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Abstract We describe a novel type of weak crypto-

graphic private key that can exist in any discrete loga-

rithm based public-key cryptosystem set in a group of

prime order p where p − 1 has small divisors. Unlike

the weak private keys based on numerical size (such

as smaller private keys, or private keys lying in an in-

terval) that will always exist in any DLP cryptosys-

tems, our type of weak private keys occurs purely due

to parameter choice of p, and hence, can be removed

with appropriate value of p. Using the theory of implicit

group representations, we present algorithms that can

determine whether a key is weak, and if so, recover the

private key from the corresponding public key. We an-

alyze several elliptic curves proposed in the literature

and in various standards, giving counts of the number of

keys that can be broken with relatively small amounts
of computation. Our results show that many of these

curves, including some from standards, have a consid-

erable number of such weak private keys. We also use

our methods to show that none of the 14 outstanding

Certicom Challenge problem instances are weak in our

sense, up to a certain weakness bound.
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1 Introduction

Weak cryptographic private keys are those that cause

a cryptographic system to have undesirable, insecure

behavior. For example, private keys that can be re-

covered by an attacker with significantly less compu-

tational effort than expected can be considered weak.

One recent example of weak keys is described in an

April 2019 whitepaper [16] by the Independent Secu-

rity Evaluators, where numerous private keys protect-

ing users’ Ethereum wallets/accounts were discovered.

Private keys are used to generate corresponding ad-

dresses of Ethereum [39] or Bitcoin [28] wallets, and

to create digital signatures needed to spend the cryp-

tocurrency. The Ethereum private keys were found eas-

ily because they were very small integers, as opposed

to integers of the appropriate bit length. At the time

of writing this article it is not clear whether Ethereum

wallets were assigning these poor keys due to oversight

or error in the implementation, or whether it was done

maliciously. In any case, the end result is that all the

currency in the corresponding accounts was gone. Note

that this type of weak private keys, having small numer-

ical values, always exist in all discrete logarithm based

cryptosystems, irrespective of the choice of the prime

group order p.

In this paper, we describe another more subtle type

of weak private key that can exist in any discrete loga-

rithm based public-key cryptosystem. These weak keys

are special in the sense that they occur purely because

of factors of p−1, and hence, are removable with appro-

priate choice of p, in contrast to always-present smaller

private keys. Moreover, our type of weak keys can be

quite large in size unlike the small Ethereum keys dis-

cussed above, and they can be spread over the whole in-
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terval (1, p), and not necessarily in a small sub-interval

of (1, p).

As an example, consider the elliptic curve secp256k1

given by

E : y2 = x3 + 7

defined over Fq with q = 2256−232−29−28−27−26−
24 − 1, and base point

P = (5506626302227734366957871889516853432625060

3453777594175500187360389116729240,

3267051002075881697808308513050704318447127

3380659243275938904335757337482424)

of prime order

p =115792089237316195423570985008687907852837564

279074904382605163141518161494337.

This curve is part of the SEC standard [37] and is the

one used to map users’ private keys to Ethereum and

Bitcoin public addresses. The base-P discrete logarithm

of the point Q

Q = (1007602026971618930043352141265911168001173

19792545458764085267675326325395621,

7519344431816503114635930462106279786227214

2296678797285916994295833810377664)

is

α =64826877121840101682523629462674967702937679

580369334126295633893540044112329.

Although the bit-length of α is 256, and thus not weak

in the sense of [16], given only the curve, P and Q, we

can compute α in less than a second using only 4 scalar

multiplications of points on E.

Our results are inspired by the work of Maurer and

Wolf who showed the equivalence of the discrete loga-

rithm problem and the Diffie-Hellman problem in cer-

tain cases [26,27] using a technique called implicit group

representations. Subsequently, this technique has also

been used in [23] to estimate a lower bound of the ellip-

itc curve Diffie-Hellman problem for various standard

curves. Our work is also closely related to the work

of Brown and Gallant [9] on the static Diffie-Hellman

problem, which was subsequently rediscovered by and

attributed to Cheon [11] in the context of computing

discrete logarithms with auxiliary inputs. The obser-

vation used in all of these works is that the discrete

logarithm α in a cyclic group G of prime order p can

be considered as an element of the order p − 1 multi-

plicative group F∗p, provided that α 6= 0. Thus, α = ζi

(mod p) for some integer 0 < i < p − 1, and in princi-

pal the discrete logarithm can be computed by finding i

using a modified version of baby-step giant-step in the

order p−1 group. Given d dividing p−1, either a num-

ber of queries to a Diffie-Hellman oracle or appropriate

auxiliary input can be used to “lift” the problem to a

order (p− 1)/d subgroup, where the discrete logarithm

can be computed more easily.

Kushwaha and Mahalanobis [24] observed that when

α already lies in a sufficiently small subgroup of F∗p, the

modified baby-step giant-step algorithm of [9] and [11]

can be used to find α without any calls to a Diffie-

Hellman oracle [13] or auxiliary input[14]. Our main

observation in this paper is that, although the approach

of [24] does not appear to result in a faster method for

computing discrete logarithms in general, it does reveal

a new type of weak key for discrete logarithm based

cryptosystems. In particular, private keys that can be

computed directly with the method without any calls

to an oracle, provided that the subgroup of F∗p in which

the private key lives is sufficiently small, are weak.

To illustrate the idea further, the underlying rea-

son that the key in the preceding example can be com-

puted so easily is that α is in the order d = 4 sub-

group of F∗p; in fact, one finds that α = ζ3d (mod p),

where ζd = 7(p−1)/4 (mod p) is a generator of the or-

der 4 subgroup. We can find the discrete logarithm of α

to the base ζd using the modified baby-step giant-step

method in O((log p)
√
d) group operations, significantly

fewer than what is required to compute the discrete

logarithm without these considerations.

The main power of our methods thus occurs when

the secret key lies in a small subgroup of F∗p, allow-

ing one to detect whether a given private key is weak.

