;
COS20], which contributed efficient holographic IOPs for R1CS. However, the prover
algorithm in those constructions runs in quasilinear time, and we do not know how to
adapt the techniques in these prior works, which are based on univariate polynomials, to
our setting (linear-time tensor IOPs). It remains an interesting open problem to build on
those techniques to achieve a linear-time holographic lincheck with tensor queries.

Subsequently, Setty [Set20] constructed a preprocessing SNARG for R1CS without
FFTs by porting the univariate protocols for R1CS to the multivariate setting (where
we have a linear-time sumcheck [Tha13]) and solving the matrix sparsity problem by
constructing a polynomial commitment scheme for “sparse multivariate polynomials”.
His approach to sparsity is combinatorial rather than algebraic: he constructs a linear-size
circuit using memory-checking ideas to “load” each non-zero term of the polynomial
and add it to a total sum, and then invokes an argument system for uniform circuits
that does not use FFTs [WTSTW18]. Since a key component of the construction is a
polynomial commitment scheme for (dense) multilinear extensions, and the multilinear
extension of a vector is a special case of a tensor query, it is plausible that one could
distill a tensor IOP from [Set20] that suits our purposes. However, taking this path is not
straightforward given the protocol’s complexity, and the informal discussions and proof
sketches in [Set20].

Our approach. To prove our theorem, we build on an earlier protocol of Bootle et
al. [BCGJM18] and a recent simplification by Gabizon and Williamson [GW20]. As
described below, this leads to a direct and natural construction for a holographic lincheck,
which is what we need. The key component in our construction, like the earlier works, is
a look-up protocol, wherein the prover can convince the verifier that previously-stored
values are correctly retrieved. Below we describe how to obtain the lincheck protocol
given the look-up protocol as a subroutine, and after that describe the look-up protocol.

As in the strawman protocol, to check that vU = Uv, for the verifier it suffices to
check that 〈r, vU〉 = 〈rᵀU, v〉 for a random r = r1 ⊗ · · · ⊗ rt in Fkt (up to a small
error over r). Again, the verifier can directly obtain the value 〈r, vU〉 by querying vU at
the tensor r. The verifier is left to obtain the value of 〈rᵀU, v〉 = rᵀUv, and enlists the
prover’s help to do so. Therefore, the verifier sends r1, . . . , rt to the prover, who replies
with γ := rᵀUv ∈ F. The prover must now convince the verifier that γ is correct.

Towards this, the prover will send partial results in the computation of γ, and the
verifier will run sub-protocols to check the correctness of each partial result. To see how
to do this, we first re-write the expression rᵀUv in terms of the sparse representation of

23

U :
rᵀUv =

∑
κ∈[M]

valU(κ) · r(rowU(κ)) · v(colU(κ)) . (1)

This expression suggests the prover’s first message to the verifier, which consists of the
following two vectors:

r∗ :=
(
r(rowU(κ))

)
κ∈[M]

and v∗ :=
(
v(colU(κ))

)
κ∈[M]

.

Observe that, if the prover was honest, then the right-hand side of Equation (1) is equal
to 〈valU , r

∗ ◦ v∗〉.
Therefore, the verifier is left to check that: (1) γ = 〈valU , r

∗◦v∗〉, and (2) r∗, v∗ were
correctly assembled from the entries of r, v as determined by the indices in rowU , colU ,
respectively.

The verifier can check the first condition via a scalar product subprotocol and a
Hadamard product subprotocol (which we have discussed in Section 2.4). To check
the second condition, the verifier will use a tensor consistency test and two look-up
subprotocols, as we now explain.

Even though the verifier sampled the components r1, . . . , rt ∈ Fk that determine the
tensor vector r = r1⊗· · ·⊗ rt ∈ Fkt , the verifier cannot afford to directly compute r, as
this would cost O(kt) operations. Instead, the prover sends r, and the verifier checks that
r was computed correctly from r1, . . . , rt via a simple subprotocol, which we describe
in the full version of this paper , that only requires making one tensor query to r and
performing O(tk) operations. Now the verifier is in a position to make tensor queries to
(the correct) r.

Next, observe that r∗ is correct if and only if, for each κ ∈ [M], there is i ∈ [kt] such
that (r∗κ, rowU(κ)) = (ri, i). We represent this “look-up” condition via the shorthand
(r∗, rowU) ⊆ (r, [kt]). Similarly, v∗ is correct if and only if (v∗, colU) ⊆ (v, [kt]). We
now discuss a protocol to check such conditions.
Look-ups via tensor queries. A look-up protocol is to check the condition (c, I) ⊆
(d, [kt]), given that the verifier has tensor-query access to the vectors c ∈ FM and
d ∈ Fkt , and also to the index vectors I ∈ FM and [kt] ∈ Fkt . (Here we are implicitly
associating the integers in [kt] with an arbitrary kt-size subset in F.)

