
Shorter Lattice-Based Zero-Knowledge Proofs
via One-Time Commitments

Vadim Lyubashevsky1, Ngoc Khanh Nguyen1,2, and Gregor Seiler1,2

1 IBM Research – Zurich, Switzerland
2 ETH Zurich, Switzerland

Abstract. There has been a lot of recent progress in constructing efficient zero-knowledge proofs for
showing knowledge of an ~s with small coefficients satisfying A~s = ~t. For typical parameters, the proof
sizes have gone down from several megabytes to a bit under 50KB (Esgin et al., Asiacrypt 2020).
These are now within an order of magnitude of the sizes of lattice-based signatures, which themselves
constitute proof systems which demonstrate knowledge of something weaker than the aforementioned
equation. One can therefore see that this line of research is approaching optimality. In this paper, we
modify a key component of these proofs, as well as apply several other tweaks, to achieve a further
reduction of around 30% in the proof output size. We also show that this savings propagates itself when
these proofs are used in a general framework to construct more complex protocols.

1 Introduction

Zero-knowledge proofs and commit-and-prove protocols form the foundations of virtually all privacy-
based protocols. In preparing for the (eventual) coming of quantum computing, there has been a lot
of focus in recent years of building such protocols based on quantum-safe assumptions. Quantum-
safe PCP / IOP schemes whose security is just based on the collision-resistance of cryptographic
hash functions have existed for decades, and there has been a lot of recent work around them. The
main feature of these constructions is that their outputs are sublinear in the statement size. The
main downside is that they can be very slow and memory intensive. Furthermore, there is a lower
bound of around 100KB for proofs of statements that have small size. So it’s quite likely that they
are not the best solution for all scenarios.

In the last few years, new techniques emerged in lattice cryptography that made them. These
techniques have been used for blockchain applications [EZS+19], verifiable random functions [EKS+20],
and for proofs of arithmetic statements [LNS20]. In all of these scenarios, lattice schemes appear
to be the best solution available. For example, a commit-and-prove protocol for integer products
is significantly smaller and several orders of magnitude faster than other quantum-safe solutions.
These results show that lattices might eventually be very reasonable substitutes for the classical
cryptography that is currently embedded in those protocols.

At the core of many of the recent privacy-based protocols is the BDLOP commitment scheme
[BDL+18] which is able to commit to an arbitrary message vector ~m modulo q. In [BDL+18], it
was also shown how one can prove knowledge of ~m by only proving knowledge of the commit-
ment randomness ~r. The proof technique was essentially using the “Fiat-Shamir with Aborts”
[Lyu09,Lyu12] framework to keep the proofs small and avoid leaking any information about ~r. If
one uses the Gaussian rejection sampling procedure, then the magnitude of each coefficient of the ~r′

output in the proof is around 12 ·κ‖~r‖, where the κ is some constant that comes from the challenge,
and the 12 comes from a Gaussian tail bound needed for (statistical) zero-knowledge.

The increased coefficient size means that the proof is noticeably larger than the randomness
itself (and gives rise to a vicious cycle of having to increase the modulus and dimension of the



underlying lattice). It nevertheless seems necessary because leaking some information about the
randomness can be dangerous. For example, if one were to repeatedly perform proofs of knowledge
for the same commitment and leaking something about the same randomness each time, eventually
the entire randomness could be recovered by an observer.

1.1 One-time Commitments

If one looks closer at how the BDLOP commitment is being used in many of these protocols,
one would notice that the scheme is used to commit to some intermediate value, give a proof-of-
knowledge of the value (i.e. proof of knowledge of the commitment randomness), and then discards
the commitment. So if only one proof of knowledge is performed. In this case, it’s not immediately
clear whether some leakage of the randomness vector is problematic. Still, it seems somewhat risky
to only perform a minimal perturbation on the randomness and hope that this is good enough for
LWE to remain secure. Instead of relying completely on heuristic security, it would be good to have
a technique which lowers the proof size, and at the same time concretely allows one to understand
exactly how the LWE problem is affected by the leakage.

For efficiency purposes, the commitment is only computationally hiding (i.e. based on LWE), so
one cannot use prior techniques to prove that enough entropy remains in the randomness prior to
the leakage. While there are techniques that show that LWE-based encryption schemes can tolerate
leakage (e.g. , the results are asymptotic and it’s unclear what the actual practical implication of
the leakage is [DGK+10,GKPV10,BD20]. There has also been some work examining the practical
aspects of leakage in the Ring-LWE setting [DDGR20], and the security of the scheme is barely
affected when the leakage is small.

We show that a particular rejection sampling strategy information-theoretically leaks just one
bit of randomness, and allows us to exactly quantify what this leakage is. More specifically, in
addition to the public LWE samples, there is also a short public vector ~z, and we require that the
LWE secret (i.e. the secret concatenated with the error vector) has a non-negative inner product
with it. Because the LWE secret is uniformly distributed around 0, the probability that the inner
product will be non-negative is greater than 1/2, and so this extra restriction loses (less than) one
bit of entropy.

We observe that the leakage essentially transforms the LWE problem instance into (a much less
leaky version of) an extended-LWE one, which was shown to be equivalent to LWE in [AP12]. The
decisional extended-LWE problem asks to distinguish between the distributions (B,B~r, ~z, 〈~r, ~z〉)
and (B, ~u, ~z, 〈~r, ~z〉), where ~r is sampled from the secret/noise domain of the LWE problem, ~u is
uniformly random, and ~z is sampled from some efficiently sampleable distribution. One caveat is
that for efficiency, we use a structuredB, and the proof in [AP12] does not carry over to our setting.
The reasons are somewhat similar as to why the sample-preserving reduction for LWE [MM11] do
not appear to carry-over to the ring versions of the problem. And just like in that setting, it would
be extremely surprising if there were a complexity separation between the extended-LWE problem
for LWE and Ring-LWE; and in particular if the version of the extended LWE problem only leaks
the sign of the inner product, as in our case. Furthermore, it’s clear that there is an equivalence
of the search versions of these two problems – and so it would be interesting if the decisional
version of the problem ended up being easy, as all the best current lattice algorithms work by
trying to solve the search problem. In short, we do not believe that this one bit of leakage has any
practical consequences on the hardness of the LWE problem. It would actually be interesting if this
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assumption found even more applications, beside the original ones (e.g. [OPW11]) that inspired
the Extended-LWE assumption, for improving the efficiency of lattice schemes. 3

1.2 Technical Overview

The last prover move of a Schnorr-type Σ-protocol is a value ~z = ~y + ~v, where ~y is a “masking”
vector that the prover created during the first move and ~v is the combination of the secret and the
challenge (usually their product, but this is unimportant for our purposes and we can consider the
whole ~v to be secret). If we would like ~z to have small norm, then we cannot choose the coefficients
of ~y to be so large that the sum ~y + ~v statistically hides ~v. Instead we use rejection sampling to
force the distribution of ~z to be independent of ~v. In particular, if we would like the distribution
of the output to be f , while the distribution of ~z is g, then one should output ~z with probability
f(~z)/(M ·g(~z)), where M is some positive integer set so that this ratio is never larger than 1. Since
1/M is the probability that something will be output, we also want to have M as small as possible.
Combining these two requirements, it’s easy to see that M should be set to max~z(g(~z)/f(~z)).

If we follow [Lyu12] where the target distribution f is a discrete Gaussian with standard devi-
ation s and the distribution g is a shifted Gaussian (by ~v) with the same standard deviation, then
via [Lyu12, Lemma 4.5], the value for M is derived as

exp

(
−2〈~z, ~v〉+ ‖~v‖2

2s2

)
≤ exp

(
24s‖~v‖+ ‖~v‖2

2s2

)
= M.

In the inequality, one uses a standard 1-dimensional tail bound for the inner product of a discrete
Gaussian with arbitrary vector (c.f. [Lyu12, Lemma 4.3]). And in fact, it is this tail bound that
contributes the most to M . For example, if we would like to have M = exp(1), then we would need
to set s ≈ 12‖~v‖. On the other hand, if we knew that 〈~z, ~v〉 ≥ 0, then we could set s ≈ ‖~v‖/

√
2,

a decrease of around a factor of 17. So the intuition is for the prover to throw away the potential
outputs ~z that have the aforementioned inner product be negative-valued. The effect of this is
that it leaks information about ~z – in particular, the fact that its inner product with the secret is
positive.

Interestingly, the new value of s is identical to what one would get by using bimodal rejection
sampling, as in the BLISS signature scheme [DDLL13] which didn’t leak any information about
the secret. We cannot directly apply the technique from that paper because it crucially required
that the public value B0 be set up such that B0~r = q (mod 2q). Intuitively, with this setup,
leaking the sign of the secret ~r doesn’t matter because both ~r and −~r satisfy the equality. Since
we do not have this setup, the bimodal technique from BLISS would leak some information. At
this point, we do not see a way to quantify the leakage stemming from the bimodal distribution,
unlike the fairly simple leakage that we proposed instead. We should also mention that a recent
work [TWZ20] showed how to apply the bimodal technique to the BDLOP commitment scheme
without any leakage. Their transformation is not for free – it increases the length of the output, and
also has a technical subtlety that makes it difficult to apply our current result. The issue is that a
part of our security proof requires that the challenge space to have a particular distribution over
{−1, 0, 1} (it’s necessary for Lemma 2.1, which is crucial for the product proof over fully-splitting
rings). In the proof in [TWZ20], on the other hand, the challenges are masked by the prover and
so their distribution is possibly determined in an adversarial fashion.

3 Indeed, much of the progress in constructions of practical classical cryptography has come from making stronger,
but still plausible, assumptions that stem from discrete log or factoring.

3



Proving [ENS20] [LNS20] this work
heuristic masking with no

rejection sampling

Knowledge of an LWE Sample 47KB 47KB 33.3 KB 27 KB

Integer Addition − 24.8KB 16.9 KB 13.8 KB

Integer Multiplication − 40.2KB 28.2 KB 23 KB

Fig. 1. Proof size comparisons for secure commit-and prove protocols for proving knowledge of a (Module)-LWE
sample of total dimension (secret and error vector) 2048, and 128-bit integer addition and multiplication. In the last
column we list the proof sizes when only masking the secret vector c~r with a uniformly random masking vector that
has the same infinity norm bound than the secret vector and not performing any rejection sampling. This is possibly
still secure, but lacks a security proof at this point.

1.3 Applications and Paper Overview

A good benchmark for the progress of the development of lattice-based proof techniques is the
simple proof of knowledge of a trinary secret vector ~s satisfying B~s = ~t. Up until a few years ago,
for a particular real-world parametrization of the problem (B being a 1024 × 2048 dimensional
matrix over Zq for q ≈ 232), the smallest proof used so-called “Stern” proofs ported to lattices
[LNSW13], and had proof sizes of several megabytes. Switching the proof strategy to showing that
a coefficient si is trinary by using a commit-and-prove strategy by proving the algebraic equation
(si − 1) · si · (si + 1) = 0 lowered the proof sizes to around 300KB [YAZ+19,BLS19]. Then even
more recently, by utilizing more efficient product proofs [EZS+19,ALS20], it was shown in [ENS20]
how to obtain proofs of size under 50KB.

