
Cryptographic Vulnerabilities and Other Shortcomings of the Nextcloud
Server Side Encryption as implemented by the Default Encryption Module

Kevin “Kenny” Niehage
SysEleven GmbH

kenny@syseleven.de

Abstract

Nextcloud provides a server side encryption feature
that is implemented by the Default Encryption
Module. This paper presents cryptographic
vulnerabilities that existed within the Default
Encryption Module as well as other shortcomings that
still need to be addressed. The vulnerabilities allowed
an attacker to break the provided confidentiality and
integrity protection guarantees. There is a high risk
that ownCloud also contains some of the issues
presented in this paper as it still has cryptographic
code in common with Nextcloud.

1 Introduction

Nextcloud is an open-source file hosting software,
which is developed by the Nextcloud GmbH. In 2016 it
has been forked off ownCloud [1], which is developed
by the ownCloud GmbH.

Nextcloud and ownCloud are deployed in a variety
of organizations ranging from small and medium
businesses to enterprises, government agencies,
schools and universities [2, 3]. They are also
advertised for use in the healthcare sector [4, 5].

The server side encryption is a feature that is
actively promoted by both companies [6, 7, 8, 9, 10,
11, 12] and that is shipped by default. According to the
marketing material it “protects data on storage as
long as that storage is not on the same server as [the
software] itself.” Furthermore, “[t]he main usecase of
the default encryption module is to protect data stored
on remote storage or against a storage administrator
checking the content of the files.” Thus, stored files
should be protected in a way that prevents external
storage providers from decrypting and modifying files.

Nextcloud and ownCloud still have cryptographic
code in common, including code that is relevant for
the server side encryption. There is a high risk that
vulnerabilities and shortcomings presented in this
paper also apply to ownCloud.

2 Previous Work

In 2016 Hanno Böck found that ownCloud did not
implement an authenticated encryption scheme [13].
As a consequence, the developers of ownCloud
implemented the current encryption scheme that will
be the subject of this paper.

3 Encryption scheme

This chapter provides a short introduction to the
encryption scheme that is implemented by the Default
Encryption Module. The description is based on the
Encryption details document [14] that has been
provided to the Nextcloud community by the author
and that describes the implementation as present at
least in the Nextcloud versions 16 up to version 19.

The storage of public and private keys has since
been modified in Nextcloud version 20 to mitigate the
vulnerabilities presented in chapters 4.1 and 4.3.

3.1 File types

The Default Encryption Module uses 5 different file
types to store most of the relevant information.

Public keys are used to encrypt envelope keys.
They are stored in *.publicKey files and each file
contains a PEM-encoded RSA public key.

Private keys are used to decrypt envelope keys.
They are stored in *.privateKey files and each file
contains a PEM-encoded RSA private key that is
encrypted with the master passphrase (stored in the
configuration file), a user’s passphrase or the optional
recovery passphrase. The encrypted private key is
prepended with a header and appended with the nonce
(called initialization vector) used for the encryption, a
message authentication code (called signature) used to
protect the integrity of the encrypted private key and a
few padding characters.

1

File keys are used as data encryption keys (DEK)
to encrypt files. They are stored in filekey files and
each file contains a file key in binary format that has
been encrypted with a corresponding envelope key.

Envelope keys are used as key encryption keys
(KEK) to encrypt file keys. They are stored in
*.shareKey files and each file contains an envelope
key in binary format that has been encrypted with the
public key of the corresponding recipient. (Envelope
keys introduce an unnecessary additional layer of
encryption that adds complexity and vulnerabilities to
the encryption scheme as will later be discussed in
chapter 5.3.)

Files are used to store actual file contents. They are
stored using their plain file names. Each file is split
into file chunks before being encrypted with the
corresponding file key. The encrypted file is prepended
with a header and each encrypted file chunk is
appended with the nonce (called initialization vector)
used for the encryption, a message authentication code
(called signature) used to protect the integrity of the
encrypted file chunk and a few padding characters.

3.2 Primitives

The Default Encryption Module uses 3 different pairs
of cryptographic primitives provided by the PHP
programming language.

Encrypting is done using the openssl_encrypt()
function [15] and denotes the encryption of a file
chunk with a file key and a nonce while decrypting is
done using the openssl_decrypt() function [16] and
denotes the decryption of an encrypted file chunk with
a file key and a nonce.