In most cases the probability that a randomly-selected

key is weak in this sense is very low. However, a real

concern is that a malicious party could cause users to

be assigned weak keys, for example, via hacked or de-

liberately constructed key generation software such as

an Ethereum wallet, or hard-coded system parameters

such as in the Dual EC pseudo-random number genera-

tor. The malicious party, knowing that these users have

weak keys, would be able to recover the private keys at

will, as is speculated to have occurred in the Ethereum

weak keys discovered by the Independent Security Eval-

uators [16]. To further illustrate the threat, we have

independently found that there are 343 Ethereum pub-

lic addresses and 33 Bitcoin addresses having private

keys between 1 and 1000, even though the chances of

such occurrences are negligible given that the private

key can be any number between 1 and 2256. A simi-

lar situation occurred in the well-documented backdoor

that was placed in the Dual EC pseudo-random num-
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ber generator, which researchers discovered (see [35])

was enabled in part by specifying elliptic curve points

P and Q where the discrete logarithm of Q to the base

P serves as trapdoor information for an adversary. De-

tecting such weak keys is especially important in cryp-

tocurrency applications, as well as other applications

where solving a single instance of the discrete logarithm

problem compromises the entire system, such as the

Dual EC standard and various types of identity-based

encryption and, more generally, functional encryption.

Coming back to the previous example, notice that

α, lying in the subgroup of order 4, is indeed the private

key of a Bitcoin wallet. In fact, there are three active

Bitcoin addresses and two Ethereum addresses having

private keys in subgroups of size 4 with multiple trans-

actions to those addresses, most occurring within a few

months of writing this article. These keys are listed in

Tables 1 and 2, where ζ4 denotes a generator of the

subgroup of order 4 and the keys themselves are given

by

ζ4
2 = p− 1 = 11579208923731619542357098500868790

78528375642790749043826051631415181

61494336 (mod p),

ζ4
3 = α = 64826877121840101682523629462674967702

93767958036933412629563389354004411232

9 (mod p), and

ζ4
4 = 1. Like the accounts discussed in [16], all these

weak Bitcoin and Ethereum accounts were also empty

as of the time this article was written. Although the

keys ζ24 = p− 1 (equal to −1 (mod p)) and ζ44 = 1 fall

into the category of keys with small numerical value,

the key ζ34 certainly does not.

It is highly unlikely that these keys were generated

randomly, demonstrating that relying solely on prob-

abilistic arguments to protect users is not always suf-

ficient. A conservative approach would be to eliminate

this type of weak key altogether by restricting to groups

whose order is a safe prime. Failing that, it is fortu-

nately a simple matter to detect weak private keys by

computing their multiplicative order modulo p; to en-

sure no weakness whatsoever, one can demand that this

order be equal to p − 1. Furthermore, once can elimi-

nate weak keys like α altogether by restricting to groups

whose group order is a safe prime.

It is also possible to test whether a given public key

was generated from a weak private key by applying the

ideas from [24], based on [9] and [11]. This is important

because Ethereum or Bitcoin accounts are involved in

more than one transaction (see Table 1 and 2), and

if attackers discover the private key from the public

key given in an Ethereum or Bitcoin transaction, they

would be able to spend the cryptocurrency as if they

were the legitimate owner of the account. Our first con-

tribution is therefore to present two algorithms for this

task. The first is a baby-step giant-step algorithm that,

on input a discrete logarithm instance, will determine

whether or not the public key is weak, and output the

discrete logarithm if it is. The second is a probabilis-

tic algorithm based on the Pollard kangaroo algorithm,

that will solve the discrete logarithm problem with high

probability if the key is in fact weak, but may fail to

terminate otherwise. We also present a strategy to ver-

ify that a public key is not weak with respect to some

bound, i.e. that the associated private key does not lie

in a subgroup of F∗p of order less than the bound. As

an application of our methods, we show that none of

the solutions to the 14 outstanding Certicom Challenge

problem instances [10] are in a subgroup of order less

than 248.

The number of weak keys existing in a particular

prime order group can be limited by insisting that the

group order p be a safe prime (p − 1 equals twice a

prime), or at least has only few small prime divisors.

Our second contribution is an analysis of many elliptic

curve groups proposed for applications and standards.

We observe that the majority of these curves use prime

order groups for which many weak keys exist. For ex-

ample, secp256k1 has more than 224 weak keys lying

in subgroups of order less than 232 and more than 2147

weak keys lying in subgroups of order less than 2160,

which can be computed in roughly 216 and 280 scalar

multiplications, respectively. The first type can be com-

puted trivially given the public key, and the latter are

on the threshold of what is likely possible for organiza-

tions with sufficient computational resources.

Our paper is organized as follows. In the next sec-

tion, we recall the idea of implicit group representa-

tions, and describe our baby-step giant and kangaroo

algorithms to test whether a given public key comes

from a weak private key. In Section 3 we present our

analysis of elliptic curves proposed for practical appli-

cations in terms of the number of weak keys they ad-

mit, and in Section 4 we present data on experiments

using our methods to verify that the private keys from

the Certicom Challenge elliptic curve discrete logarithm

problem instances do not lie in subgroups of F∗p of order

less than 248.
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Table 1 Bitcoin Addresses with private keys lying in the subgroup of order d = 4

Private
key Bitcoin address No. of Txns Last Txn Date

ζ42 1GrLCmVQXoyJXaPJQdqssNqwxvha1eUo2E 4 19/01/2017
ζ43 1H1jFxaHFUNT9TrLzeJVhXPyiSLq6UecUy 3 16/10/2019
ζ44 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH 40 19/12/2019

Table 2 Ethereum Addresses with private keys lying in the subgroup of order d = 4

Private
key Ethereum address No. of Txns Last Txn Date

ζ42 80c0dbf239224071c59dd8970ab9d542e3414ab2 22 15/02/2020
ζ44 7e5f4552091a69125d5dfcb7b8c2659029395bdf 713 07/02/2020

2 Algorithms for Testing Whether a Key is

Weak

In the following, let G be a cyclic group of prime order

p generated by an element g. Given another element

g1 ∈ G, the discrete logarithm problem is to compute

the positive integer α with 0 < α < p such that g1 = gα.

Our algorithms are inspired by the idea of implicit

group representations from Mauer and Wolf [26] [27],

in which they were used to prove the equivalence of

the discrete logarithm and Diffie-Hellman problems in

some cases. They are also closely related to the work

of Brown and Gallant [9] on the static Diffie-Hellman

problem and Cheon’s reformulation [11,12] as the dis-

crete logarithm problem with auxiliary inputs.