In Section 3, we apply our new technique to the aforementioned benchmark, as well as to the
recent framework in [LNS20] for proving integer relations. Appendix B shows how this framework
can be further optimised using commitment compression from [DKL+18]. In total, we obtain a size
reduction of around 30% for these proofs (see Figure 1). As a side note, the proofs in [ENS20,LNS20]
used the uniform distribution instead of discrete Gaussians. The reason was that Gaussians did not
provide much of a size reduction (a few kilobytes) and are a bit more cumbersome to work with. But
in light of our modified rejection sampling, which only appears to apply to the Gaussian technique,
we believe that it is now worthwhile to switch in order to take advantage of the additional size
reduction.

To see how far our new rejection sampling procedure is from the (almost) best possible, we
also compute the proof size for the case in which we don’t do any rejection sampling when giving
a proof of knowledge of the commitment randomness. In particular, we heuristically mask this
secret by adding a random masking vector whose coefficients are as big as those of the vector. This
undoubtedly leaks something about the randomness, but it may still be reasonable to hope that
the message in the commitment remains hidden because there is still enough entropy in the LWE
secret (i.e. the randomness of the commitment).4 This strategy leads to proof sizes that are around
20% smaller. We do not see how one can get any sort of security reduction for this approach, but
we don’t see an attack either. It is therefore an interesting open problem whether this approach
can lead to something with a security proof. This would lead to essentially optimal parameters for
this approach of creating zero-knowledge proofs.

Since our basic proofs are fairly close to optimal (as far as this line of research goes), we find it
worthwhile to give further applications of them. Combined with a few extra tricks we develop along

4 Even smaller sizes would be of course obtained if one does no masking at all, but then the scheme would be clearly
insecure.
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the way, we believe this leads to the shortest current constructions for certain primitives. Section 4
describes how one constructs a verifiable decryption scheme for Kyber [BDK+18], which is a finalist
of the NIST PQC competition. This approach can be easily extended to other lattice-based KEM
finalists, such as Saber [DKRV18] or NTRU [HPS98]. Complementing the previous section, which
requires range proofs in the infinity norm, in Section 5 (and Appendix E) we further consider range
proofs with respect to the Euclidean norm. Concretely, we show how to prove that a vector ~v has
‖~v‖ < a for some integer a. In Appendix F, we describe an alternative approach for creating an
important ingredient in some proofs – namely, approximate range proofs [BL17,BN20,LNS20] – by
using bimodal Gaussians [DDLL13] which considerably increases the efficiency of the aforemen-
tioned protocol. We also remark that the latter two sections make use of the improved framework
from [LNS20] defined in Section 3.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q be an odd prime. We write ~v ∈ Rm to denote
vectors over a ring R and matrices over R will be written as regular capital letters M . Define In to be
the n× n identity matrix over Zq. For an integer a, we define a vector ~a = (a, . . . , a) unless stated
otherwise. By default, all vectors are column vectors. We write ~v||~w for a usual concatenation
of ~v and ~w (which is still a column vector). For ~v, ~w ∈ Zkq , ~v ◦ ~w is the usual component-wise
multiplication. For simplicity, we denote ~u2 = ~u ◦ ~u. We write x ← S when x ∈ S is sampled
uniformly at random from the finite set S and similarly x← D when x is sampled according to the
distribution D. We write [n] to denote the set {1, . . . , n}. Given two functions f, g : N→ [0, 1], we
write f(µ) ≈ g(µ) if |f(µ)− g(µ)| < µ−ω(1). A function f is negligible if f ≈ 0. We write negl(n) to
denote an unspecified negligible function in n.

For a power of two d, denote R and Rq respectively to be the rings Z[X]/(Xd + 1) and
Zq[X]/(Xd+1). Bold lower-case letters denote elements in R or Rq and bold lower-case letters with
arrows represent column vectors with coefficients in R or Rq. We also write bold upper-case letters
for matrices in R or Rq. By default, for a polynomial denoted as a bold letter, we write its i-th
coefficient as its corresponding regular font letter subscript i, e.g. f0 ∈ Zq is a constant coefficient
of f ∈ Rq. For x = x0 + x1X + . . .+ xd−1X

d−1 ∈ R and y = y0 + y1X + . . .+ yd−1X
d−1 ∈ R, we

define the inner product 〈x,y〉 :=
∑d−1

i=0 xiyi. We also extend this definition to vectors over R.

Modular reductions. We define r′ = r mod± q to be the unique element r′ in the range − q−1
2 ≤

r′ ≤ q−1
2 such that r′ = r mod q. We also denote r′ = r mod+q to be the unique element r′ in

the range 0 ≤ r′ < q such that r′ = r mod q. When the exact representation is not important, we
simply write r mod q.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. Define the `∞
and `p norms for w = w0 + w1X + . . .+ wd−1X

d−1 ∈ R as follows:

‖w‖∞ = max
j
‖wj‖∞, ‖w‖p = p

√
‖w0‖p∞ + . . .+ ‖wd−1‖p∞.
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If ~w = (w1, . . . ,wm) ∈ Rk, then

‖ ~w‖∞ = max
j
‖wj‖∞, ‖ ~w‖p = p

√
‖w1‖p + . . .+ ‖wk‖p.

By default, we denote ‖ ~w‖ := ‖ ~w‖2.

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l in R. This means Xd + 1 ≡ ϕ1 . . .ϕl (mod q)
with irreducible polynomials ϕj of degree d/l modulo q. We assume that Zq contains a primitive
2l-th root of unity ζ ∈ Zq but no elements whose order is a higher power of two, i.e. q − 1 ≡ 2l
(mod 4l). Therefore, we have

Xd + 1 ≡
∏
j∈Z×2l

(
X

d
l − ζj

)
(mod q) (1)

where ζj (j ∈ Z×2l) ranges over all the l primitive 2l-th roots of unity.
Let Wq := {p ∈ Rq : deg(p) < d/l}. We define the Number Theoretic Transform (NTT) of a

polynomial p ∈ Rq as follows:

NTT (p) :=

 p̂0...
p̂l−1

 ∈W l
q where p̂j = p mod (X

d
l − ζ2j+1).

We also define the inverse NTT operation. Namely, for a vector ~v ∈W l
q, NTT

−1 (~v) is the polynomial
p ∈ Rq such that NTT (p) = ~v.

For a polynomial a ∈ Rq, we define Rot(a) ∈ Zd×dq as

Rot(a) =


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

... · · ·
...

an−1 an−2 · · · a0

 .

Then, for a, b ∈ Rq, the coefficient vector of ab can be calculated as Rot(a)~b where~b = (b0, b1, . . . , bd−1)
is the coefficient vector of b.

2.3 Automorphisms

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to Z×2d ∼= Z2 × Zd/2,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. Note that for i ∈ Z×2d and odd j it holds that (σi(X − ζj)) =

(X − ζji−1
) in Rq (as ideals), and for f ∈ Rq,

σi
(
f mod (X − ζj)

)
= σi (f) mod

(
X − ζji−1

)
.

Let k be a divisor of l and σ := σ2l/k+1 ∈ Aut(Rq). Then, we can write(
Xd + 1

)
=

∏
j∈Z×

2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
.
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2.4 Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with coefficients −1, 0, 1. We
define the following probability distribution C : C → [0, 1]. The coefficients of a challenge c ← C
are independently identically distributed with P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

Consider the coefficients of the polynomial c mod (Xd/l − ζj) for c← C. Then, all coefficients
follow the same distribution over Zq. Let us write Y for the random variable over Zq that follows
this distribution. Attema et al. [ALS20] give an upper bound on the maximum probability of Y .

Lemma 2.1. Let the random variable Y over Zq be defined as above. Then for all x ∈ Zq,

Pr(Y = x) ≤ 1

q
+

2l

q

∑
j∈Z×q /〈ζ〉

l−1∏
i=0

∣∣∣∣12 +
1

2
cos(2πjyζi/q)

∣∣∣∣ . (2)

In particular, [ALS20,ENS20] computed that for q ≈ 232, the maximum probability for each coef-
ficient of c mod Xd/l − ζj is around 2−31.4. In general, we will call this probability p.

An immediate consequence of Lemma 2.1 is that polynomial c ← C is invertible in Rq with
overwhelming probability as long as parameters q, d, l are selected so that q−d/l is negligible.

Let k be a divisor of d such that q−kd/l is negligible and set σ = σ2l/k+1. Let us define a

probability distribution C̃ over Rk which first samples c = c0 + c1X + . . . + ck−1X
k−1 ← C and

outputs (c0, . . . , ck−1) where each ci is defined as ci =
∑d/k−1

j=0 cjk+iX
jk. Clearly, we have

c =
k−1∑
i=0

ciX
i.

2.5 Module-SIS and Module-LWE Problems

Security of the [BDL+18] commitment scheme used in our protocols relies on the well-known com-
putational lattice problems, namely Module-LWE (M-LWE) and Module-SIS (M-SIS) [LS15]. Both
problems are defined over Rq.

Definition 2.2 (M-SISκ,m,B). Given A ← Rκ×mq , the Module-SIS problem with parameters

κ,m > 0 and 0 < B < q asks to find ~z ∈ Rmq such that A~z = ~0 over Rq and 0 < ‖~z‖ ≤ B.
An algorithm A is said to have advantage ε in solving M-SISκ,m,B if

Pr
[
0 < ‖~z‖ ≤ B ∧ A~z = ~0

∣∣∣A← Rκ×mq ; ~z ← A(A)
]
≥ ε.

Definition 2.3 (M-LWEm,λ,χ). The Module-LWE problem with parameters m,λ > 0 and an
error distribution χ over R asks the adversary A to distinguish between the following two cases: 1)
(A,A~s + ~e) for A ← Rm×λq , a secret vector ~s ← χλ and error vector ~e ← χm, and 2) (A,~b) ←
Rm×λq ×Rmq . Then, A is said to have advantage ε in solving M-LWEm,λ,χ if∣∣∣Pr

[
b = 1

∣∣∣A← Rm×λq ; ~s← χλ; ~e← χm; b← A(A,A~s+ ~e)
]

(3)

− Pr
[
b = 1

∣∣∣A← Rm×λq ; ~b← Rmq ; b← A(A,~b)
]∣∣∣ ≥ ε.

For our constructions in this work, the practical hardness of either of the problems against
known attacks is not affected by the parameter m. Therefore, we sometimes simply write M-SISκ,B
or M-LWEλ,χ. The parameters κ and λ denote the module ranks for M-SIS and M-LWE, respectively.
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2.6 Probability Distributions

For sampling randomness in the commitment scheme that we use, and to define a variant of the Ring
Learning with Errors problem, we need to define an error distribution χd on R. In this paper we
sample the coefficients of the random polynomials in the commitment scheme using the distribution
χ on {−1, 0, 1} where ±1 both have probability 5/16 and 0 has probability 6/16. This distribution
is chosen (rather than the more “natural” uniform one) because it is easy to sample given a random
bitstring by computing a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi.

Discrete Gaussian distribution. We now define the discrete Gaussian distribution used for the
rejection sampling.

Definition 2.4. The discrete Gaussian distribution on R` centered around ~v ∈ R` with standard
deviation s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2/2s2∑

~z′∈R` e
−‖~z′‖2/2s2 .