Sealing is done using the openssl_seal() function
[17] and denotes the encryption of a file key with an
envelope key and the encryption of that envelope key
with the public keys of the recipients while unsealing
is done using the openssl_open() function [18] and
denotes the decryption of an envelope key with the
private key of a recipient and the decryption of a file
key with that decrypted envelope key.

Signing is done using the hash_hmac() function
[19] and denotes the generation of the message
authentication code of an encrypted file chunk while
verifying is done using the hash_equals() function
[20] and denotes the generation of the message
authentication code of an encrypted file chunk and the
comparison of that message authentication code with
the message authentication code stored in an encrypted
file chunk. While message authentication codes are
technically not the same as digital signatures, this
paper will proceed to use this term for the sake of
consistency with the Nextcloud code base.

3.3 Encryption

Encrypting a file is done in several steps:

• the file key is generated randomly
• the file key is sealed
• the encrypted file key is stored in a filekey file

while the encrypted envelope key is stored in
*.shareKey files

• the file content is split into file chunks
• each file chunk is encrypted
• each encrypted file chunk is signed
• for each encrypted file chunk the nonce, the

message authentication code and padding
characters are appended

• the encrypted file is prepended with a header and
stored in a file

3.4 Decryption

Decrypting a file is done in several steps:

• the encrypted private key of the recipient is read
from the *.privateKey file and decrypted with the
corresponding passphrase

• the encrypted file key is read from the filekey file,
the encrypted envelope key is read from the
*.shareKey file and the file key is unsealed using
the private key of the recipient

• the encrypted file is read from the file and split into
encrypted file chunks

• each encrypted file chunk is verified and decrypted
with the file key and the nonce that had been
appended to that encrypted file chunk

4 Cryptographic vulnerabilities

This chapter presents 4 cryptographic vulnerabilities
of the Default Encryption Module. All of these have
been responsibly disclosed through the bug bounty
program of Nextcloud on HackerOne [21].

As of November 2020 all of these issues have been
fixed or mitigated in the newly released Nextcloud
version 20. Some of the fixes and mitigations have
also been backported to earlier versions of Nextcloud.

4.1 Insufficient integrity protection of public
keys leads to breach of confidentiality

This vulnerability has been responsibly disclosed
through the bug bounty program of Nextcloud on
November 8th, 2019 [22]. It has been mitigated [23] in
Nextcloud version 20. The vulnerability has been

2

published as CVE-2020-8259 [24] and Nextcloud
Security Advisory NC-SA-2020-041 [25].

An attacker who has access to the data folder of a
Nextcloud server could replace one or more public
keys as their integrity was not protected in any way. As
the Default Encryption Module trusted the integrity of
the public keys that are located in the data folder it
would use them without additional checks.

The corresponding file key of an encrypted file is
re-sealed for the public keys of all recipients
(including replaced ones) whenever that file is
modified, when a user is given access to that file or
when access of any user to that file is revoked.

The attacker is able to decrypt the file after the
re-sealing has been executed by the Default Encryption
Module.

This attack could be carried out by an attacker who has
compromised the Nextcloud server or by an external
storage provider when the whole data directory is
stored externally. The complexity of carrying out the
cryptographic attack was low.

The attacker only had to be able to generate an
RSA 4096-bit key, which can trivially be done with
existing tooling.

The vulnerability has been mitigated by protecting
the integrity of the public keys by means of an
authenticated encryption scheme, using a secret key
that is stored in the Nextcloud configuration file. An
attacker now does not only need to have access to the
data folder but also to the configuration file of the
Nextcloud instance.

4.2 Insufficient integrity protection of files
leads to breach of integrity (I)

This vulnerability has been responsibly disclosed
through the bug bounty program of Nextcloud on July
26th, 2019 [26]. It has been fixed [27] in Nextcloud
version 20 and the fix has also been backported to
Nextcloud versions 17, 18 and 19
[28, 29, 30, 31, 32, 33]. The vulnerability has been
published as CVE-2020-8133 [34] and Nextcloud
Security Advisory NC-SA-2020-038 [35].

An attacker who has long-term access to the data
folder of a Nextcloud server was able to eventually
swap certain encrypted file chunks between different
versions of the same file.

When files are modified, Nextcloud increments a
file version counter, starting at 1 for the first version of
the file. Each encrypted file chunk has a chunk
position, starting at 0 for the first encrypted file chunk

of the file. Furthermore, all versions of a file share the
same file key.