The main idea behind all of these works is that α, an

integer modulo p, can also be considered as an element

of the multiplicative group of a finite field F∗p, a cyclic

group of order p− 1. Let ζ be a generator of F∗p. Then

α = ζi (mod p) for some integer i such that 0 < i < p−
1, and we can thus solve the discrete logarithm problem

if we can compute i. When trying to solve the discrete

logarithm problem we of course do not have to access

α itself, rather, we have g1 = gα ∈ G. However, the

observation that exponentiating elements in G causes

multiplication in the exponent, i.e.

ga1 = (gα)a = gaα,

means that we can implicitly perform the group opera-

tion in F∗p by exponentiation in G. We can also implic-

itly test for equality in F∗p using the fact that ga = ga

and gb = gb are equal if and only if a ≡ b (mod p).

As a simple example, we can find α by comput-

ing ζ, ζ2, . . . , ζi until ζi ≡ α (mod p − 1) by perform-

ing these computations using implicit representations.

Thus, we compute

gζ , (gζ)ζ = gζ
2

, . . . , (gζ
i−1

)ζ = gζ
i

in the group G via successive exponentiations by ζ until

we have gζ
i

= g1 = gα, and thus α ≡ ζi (mod p) is the

solution to the discrete logarithm problem.

Brown and Gallant [9] and Cheon [11,12] both ob-

served that this idea can be improved given a divisor

d of p − 1. Then, ζd = ζ(p−1)/d generates the order

d subgroup of F∗p, and αd = α(p−1)/d lies in this sub-

group. If we had gαd then we could use the algorithm

described above to compute α (mod d) and, by repeat-

ing with other divisors of p − 1 ultimately recover α.

Unfortunately we cannot compute gαd from g and gα

using implicit representations, because we would need

to exponentiate gα repeatedly by α, which we of course

do not have. This is exactly where the contributions

of Brown and Gallant [9] and Cheon [11,12] come in.

Brown and Gallant assume that any group element can

be raised to the power α via calls to a Diffie-Hellman

oracle, and Cheon assumes that gαd is given as auxil-

iary input to the discrete logarithm problem. Both then

compute α (mod d) using one application of baby-step

giant-step, and recover the rest of α with a second it-

eration of baby-step giant-step.

However, if α itself happens to lie in the order d

subgroup D, then we can use the above method to find

α by computing gζd , gζ
2
d , . . . until we have gζd

i

= gα,

and thus α ≡ ζid (mod p). The difference here is that

after at most d iterations we will have either found α or

verified that α is not in the order d subgroup. Thus, if d

is sufficiently small, the discrete logarithm problem can

be solved much easier than would otherwise be expected

when α is in the order d subgroup; any public key for

which the corresponding private key has this property

is thus deemed to be weak.

2.1 Implicit Baby-Step Giant-Step for Weak Keys

This method can be improved via a direct application

of baby-step giant-step to reduce the expected num-
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ber of implicit group operations (exponentiations in G)

from O(d) to O(
√
d), as described by Kushwaha and

Mahalanobis in [24, Theorem 1]. We summarize the al-

gorithm here. Suppose that α = ζid, so that α is in an

order d subgroup D of F∗p. Then, as in standard baby-

step giant-step applied to this order d group, there exist

unique integers u and v such that 0 ≤ u, v < m and

i = vm − u with m = d
√
de. We first compute a set of

baby steps in G

g
ζud
1 = gαζ

u
d

for 0 ≤ u ≤ m via successive exponentiation by ζd. We

next iteratively compute giant steps

g(ζ
m
d )v = gζ

vm
d

for v = 0, 1, . . . via successive exponentiations by ζmd .

As soon as we find v such that the giant step gζ
vm
d

equals the baby step gαζ
u
d , we have

ζvmd ≡ αζud (mod p)

and thus

α ≡ ζid (mod p) with i ≡ vm− u (mod d)

is a solution to the discrete logarithm problem. On the

other hand, if we compute m giant steps without find-

ing a match, then we conclude that α is not in the order

d subgroup. The cost in the worst case is 2m exponen-

tiations in G, or O((log p)
√
d) group operations in G.

Note that our algorithm can be considered as the

first phase of Cheon’s attack using baby-step giant-step,

for example, as presented in [17]. The first difference is

that since our purpose is to test whether α is in the or-

der d subgroup of F∗p, only a single application of baby-

step giant-step is required to either compute α (and not

just α mod d) or verify that it is not in the subgroup

The second difference, again because our purpose is to

test whether α is in the order d subgroup, is that no

calls to a Diffie-Hellman oracle nor auxiliary inputs are

required to obtain group elements of the form gα
j

.

Various implementations of Cheon’s algorithm and

numerical results have been reported, including [17,31,

30]. One important practical improvement that is also

applicable to our setting is the KKM method [22], due

to Kozaki, Kutsuma, and Matsuo. The observation is

that both the baby steps and giant steps can be written

in such a way that each step is computed via an expo-

nentiation with the same base element, g1 for the baby

steps and gζ
m
d for the giant steps. As a result, precom-

putation tables can be constructed for both phases in

such a way that each exponentiation is replaced by a

constant number of group operations. Specifically, as-

suming that the base element is gt ∈ G, we select an

integer c, compute b = dp1/ce, and construct the c × b
dimensional table T = {ti,j} where

ti,j = gjb
i

t .

Then, to compute gδt , we write δ in base-b as

δ = δ0 + δ1b+ δ2b
2 + · · ·+ δc−1b

c−1

and compute

gδt = (t0,δ0)(t1,δ1) . . . (tc−1,δc−1
)

using only c−1 group operations instead of the O(log p)

required for scalar multiplication. The look-up table re-

quires the storage of cb group elements, and Kozaki et.

al. show that the cost to compute the table is O(cp1/c)

group operations. The total cost of our algorithm using

the KKM improvement is thus O(c(p1/c +
√
d)) group

operations, which is O(
√
d) as long as c ≥ 2 log p/ log d.

In practice, one chooses an optimal value of c that min-

imizes the total number of group operations for the

entire algorithm; we will describe our strategy in Sec-

tion 4.

2.2 Implicit Kangaroo Algorithm for Weak Keys

Cheon [11] also describes a low-memory variant of his

algorithm to solve the discrete logarithm problem with

auxiliary input, where the two applications of baby-step

giant-step are replaced with the Pollard kangaroo algo-

rithm. We describe a specialization of this method to

our application of determining whether a key is weak.