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s

2.7 Approximate Range Proofs

Baum and Lyubashevsky [BL17] showed that if B~s has small coefficients, for a vector ~s over Zq
and uniformly random binary matrix B, then with high probability ~s must have small coefficients
as well. More recently, Lyubashevsky et al. [LNS20] generalise their result for B~s+~e where ~e is an
arbitrary vector over Zq. We extend the lemma for the case when B is sampled from a distribution
centered at 0. The main advantage of this approach is that the infinity norm of B~s decreases
significantly, which is essential for the rejection sampling.

Concretely, we define the probability distribution C : {−1, 0, 1} → [0, 1] such that Prc←C[c =
0] = p and Prc←C[c = 1] = Prc←C[c = −1] = (1 − p)/2 for some p ∈ [0, 1]. Then, we have the
following lemma.

Lemma 2.5. Let ~s ∈ Zmq and ~y ∈ Znq . Then

Pr

[
‖B~s+ ~y‖∞ <

1

2
‖~s‖∞ : B ← Cn×m

]
≤ max{p, 1− p}n.

We provide the proof of Lemma 2.5 in Appendix A.1.

2.8 Commit-and-Prove

LetRL be a polynomial-time verifiable relation containing (ck, x, w). We will call ck the commitment
key, x the statement and w the witness. Also, we define a language Lck as the set of statements x
for which there exists a witness w such that (ck, x, w) ∈ RL.

We define the commit-and-prove functionality similarly as in [EG14,CLOS02] for a relation RL.
Roughly speaking, we want to commit to messages m1, . . . ,mn and prove certain statements about
them. Therefore, w = (m1, . . . ,mn) constitutes a witness for x ∈ Lck.

Formally, a commit-and-prove functionality (CP) consists of four algorithms CP = (Gen,Com,Prove,Verify).
We require Com,Verify to be deterministic whereas Gen,Prove are probabilistic.
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– Gen(1µ): Given a security parameter µ, generates a commitment key ck. The commitment key
specifies a message space Mck a randomness space Rck and commitment space Cck.

– Comck(m; r): Given a commitment key ck, a message m ∈Mck and randomness r ∈ Rck returns
a commitment c ∈ Cck.

– Proveck (x, ((m1, r1), . . . , (mn, rn))): Given a commitment key ck, statement x and commitment
openings mi ∈Mck, ri ∈ Rck and (ck, x, (m1, . . . ,mn)) ∈ RL returns a proof π.

– Verifyck (x, c1, . . . , cn, π): Given a commitment key ck, a statement x, a proof π and commitments
ci ∈ Cck, outputs 1 (accept) or 0 (reject).

Definition 2.6 (Correctness). The commit-and prove functionality CP has statistical correct-
ness with correctness error ρ : N→ [0; 1] if for all adversaries A:

Pr

[
ck ← Gen(1µ); (x,m1, . . . ,mn)← A(ck); ci ← Comck(mi; ri);
π ← Proveck (x, ((m1, r1), . . . , (mn, rn))) : Verifyck (x, c1, . . . , cn, π) = 0

]
≤ ρ(µ) (4)

where A outputs mi ∈Mck, ri ∈ Rck so that (ck, x, (m1, . . . ,mn)) ∈ RL.

Definition 2.7 (Knowledge Soundness). The commit-and prove functionality CP is knowledge
sound with knowledge error ε : N→ [0; 1] if for all PPT A there exists an expected polynomial time
extractor E such that :

Pr

[
ck ← Gen(1µ); (x, c1, . . . , cn, π)← A(ck); ((m∗1, r

∗
1) . . . , (m∗n, r

∗
n))← E(c1, . . . , cn) :

Verifyck (x, c1, . . . , cn, π) = 1 ∧ ((ck, x, (m∗1, . . . ,m
∗
n)) 6∈ RL ∨ ∃i,Com(m∗i ; r

∗
i ) 6= ci)

]
≤ ε(µ). (5)

where E outputs m∗i ∈Mck and r∗i ∈ Rck.

In lattice-based zero-knowledge proofs, it is sometimes useful to relax the definition of knowledge
soundness by only requiring r∗1, . . . , r

∗
n ∈ R̄ck where Rck ⊆ R̄ck. However, the definition still makes

sense if one can argue that the extracted commitments are still binding, e.g. Lemma B.6. This is
what we do by additionally defining notions of weak opening (Definition B.3) and extended weak
opening (Definition B.4).

The next property is a new notion called simulatability. Informally, it means that there exists
an efficient simulator S which can simulate both the commitment generation and the proof at the
same time.

Definition 2.8 (Simulatability). The commit-and prove functionality CP is simulatable if there
exist PPT simulators SimCom and SimProve such that for all PPT adversaries A:

Pr

[
ck ← Gen(1µ); (x,m1, . . . ,mn)← A(ck); r1, . . . , rn ← ξ;∀i, ci = Comck(mi, ri);
π ← Proveck(x, (m1, r1), . . . , (mn, rn)) : (ck, x, (m1, . . . ,mn)) ∈ RL ∧ A(c1, . . . , cn, π) = 1

]
≈ Pr

[
ck ← Gen(1µ); (x,m1, . . . ,mn)← A(ck); , c1, . . . , cn ← SimComck(x);
π ← SimProveck(x, c1, . . . , cn) : (ck, x, (m1, . . . ,mn)) ∈ RL ∧ A(c1, . . . , cn, π) = 1

] (6)

where ξ is a probability distribution on Rck.

The difference between simulatability and zero-knowledge is that randomness r1, . . . , rn is directly
generated from ξ as it would in the real-world protocol rather than chosen from adversary. This
property becomes crucial when using the BDLOP commitments [BDL+18].
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2.9 Commitment Scheme

We recall the BDLOP commitment scheme from [BDL+18] used in our constructions as well as
previous works [ALS20,ENS20,LNS20]. Suppose that we want to commit to a message vector ~m =
(m1, . . . ,mn) ∈ Rnq for n ≥ 1 and that module ranks of κ and λ are required for M-SIS and

M-LWE security, respectively. Then, in the key generation, a matrix B0 ← Rκ×(κ+λ+n)q and vectors
~b1, . . . ,~bn ← Rκ+λ+nq are generated and output as public parameters. Note that one could choose to

generate B0,~b1, . . . ,~bn in a more structured way as in [BDL+18] since it saves some computation.
However, for readability, we write the commitment matrices in the “Knapsack” form as above. In
our case, the hiding property of the commitment scheme is established via the duality between the
Knapsack and MLWE problems. We refer to [EZS+19, Appendix C] for a more detailed discussion.

To commit to the message ~m, we first sample ~r ← χd·(κ+λ+n). Now, there are two parts of the
commitment scheme: the binding part and the message encoding part. In particular, we compute

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+mi mod q,

for i ∈ [n], where ~t0 forms the binding part and each ti encodes a message polynomial mi.

2.10 Framework by Lyubashevsky et al. [LNS20]

Recently, Lyubashevsky et al. [LNS20] proposed a general framework for proving linear and mul-
tiplicative relations between committed messages. Concretely, suppose that prover P has a vector
of n messages ~m = (~m1, . . . , ~mn) ∈ Znlq . Let pp be a public set of polynomials P :

(
Zlq
)n → Zlq

of n variables over Zlq with standard component-wise addition and multiplication and define α =
maxP∈pp deg(P ) 5. For readability, we will often “concatenate” polynomials in pp, i.e. we will write
pp = {P1, . . . , Pt} where each Pi :

(
Zlq
)n → Zuilq and u1, . . . , ut > 0.

For the linear relations, let us set ulp = (A, ~u) ∈ Zvl×nlq ×Zvlq . In practice, A can have arbitrary
number of rows but then we would have to pad rows with zeroes in order to get a multiple of l.

Overall, [LNS20] provides a protocol π = (Comn,α, Π
α
n (pp, ulp)) where the prover P first

generates the BDLOP commitments to ~m (sub-protocol Comn,α) and then wants to prove that
~m ∈ Ln (pp, ulp) (sub-protocol Πα

n (pp, ulp)) where

Ln (pp, ulp) := {~m ∈ Znlq : ∀P ∈ pp, P (~m) = ~0 and A~m = ~u}. (7)

In this paper we are only interested in applying the LNS framework only for the case l = d, i.e.
Xd + 1 splits completely into linear factors modulo q, unless stated otherwise.

Let us formulate the protocol π in terms of the commit-and-prove functionality from Section
2.8. First, the relation RLNS we are interested in here is

(ck, (pp, ulp), ~m) ∈ RL ⇐⇒ ~m ∈ Ln (pp, ulp) .

We define a CP functionality LNS = (LNSGen, LNSCom, LNSProveU , LNSVerifyU ) for the relation
RL as follows:

5 Although Lyubashevsky et al. only consider the case α ≤ 3, it can be easily generalised by sending more garbage
commitments.
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– LNSGen(1µ) : It outputs a commitment key ck specifies the message space Mck = Zndq , ran-

domness space Rck = {−1, 0, 1}d·(κ+λ+n+α)6 and the commitment space Cck = Rκ+nq . It also

generates the matrix B0 ← Rκ×(κ+λ+n+α)q and vectors ~b1, . . . ,~bn+α ← Rκ+λ+n+αq .

– LNSComck ((~m1, . . . , ~mn); ~r) outputs (~t0, t1, . . . , tn) where

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~mi) mod q for i ∈ [n].

– LNSProveUck ((pp, ulp), ~m1, . . . , ~mn, ~r): It runs the non-interactive version of the protocolΠα
n (pp, ulp)

(e.g. [LNS20, Fig. 8]), using the Fiat-Shamir transform, and outputs the proof π. Letter U de-
notes that the algorithm uses uniform rejection sampling.

– LNSVerifyUck

(
(pp, ulp), ~t0, t1, . . . , tn, π

)
: Check the verification equations of Πα

n (pp, ulp) (e.g.

[LNS20, Fig. 9]).

Eventually, Lyubashevsky et al. show that the commit-and-prove functionality LNS defined
above for the relation RL is is both knowledge sound with negligible knowledge error under the
Module-SIS assumption and simulatable under the Module-LWE assumption where the randomness
~r distribution is defined over ξ = χd·(κ+λ+n+α) .

3 Opening Proof with Improved Rejection Sampling

In lattice-based zero-knowledge proofs, e.g.[BLS19,ALS20], the prover will want to output a vector
~z whose distribution should be independent of a secret randomness vector ~r, so that ~z cannot
be used to gain any information on the prover’s secret. During the protocol, the prover computes
~z = ~y + c~r where ~r is the randomness used to commit to the prover’s secret, c← C is a challenge
polynomial, and ~y is a “masking” vector. In order to remove the dependency of ~z on ~r, one applies
the rejection sampling technique.

Lemma 3.1 (Rejection Sampling). Let V ⊆ R` be a set of polynomials with norm at most T
and ρ : V → [0, 1] be a probability distribution. Also, write s = 11T and M = 3. Now, sample ~v ← ρ
and ~y ← D`d

s , set ~z = ~y + ~v, and run b ← Rej0(~z, ~v, s) as defined in Fig. 2. Then, the probability
that b = 0 is at least (1 − 2−100)/M and the distribution of (~v, ~z), conditioned on b = 0, is within
statistical distance of 2−100/M of the product distribution ρ×D`d

s .