When calculating the message authentication code
of an encrypted file chunk, the Default Encryption
Module concatenated the file key, the file version, the
chunk position and the character “a”, created a
SHA-512 checksum of the concatenation result and
used that SHA-512 checksum as the key for the
generation of the message authentication code of that
encrypted file chunk.

However, the concatenation result was ambiguous
for specific chunk positions in specific file versions as
the file version and the chunk position were
concatenated in the symmetricEncryptFileContent()
method [36] without using a separator. This way the
MAC keys for these chunks were identical and the
corresponding encrypted file chunks could be swapped
between the file versions.

Example: The encrypted file chunk with chunk
position 10 in file version 1 would have had the same
MAC key as the encrypted file chunk with chunk
position 0 in file version 11.

This attack could be carried out by an attacker who has
compromised the Nextcloud server or by an external
storage provider. The complexity of carrying out the
cryptographic attack was medium.

The attacker had to know the exact file versions of
the files. An attacker with long-term access to the data
folder as well as an external storage provider can find
out the exact file versions by observing the number of
file modification events.

The vulnerability has been fixed by introducing a
separator between the concatenated values.

4.3 Insufficient integrity protection of files
leads to breach of integrity (II)

This vulnerability has been responsibly disclosed
through the bug bounty program of Nextcloud on
November 21st, 2019 [37]. It has been mitigated [38]
in Nextcloud version 20. The vulnerability has been
published as CVE-2020-8152 [39] and Nextcloud
Security Advisory NC-SA-2020-040 [40].

An attacker who has access to the data folder of a
Nextcloud server could read the unprotected public
keys. As the Default Encryption Module does only
implement integrity protection on the file chunk level
it cannot detect when a whole file is replaced. Only
knowledge of the public keys of the recipients is
required to replace an encrypted file.

When a file is decrypted, the Default Encryption
Module checks whether the size of the decrypted file

3

matches the size stored in the database. Therefore, the
decrypted size of the new file has to match the
decrypted size of the replaced file. The decrypted size
can be calculated by parsing the encrypted file [41].

In order to encrypt the file using the authenticated
encryption scheme the attacker needs to know the
current file version of the file that is going to be
replaced. However, the Default Encryption Module
also supports legacy ciphers like AES-256-CFB for
which the usage of the authenticated encryption
scheme is not enforced so that the attacker does not
even need to know the correct file version.

After encrypting the file with a random file key
[42], the file key has to be encrypted with a random
envelope key [43]. Finally, the envelope key has to be
encrypted with the public keys of the recipients [44].

This attack could be carried out by an attacker who has
compromised the Nextcloud server or by an external
storage provider when the whole data directory is
stored externally. The complexity of carrying out the
cryptographic attack was low.

The attacker only had to be able to execute
cryptographic tasks, which can trivially be done with
existing tooling.

The vulnerability has been mitigated by protecting
the confidentiality of the public keys by means of an
authenticated encryption scheme, using a secret key
that is stored in the Nextcloud configuration file. An
attacker now does not only need to have access to the
data folder but also to the configuration file of the
Nextcloud instance. Additionally, the mitigation for
the cryptographic vulnerability presented in chapter
4.4 further increases the complexity of this attack by
requiring the attacker to know the current file version
of the replaced file to properly sign the file chunks.

4.4 Insufficient integrity protection of files
leads to breach of integrity (III)

This vulnerability has been responsibly disclosed
through the bug bounty program of Nextcloud on
November 20th, 2019 [45]. It has been mitigated [46]
in Nextcloud version 20 and the mitigation has also
been backported to Nextcloud versions 17, 18 and 19
[47, 48, 49, 50, 51, 52]. The vulnerability has been
published as CVE-2020-8150 [53] and Nextcloud
Security Advisory NC-SA-2020-039 [54].

An attacker who has access to the data folder of a
Nextcloud server could downgrade files encrypted with
the AES-256-CTR default cipher, which enforces the
usage of the authenticated encryption scheme, to the
AES-256-CFB legacy cipher, which does not enforce

the usage of the authenticated encryption scheme, and
then mount a known-plaintext attack.

The header of an encrypted file is not integrity
protected but instructs the Default Encryption Module
which cipher shall be used when decrypting that file.

The Default Encryption Module uses the
AES-256-CTR cipher with an Encrypt-then-MAC
authenticated encryption scheme by default but also
supports legacy ciphers like AES-256-CFB without
enforcing the authenticated encryption scheme [55].