As with the baby-step giant-step algorithm, this amounts

to simply running the first kangaroo phase of Cheon’s

algorithm without using any auxiliary inputs.

As above, we suppose that the discrete logarithm

α = ζid (mod p), so that α is in the order d subgroup

D of F∗p generated by ζd. The main idea is to run the

usual kangaroo algorithm in D implicitly to compute

i, using a pseudo-random walk F : D → D. The kan-

garoo algorithm would start a wild kangaroo with α

and a tame kangaroo with ζ
dde/2
d , and when these two

random walks collide, compute i. We cannot do this di-

rectly, as we only have access to α implicitly as g1 = gα.

However, each of the kangaroo jumps can be mapped

to a unique element in G via the one-to-one mapping

φ : D → G, β 7→ φ(β) = gβ , inducing a pseudo-random

walk F̄ : G → G on G. Thus, we start an explicit

wild kangaroo at g1 = gα and an explicit tame kanga-

roo at gζ
dde/2
d , and a collision between the two explicit

kangaroos happens exactly when the implicit kangaroos

would collide, allowing us to compute i and to recover

α = ζid (mod p). Collisions can be detected using the

distinguished points method on G.
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The pseudo-random walk F depends on a pseudo-

random function f : G → {1, 2, ..., L} that partitions

the group G into L partitions of almost equal size (typ-

ical values of L are 256, 1024, 2048) . For the kth par-

tition, there is a small jump sk such that 1 ≤ sk ≤√
d/2 subject to the condition that mean step size m =

(
∑L
k=1 sk)/L is close to

√
d/2, as this is required to

minimize the overall running time. Given f, the implicit

pseudo-random walk on D is defined as

F : D → D; x 7→ x · ζdsf(gx) ,

inducing the explicit pseudo-random walk F̄ on G de-

fined as

F̄ : G→ G; gx 7→ gx·ζd
sf(gx)

.

Assuming F is constructed with these properties, Cheon’s

analysis [12] specializes to our case and yields an ex-

pected running time of O(
√
d + θ−1) exponentiations

in G, where θ is the proportion of distinguished points

used out of the group G. The number of group ele-

ments stored (for the distinguished points) is O(θ
√
d),

so θ may be selected to favor either the running time

or storage requirement as necessary.

As with our baby-step giant-step algorithm, the KKM

optimization [22] can be used to replace the exponentia-

tions in G with a constant number of group operations

at the cost of computing and storing a precomputed

table. We describe the details of our implementation

in Section 4, including the application of KKM and a

precise description of our pseudo-random walk and re-

alization of distinguished points.

2.3 Testing Whether a Key is Weak

We present our approach to test whether the private key

corresponding to a given public key is weak according

to a given bound, i.e. if it belongs to a subgroup of

order less than B. This allows one to verify that a key

is not weak subject to whatever computational bound

is feasible.

A simple approach is to run our baby-step giant-

step algorithm on all divisors of p−1 that are less than

B. However, this would be inefficient and redundant,

because testing whether a key is in a subgroup of order

d also covers all subgroups of order divisible by d. Thus,

we instead generate a list of integers d1 < d2 < ... <

dt ≤ B dividing p−1 such that di - dj for all 1 ≤ i < j ≤
t. We then apply our baby-step giant-step algorithm to

all subgroups of order di in the list, thereby avoiding

redundant computations in subgroups.

For example, for the elliptic curve secp256k1, p− 1

has 10 divisors bigger than 1 and ≤ 48, namely 2, 3, 4, 6,

8, 12, 16, 24, 32, 48. In order to test whether a given pri-

vate key is in any of the subgroups of these orders, it

suffices to test only the subgroups of orders 32 and 48,

as the first 8 subgroup orders divide 48, and thus any

element of one of these smaller orders is also an element

of the subgroup of order 48.

Note that either baby-step giant-step or the kan-

garoo method described above can be used here if the

purpose is simply to recover a private key. However,

if the purpose is to verify rigorously that a key is not

weak, i.e. does not lie in a subgroup of bounded order,

then baby-step giant-step must be used. If baby-step

giant-step fails to recover a key by searching in a par-

ticular subgroup, we can conclude that the key is not

in the subgroup. Due to its probabilistic nature, if the

kangaroo method fails to recover a key we cannot make

the same conclusion.

3 Assessment of Weak Keys in Recommended

and Standard Elliptic Curves

3.1 Curves Investigated

We have investigated a number of elliptic curves rec-

ommended for practical applications and appearing in

standards. The sources of the curves we selected include

– NIST curves [29],

– Safe curves [7],

– Certicom challenge curves [10],

– SEC curves [37],

– Brainpool curves [25],

– FourQ curve [15],

– the pairing-friendly curves BLS [5], BN [6] and KSS

[19], but with updated parameters given in [21], [1]

and [32].

In the tables below, we use the following naming

conventions for the various curves considered. Curve

ANSSI refers to the safe curve ANSSI FRP256v1, and

Ed448 refers to the safe curve Ed448-Goldilocks. The

labels of the Brainpool curves have also been abbre-

viated; for example, BP256r1 refers to the Brainpool

curve BrainpoolP256r1 and so on. Note that we do not

include the twisted versions of the Brainpool curves,

as they have the same point order as the non-twisted

versions.

In recent years, there have been tremendous ad-

vances in solving the discrete logarithm problem in fi-

nite fields. As a result, pairing-based curves over small

characteristic fields are no longer safe to use due to the

quasi-polynomial attack of Barbulescu et al. [2]. More-

over, there have also been improvements in the case of

medium-sized prime characteristics in a series of papers
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[18], [3], [33], [20]. Since most of pairing-friendly curve

constructions use medium-sized characteristics fields,

previous parameters such as those for BN curves [6],

BLS curves [5] and KKS curves [19] are no longer ap-

plicable to attain the prescribed security level they were

defined for. Therefore, we have examined only the up-

dated parameters as presented in [21], [1] and [32] for

these curves at security level 128-, 192-, 256-bits.