Look-up protocols for use in proof systems originate in a work of Bootle et al.
[BCGJM18] that aims at low computational overhead for the prover. Their protocol
reduces the look-up condition to a univariate polynomial identity, and then the prover
helps the verifier to check that the polynomial identity holds when evaluated at a random
challenge point. However, the prover in their protocol incurs a logarithmic overhead in
the size of the list c, which in our usage would result in a superlinear-time prover.

Gabizon and Williams [GW20] provide a more efficient look-up protocol, which
removes the logarithmic overhead by relying on a more expressive bivariate polynomial
identity. However, they use a different proof model that we do not know how to compile
into ours while preserving linear complexity. Our contribution is to give a linear-time
tensor IOP for look-ups using their polynomial identity as a starting point.

Below we recall the identity and then summarize our look-up protocol; details can
be found in the full version .

24

First recall that, via a standard use of randomized hashing, we can replace the lookup
condition (c, I) ⊆ (d, [kt]) with a simpler inclusion condition a ⊆ b for suitable vectors
a ∈ FM and b ∈ Fkt (each entry in the vector a equals some entry of the vector b). The
polynomial identity from [GW20] concerns this latter condition, as we now explain. (We
also note that we have modified the polynomial identity to incorporate “wrap-around” in
the entries of vectors, to simplify other aspects of our protocols.)Assuming for simplicity
that the entries of b are distinct, let sort() denote the function that sorts the entries of its
input in the order b1 ≺ b2 ≺ . . . ≺ bkt .12 Let shift() denote a cyclic shift.

Lemma 1 ([GW20]). Let a ∈ FM and b ∈ Fkt . Then a ⊆ b if and only if there is
w ∈ Fkt+M such that

M+kt∏
j=1

(
Y (1+Z)+wj+shift(w)j ·Z

)
= (1+Z)M

M∏
j=1

(Y+aj)

kt∏
j=1

(
Y (1+Z)+bj+shift(b)j ·Z

)
.

(2)
In the case that a ⊆ b, we may take w = sort(a, b) to satisfy the above equation.

In our look-up protocol, the prover recomputes this polynomial identity at random
evaluation points chosen by the verifier and sends intermediate computation steps to the
verifier.13 Both parties run subprotocols to check that the computation was performed
correctly and the evaluated polynomial identity holds.

Having sent w to the verifier, the prover also sends the vectors w� := shift(w) and
b� := shift(b). Then after receiving random evaluation points for Y and Z, the prover
sends vectors w∗, a∗, b∗ containing each evaluated term in the first, second, and third
products of Equation (2) to the verifier, along with the values χw∗ := prod(w∗), χa∗ :=
prod(a∗), χb∗ := prod(b∗) of each product as non-oracle messages. Here, prod()
denotes the function which takes the product of the entries of its input.

Apart from simple checks that the vectors w∗, a∗, b∗ were correctly computed,
and using χw∗ , χa∗ , χb∗ to check that Equation (2) holds, we rely on two additional
subprotocols.

– A cyclic-shift test to show that e.g. b� = shift(b). The polynomial identity
∑kt

i=1 b(i)X
i−1−

X ·
∑kt

i=1 b�(i)Xi−1 = (1−Xkt) · b�(kt) holds if and only if b� = shift(b). The
verifier uses tensor queries to check that this identity holds at a random point.

– An entry-product protocol to show that e.g. χw∗ = prod(w∗). This protocol combines
a cyclic-shift test with a Hadamard-product protocol in order to verify the correct
computation of all partial products leading to the entry product.

The details of both subprotocols can be found in the full version of this paper.

12 When the entries of b are not distinct, one can consider a more complex merge operation; the
full version of this paper for details .

13 One can draw parallels between the combination of randomized hashing and the polynomial
identity used in this work, and the combination of randomized and multi-set hashing used
in the memory-checking circuit of [Set20]. Conceptually, the [GW20] polynomial identity
enforces stronger conditions on w, a and b than a multi-set hash and removes the need for the
time-stamping data used in [Set20].

25

Acknowledgements

We are deeply grateful to Sune K. Jakobsen who was instrumental in the early stages of
this research project and provided an initial analysis of a compiler from tensor queries
to point queries based on tensor codes. We thank Andrea Cerulli for discussions about
error correcting codes.

References

[AHIKV17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. “Low-Complexity Cryptographic Hash Functions”. In: Pro-
ceedings of the 8th Innovations in Theoretical Computer Science Conference.
ITCS ’17. 2017, 7:1–7:31.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. “Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”.
In: Proceedings of the 24th ACM Conference on Computer and Communica-
tions Security. CCS ’17. 2017, pp. 2087–2104.

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions
and More”. In: Proceedings of the 39th IEEE Symposium on Security and
Privacy. S&P ’18. 2018, pp. 315–334.

[BBCGI19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. “Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs”.
In: Proceedings of the 39th Annual International Cryptology Conference.
CRYPTO ’19. 2019, pp. 67–97.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast
Reed–Solomon Interactive Oracle Proofs of Proximity”. In: Proceedings of the
45th International Colloquium on Automata, Languages and Programming.
ICALP ’18. 2018, 14:1–14:17.