After the header is changed to the legacy cipher,
the message authentication codes, which are appended
to each encrypted file chunk, need to be stripped and
the appended padding has to be shortened from “xxx”
to “xx”.

After changing the structure of the encrypted file
chunk, it does not match the expected length of 8192
bytes. However, as the content within the encrypted
file chunks is Base64-encoded, a padding length
extension can be performed by appending the
necessary number of “=” characters to the
Base64-encoded blob to reach the expected length of
8192 bytes again.

The process of downgrading the file structure to
the legacy format has been dubbed signature stripping
[56].

The Counter Mode (CTR) and the Cipher
Feedback Mode (CFB) are related in that the
keystream for the first block of each encrypted file
chunk is identical when using the same
nonce/initialization vector and the same file key. This
provides 16 bytes of space in each encrypted file chunk
to mount a known-plaintext attack and inject content
[57] into files where the signature has been stripped.

First Block of CTR/CFB Decryption [58]

Example: When there is an encrypted *.py file,
chances are that its decrypted content starts with
“#!/usr/bin/env python” which is more than the 16
bytes necessary to inject our own content. An exploit
that fits into 16 bytes could be “curl yahe.sh|sh\n”,
which downloads the content of a website and executes
it in a shell process.

4

This attack could be carried out by an attacker who has
compromised the Nextcloud server or by an external
storage provider. The complexity of carrying out the
cryptographic attack was low.

The attacker only had to be able to execute
cryptographic tasks, which can trivially be done with
existing tooling.

The vulnerability has been mitigated by requiring
the usage of the authenticated encryption scheme on
new installations by default. Operators of existing
installations have to manually disable the support for
the unauthenticated encryption scheme.

5 Other shortcomings

This chapter presents other shortcomings of the server
side encryption as implemented by the Default
Encryption Module.

These should be taken into account before deciding
on using the Default Encryption Module as they
increase the risk of data loss and data compromise.

5.1 Non-existence of official rescue tooling

Problems with the Default Encryption Module are not
uncommon and individual users regularly request help
on GitHub [59, 60, 61, 62] and in the Nextcloud
support forums [63, 64, 65] because they have
experienced data loss.

As a consequence, several users have asked for the
implementation of official tooling to rescue files that
have been encrypted by the Default Encryption Module
[66, 67]. As of November 2020 only an empty
repository of one of the maintainers exists [68].

The author has developed a standalone script to
decrypt all files [69] to circumvent the non-existence
of official rescue tooling.

5.2 Unnecessary file size overhead

Using the Default Encryption Module increases the
size of the encrypted files by roughly 35% [70].

This is not a consequence of the chosen encryption
scheme but of the choices for the file formatting,
which seem to be based on the uninformed usage of
the cryptographic functions provided by the PHP
programming language.

The Default Encryption Module uses the
openssl_encrypt() function in the encrypt() method
[71] to encrypt the file content and the
openssl_decrypt() function in the decrypt() method
[72] to decrypt the file content. However, it does not
pass the OPENSSL_RAW_DATA option to the function

calls, which instructs the functions to use
Base64-encoding with an encoding overhead of 33%.

Furthermore, the Default Encryption Module uses
the hash_hmac() function in the createSignature()
method [73] to generate the message authentication
code of each encrypted file chunk. However, it does
not pass the value true as the $raw_output argument to
the function call, which instructs the function to use
hexadecimal encoding with an encoding overhead of
100%.

Simply using the cryptographic functions provided
by the PHP programming language properly would
drastically reduce the file size overhead induced by the
Default Encryption Module.

5.3 Unnecessary share key mechanism

According to the marketing material “[t]he
encryption of the file key to the public keys is done
using openssl_seal in RC4 mode with the share key.”
Furthermore, “[t]he share key mechanism is used to
avoid having to re-encrypt the files themselves when
new users are given access or when access is revoked.
This saves significantly on the server overhead of the
default encryption module.”

This, however, is a false statement. The files would
not have to be re-encrypted when new users are given
access or when access is revoked even without the
share key mechanism, which introduces the envelope
key as an intermediate key between the file key and the
public keys of the recipients. This reduction in server
overhead is already achieved by introducing the file
key itself.

The key handling that has been implemented by
the Default Encryption Module leads to one encryption
of the file with the file key, one encryption of the file
key with the envelope key and n encryptions of the
envelope key with the public keys of the recipients.

Getting rid of the share key mechanism would lead
to one encryption of the file with the file key and n
encryptions of the file key with the public keys of the
recipients.