Let us recall how parameters s and M are usually selected. Namely, the repetition rate M is chosen
to be an upper-bound on:

D`d
s (~z)

D`d
~v,s(~z)

= exp

(
−2〈~z, ~v〉+ ‖~v‖2

2s2

)
≤ exp

(
24s‖~v‖+ ‖~v‖2

2s2

)
= M. (8)

For the inequality we used the tail bound which says that with probability at least 1−2100 we have
|〈~z, ~v〉| < 12s‖~v‖ for ~z ← D`d

s [Ban93,Lyu12]. Hence, by setting s = 11‖~v‖ we obtain M ≈ 3.

6 Note that the length of ~r is not κ+ λ+ n as in Section 2.9 since the prover will later in the protocol commit to α
garbage polynomials using the same ~r.
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Rej0(~z,~v, s)
01 u← [0, 1)

02 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
03 return 1
04 Else
05 return 0

Rej1(~z,~v, s)
01 If 〈~z,~v〉 < 0
02 return 1
03 u← [0, 1)

04 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
05 return 1
06 Else
07 return 0

Fig. 2. Two rejection sampling algorithms: the one used in previous works (left) and the one proposed in this section
(right).

In this section we propose a new way to apply rejection sampling. Namely, we force ~z to satisfy
〈~z, ~v〉 ≥ 0, otherwise we abort. With this additional assumption, we can set M in the following
way:

exp

(
−2〈~z, ~v〉+ ‖~v‖2

2s2

)
≤ exp

(
‖~v‖2

2s2

)
= M. (9)

Hence, for M ≈ 3 one would select s = 0.675 · ‖~v‖. Note that the probability for ~z ← D`d
σ that

〈~z, ~v〉 ≥ 0 is at least 1/2. Hence, the expected number of rejections would be at most 2M = 6. On
the other hand, if one aims for M = 6 repetitions using (8), then s = 6.74 · ‖~v‖. Thus, we manage
to reduce the standard deviation by around a factor of 10.

Subset Rejection Sampling. In order to prove security of our new rejection sampling algorithm,
we need the following modification of the rejection sampling lemma by Lyubashevsky [Lyu12].

Lemma 3.2 (Subset Rejection Sampling). Let V be an arbitrary set and h : V → R, f : Zm →
R be probability distributions. Also define a family of set Sv ⊆ Zm for v ∈ V and S = {(z, v) ⊆
V × Zm : z ∈ Sv}. Suppose gv : Zm → R is a family distributions indexed by all v ∈ V and there
exist M,γ ≥ 0 which satisfy:

∀v ∈ V, z ∈ Sv : Mgv(z) ≥ f(z)

∀v ∈ V :
∑
z∈Sv

f(z) ≥ γ. (10)

Then the distributions of the output of A and F , defined in Fig. 3, are identical. Moreover, the
probability that A and F output something is at least γ

M .

A
01 v ← h
02 z ← gv
03 if z 6∈ Sv then abort
04 output (z, v) with probability f(z)

Mgv(z)

F
01 v ← h
02 z ← f
03 if z 6∈ Sv then abort
04 output (z, v) with probability 1

M
.

Fig. 3. Algorithms A and F for Lemma 3.2.
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We provde the proof of the lemma in Appendix A.2.

Later on, we will consider the special case when f := Dm
s , g~v := Dm

~v,s for ~v ∈ V ⊆ Zm and

Sv := {~z ∈ Zm : 〈~v, ~z〉 ≥ 0}.

Then, the probability that A outputs something is at least:

1

M

∑
~v∈V

h(~v) Pr
~z←Dms

[〈~v, ~z〉 ≥ 0] ≥ 1

2M
.

Therefore, we can set γ = 1/2. Here, we used the fact that Pr~z←Dms [〈~v, ~z〉 > 0] = Pr~z←Dms [〈~v, ~z〉 < 0].
We also highlight that the value M we chose in (9) indeed satisfies Equation 10.

Extended M-LWE. One observes that with the new approach, the verifier learns some new
information about the secret. Indeed, if a prover P returns ~z then the verifier V knows that 〈~z, ~v〉 ≥
0. However, later on we will show that the opening proof from [ALS20] using the new rejection
sampling is still simulatable assuming that a new problem, which we call Extended M-LWE, is
computationally hard. For readability, we will describe it in a “knapsack” form.

Definition 3.3 (Extended M-LWEm,k,λ,χ,ξ1,ξ2). The Extended Module-LWE problem with pa-
rameters m,λ > 0 and error distributions χ, ξ1 and ξ2 over R and Rk respectively, asks the adver-
sary A to distinguish between the following two cases:

1.

B,B~r, c1, . . . , ck, ~z, sign
〈~z,

c1~r...
ck~r

〉

 for B ← Rm×(m+λ)

q , a secret vector ~r ← χm+λ

and (~z, c1, . . . , ck)← ξ
k(m+λ)
1 × ξ2

2.

B, ~u, c1, . . . , ck, ~z, sign
〈~z,

c1~r...
ck~r

〉

 for B ← Rm×(m+λ)

q , ~u← Rmq and (~z, c1, . . . , ck)←

ξ
k(m+λ)
1 × ξ2

where sign(a) = 1 if a ≥ 0 and 0 otherwise.

Then, A is said to have advantage ε in solving Extended M-LWEm,k,λ,χ,ξ1,ξ2 if∣∣∣Pr
[
b = 1

∣∣∣B ← Rm×(m+λ)
q ; ~r ← χm+λ; ~z ← ξ

k(m+λ)
1 ; ~c← ξ2; b← A(B,B~r, ~z, ~c, s)

]
− Pr

[
b = 1

∣∣∣B ← Rm×λq ; ~u← Rmq ; ~z ← ξ
k(m+λ)
1 ; ~c← ξ2 ; b← A(B, ~u, ~z, ~c, s)

]∣∣∣ ≥ ε.
where

s = sign

〈~z,
c1~r...
ck~r

〉
 and ~c = (c1, . . . , ck).

To simplify notation, we will write Extended M-LWEm,λ to denote Extended M-LWEm,1,λ,χd,Dds ,C
where χ is defined in Section 2.6.
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We note that the LWE problem with various side information has already been discussed in e.g.
[DGK+10,AP12,DDGR20]. As far as we are aware, our new variant of M-LWE is the closest to
the Extended LWE problem defined by Alperin-Sheriff and Peikert [AP12]7. Indeed, in Appendix
D we show that hardness of the non-algebraic version of our Extended M-LWE (i.e. without any
polynomial ring structure) can be reduced to plain LWE using similar techniques as in [AP12].

Hardness of Ring/Module-LWE is often analysed as an LWE problem since, so far, the best
known attacks do not make use of the algebraic structure of the polynomial ring [ADPS15]. Then,
the only two attacks which would be relevant to our Module-LWE problem are be the primal and
dual attacks [Alb17,AGVW17,APS15]. Interestingly, the concrete analysis suggests that solving
search-LWE (using the primal attack) is more efficient than solving the decisional version of LWE
(using the dual attack). Thus, we believe that the search Extended-MLWE problem should still be
hard with one bit, i.e. s, leaked since the vector ~r has high enough entropy.

3.1 Concrete Instantiation

We describe how to apply our rejection sampling in the opening proof by Attema et al. [ALS20]. For
readability, we consider the simple version of the protocol without any commitment compression
[DKL+18] or Galois automorphisms [LNS20, Appendix A.6] for boosting soundness. We discuss
how to apply all those improvements in Section 3.2 and Appendix B.

One observes that the protocol presented in Fig. 4 is not very meaningful since it only shows
that prover P has a polynomial m ∈ Rq. However, it is a key ingredient to prove linear [ENS20]
and multiplicative [ALS20] relations between committed messages.

Formally, let us define the following the commit-and-prove functionality CP = (Gen,Com,Prove,Verify):

– Gen(1µ): Given a security parameter µ, generates a commitment key ck which specifies a message
space Mck = Rq, a randomness space Rck = {−1, 0, 1}(λ+κ+1)d and commitment space Cck =

Rκ+1
q . It also generates the matrix B0 ← Rκ×(κ+λ+1)

q and the vector ~b1 ← Rκ+λ+1
q .

– Comck(m; ~r): Given a commitment key ck, a message m ∈ Mck and randomness ~r ∈ Rck
returns a commitment (~t0, t1) = (B0~r, 〈~b1, ~r〉+m) ∈ Cck.

– Proveck (x,m, ~r): It first generates ~y ← Dκ+λ+1
s and computes c = H(B0~y). Then, it computes

~z = ~y + c~r and gets b← Rej1(~z, c~r, s). If b = 0, it outputs π = (c, ~z).

– Verifyck

(
x, ~t0, t1, π

)
: Parse π = (c, ~z). If ‖~z‖ ≤ s

√
2(λ+ κ+ 1)d and c = H( ~B0~z−c~t0), return

1. Otherwise, return 0.

Here, H : {0, 1}∗ → {−1, 0, 1}d ⊂ Rq is a random oracle which generates output from the distribu-
tion C (see Section 2.4). The language RL, for which CP is defined, is trivial: (ck, x,m) ∈ RL ⇐⇒
m ∈ Rq.

Correctness and knowledge soundness of CP can be proven almost identically as in [ALS20,
Theorem 4.4]. Hence, we will only focus on simulatability.

Theorem 3.4. Suppose Extended M-LWEκ+1,λ is computationally hard. Then, the commit-and-
prove functionality CP = (Gen,Com,Prove,Verify) defined above for the language RL is simulatable
in the random oracle model H.

Proof. Let us consider the following hybrid algorithms.

7 In [AP12] the hint is the inner product 〈~r, ~z〉 of the secret vector ~r and some ~z sampled from a given distribution
D.
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Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+1)
q ,~b1 ∈ Rλ+κ+1

q B0,~b1

m ∈ Rq

~r ← χ(λ+κ+1)d

~t0 = B0~r

t1 = 〈~b1, ~r〉+m

~y ← D(λ+κ+1)d
s

~w = B0~y

~t0, t1, ~w -
c� c← C

~z = ~y + c~r

If Rejb(~z, c~r, s) = 1, abort ~z -

For i = 0, . . . , k − 1 :

‖~z‖2
?

≤ β = s
√

2(λ+ κ+ 1)d

B0~z
?
= ~w + c~t0

Fig. 4. Opening proof for the commitment scheme. If b = 0 then the protocol is identical to the one described in
[ALS20] and uses Rej0 defined in Fig. 2. On the other hand, if b = 1 then we apply the new rejection sampling
algorithm Rej1 in Fig. 2.

– Prove1ck (x,m, ~r): It first generates ~y ← Dκ+λ+1
s , c ← C. Then, it computes ~z = ~y + c~r and

gets b← Rej1(~z, c~r, s). If b = 1, it outputs π = (c, ~z) and programs c = H(B0~z − c~t0).
– Prove2ck (x,m, ~r): It first generates ~z ← Dκ+λ+1

s , c ← C. If 〈~z, c~r〉 ≥ 0 then with probability
1/M it outputs π = (c, ~z) and programs c = H(B0~z − c~t0).