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. “Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the
Discrete Log Setting”. In: Proceedings of the 35th Annual International Con-
ference on Theory and Application of Cryptographic Techniques. EURO-
CRYPT ’16. 2016, pp. 327–357.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for
Arithmetic Circuit Satisfiability”. In: Proceedings of the 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCGJM18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary
Maller. “Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Pro-
gram Execution”. In: Proceedings of the 24th International Conference on
the Theory and Application of Cryptology and Information Security. ASI-
ACRYPT ’18. 2018, pp. 595–626.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. “Aurora: Transparent Succinct Arguments
for R1CS”. In: Proceedings of the 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19.
2019, pp. 103–128.

26

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle
Proofs”. In: Proceedings of the 14th Theory of Cryptography Conference.
TCC ’16-B. 2016, pp. 31–60.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from
DARK Compilers”. In: Proceedings of the 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’20. 2020, pp. 677–706.

[BS06] Eli Ben-Sasson and Madhu Sudan. “Robust locally testable codes and products
of codes”. In: Random Structures and Algorithms 28.4 (2006), pp. 387–402.

[Ben+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized Anonymous
Payments from Bitcoin”. In: Proceedings of the 2014 IEEE Symposium on
Security and Privacy. SP ’14. 2014, pp. 459–474.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. “Marlin: Preprocessing zkSNARKs with Universal and Up-
datable SRS”. In: Proceedings of the 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20.
2020, pp. 738–768.

[CMS17] Alessandro Chiesa, Peter Manohar, and Igor Shinkar. “On Axis-Parallel Tests
for Tensor Product Codes”. In: Proceedings of the 21st International Workshop
on Randomization and Computation. RANDOM ’17. 2017, 39:1–39:22.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum
and Transparent Recursive Proofs from Holography”. In: Proceedings of the
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

[DI14] Erez Druk and Yuval Ishai. “Linear-time encodable codes meeting the Gilbert–
Varshamov bound and their cryptographic applications”. In: Proceedings of
the 5th Innovations in Theoretical Computer Science Conference. ITCS ’14.
2014, pp. 169–182.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
Computation: Interactive Proofs for Muggles”. In: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing. STOC ’08. 2008, pp. 113–
122.

[GW20] Ariel Gabizon and Zachary J. Williamson. “plookup: A simplified polynomial
protocol for lookup tables”. In: (2020).

[Gro09] Jens Groth. “Linear Algebra with Sub-linear Zero-Knowledge Arguments”.
In: Proceedings of the 29th Annual International Cryptology Conference.
CRYPTO ’09. 2009, pp. 192–208.

[KKB88] Michael Kaminski, David Kirkpatrick, and Nader Bshouty. “Addition Require-
ments for Matrix and Transposed Matrix Products”. In: Journal of Algorithms
9.3 (1988), pp. 354–364.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Computing.
STOC ’92. 1992, pp. 723–732.

[Mei13] Or Meir. “IP = PSPACE Using Error-Correcting Codes”. In: SIAM Journal on
Computing 42.1 (2013), pp. 380–403.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Com-
puting 30.4 (2000). Preliminary version appeared in FOCS ’94., pp. 1253–
1298.

27

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. “Scaling
Verifiable Computation Using Efficient Set Accumulators”. In: Proceedings of
the 29th USENIX Security Symposium. Security ’20. 2020, pp. 2075–2092.

[Pip80] Nicholas Pippenger. “On the Evaluation of Powers and Monomials”. In: SIAM
Journal on Computing 9.2 (1980), pp. 230–250.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness
Length”. In: Proceedings of the 61st Annual IEEE Symposium on Foundations
of Computer Science. FOCS ’20. 2020.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Inter-
active Proofs for Delegating Computation”. In: Proceedings of the 48th ACM
Symposium on the Theory of Computing. STOC ’16. 2016, pp. 49–62.

[Set20] Srinath Setty. “Spartan: Efficient and general-purpose zkSNARKs without
trusted setup”. In: Proceedings of the 40th Annual International Cryptology
Conference. CRYPTO ’20. Referencing Cryptology ePrint Archive, Report
2019/550, revision from 2020.02.28. 2020.

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In:
Proceedings of the 33rd Annual International Cryptology Conference. CRYPTO
’13. 2013, pp. 71–89.

[Vid15] Michael Viderman. “A combination of testability and decodability by tensor
products”. In: Random Structures and Algorithms 46.3 (2015). Preliminary
version appeared in APPROX-RANDOM ’12., pp. 572–598.

[WTSTW18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
“Doubly-efficient zkSNARKs without trusted setup”. In: Proceedings of the
39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 926–943.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou,
and Dawn Song. “Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent
Polynomial Delegation and Its Applications to Zero Knowledge Proof”. In:
Proceedings of the 41st IEEE Symposium on Security and Privacy. S&P ’20.
2020, pp. 859–876.

28

	Abstract
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 IOPs with tensor queries
	2.2 From tensor queries to point queries
	2.3 On soundness of the transformation
	2.4 Checking constraint systems with tensor queries
	2.5 Achieving holography

	Acknowledgements
	References