A more likely explanation is that the
openssl_seal() function in the multiKeyEncrypt()
method [74] and the openssl_open() function in the
multiKeyDecrypt() method [75] are used to simplify
the implementation of the RSA encryption.

Usage of the share key mechanism does not only
add more complexity and additional key material in
the form of the envelope key but also introduces
cryptographic vulnerabilities.

openssl_seal() and openssl_open() use the RC4
cipher by default. The Default Encryption Module does
not enforce the usage of a different cipher when
invoking the functions. Also, both functions do not

5

implement an authenticated encryption scheme.
Furthermore, RC4 is known to have biases in its
keystream generator and is not recommended for
usage since at least 2013 [76, 77]. For example, its use
in TLS is prohibited since 2015 [78].

openssl_seal() and openssl_open() also use the
RSA-PKCS1.5 padding, which is known to have
vulnerabilities since at least 1998 [79]. The functions
do not provide an argument to switch to using
RSA-OAEP padding instead.

5.4 Encrypted files are not self-contained

Not all information that are relevant for verifying the
integrity of the encrypted file chunks are stored within
the encrypted files. The file versions are stored in the
database instead.

Due to this, you have to backup the database in
addition to the encrypted files and the key material to
be able to properly decrypt the files again. This design
decision can also lead to a loss of integrity when a
database restore is required as the file versions within
the database may not match the files on disk anymore.

The author has developed a standalone script to fix
signature problems that arise from version information
mismatches [80].

5.5 Slow reaction to implementation errors

When looking at the amount and quality of unresolved
issues, there seems to be a slow reaction to
implementation errors within the Default Encryption
Module.

This does not only hold true for individual
problems of single users but also extends to
fundamental issues like not being able to complete the
activation of the Default Encryption Module [81],
decryption failing when S3 is used as primary storage
[82, 83] or files breaking when they are moved
between shared folders [84]. Such problems stay
unresolved for years.

6 Summary

As has been shown, the server side encryption as
implemented by the Default Encryption Module did
contain different cryptographic vulnerabilities and also
suffers from implementation flaws and a lack of
maintenance. Some of the vulnerabilities presented in
this paper have been fixed through smaller
adjustments while others have only been mitigated and
will require a certain degree of rework on the code
base to fully resolve the underlying issues.

Each user should assess the risk that arises from
using the Default Encryption Module and take into
account the problems at hand as well as those
potentially arising from a lack of maintenance.
Employing a different form of encryption may result in
stronger integrity and confidentiality protection
guarantees than can be provided by the Default
Encryption Module.

Users who decide to use the Default Encryption
Module should research appropriate measures to
rescue encrypted files ahead of time.

Acknowledgements

Special thanks go to David Manneck from Freie
Universität Berlin, to Michael Tremer from The IPFire
Project, to Hanno Böck, to J. K., to Florian Köttner
and to Karl Engelhardt for providing valuable
feedback to improve the quality of this paper.

References

[1] https://karlitschek.de/2016/06/nextcloud/
[2] https://nextcloud.com/whitepapers/
[3] https://owncloud.com/customers/
[4] https://nextcloud.com/industries/healthcare/
[5] https://owncloud.com/healthcare-and-life-sciences/
[6] https://nextcloud.com/encryption/
[7] https://nextcloud.com/blog/encryption-in-nextcloud/
[8] https://mautic.nextcloud.com/asset/

10:serversideencryptionwhitepaper
[9] https://owncloud.com/security/
[10] https://oc.owncloud.com/rs/038-KRL-592/images/

Whitepaper_Data_Protection_and_Data_
Secrecy_in_ownCloud_EN.pdf

[11] https://oc.owncloud.com/rs/038-KRL-592/images/
Whitepaper_Overview_of_ownCloud_
Encryption_Model_ENG.pdf

[12] https://oc.owncloud.com/rs/038-KRL-592/images/
Whitepaper_ownCloud_Security_and_
Encryption_ENG.pdf

[13] https://blog.hboeck.de/archives/880-Pwncloud-bad-
crypto-in-the-Owncloud-encryption-module.html

[14] https://docs.nextcloud.com/server/19/admin_manual/
configuration_files/encryption_details.html