It is easy to see that the difference between Prove and Prove1 is that the algorithm programs the
random oracle at one particular value B~y (without checking whether it was already set). Hence, by
arguing similarly as for zero-knowledge in [KLS18,DKL+18] we have that for all PPT adversaries
A:

Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Proveck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
≈ Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Prove1ck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
.

(11)

For the next hybrid, we apply Lemma 3.2. Namely, let m = (λ + κ + 1)d and V = {c~r : c ∈
{−1, 0, 1}d, ~r ∈ {−1, 0, 1}m}. Set the probability distribution h : V → R as

h(~v) = Pr[c~r = ~v : c← C, ~r ← χm].

Next, we set f := Dm
s , g~v := Dm

~v,s for ~v ∈ V and

S~v := {~z ∈ Rλ+κ+1
q : 〈~v, ~z〉 ≥ 0}.
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Then, by Lemma 3.2 we have:

Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Prove1ck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
= Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Prove2ck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

] (12)

for all adversaries A. Now we define two algorithms SimCom and SimProve responsible for the
simulation.

– SimComck (x): It samples ~t0 and t1 uniformly at random from Rκq and Rq respectively and

returns (~t0, t1).

– SimProveck

(
x, ~t0, t1

)
: It first generates ~z ← Dκ+λ+1

s , ~r∗ ← χλ+κ+1 and c ← C. Then, if

〈~z, c~r∗〉 ≥ 0 then with probability 1/M it outputs π = (c, ~z) and programs c = H(B0~z − c~t0).

For the sake of contradiction suppose there exists a PPT adversary A such that

∣∣∣Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Prove2ck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
− Pr

[
ck ← Gen(1µ); (x,m)← A(ck); (~t0, t1)← SimComck(x);

π ← SimProveck(x, ~t0, t1); (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]∣∣∣ = ε.

(13)

Let us construct an adversary B which solves the Extended M-LWEκ+1,λ also with probability ε us-

ing the algorithmA. Concretely, suppose that B is given a tuple
(

(B0||~b1), (~t0||u1), ~z, c, sign(〈~z, c~r〉)
)

for ~z ← D
(λ+κ+1)d
s , c ← C and ~r ← χ(λ+κ+1)d. Firstly, A outputs a pair (x,m). Then, B sets

t1 = u1 +m. Finally, if sign(〈~z, c~r〉) ≥ 0 then B sets π = (c, ~z) and with probability 1/M sends
(~t0, t1, π). Otherwise, it aborts. At the end, B outputs the bit sent from A.

First, suppose that ~t0 = B~r and u1 = 〈~b1, ~r〉. Then, (t0, t1) constructed by B is indeed equal
to Comck(m; ~r). Then, the way π is built is identical as in Prove2. In this case, the probability that
B outputs bit 1 is equal to

Pr

[
ck ← Gen(1µ); (x,m)← A(ck); ~r ← χ(λ+κ+1)d; (~t0, t1) = Comck(m; ~r);

π ← Prove2ck(x,m, ~r) : (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
.

On the other hand, assume that ~t0 and u1 are chosen uniformly at random and also independently
of ~r. Then, t1 is random as well. Hence, the probability that B outputs 1 is indeed equal to

Pr

[
ck ← Gen(1µ); (x,m)← A(ck); (~t0, t1)← SimComck(x);

π ← SimProveck(x, ~t0, t1); (ck, x,m) ∈ RL ∧ A(~t0, t1, π) = 1

]
.

Thus, B can efficiently distinguish between the two Extended M-LWE cases with probability ε.
Since, we assumed that the problem is computationally hard, this implies that ε is negligible. Then,
the statement holds by the hybrid argument. ut
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3.2 Boosting Soundness and Decreasing Standard Deviation

The protocol in Fig. 4 has soundness error around q−d/l which is not necessarily negligible. In order
to boost soundness, Attema et al. [ALS20] apply Galois automorphisms. We recall the extended
opening proof protocol below.

Prover P first generates ~y0, . . . , ~yk−1 ← D
(λ+κ+1)d
s and ~r, ~t0, t1 as before. Next, it outputs

(~t0, t1, ~w0, . . . , ~wk−1) where ~wi = B0~yi. After receiving a challenge c ← C from the verifier, P
computes

~zi = ~yi + σi(c)~r for i = 0, . . . , k − 1

where σ := σ2d/k+1 where k is a divisor of d. Then, the prover applies rejection sampling Rej1(~z, ~v, s)

where ~z = ~z0 ‖ · · · ‖ ~zk−1 and ~v = σ0(c)~r ‖ · · · ‖ σk−1(c)~r. If it does not abort, then P outputs ~z.
Finally, the verifier checks that ~z is small and

B0~zi = ~wi + σi(c)~t0

for i = 0, . . . , k − 1. As argued by Attema et al., this protocol has soundness around q−dk/l.
More recently, Lyubashevsky et al. [LNS20, Appendix A.6] (also mentioned in [ENS20]) im-

proved this opening proof by applying a simple modification. Suppose Xn + 1 splits completely
modulo q, i.e. l = d. Let us write the challenge c = c0 + c1X + . . .+ ck−1X

k−1 ← C where

ci =

d/k−1∑
j=0

cjk+iX
jk.

By definition of σ = σ2d/k+1, we have that σ(ci) = ci for each i. Therefore, we have:

σi(c) =
k−1∑
j=0

σi(Xj)cj .

The modified opening proof protocol is presented as follows. Prover P samples ~y′0, . . . , ~y
′
k−1

from D
(λ+κ+1)d
s as before. Then, the prover sends ~w′i = B0~y

′
i. After getting a challenge c ← C, it

computes c0, . . . , ck−1 as above and calculates ~z′i as:
~z′0
~z′1
...

~z′k−1

 =


~y′0
~y′1
...

~y′k−1

+


c0~r
c1~r

...
ck−1~r

 .

Since each ci has only at most d/k non-zero coefficients, we manage to decrease the standard
deviation possibly by a factor of k (in practice the improvement is smaller if one upper-bounds
‖σi(c)~r‖ more cleverly).

Eventually, the prover applies rejection sampling Rej1(~z, ~v, s) where ~z = ~z′0 ‖ · · · ‖ ~z′k−1 and
~v = c0~r ‖ · · · ‖ ck−1~r. After receiving vectors ~z′j , V first checks whether

B0~z
′
i

?
= ~w′i + ci~t0.

for i = 0, . . . , k − 1 and that each ~zi is small.
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Note that by computing

~yi =

k−1∑
j=0

σi(Xj)~y′j , ~zi =

k−1∑
j=0

σi(Xj)~z′j

and ~wi = B0~yi for i = 0, . . . , k − 1, we have:

B0~zi = ~wi + σi(c)~t0

which is the exact verification equation as in [ALS20]. This observation is crucial in [LNS20] in order
to still be able to prove linear and multiplicative relations using techniques from [ALS20,ENS20].

Lyubashevsky et al. bound ‖~v‖ by first finding α so that

Pr
[
∃i, ‖ci~r‖∞ > α : c← C, ~r ← χ(λ+κ+1)d

]
< 2−128

and then setting the bound ‖~v‖ ≤ α
√
λ+ κ+ 1. In Appendix C we describe a more optimal way

to compute an upper-bound on ‖~v‖ using almost identical methods as in [DDLL13].

3.3 Applications

We apply the new rejection sampling technique in the protocol by Esgin et al. [ENS20, Appendix
B] to prove knowledge of secrets in LWE samples. Concretely, for n = 2048, we want to prove
knowledge of a ternary vector ~s ∈ {−1, 0, 1}n such that

~u =
(
A′ ‖ Im

)
· ~s (mod q),

where Im is the m-dimensional identity matrix, A′ ∈ Zm×(n−m)
q is a public matrix chosen uniformly

at random and q is a modulus of about 32 bits (i.e., log q ≈ 32). Note that ~s here corresponds
to the concatenation of a secret vector and an error vector of 1024 dimension each in the usual
LWE setting. For fair comparison, we will use the protocol described in [ENS20, Fig. 3] with the
following two modifications (i) we do the Gaussian rejection sampling according to Rej1 instead of
the uniform one and (ii) we apply the commitment compression techniques as in Appendix B.

We set parameters (q, d, l, k) = (≈ 232, 128, 128, 4) similarly as in [ENS20]. Esgin et al. choose
the expected number of repetitions to be 18.87. Since sampling from a discrete Gaussians is much
less efficient than from a uniform distribution, for fairness we set s = T and M ≈ 3.3 where T is the
upper-bound on ‖~v‖ where ~v = c0~r ‖ · · · ‖ ck−1~r. Esgin et al. use the fact that ‖~v‖∞ ≤ d/k = 32
and thus they set T = 32

√
(λ+ κ+ 3 + 16)d. We, however, apply the bound described in Appendix

C and observe that for (κ, λ) selected in the next paragraph, our bound on ‖~v‖ is around five times
smaller than in [ENS20].

Now we set λ and κ such that M-LWE and M-SIS are hard against known attacks. We measure
the hardness with the root Hermite factor δ and aim for δ ≈ 1.0043 [ENS20,EZS+19,BLS19]. By
assuming that the Extended M-LWE is almost equally hard as M-LWE, we set λ = 10 as in [ENS20].
On the other hand, for the M-SIS hardness we manage to set κ = 8 due to having smaller standard
deviation s. Hence, without using the compression techniques, we obtain the proof of size 41.35KB
compared to 47KB by [ENS20]. After applying the additional improvements described in Appendix
B we reduce the proof size to 33.6KB.
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Similarly, we can consider the LNS functionality defined in Section 2.10 where LNSProveU use
our new Gaussian rejection sampling in Fig. 2 instead of a uniform one. We will denote this variant
of the protocol as LNSProveD and the corresponding CP functionality for the language RL as

LNSD = (LNSGen, LNSCom, LNSProveD, LNSVerifyD).

The total proof size (when using Discrete Gaussians and without any Dilithium compression tech-
niques) is about

(n+ κ+ α+ 1)d log q + k(λ+ κ+ n+ α)d · log (12s) bits. (14)

Here, n, α are defined in Section 2.10, k is a divisor of d such that q−k is negligible and s is
the standard deviation used for the rejection sampling. For efficiency, we also apply Dilithium
compression methods described in Appendix B.

We present the proof sizes for proving n-bit integer addition and multiplication using LNSD in
Figure 1.