It should also be noted that there are many curves

that are part of more than one standard. To ensure each

curve is mentioned just once in our tables, we follow

the label used in the standard which comes first in the

list at the beginning of this section. For example, the

NIST curve K-163 is the same as the Certicom challenge

curve ECC2K-238 and the SEC curve sect163k1, so this

curve is listed once in our tables as K-163. Similarly,

for pairing-friendly curves at the 128-bit security level

with updated parameters, BN given in [1] and BN-462

given in [32] are the same; we use the label BN-462 in

our table. We also use the label BLS48 in our tables

to denote both BLS48 from [21] and BLS48-581 from

[32] at the 256-bit security level. The nomenclature for

the curve labels used in this paper has been described

using Table 3.

3.2 Analysis of Weak Keys

Our data are presented in Tables 4, 5, 6, 7, 8, 9 and 10.

Table 4 includes all curves providing less than 128 bits

of security, where as usual b bits of security indicates

that the expected cost to solve the discrete logarithm

problem is roughly 2b. Table 5 covers security level of

approximately 128 bits but less than 192, Table 6 cov-

ers approximately 192 and up to 256 bits, and Table 7

covers approximately 256 bits of security and above.

Tables 8, 9 and 10 present the data for updated pairing

friendly curves for security level 128-, 192- and 256-bits,

respectively.

For each curve appearing in the sources listed above,

we enumerated the number of weak keys appearing in

subgroups of size bounded by B for B = 232, 264, 2128,

and 2160. The cost to determine whether a given key

is weak for each of these bounds is roughly 216, 232,

264, and 280 group operations — these bounds were

selected to give two relatively easy bounds and two at

the edge of computations that are feasible. Due to the

sizes of numbers occurring in the counts, and in order

to facilitate an easier comparison, we list the base-2

log (number of bits) of each number as opposed to the

number itself. In summary, the data recorded for each

curve is as follows:

– Curve label

– b(p): number of bits of the size of the curve’s large

prime (subgroup) order

– b(pm): number of bits of the largest prime divisor of

p− 1

– NB : base-2 log of the number of weak keys with or-

der bounded by B. Since φ(d) is the number of gen-

erators of a cyclic group of order d, i.e. the number

of elements of order exactly equal to d, we compute

NB = log2

∑
d | p−1
d≤B

φ(d).

– CB : base-2 log of the worst-case number of group op-

erations required to test whether a key comes from

a subgroup of order bounded by B using baby-step

giant-step. Let R(p,B) denote the set of divisors of

p − 1 that must be considered to check whether a

key is in a subgroup of order bounded by B, i.e.

R(p,B) = {d1, . . . , dt : di - dj for all 1 ≤ i < j <= t}.

We then compute

CB = log2

∑
d∈R(p,B)

2d
√
de

Note that this cost value measures the worst-case

number of scalar multiplications required on the curve.

However, with the KKM method [22], this also mea-

sures the worst-case number of point additions re-

quired up to a constant factor.

The curves are sorted in increasing order of CB for B =

2160, i.e. the worst-case cost for determining whether a

private key is in a subgroup of order at most 2160.

Our data show that many curves have an abun-

dance of weak keys at all levels, due to rather smooth

factorizations of p − 1 and, in particular, many divi-

sors of p − 1 of size B and below. The actual counts

of weak keys vary, but roughly half of the curves sur-

veyed have around 2160 weak keys at the level B = 2160.

There are also some notable examples of curves that

have remarkably few weak keys, especially secp224k1,

Brainpool256r1, and ECCp-359. Some curves, such as

secp193r2, Brainpool224r1, Curve25519, and ECC2-353

have very few weak keys at lower bounds but many at

B = 2160.

There does not appear to be any bias of curves

from one particular group or standard towards few or

many weak keys. For example, curves from the NIST

standard span the spectrum, with some curves such as

P-224, P-192, P-384, and P-521 having relatively few

weak keys, but others such as K-163, P-256, K-283,

B-409, and K-571 having relatively many. The Brain-

pool standard includes some of the curves with the

fewest weak keys as indicated above, but also has a
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Table 3 Curve nomenclature used for duplicate curves in the tables

Our Label NIST[29] Certicom[10] SEC[37] Kiyomura[21] Barbulescu[1] CFRG[32]

P-192 P-192 - secp192r1 - - -
P-224 P-224 - secp224r1 - - -
P-256 P-256 secp256r1 - - -
P-384 P-384 - secp384r1 - - -
P-521 P-521 secp521r1 - - -
K-163 K-163 ECC2K-163 sect163k1 - - -
B-163 B-163 - sect163r2 - - -
K-233 K-233 - sect233k1 - - -
B-233 B-233 - sect233r1 - - -
K-283 K-283 - sect283t1 - - -
B-283 B-283 - sect283r1 - - -
K-409 K-409 - sect409k1 - - -
B-409 B-409 - sect409r1 - - -
K-571 K-571 - sect571k1 - - -
B-571 B-571 sect571r1 - - -
ECC2K-238 - ECC2K-238 sect239k1 - - -
BN - - - - BN BN-462
BLS48 - - - BLS48 - BLS48-581

few with relatively many such as Brainpool384r1 and

Brainpool512r1. The secp256k1 curve mentioned ear-

lier, that is used in Ethereum and Bitcoin, falls roughly

in the middle of the curves at the 128-bit security level,

and does not generally stand out in any way. Except for

KSS36, the pairing-friendly curves tend to have some-

what larger numbers of weak keys than the other curves,

due in part to the fact that larger groups are required

to compensate for the faster finite field discrete loga-

rithm algorithms. Of the three type of pairing-friendly

curves, the BLS curves have the most weak keys at the

128- and 256-bit security levels, but the least at the

192-bit level. All of this is consistent with the fact that

current standards and practices place no restrictions on

the factorization of p − 1, so we would expect its fac-

torization to resemble that of a random integer.

4 Application to the Certicom Challenge

Curves

We have implemented in Sage [38] both the baby-step

giant-step and Kangaroo algorithms from Section 2 for

testing whether a elliptic curve public-key comes from

a weak private key. We use the KKM [22] extension for

both algorithms, and use Python dictionaries for the

required searchable lists so that searching is as efficient

as possible.

To use the KKM method, as described at the end of

Section 2.1 we need to find a value of c that minimizes

the total number of group operations. Recall that the

total number of group operations, including computing

the lookup table, is at most

c(log2 p+ p1/c) + 2(c− 1)
√
d .

for baby-step giant-step, and the same expression gives

a reasonably accurate estimate for the kangaroo method.