[15] https://www.php.net/manual/en/
function.openssl-encrypt.php

[16] https://www.php.net/manual/en/
function.openssl-decrypt.php

[17] https://www.php.net/manual/en/
function.openssl-seal.php

[18] https://www.php.net/manual/en/
function.openssl-open.php

[19] https://www.php.net/manual/en/function.hash-hmac.php
[20] https://www.php.net/manual/en/

function.hash-equals.php
[21] https://hackerone.com/nextcloud

6

https://karlitschek.de/2016/06/nextcloud/
https://hackerone.com/nextcloud
https://www.php.net/manual/en/function.hash-equals.php
https://www.php.net/manual/en/function.hash-equals.php
https://www.php.net/manual/en/function.hash-hmac.php
https://www.php.net/manual/en/function.openssl-open.php
https://www.php.net/manual/en/function.openssl-open.php
https://www.php.net/manual/en/function.openssl-seal.php
https://www.php.net/manual/en/function.openssl-seal.php
https://www.php.net/manual/en/function.openssl-decrypt.php
https://www.php.net/manual/en/function.openssl-decrypt.php
https://www.php.net/manual/en/function.openssl-encrypt.php
https://www.php.net/manual/en/function.openssl-encrypt.php
https://docs.nextcloud.com/server/19/admin_manual/configuration_files/encryption_details.html
https://docs.nextcloud.com/server/19/admin_manual/configuration_files/encryption_details.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_ownCloud_Security_and_Encryption_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_ownCloud_Security_and_Encryption_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_ownCloud_Security_and_Encryption_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Overview_of_ownCloud_Encryption_Model_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Overview_of_ownCloud_Encryption_Model_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Overview_of_ownCloud_Encryption_Model_ENG.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Data_Protection_and_Data_Secrecy_in_ownCloud_EN.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Data_Protection_and_Data_Secrecy_in_ownCloud_EN.pdf
https://oc.owncloud.com/rs/038-KRL-592/images/Whitepaper_Data_Protection_and_Data_Secrecy_in_ownCloud_EN.pdf
https://owncloud.com/security/
https://mautic.nextcloud.com/asset/10:serversideencryptionwhitepaper
https://mautic.nextcloud.com/asset/10:serversideencryptionwhitepaper
https://nextcloud.com/blog/encryption-in-nextcloud/
https://nextcloud.com/encryption/
https://owncloud.com/healthcare-and-life-sciences/
https://nextcloud.com/industries/healthcare/
https://owncloud.com/customers/
https://nextcloud.com/whitepapers/

[22] https://hackerone.com/reports/732431
[23] https://github.com/nextcloud/server/pull/21529
[24] https://cve.mitre.org/cgi-bin/cvename.cgi

?name=CVE-2020-8259
[25] https://nextcloud.com/security/advisory/

?id=NC-SA-2020-041
[26] https://hackerone.com/reports/661051
[27] https://github.com/nextcloud/server/pull/22196
[28] https://nextcloud.com/changelog/#17-0-9
[29] https://github.com/nextcloud/server/pull/22213
[30] https://nextcloud.com/changelog/#18-0-8
[31] https://github.com/nextcloud/server/pull/22212
[32] https://nextcloud.com/changelog/#19-0-2
[33] https://github.com/nextcloud/server/pull/22210
[34] https://cve.mitre.org/cgi-bin/cvename.cgi

?name=CVE-2020-8133
[35] https://nextcloud.com/security/advisory/

?id=NC-SA-2020-038
[36] https://github.com/nextcloud/server/blob/

f04d526681322282dc79ba76c41a8e9b945e9d75/
apps/encryption/lib/Crypto/Crypt.php#L192

[37] https://hackerone.com/reports/743505
[38] https://github.com/nextcloud/server/pull/21529
[39] https://cve.mitre.org/cgi-bin/cvename.cgi

?name=CVE-2020-8152
[40] https://nextcloud.com/security/advisory/

?id=NC-SA-2020-040
[41] https://github.com/syseleven/nextcloud-tools/blob/

master/debug/calculate-filesize.php
[42] https://github.com/syseleven/nextcloud-tools/blob/

master/debug/encrypt-file.php
[43] https://github.com/syseleven/nextcloud-tools/blob/

master/debug/encrypt-filekey.php
[44] https://github.com/syseleven/nextcloud-tools/blob/

master/debug/encrypt-envelopekey.php
[45] https://hackerone.com/reports/742588
[46] https://github.com/nextcloud/server/pull/22218
[47] https://nextcloud.com/changelog/#17-0-9
[48] https://github.com/nextcloud/server/pull/22390
[49] https://nextcloud.com/changelog/#18-0-8
[50] https://github.com/nextcloud/server/pull/22405
[51] https://nextcloud.com/changelog/#19-0-2
[52] https://github.com/nextcloud/server/pull/22381
[53] https://cve.mitre.org/cgi-bin/cvename.cgi