4 Verifiable Decryption

In this section we apply the improved LNS framework with the rejection sampling from Section 3 to
the problem of constructing a verifiable decryption scheme. We restrict our attention the Kyber key
encapsulation scheme [BDK+18] and its NIST level 1 parameter set Kyber512. Kyber is a finalist
in the NIST PQC standardization effort. Our techniques work equally well for any of the other
lattice-based KEMs in round 3 of the NIST process, i.e. Saber [DKRV18] and NTRU [HPS98].
Kyber512 uses module rank 2 over the ring Rq = Zq[X]/(X256 + 1) with modulus q = 3329. The
public key is given by an MLWE vector ~t = A~s+~e where A ∈ R2×2

q is a uniform public matrix and
~s and ~e are short secret vectors with coefficients in the interval [−2, 2]. The encryption of a binary
polynomial m ∈ {0, 1}256 encoding a 256-bit key consists of the rounded vector and polynomial

~u = Compress10
(
AT ~s′ + ~eu

)
= AT ~s′ + ~e′u

v = Compress4

(
〈~t, ~s′〉+ ev +

⌈q
2

⌋
m
)

= 〈~t, ~s′〉+ e′v +
⌈q

2

⌋
m

where ~s′, ~eu and ev are again short, the functions Compress10 and Compress4 compress to 10 and 4
bits per coefficient, and ~e′u, e′v include the errors coming from the compression. Finally, decryption
uses the observation

v − 〈~s, ~u〉 = 〈~e, ~s′〉 − 〈~s, ~e′u〉+ e′v +
⌈q

2

⌋
m,

which implies ∥∥∥v − 〈~s, ~u〉 − ⌈q
2

⌋
m
∥∥∥
∞
<
q

4

with overwhelming probability. In fact, the decryption algorithm will recover m precisely if this
norm bound is true. In the scheme there is no guarantee for this bound and encrypted keys can fail
to be decryptable with probability around 2−139.
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Now, for a verifiable decryption scheme we need to be able to prove knowledge of a vector ~s
and polynomials m, x such that

v − 〈~s, ~u〉 −
⌈q

2

⌋
m = x (15)

~s ∈ {−2,−1, 0, 1, 2}512 (16)

m ∈ {0, 1}256 (17)

‖x‖∞ <
q

4
(18)

The first three properties (15), (16), (17) can in principle directly be proven with the LNS frame-
work. For the fourth one we can use a small-base decomposition approach for doing range proofs.
A small problem is posed by the magnitude of the Kyber modulus q = 3329. While it is possible to
instantiate the LNS framework in a way that allows to directly prove linear equations modulo such
small primes, this results in quite large soundness error and many repetitions in the opening proof.
To circumvent this problem and arrive at a more efficient protocol, we use the framework with a
much larger modulus q′ and lift Equation (15) to the integers. This means that we instead prove

v − 〈~s, ~u〉 −
⌈q

2

⌋
m+ dq ≡ x (mod q′) (19)

for another secret polynomial d ∈ Z[X]/(X256 + 1) whose range ‖d‖∞ ≤ 210 we also need to prove.
Note that Equation (19) for q′ > 223 together with the range proofs implies Equation (15) since
from the ranges of the individual terms we know that the equation must hold over the integers,
which in turn implies (15) since the additional term, which is a multiple of q, vanishes modulo q.

4.1 Range Proofs

In the protocol sketched above there are the two range proofs ‖d‖∞ ≤ 210 and ‖x‖∞ < q/4. For
the first range proof it is actually enough to prove that q ‖d‖∞ < q′/4. We use a 64-bit prime q′

for the LNS framework protocol. Then, there is enough head-room between the actual range 210 of
d and q′/(4q) > 250 so that we can use the approximate shortness proof. On the other hand, for
proving the range of x it is important to not have any slack in the proof. So here we decompose
x in base 5. We choose base 5, since for proving the coefficients of ~s to lie in the interval [−2, 2]
we already have degree-5 product relations and hence can prove the base-5 decomposition without
any additional garbage commitments. The interval of the coefficients of x has length q/2 = 1664
and hence we need 5 base-5 digits for each coefficient. Now, since 1664 is not a power of 5 we write
each coefficient of x in the form

a0 + a15 + a25
2 + a35

3 + a4260

with a4 ∈ 0, . . . , 4. This decomposition is not unique but precisely maps to the integers in the
interval [0, 1664].

4.2 Proof Size

We compute the size of the verifiable decryption scheme for Kyber512 from above. As commitment
messages we have the vector s of Z-dimension 512, the polynomialm of dimension 256, the masking
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polynomial for the approximate range proof for d, and the expansion of x in base-5, which has Z-
dimension 5 · 256 = 1280. This amounts to a total message dimension of n = 2176. We then
computed that the full LNS protocol with 64-bit modulus, MLWE rank 20 and MSIS rank 5 has a
prove size of 43.6KB.

5 Proving Shortness in the L2 Norm

In this section we present how to efficiently prove that a vector ~v ∈ Z`dq , for some ` > 0, is short
in the L2 norm. Recall that proving ‖~v‖∞ < a for some a can be simply done by decomposing
each entry of ~v with respect to base b and showing that the extended vector has coefficients in
{0, . . . , b−1} e.g. as in Section 4. We show below that the argument for proving ‖~v‖2 < a is slightly
more involved. As usual, we work over the fully-splitting ring Rq with l = d.

Overview. Given a vector ~v ∈ Z`d, we want to prove that ‖~v‖2 < a = 2a < q/2 for some public
positive integer a. By definition of the L2 norm, we have the following:

‖~v‖2 =
(
1 1 · · · 1

)
[~v ◦ ~v] . (20)

The strategy can be split into four steps.

Step 1. The prover computes ~u = ~v2 and by sending commitments to ~v, ~u, it will convince the
verifier that the equation holds over Zq. This is a proof of a simple multiplicative relation.

Step 2. By doing an approximate range proof (see Section 2.7), P will prove that ~v has relatively
small coefficients. Concretely, the prover samples ~y ← Dτd

s′ and given a challenge matrix B ←
Cτd×`d, it computes ~z = ~y + B~v and applies rejection sampling. After sending ~z, the verifier will
check that ‖~z‖∞ < 1

2

√
q/(2`d). If ~z indeed satisfies this inequality, then by Lemma 2.5, we have

‖~v‖∞ <
√
q/(2`d) with probability

1−max{p, 1− p}τd.

Hence, ‖~v2‖∞ < q/(2`d) and consequently ~u = ~v2 over integers.

Step 3. Prover P binary decomposes ‖~v‖2 ∈ N into a vector ~w = (w0, . . . , wd−1) ∈ {0, 1}d. Then,
by sending the commitment to ~w, P would prove that(

1 1 · · · 1
)
~u−

(
1 2 · · · 2d−1

)
~w =

(
1 1 · · · 1

)
~u− ‖~v‖2 = 0 (mod q). (21)

Step 4. Lastly, P shows that ‖~v‖2 < 2a having sent the commitment to its binary decomposition
~w. Thus, we simply prove that ~w ∈ {0, 1}a × {0}d−a or alternatively: ~w ◦ (~w − ~a) = ~0 where
~a = (1, . . . , 1, 0, . . . , 0) has the first a coefficients equal to 1 and 0 everywhere else. Then, since we
proved that ‖~u‖∞ and ‖~w‖∞ are sufficiently small, we would conclude that (21) also holds over
integers. Indeed, by Steps 1 and 2 the verifier is convinced that ‖~u‖∞ = ‖~v2‖∞ < q/(2`d). Then,

‖
(
1 1 · · · 1

)
~u‖∞ < ‖

(
1 1 · · · 1

)
~u‖∞ < `d · q/(2`d) = q/2

and ‖
(
1 2 · · · 2d−1

)
~w|∞ < q/2. Hence, by Step 4 we get that Equation 21 holds over integers.

We remark that if someone wants to prove smallness of the L2 norm for an integer a not being
a power-of-two, then in Step 4 one would apply the range proof protocol from [LNS20] instead.
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5.1 The Protocol

We present the protocol for proving ‖~v‖2 < a = 2a in Fig.5. Prover P starts by sampling vectors ~y ←
Dτd

s′ from a discrete Gaussian with standard deviation s′. Then, it generates a BDLOP commitment
to

~m = (~v, ~u, ~y, ~w) ∈ Z(2`+τ+1)d
q

and sends it to V. Next, the verifier sends a challenge matrix B ← Cτd×`d. Then, P computes ~z as

~z = ~y +B~v mod q (22)

and applies rejection sampling. If it does not abort, P outputs ~z.
Now we define pp, ulp in order to apply the LNS framework. For the multiplicative relations, we

define the following polynomials:

P1(~m) = ~u− ~v2 and P2(~m) = ~w ◦ (~w −~a).

As for linear relations, we want to prove Equations (21) and 22 over Zq. They can all be combined
into a single equation

B′ ~m =

(
0
~z

)
for some public matrix B′ ∈ Z(τd+1)×(2`+τ+1)d

q . Thus, we set

pp = {P1, P2} and ulp =
(
B′, (0||~z)

)
. (23)

Eventually, the prover runs Π2
2`+τ+1 (pp, ulp). At the end, the verifier checks the verification equa-

tions for Π2
2`+τ+1 (pp, ulp) as well as ‖~z‖∞ < 1

2

√
q/(2`d).

In Appendix E we show how to transform this protocol into a commit-and-prove functionality
defined in Section 2.8.

5.2 Proof Size

We provide concrete parameters and proof sizes in Tables 6 and 7. For the LNSD framework
protocol, we apply Equation 14 for α = 2 and n = 2` + τ + 1. Also, we have to take into account
the sizes of ~z. Hence, the total proof size is at most:

(2`+ τ + κ+ 4)d log q + k(λ+ κ+ 2`+ τ + 3)d · log (12s) + τd · log
(
12s′

)
bits.

For the first rejection sampling we choose s′ = 11T ′ where T ′ is the upper-bound on ‖B~v‖.
We compute T ′ using the standard inequality ‖B~v‖ ≤ s1(B) · ‖~v‖ where s1(B) is the singular
value/operator norm of B. Note that each entry of B is sampled uniformly and independently from
C and the distribution is actually 0-subgaussian with parameter s =

√
2π 8. Hence, it follows from

[MP12, Lemma 2.9] that
s1(B) ≤

√
τd+

√
`d+ 6

except with probability 2−163. Thus, we set T ′ = (
√
τd+

√
`d+ 6) · a.

8 Here, we use the definition of a subgaussian distribution from [MP12]
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Prover P Verifier V

Inputs:

~v ∈ Z`d such that ‖~v‖2 < a = 2a B0;~b1, . . . ,~b2`+τ+3

B0 ∈ Rκ×(λ+κ+2`+τ+3)
q ;~b1, . . . ,~b2`+τ+3 ∈ Rλ+κ+2`+τ+3

q

~y ← Dτd
s′

~u = ~v2

Compute the bin. decomp. ~w ∈ {0, 1}d of ‖~v‖2, i.e.‖~v‖2 =

d−1∑
i=0

wi2
i

Run Com2`+τ+1(~m) ∈ R2`+τ+1
q where ~m = (~v, ~u, ~y, ~w)

B� B ← Cτd×`d

~z = ~y +B~v

If Rej0(~z,B~v, s′) = 1 abort ~z -

Run Π2
2`+τ+1 (pp, ulp) ‖~z‖∞

?
<

1

2

√
q/(2`d)

Check ver. eq. for Π2
2`+τ+1 (pp, ulp)

Fig. 5. Protocol for proving that a vector ~v ∈ Z`d satisfies ‖~v‖2 < a. We use the interactive protocol π =
(Comn,α, Π

α
n (pp, ulp)) for n = 2` + τ + 1 and α = 2 (see Section 2.10) where the latter subprotocol uses the re-

jection sampling from Section 3. Relations pp and ulp are set as in (23). Rejection sampling algorithm Rej0 is defined
in Fig. 2.