In our implementation, given p and d, we simply com-

pute a local minimum of this expression. We also set a

hard constraint for the size of the lookup table at 232

group elements, so if the value of c obtained via mini-

mization causes the table size cp1/c to be too large, we

increased c until the table size was below this bound.

The additional functions and parameters used in the

implicit kangaroo algorithm are as follows:

– Partition function: The elliptic curve group E is

partitioned into L parts as E = S1 ∪ S2 ∪ ... ∪ SL
via a partition function f : E → {1, 2, ..., L}. We use

L = 2n, and for a point P ∈ E we set f(P ) = j if the

n least-significant bits of the integer representation

of the x-coordinate of P is j− 1. We used L = 1024

in our implementation.

– Jump set: For each partition Sj , a small kangaroo

jump sj is selected as a random integer between

1 to
√
d/2 with the aim of maintaining the mean

step size of the jumps close to
√
d/2, where d is the

order of the subgroup D of F∗p in which the discrete

logarithm is assumed to lie. The first L−1 jumps are

selected randomly, and the last is selected to ensure

that the mean step size condition is satisfied.

– Distinguished point property: Distinguished points

help to detect collision between the elliptic curve

points. For a fixed positive integer t, we call a ratio-

nal point P ∈ E a distinguished point of the curve

if t least significant bits of integer representation of

its x-coordinate are 0. Since the integer t determines

the proportion of distinguished points in the ellip-
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Table 4 Curves providing security below 128 bits

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

secp224k1 225 222 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
BP224r1 224 214 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0
secp192k1 192 167 25.4 13.7 25.4 13.7 25.4 13.7 25.4 13.7
P-224 224 196 29.0 15.5 29.0 15.5 29.0 15.5 29.0 15.5
BP192r1 192 97 11.7 6.9 11.7 6.9 108.1 55.1 108.1 55.1
P-192 192 92 17.5 9.8 17.5 9.8 109.0 55.6 109.0 55.6
secp112r2 110 42 33.7 19.5 66.3 36.0 109.8 55.9 109.8 55.9
sect193r2 193 109 2.0 2.0 2.0 2.0 110.2 56.1 110.2 56.1
secp112r1 112 95 17.1 9.6 17.1 9.6 111.8 56.9 111.8 56.9
sect113r1 113 49 33.1 18.6 64.7 34.2 112.0 57.0 112.0 57.0
sect113r2 113 39 33.7 19.0 65.5 35.2 112.0 57.0 112.0 57.0
sect193r1 193 100 22.0 12.0 22.0 12.0 121.5 61.7 121.5 61.7
E-222 220 114 8.3 5.2 8.3 5.2 121.6 61.8 121.6 61.8
secp128r2 126 95 31.5 16.8 31.5 16.8 126.0 64.0 126.0 64.0
secp128r1 128 57 31.8 18.0 65.9 35.4 128.0 65.0 128.0 65.0
ECC2K-130 130 75 33.8 19.2 54.8 28.4 128.1 66.2 129.0 65.5
sect131r1 131 116 14.5 8.3 14.5 8.3 126.3 64.4 130.0 66.0
sect131r2 131 75 30.0 16.3 55.2 28.6 104.7 53.7 130.0 66.0
ECC2-131 131 113 17.9 9.9 17.9 9.9 126.8 65.1 130.0 66.0
ECCp-131 131 63 19.9 11.0 65.2 34.7 128.3 66.0 130.2 66.1
ECCp-191 191 144 1.0 2.0 47.3 24.7 47.3 24.7 144.7 73.3
ECC2-191 191 75 10.4 6.2 50.7 26.4 124.7 63.4 149.6 75.8
B-163 163 133 29.7 15.8 29.7 15.8 29.7 15.8 156.5 79.6
Anomalous 204 71 28.2 15.5 62.9 33.3 127.2 65.5 158.1 80.2
M-221 219 88 32.5 17.7 62.9 32.4 127.8 65.2 158.4 80.3
secp160r2 161 72 21.6 11.8 21.6 11.8 93.1 47.8 159.0 80.6
ECCp-163 163 135 28.2 15.1 28.2 15.1 28.2 15.1 159.4 80.8
BP160r1 160 42 33.6 19.4 67.0 36.5 129.9 67.3 159.9 80.9
secp160r1 161 105 31.5 16.9 55.3 28.6 127.7 65.4 159.2 81.1
secp160k1 161 77 18.0 10.0 18.0 10.0 94.8 48.4 159.6 81.8
K-163 163 103 19.2 10.6 59.3 30.6 121.9 62.0 160.3 82.0
sect163r1 162 78 30.2 16.5 65.0 34.8 126.9 64.6 160.7 82.2
ECC2-163 163 46 37.9 23.6 70.9 40.7 134.1 71.9 160.9 82.8

tic curve, the integer t can be used to control the

storage overhead of the algorithm.

Both implementations were tested using one safe curve

M221 and one Certicom curve ECCp131. 1000 ran-

dom instances of weak discrete logs were generated, and

the code for baby-step giant-step successfully found the

weak key in all cases. The kangaroo algorithm finds the

weak key with success rate of more than 95 percent, but

the failed cases can also be solved in a few more trials

if we take different random jump set.

As an application, we used our baby-step giant-step

implementation to verify that each of the 14 remain-

ing unsolved Certicom Challenge [10] elliptic curve dis-

crete logarithm problem instances is such that the dis-

crete logarithms are not in any subgroup of F∗p of order

less than the bound B = 248. The Certicom Challenges

were put forward by Certicom in 1997 in order to stim-

ulate research into the elliptic curve discrete logarithm

problem. Nine problem instances over characteristic two

finite fields (including four Koblitz curves), and five in-

stances over prime finite fields remain unsolved. The

field sizes range from 131 to 359 bits.

Because our expectation was that we would only be

able to certify that the discrete logarithms are not weak,

rather than actually computing any, we also generated

and solved a random discrete logarithm instance that

was weak for each curve as an extra test of our imple-

mentation. In all cases the random discrete logarithm

was successfully recovered.

The data related to our computations is given in Ta-

ble 11. For each curve, we list the number of subgroups

that had to be tested according to the method of Sec-

tion 2.3, the size (in bits) of the largest subgroup order

b(dmax), and the total CPU time in minutes for the test.