?name=CVE-2020-8150
[54] https://nextcloud.com/security/advisory/

?id=NC-SA-2020-039
[55] https://github.com/nextcloud/server/blob/

f04d526681322282dc79ba76c41a8e9b945e9d75/
apps/encryption/lib/Crypto/Crypt.php#L568

[56] https://github.com/syseleven/nextcloud-tools/blob/
master/debug/strip-signature.php

[57] https://github.com/syseleven/nextcloud-tools/blob/
master/debug/inject-content.php

[58] https://en.wikipedia.org/wiki/
Block_cipher_mode_of_operation

[59] https://github.com/nextcloud/server/issues/2206
[60] https://github.com/nextcloud/server/issues/3958
[61] https://github.com/nextcloud/server/issues/5359
[62] https://github.com/nextcloud/server/issues/8311
[63] https://help.nextcloud.com/t/decrypt-encrypted-datas-

need-your-help-without-database/7275
[64] https://help.nextcloud.com/t/nc-13-0-1-encryption-

shared-folder-bad-signature/30270
[65] https://help.nextcloud.com/t/encryption-issues-default-

module-cant-decrypt-and-disable-encryption/
42726

[66] https://github.com/nextcloud/server/issues/6202
[67] https://github.com/nextcloud/server/issues/9196
[68] https://github.com/schiessle/nextcloud-decrypt
[69] https://github.com/syseleven/nextcloud-tools/blob/

master/rescue/decrypt-all-files.php
[70] https://docs.nextcloud.com/server/19/admin_manual/

configuration_files/encryption_
configuration.html

[71] https://github.com/nextcloud/server/blob/
2a054e6c04e0a40421510eb889cbf59f153c5177/
apps/encryption/lib/Crypto/Crypt.php#L238

[72] https://github.com/nextcloud/server/blob/
2a054e6c04e0a40421510eb889cbf59f153c5177/
apps/encryption/lib/Crypto/Crypt.php#L607

[73] https://github.com/nextcloud/server/blob/
2a054e6c04e0a40421510eb889cbf59f153c5177/
apps/encryption/lib/Crypto/Crypt.php#L519

[74] https://github.com/nextcloud/server/blob/
2a054e6c04e0a40421510eb889cbf59f153c5177/
apps/encryption/lib/Crypto/Crypt.php#L704

[75] https://github.com/nextcloud/server/blob/
2a054e6c04e0a40421510eb889cbf59f153c5177/
apps/encryption/lib/Crypto/Crypt.php#L679

[76] https://www.usenix.org/system/files/conference/
usenixsecurity13/sec13-paper_alfardan.pdf

[77] https://www.usenix.org/system/files/conference/
usenixsecurity15/sec15-paper-vanhoef.pdf

[78] https://doi.org/10.17487/RFC7465
[79] https://doi.org/10.1007/BFb0055716
[80] https://github.com/syseleven/nextcloud-tools/blob/

master/debug/check-signature.php
[81] https://github.com/nextcloud/server/issues/8546
[82] https://github.com/nextcloud/server/issues/10767
[83] https://github.com/nextcloud/server/issues/11826
[84] https://github.com/nextcloud/server/issues/16419