In order for the verification equations to hold in an honest execution, we need to select q such
that

6 · 11(
√
τd+

√
`d+ 6) · a = 6 · 11T ′ = 6s′ <

1

2

√
q/(2`d). (24)

For the second rejection sampling, we compute s as in Section 3.3. Therefore, the repetition
rates for both rejection samplings are M ′ ≈ 3 and 2M ≈ 3.3.

Last but not least, we apply the Dilithium compression techniques from Appendix B in order
to further reduce the proof size.

a ` log(q) k κ λ ARP Bimodal proof size

210 8 64 2 4 21 1 no 42.7KB

220 8 64 2 4 21 2 yes 47.76KB

230 8 128 1 2 40 1 no 58.8KB

240 8 128 1 2 40 1 no 58.95KB

250 8 128 1 2 40 2 no 63.03KB

Fig. 6. Proof size comparison for proving ‖~v‖2 < a, where ~v is a 1024-dimensional vector, using the protocol in Fig.
5. For all parameter sets, we choose (d, l, τ, p) = (128, 128, 1, 0.5). ARP denotes the number of approximate range
proofs, i.e. whether we only prove shortness of ~v or we also prove for ~u.

5.3 Reducing the Modulus

Note that Equation 24 implies that the higher value a, the larger modulus q we need to choose.
Indeed, with the approach above, even for a = 220 we already cannot afford to select q ≈ 264
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a without compression with compression

210 42.7KB 40.8KB

220 47.76KB 43.2KB

230 58.8KB 58.9KB

240 58.95KB 58.9KB

250 63.03KB 59.5KB

Fig. 7. Proof size comparison for proving ‖~v‖2 < a with and without Dilithium compression techniques (Appendix
B). We observe that for larger modulus q ≥ 264, the advantage of compressing the commitment is not very significant.

and thus we need to raise it to q ≈ 2128 (in order to apply Lemma 2.1). One method, which
does not completely circumvent this problem but allows us to pick slightly smaller q, is to also
apply an approximate range proof on ~u. Concretely, the prover additionally samples ~y′′ ← Dτd

s′′

from a Discrete Gaussian with standard deviation s′′ and given a challenge matrix B′′ ← C`d×τd it
computes ~z′′ = ~y′′ + B~u. Then, P applies rejection sampling and outputs ~z′′ if it does not reject.
Eventually, the prover needs to prove ~z′′ = ~y′′ +B~u which is simply another linear proof.

We show how this technique compares to the previous approach. First, we choose the standard
deviation s′′ = 11T ′′ where T ′ is an upper-bound on ‖B~u‖. Similarly as before, we pick T ′′ =
(
√
τd +

√
`d + 6) · a2. Then, in order to prove that ~u = ~v2 and (21) over integers, we need: (i)

12s′′ < q/2, (ii) (12s′)2 < q/2 and (iii) 2 · 6s′′ < q/(2`d).

Therefore, we can choose 2 · 6 · 11 · (
√
τd +

√
`d + 6) times larger modulus q than before. The

clear disadvantages of this approach are: (i) committing to one more vector ~y ∈ Zτdq and sending a
masked opening ~z′′ and (ii) slower run-time due to having an additional rejection sampling.

Another way, which allows us to further reduce the standard deviation s′, s′′ and consequently
choose smaller q, is to apply Bimodal Gaussians [DDLL13]. Informally, instead of calculating ~z =
~y +B~v, we commit to a random bit b and compute

~z = ~y + (−1)bB~v.

Eventually, we apply rejection sampling and prove that this equation holds over Zq. In Appendix
F we show how this can be done within the LNS framework. Overall, this approach reduces the
standard deviation by a factor of around 12 at the cost of committing to 2τ more vectors in Zdq .
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A Supporting Proofs

A.1 Proof of Lemma 2.5

We first prove the following lemma.

Lemma A.1. Let q be an odd positive integer and C be the probability distribution defined in
Section 2.7. Then, for any vector ~s ∈ Znq and integer y ∈ Zq, we have

Pr
~c←Cn

[
‖〈~c,~s〉+ y〉‖∞ <

1

2
‖~s‖∞

]
≤ max{p, 1− p}.

Proof. Let si be the coefficient of ~s so that ‖si‖∞ = ‖~s‖∞. Then, one can write 〈~c,~s〉+ y = sici + r
for some r ∈ Zq. We consider two cases.

Case 1: ‖r‖∞ ≥ 1
2‖~s‖∞. Then, ci would have to be either 1 or -1 for any chance of sici + r to be

less than 1
2‖~s‖∞. This implies that

Pr
~c←Cn

[
‖〈~c,~s〉+ y〉‖∞ <

1

2
‖~s‖∞

∣∣∣‖r‖∞ ≥ 1

2
‖~s‖∞

]
≤ Pr

ci←C
[|ci| = 1] = 1− p.

Case 2: ‖r‖∞ < 1
2‖~s‖∞. We will prove that

‖r + bsi‖∞ ≥
1

2
‖si‖∞

for any b ∈ {−1, 1}. Therefore, we have

Pr
~c←Cn

[
‖〈~c,~s〉+ y〉‖∞ <

1

2
‖~s‖∞

∣∣∣‖r‖∞ <
1

2
‖~s‖∞

]
≤ Pr

ci←C
[ci = 0] = p
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which will complete the proof of the lemma.
First, we can assume that |si| ≤ q/2 and |r| < |si|/2. Thus, ‖r+bsi‖∞ is either equal to |r+bsi|

or |r + bsi ± q|. In the former case, we immediately have |r + bsi| ≥ |bsi| − |ri| > |si|/2. For the
latter case, we can assume for the sake of contradiction that u = r + bsi ± q where |u| < |si|/2.
Therefore,

q = | ± q| = |r + bsi − u| ≤ |r|+ |bsi|+ |u| < |si|/2 + |si|+ |si|/2 = 2|si| ≤ q.

ut

This lemma can be then easily generalised to the matrix setting. Hence, the statement holds.

A.2 Proof of Lemma 3.2

Let v ∈ V . If z ∈ Sv, the probability that A outputs z is equal to gv(z) · f(z)
Mgv(z)

= f(z)
M . Otherwise,

the probability that A outputs z 6∈ Sv is exactly 0. Hence

Pr[A outputs something] =
∑
v∈V

h(v)
∑
z∈Sv

f(z)

M
≥ γ

M
.

Moreover, the probability that F outputs something is also 1
M

∑
(z,v)∈S h(v)f(z). Hence:

∆(A,F) =
1

2

 ∑
(z,v)∈S

|A(z, v)−F(z, v)|


=

1

2

∑
v∈V

h(v)

(∑
z∈Sv

∣∣∣∣gv(z) · f(z)

Mgv(z)
− f(z)

M

∣∣∣∣
)

=
1

2

∑
v∈V

h(v)

(∑
z∈Sv

∣∣∣∣f(z)

M
− f(z)

M

∣∣∣∣
)

= 0.

ut

B Opening Proof with Commitment Compression

B.1 Low/High Order Bits

In order to reduce the size of the commitment, we need some algorithms that extract “higher-order”
and “lower-order” bits of elements in Zq. The goal is that when given an arbitrary element r ∈ Zq
and another small element z ∈ Zq, we would like to be able to recover the higher order bits of r+ z
without needing to store z. The algorithms are exactly as in [DKL+18], and we repeat them for
completeness in Fig. 8. They are described as working on integers modulo q, but one can extend it
to (vectors of) polynomials in Rq by simply being applied individually to each coefficient.

Lemma B.1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1 (mod α) and α
even. Let ~r and ~z be vectors of elements in Rq where ‖~z‖∞ ≤ α/2, and let ~h, ~h′ be vectors of bits.
Then the HighBitsq, MakeHintq, and UseHintq algorithms satisfy the following properties:
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Power2Roundq(r,D)

00 r := r mod+ q
01 r0 := r mod± 2D

02 return (r − r0)/2D

UseHintq(h, r, α)
03 m := (q − 1)/α
04 (r1, r0) := Decomposeq(r, α)

05 if h = 1 and r0 > 0 return (r1 + 1) mod+m
06 if h = 1 and r0 ≤ 0 return (r1 − 1) mod+m
07 return r1

MakeHintq(z, r, α)
08 r1 := HighBitsq(r, α)
09 v1 := HighBitsq(r + z, α)
10 return Jr1 6= v1K

Decomposeq(r, α)

11 r := r mod+ q
12 r0 := r mod± α
13 if r − r0 = q − 1
14 then r1 := 0; r0 := r0 − 1
15 else r1 := (r − r0)/α
16 return (r1, r0)

HighBitsq(r, α)

17 (r1, r0) := Decomposeq(r, α)
18 return r1

LowBitsq(r, α)
19 (r1, r0) := Decomposeq(r, α)
20 return r0

Fig. 8. Supporting algorithms for commitment compression.

1. UseHintq(MakeHintq(~z, ~r, α), ~r, α) = HighBitsq(~r + ~z, α).

2. Let ~v1 = UseHintq(~h, ~r, α). Then ‖~r − ~v1 · α‖∞ ≤ α+ 1.

3. For any ~h, ~h′, if UseHintq(~h, ~r, α) = UseHintq(~h
′, ~r, α), then ~h = ~h′.

Lemma B.2. If ‖~s‖∞ ≤ β and ‖LowBitsq(~r, α)‖∞ < α/2− β, then

HighBitsq(~r, α) = HighBitsq(~r + ~s, α).

B.2 Opening Proof

We apply the compression techniques from [DKL+18] in the opening proof by Attema et al. [ALS20].
We already implement the rejection sampling technique from Section 3. The protocol has soundness
error around q−kd/l where k is a divisor of d. We recall that σ := σ2d/k+1 and we only consider the
case when l = d. We present the protocol in Fig. 9.

To begin with, the prover P generates a BDLOP commitment (~t0, t) to a message m ∈ Rq:{
~t0 = B0~r

t1 = 〈~b1, ~r〉+m.

We can reduce the size of the commitment by not sending the low-order bits of t0. Concretely, we
write

~t0 = ~t0,1 · 2D + ~t0,0 where ‖~t0,0‖∞ < 2D−1

and only send
(
~t0,1, t1

)
. Also, the matrix B0 can be written as B0 = (B ‖ Iκ) as in [BDL+18].

Thus, we can write ~t0 = B~r1 + ~r2 where ~r = ~r1 ‖ ~r2.
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The next step is that P generates ~yi ← Dλ+κ+1
s and computes ~wi = B~yi. Finally, it outputs

~wi,1 = HighBitsq( ~wi, 2γ) for i = 0, . . . , k − 1. Here, γ corresponds to γ2 in Dilithium.

Next, the verifier sends a challenge polynomial c← C. Then, P computes

~zi = ~y + σi (c) ~r1 for i = 0, . . . , k − 1

and applies the rejection sampling Rej1. If the algorithm does not abort then the prover checks
whether for any i: ‖σi(c)~t0,0‖∞ ≥ γ2 or ~li,0 ≥ γ − δ or ~li,1 6= ~wi where

(~li,1,~li,0) = Decomposeq( ~wi − σi(c)~r2, 2γ)

and δ is the L∞ bound on σi(c)~r2. If not, then it outputs (~zi, ~hi) where

~hi = MakeHintq
(
−σi(c)t0,0, ~wi − σi(c) · ~r2 + σi(c)t0,0, 2γ

)
for i = 0, 1, . . . , k − 1.