The breakdown of time spent in the baby step and the

giant step stages is not listed, as these each required ap-

proximately half of the total time. Each stage performs

the same number (
√
d) of group operations for testing a

subgroup of size d. The giant steps were slightly faster,

due to the fact that during the baby step stage the list

of baby steps is created, and that is slightly more ex-

pensive than the searching done in the giant step stage.
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Table 5 Curves providing security between 128 and 192 bits

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

BP256r1 256 252 4.2 3.3 4.2 3.3 4.2 3.3 4.2 3.3
BP320r1 320 278 34.7 20.4 42.4 22.2 42.4 22.2 42.4 22.2
ECC2-238 238 182 30.2 16.4 55.6 28.8 55.6 28.8 55.6 28.8
256KM2 257 192 16.4 9.2 63.2 32.6 64.2 33.1 64.2 33.1
ANSSI 256 187 33.3 18.8 64.9 34.3 69.2 35.6 69.2 35.6
ECCp-239 239 115 22.6 12.3 22.6 12.3 128.1 65.6 136.8 69.4
Curve25519 253 138 7.0 4.6 7.0 4.6 114.3 58.2 144.7 73.4
secp256k1 256 109 24.1 13.1 64.7 34.2 129.4 67.0 147.9 75.0
FourQ 246 147 27.8 15.5 64.1 34.1 99.3 50.6 150.3 76.1
K-233 232 158 33.0 18.6 64.0 33.5 73.2 37.6 159.8 81.5
B-233 233 145 33.0 18.4 64.7 34.3 87.6 44.8 160.7 81.9
B-283 282 90 29.5 15.7 64.2 33.6 128.9 66.8 161.7 83.4
sect239k1 238 104 33.0 18.8 66.5 36.0 129.0 67.0 162.1 83.7
Curve1174 249 60 35.2 21.0 68.7 38.5 133.3 71.3 164.7 86.6
P-256 256 92 36.0 21.5 69.3 38.8 133.2 70.8 165.3 86.9
K-283 281 137 38.1 23.8 71.1 40.8 133.1 70.9 165.7 87.4

Table 6 Curves providing security between 192 and 256 bits

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

ECCp-359 359 354 5.2 3.6 5.2 3.6 5.2 3.6 5.2 3.6
M-383 381 354 26.6 14.3 26.6 14.3 26.6 14.3 26.6 14.3
Curve41417 411 352 32.5 18.1 59.4 30.7 59.4 30.7 59.4 30.7
Curve383187 381 299 32.0 18.1 65.5 35.3 81.4 41.7 81.4 41.7
P-384 384 281 13.5 7.8 13.5 7.8 103.3 52.7 103.3 52.7
K-409 407 299 37.2 22.9 69.0 38.8 108.8 55.4 108.8 55.4
ECC2K-358 358 227 31.7 17.6 60.3 31.1 127.9 65.5 131.9 66.9
ECC2-353 353 103 6.4 4.3 6.4 4.3 108.9 55.5 158.3 80.2
E-382 381 165 33.7 19.2 64.6 34.2 66.0 34.0 160.8 82.2
Ed448 446 249 33.1 18.9 64.7 34.2 128.8 66.2 160.8 82.2
B-409 409 124 29.1 15.6 63.4 33.3 129.1 66.7 160.6 82.3
BP384r1 384 206 33.3 18.7 66.0 35.5 130.0 67.6 160.7 82.3

Table 7 Curves providing security at least 256 bits

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

E-521 519 443 18.1 10.0 58.9 30.5 76.0 39.0 76.0 39.0
P-521 521 391 31.4 16.7 50.0 26.0 128.8 66.3 130.5 66.2
M-511 509 164 19.7 10.9 55.3 28.7 127.4 64.7 148.0 75.5
B-571 570 183 27.7 14.9 63.5 33.2 105.8 53.9 156.9 79.9
BP512r1 512 314 35.0 20.6 68.1 37.7 132.7 70.3 163.3 85.0
K-571 570 161 36.1 21.7 67.1 36.9 131.8 69.5 164.8 86.5

The computations were run on a shared memory ma-

chine with 64 Intel(R) Xeon(R) X7560 running at 2.27

GHz and 256 GB of RAM running Linux.

There is some variability in the number of subgroups

required to test. In most cases the number is quite

small, most often 1, but in the case of ECC2-163, 186

different subgroups had to be tested, with the majority

of these being roughly of size 248 and requiring more

than 6 hours each; this curve required by far the most

computational effort, close to two months. On the other

hand, many of the verifications finished very quickly,

most notably ECC2-353 and ECCp359 which have only

one subgroup of order 82 and 36 less than 248, respec-

tively.

We note that we did not manage to solve any of

the Certicom challenges with this approach. This is of

course completely as expected, as the probability that

a randomly-selected private key would be weak is very

small, and there would have been no reason for Certi-

com to generate the private keys used for the challenges

in any other way.



Removable Weak Keys for Discrete Logarithm Based Cryptography 11

Table 8 Updated Pairing Friendly Curves providing 128-bit security

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

KSS16[1] 263 131 31.2 17.1 66.5 36.1 129.2 67.0 158.8 80.7
KSS18[1] 256 120 22.2 12.1 60.1 31.1 131.6 69.4 160.9 82.4
BN[1] [32] 462 289 35.8 21.3 67.4 37.1 131.4 69.2 162.9 84.4
BLS12-381[32] 255 28 37.3 22.8 72.0 41.5 137.8 75.4 169.3 91.0
BLS12[1] 308 73 37.3 23.0 71.9 41.6 137.6 75.3 169.6 91.4

Table 9 Updated Pairing Friendly Curves providing 192-bit security

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

BLS24[1] 449 63 38.2 24.0 72.1 42.0 138.2 76.1 170.7 92.6
KSS18[1] 502 87 41.6 27.4 77.7 47.5 145.3 83.2 178.2 100.0

Table 10 Updated Pairing Friendly Curves providing 256-bit security

Curve b(p) b(pm) N232 C232 N264 C264 N2128 C2128 N2160 C2160

KSS36[21] 669 652 17.2 9.6 17.2 9.6 17.2 9.6 17.2 9.6
KSS32[21] 738 591 33.9 19.2 65.8 35.3 129.2 66.8 146.6 74.3
KSS18[1] 1108 341 30.4 16.2 67.9 37.5 132.8 70.5 163.4 85.1
BLS42[21] 516 178 38.6 24.5 72.2 42.1 137.3 75.2 169.7 91.5
BLS24[21] 872 190 40.1 25.9 74.3 44.2 139.1 76.9 171.6 93.4
BLS48[32][21] 518 91 39.9 25.7 74.8 44.6 140.7 78.6 173.1 95.0
BLS24[1] 827 86 41.3 27.2 77.1 47.0 145.4 83.3 178.7 100.6