7

https://github.com/nextcloud/server/issues/16419
https://github.com/nextcloud/server/issues/11826
https://github.com/nextcloud/server/issues/10767
https://github.com/nextcloud/server/issues/8546
https://github.com/syseleven/nextcloud-tools/blob/master/debug/check-signature.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/check-signature.php
https://doi.org/10.1007/BFb0055716
https://doi.org/10.17487/RFC7465
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-vanhoef.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-vanhoef.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_alfardan.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_alfardan.pdf
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L679
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L679
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L679
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L704
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L704
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L704
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L519
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L519
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L519
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L607
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L607
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L607
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L238
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L238
https://github.com/nextcloud/server/blob/2a054e6c04e0a40421510eb889cbf59f153c5177/apps/encryption/lib/Crypto/Crypt.php#L238
https://docs.nextcloud.com/server/19/admin_manual/configuration_files/encryption_configuration.html
https://docs.nextcloud.com/server/19/admin_manual/configuration_files/encryption_configuration.html
https://docs.nextcloud.com/server/19/admin_manual/configuration_files/encryption_configuration.html
https://github.com/syseleven/nextcloud-tools/blob/master/rescue/decrypt-all-files.php
https://github.com/syseleven/nextcloud-tools/blob/master/rescue/decrypt-all-files.php
https://github.com/schiessle/nextcloud-decrypt
https://github.com/nextcloud/server/issues/9196
https://github.com/nextcloud/server/issues/6202
https://help.nextcloud.com/t/encryption-issues-default-module-cant-decrypt-and-disable-encryption/42726
https://help.nextcloud.com/t/encryption-issues-default-module-cant-decrypt-and-disable-encryption/42726
https://help.nextcloud.com/t/encryption-issues-default-module-cant-decrypt-and-disable-encryption/42726
https://help.nextcloud.com/t/nc-13-0-1-encryption-shared-folder-bad-signature/30270
https://help.nextcloud.com/t/nc-13-0-1-encryption-shared-folder-bad-signature/30270
https://help.nextcloud.com/t/decrypt-encrypted-datas-need-your-help-without-database/7275
https://help.nextcloud.com/t/decrypt-encrypted-datas-need-your-help-without-database/7275
https://github.com/nextcloud/server/issues/8311
https://github.com/nextcloud/server/issues/5359
https://github.com/nextcloud/server/issues/3958
https://github.com/nextcloud/server/issues/2206
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://github.com/syseleven/nextcloud-tools/blob/master/debug/inject-content.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/inject-content.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/strip-signature.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/strip-signature.php
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L568
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L568
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L568
https://nextcloud.com/security/advisory/?id=NC-SA-2020-039
https://nextcloud.com/security/advisory/?id=NC-SA-2020-039
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8150
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8150
https://github.com/nextcloud/server/pull/22381
https://nextcloud.com/changelog/#19-0-2
https://github.com/nextcloud/server/pull/22405
https://nextcloud.com/changelog/#18-0-8
https://github.com/nextcloud/server/pull/22390
https://nextcloud.com/changelog/#17-0-9
https://github.com/nextcloud/server/pull/22218
https://hackerone.com/reports/742588
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-envelopekey.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-envelopekey.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-filekey.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-filekey.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-file.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/encrypt-file.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/calculate-filesize.php
https://github.com/syseleven/nextcloud-tools/blob/master/debug/calculate-filesize.php
https://nextcloud.com/security/advisory/?id=NC-SA-2020-040
https://nextcloud.com/security/advisory/?id=NC-SA-2020-040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8152
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8152
https://github.com/nextcloud/server/pull/21529
https://hackerone.com/reports/743505
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L192
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L192
https://github.com/nextcloud/server/blob/f04d526681322282dc79ba76c41a8e9b945e9d75/apps/encryption/lib/Crypto/Crypt.php#L192
https://nextcloud.com/security/advisory/?id=NC-SA-2020-038
https://nextcloud.com/security/advisory/?id=NC-SA-2020-038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8133
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8133
https://github.com/nextcloud/server/pull/22210
https://nextcloud.com/changelog/#19-0-2
https://github.com/nextcloud/server/pull/22212
https://nextcloud.com/changelog/#18-0-8
https://github.com/nextcloud/server/pull/22213
https://nextcloud.com/changelog/#17-0-9
https://github.com/nextcloud/server/pull/22196
https://hackerone.com/reports/661051
https://nextcloud.com/security/advisory/?id=NC-SA-2020-041
https://nextcloud.com/security/advisory/?id=NC-SA-2020-041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8259
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8259
https://github.com/nextcloud/server/pull/21529
https://hackerone.com/reports/732431

	Abstract
	1 Introduction
	2 Previous Work
	3 Encryption scheme
	3.1 File types
	3.2 Primitives
	3.3 Encryption
	3.4 Decryption

	4 Cryptographic vulnerabilities
	4.1 Insufficient integrity protection of public keys leads to breach of confidentiality
	4.2 Insufficient integrity protection of files leads to breach of integrity (I)
	4.3 Insufficient integrity protection of files leads to breach of integrity (II)
	4.4 Insufficient integrity protection of files leads to breach of integrity (III)

	5 Other shortcomings
	5.1 Non‑existence of official rescue tooling
	5.2 Unnecessary file size overhead
	5.3 Unnecessary share key mechanism
	5.4 Encrypted files are not self‑contained
	5.5 Slow reaction to implementation errors

	6 Summary
	Acknowledgements
	References