Table 11 Certicom Challenge Data

Curve # Subgroups b(dmax) Total Time

ECC2-131 1 18 0.05 m
ECC2-163 186 48 57d 7h 34.46 m
ECC2-191 3 48 11h 22.98 m
ECC2-238 3 46 7h 54.27 m
ECC2-353 1 7 0.03 m

ECC2K-130 7 48 1d 8h 35.92 m
ECC2K-163 4 48 19h 46.66 m
ECC2K-238 12 48 3d 10h 12.92 m
ECC2K-358 5 31 2d 16h 43.40 m

ECCp131 2 48 5h 16.19 m
ECCp163 1 29 0.95 m
ECCp191 1 48 7h 27.08 m
ECCp239 1 23 0.27 m
ECCp359 1 6 0.02 m

5 Conclusions and Future Work

The weak keys described in this paper are somewhat

more subtle than those found in Ethereum [16], in the

sense that they do not show any obvious weaknesses on

the surface, such as being a very small integer. Rather,

they look the same as a typical random integer gener-

ated as per standard practices and guidelines such as

those in [4, Sec. 5.6.1.2] in terms of expected bit length;

their weakness comes from the underlying multiplica-

tive structure of F∗p via implicit group representations.

The Ethereum weak keys can also be made to look like

random integers by selecting them from any short in-

terval known to the attacker. Such weak keys have the

same properties as ours; both look to be random inte-

gers, can be easily generated, and can be easily recov-

ered from the public key. The main difference is that

keys from a short interval cannot be prevented other

than ensuring that keys are generated verifiably at ran-

dom, whereas ours can be eliminated systematically by

ensuring that the group order p is a safe prime.

Our main conclusion is therefore that the prime

group order for discrete logarithm based cryptosystems

should be subject to similar considerations as the prime

divisors of RSA moduli. Weak RSA keys (RSA moduli

that can be factored easily) can be avoided by ensuring

that the prime divisors are safe, and our type of weak

keys can be avoided by using groups whose prime or-

der is safe. The current best practice for RSA moduli,

generating verifiably at random, also applies to discrete

logarithm based cryptosystems as our type of weak keys

do not occur with very high probability as long as keys

are generated randomly. Thus, random key generation

is also sufficient to avoid our type of weak keys, provided

that key generation software is audited to ensure that it

does in fact generate keys randomly. In the case of dis-

crete logarithm based systems, where a single group is

provided for multiple users (for example, standardized

elliptic curves) as opposed to one per user as in RSA,

taking the extra step to ensure that safe prime group
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orders are used is a feasible option that would either

completely eliminate or at least reduce the ability of

malicious key generators generating our type of weak

keys.

One direction of further work is to repeat the ex-

periments of [16] to test Ethereum keys, but instead

of searching for small numerical private keys to search

for the type of weak keys described in this paper in an

attempt to identify more vulnerable Ethereum and Bit-

coin wallets than those already given in Tables 1 and 2.

Similarly, it would be interesting to expand the search

for weak keys in SSH, TLS, and the Australian e-ID

card implementations, conducted in [8], to include the

type of weak keys described here. Current recommenda-

tions for private key generation, including [4, Sec. 5.6.1.2],

only demand that the key be selected uniformly at ran-

dom between 1 and p − 1, and investigations such as

that in [8] consider only this property. If keys are in-

deed selected randomly then we would not expect to

be able to recover any using our methods because the

probability is too low. On the other hand, finding weak

keys could be evidence that this vulnerability had been

previously discovered and secretly exploited to serve as

a trap door for an adversary.

Searching for additional types of weak keys is also

an intriguing possibility. For example, in his first work

on the subject, Cheon [11,12] also describes how auxil-

iary inputs can be used to compute discrete logarithms

in a group of order p when p + 1 has small divisors.

Subsequent work by Satoh [34], for example, has gen-

eralized this to the case where the cyclotomic polyno-

mial Φn(p) = pn−1 + pn−2 + · · · + 1 has small divisors

(note that Φ2(p) = p+ 1). The main idea behind these

extensions is to first embed α into an element of the

order Φn(p) subgroup of F∗pn , and then use the oracle

to lift the problem to a smaller subgroup. In principal,

one could hope that after embedding α into the order

Φn(p) subgroup that it already lands in the smaller sub-

group, and then declare the corresponding key gα to be

weak. However, another feature of these extensions is

that they generally require the implicit evaluation of

g to the power of a polynomial in α, thereby requiring

more auxiliary inputs to obtain gα
i

for various values of

i; we were unable to find any families of keys for which

these types of generalizations can be applied without

requiring auxiliary inputs.

Another interesting question is what other discrete

logarithm algorithms can be realized using implicit group

representations. Of the generic algorithms, we have seen

that both baby-step giant-step and Pollard kangaroo

work. Pohlig-Hellman using the implicit group repre-

sentation would be especially interesting since so many

of the recommended elliptic curves are such that p− 1

is relatively smooth. However, that would require being

able to lift gα into each prime-power order subgroup of

F×p . It is not clear how that can be done, other than

appealing to a Diffie-Hellman oracle or auxiliary inputs

as Brown and Gallant [9] and Cheon [11,12] do. Using

index calculus to attack the discrete logarithm problem

in F∗p using implicit representations in an effort to avoid

the need for nice smoothness properties in the group G

itself also appear to be fruitless.

All the ideas and applications of implicit group rep-

resentations use the fact that exponentiation in G is

a group action of the order p − 1 multiplicative group

F∗p on G. Consequently, as observed by Smith [36, p.23],

analogues of the work of Brown and Gallant [9], Cheon [11,

12], and others to cryptosystems based on other types of

group actions, including isogengy-based cryptography,

are possible. We observe that similar types of weak keys

as described here are will therefore also exist in those

settings.
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