At the end, V checks that coefficients of ~zi are small and for i = 0, . . . , k − 1:

~wi,1
?
= UseHintq

(
~hi,B~zi − σi(c) · 2Dt0,1, 2γ

)
.

B.3 Security analysis.

Correctness. It follows directly from Lemmas B.1 and B.2:

UseHintq
(
~hi,B~zi − σi(c) · 2Dt0,1, 2γ

)
= HighBitsq

(
B~zi − σi(c) ·

(
2Dt0,1 + ~t0,0

)
, 2γ
)

= HighBitsq

(
B~zi − σi(c)~t0, 2γ

)
= HighBitsq

(
~wi − σi(c)~r2, 2γ

)
= ~wi,1.

Soundness. In the soundness argument, we will extract an extended weak opening which is a slight
modification of Definition B.3. We first recall the notion of a weak opening [ALS20].

Definition B.3. A weak opening for the commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn consists of d polyno-
mials c̄i ∈ Rq, a randomness vector ~r∗ over Rq and messages m∗1, . . . ,m

∗
n ∈ Rq such that

‖c̄i‖1 ≤ 2k and c̄i mod X − ζ2i+1 6= 0 for all 0 ≤ i < d,

‖c̄i~r∗‖2 ≤ 2β for all 0 ≤ i < d,

B0~r
∗ = ~t0,

〈~bi, ~r∗〉+m∗i = ti for i ∈ [n]

Attema et al. show that the commitment scheme is still binding with respect to weak openings.
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Prover P Verifier V

Inputs:

B0 = (B ‖ Iκ) ∈ Rκ×(λ+κ+1)
q ,~b1 ∈ Rλ+κ+1

q B0,~b1

m ∈ Rq

~r ← χ(λ+κ+1)d ⊂ Rλ+κ+1
q

~t0 = B~r1 + ~r2

~t0,1 = Power2Roundq(~t0, D), ~t0,0 = ~t0 − 2D · ~t0,1
t1 = 〈~b1, ~r〉+m

For i = 0, . . . , k − 1 :

~yi ← D(λ+κ+1)d
s

~wi = B~yi

~wi,1 = HighBitsq( ~wi, 2γ)

~t0,1, t1, ~wi,1-
c� c← C

For i = 0, . . . , k − 1 :

(~li,1,~li,0) = Decomposeq( ~wi − σ
i(c)~r2, 2γ)

If ‖σi(c)~t0,0‖∞ ≥ γ or ~li,0 ≥ γ − δ or ~li,1 6= ~wi, abort

~zi = ~yi + σi(c)~r1

~hi = MakeHintq
(
−σi(c)t0,0, ~wi − σi(c) · ~r2 + σi(c)t0,0, 2γ

)
If # of the 1’s in ~hi is greater than ω, abort

If Rej1

(
(~zi), (σ

i(c)~r), s
)

= 1, abort ~zi, ~hi -

For i = 0, . . . , k − 1 :

‖~zi‖2
?

≤ β = s
√

2(λ+ 1)d

~wi,1
?
= UseHintq

(
~hi,B~zi − σi(c) · 2Dt0,1, 2γ

)
Fig. 9. Automorphism opening proof for the commitment scheme using compression techniques from Dilithium
[DKL+18].

Definition B.4. An extended weak opening for the commitment ~t = ~t0,1 ‖ t1 ‖ · · · ‖ tn consists of
d polynomials c̄i ∈ Rq, a randomness vector ~r∗ over Rq, messages m∗1, . . . ,m

∗
n ∈ Rq and additional

vector ~u∗ such that

‖c̄i‖1 ≤ 2d and c̄i mod X − ζ2i+1 6= 0 for all 0 ≤ i < d,

‖c̄i~r∗‖∞ ≤ 2β and ‖c̄i~u∗‖∞ ≤ 4γ + 2 for all 0 ≤ i < d,

B~r∗ + ~u∗ = 2D~t0,1,

〈~bi, ~r∗〉+m∗i = ti for i ∈ [n].

Identically as in [ALS20] we can argue that the commitment scheme is binding with respect to
extended weak openings if the infinity-norm M-SIS is hard.

Definition B.5 (Infinity-norm MSISn,m,βSIS). The goal in the infinity-norm Module-SIS problem
with parameters n,m > 0 and βSIS > q is to find, for a given matrix A ← Rn×mq , ~x ∈ Rmq such

that A~x = ~0 over Rq and 0 < ‖~x‖∞ ≤ βSIS. We say that a PPT adversary A has advantage ε in
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solving MSISn,m,βSIS if

Pr
[
0 < ‖~x‖∞ ≤ βSIS ∧ A~x = ~0 over Rq

∣∣∣A← Rn×mq ; ~x← A(A)
]
≥ ε.

For our practical security estimations, the parameter m does not play a crucial role. Therefore, we
sometimes simply omit m and use the notation MSISn,βSIS

Lemma B.6. The commitment scheme is binding with respect to extended weak openings if the
infinity-norm MSISκ,βSIS is hard where

βSIS = 8d ·max{β, 2γ + 1}.

More precisely, from two different extended weak openings ((c̄i), ~r
∗,m∗) and ((c̄′i), ~r

∗′,m∗′, ~u∗) with
m∗j 6= m∗′j for some j ∈ [n], one can immediately compute an infinity-norm Module-SIS solution
for B0 = (B ‖ Iκ) of norm at most βSIS, where Iκ is the identity matrix over Rκ×κq .

The soundness argument works similarly as in [ALS20, Theorem 2.1]. Concretely, the extractor E
repeatedly runs P with freshly sampled challenges until it hits an accepting transcript. Let ~wi,1,

c, ~hi and ~zi be the prover commitments, challenge and prover replies in this transcript, respectively.
Then, E wants to get d/k more accepting transcripts such that for each of the d/k ideals (Xk−ζjk),
j ∈ Z×2d/k, there is a transcript whose challenge differs from c modulo the ideal. Moreover, these

transcripts need to contain the same prover commitments ~wi,1 as in the first accepting transcript.
To this end, for every j, E repeatedly rewinds the prover to just after the first flow and sends a
random challenge that is different from c modulo (Xk − ζjk) until the resulting transcript with
challenge cj and replies ~hij , ~zij is accepting. We write c̄j = c− cj for the challenge differences. By
construction, c̄j mod (Xk − ζjk) 6= 0.

The expected runtime for the whole process is as follows. Suppose the first transcript takes
expected time 1/ε. Next, when restricting to challenges that are different modulo one of the ideals
(Xk + ζjk), the remaining success probability is at least ε− pk (where p is defined in Section 2.4).
So in expected time at most

1

ε
+
d

k

1

ε− pk

the extractor has the 1 + d/k accepting transcripts.

Now fix an index (e, f) ∈ I = {0, . . . , k − 1} × Z×2d/k and consider the associated prime ideal

pef = σe(X − ζf ) dividing (Xkd − ζfk). One of the permutations of c̄f is non-zero modulo pef . So
there exists at least one e′ = e′(e, f) ∈ {0, . . . , k − 1} such that σe

′
(c̄f ) mod pef 6= 0. Now, we set

~r∗ef =
~ze′ − ~ze′f
σe′(c̄f )

mod σe
(
X − ζf

)
.

Next, let ~r∗ ∈ Rλ+κ+1
q be such that ~r∗ ≡ ~r∗ef (mod σe(X − ζf )) for all (e, f) ∈ I. We claim

σi(c̄j)~r
∗ = ~zi − ~zij for all (i, j) ∈ I, unless we find an infinity-norm Module-SIS solution for

(B ‖ Iκ) . From the verification equations and Lemma B.1 we have

‖B~zi − σi(c) · 2D~t0,1 − 2γ · ~wi,1‖∞ ≤ 2γ + 1

‖B~zij − σi(cj) · 2D~t0,1 − 2γ · ~wi,1‖∞ ≤ 2γ + 1.
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for all (i, j) ∈ I. Hence, by the triangle inequality:

B(~zi − ~zij) + ~uij = σi(c̄j) · 2D~t0,1 (25)

for some vector ~uij ∈ Rκq such that ‖~uij‖∞ ≤ 4γ + 2. Similarly for (e′, f) ∈ I we can conclude:

B(~ze′ − ~ze′f ) + ~ue′f = σe
′
(c̄f ) · 2D~t0,1

for some ~ue′f ∈ Rκq such that ‖~ue′f‖∞ ≤ 4γ + 2. Therefore, either{
σe
′
(c̄f )(~zi − ~zij) = σi(c̄j)(~ze′ − ~ze′f )

σe
′
(c̄f )~uij = σi(c̄j)~ue′f

(26)

or we have found a non-trivial infinity-norm Module-SIS solution for B0 = (B ‖ Iκ)(
σe
′
(c̄f )(~zi − ~zij)− σi(c̄j)(~ze′ − ~ze′f )

σe
′
(c̄f )~uij − σi(c̄j)~ue′f

)
with the infinity norm at most

8d ·max{β, 2γ + 1}.

Then,
σi(c̄j)~r

∗ ≡ σi(c̄j)~r∗ef

≡ σi(c̄j)
~ze′ − ~ze′f
σe′(c̄f )

≡ ~zi − ~zij (mod σe(X − ζf )),

and the claim follows from the Chinese remainder theorem.

Next, let us also define

~u∗ef =
~ue′f

σe′(c̄f )
mod σe

(
X − ζf

)
and set ~u∗ ∈ Rκq be such that ~u∗ ≡ ~u∗ef (mod σe(X − ζf )) for all (e, f) ∈ I. By (26) we can also

conclude that ~uij = σi(c̄j)~u
∗ for (i, j) ∈ I. Therefore, the following holds:

Bσi(c̄j)~r
∗ + σi(c̄j)~u

∗ = σi(c̄j) · 2D~t0,1

for all (i, j) ∈ I. In particular, we get

B~r∗ + ~u∗ = 2D~t0,1.

Finally, we compute the extracted message m∗ which we set to fulfil the equation

t1 = 〈~b1, ~r∗〉+m∗.

We conclude that the extractor has obtained an extended weak opening (σi(c̄j), ~r
∗, ~u∗,m∗) for

the commitment ~t. In particular, it is true that
∥∥σi(c̄j)~r∗∥∥∞ ≤ 2β and

∥∥σi(c̄j)~u∗∥∥∞ ≤ 4γ + 2 for
all (i, j) ∈ I.
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We turn to the ~y∗i . Set them to be the vectors defined by

~zi = ~y∗i + σi(c)~r∗.

Now, consider an arbitrary accepting transcript with the same prover commitments ~wi as above,
but possibly a different challenge c′ and different last messages ~z′i. Then, for a moment write
~z′i = ~y∗′i +σi(c′)~r∗. We aim to show ~y∗i = ~y∗′i . From the verification equations for ~zi, ~z

′
i and Lemma

B.1 we have:
‖B~zi − σi(c) · 2D~t0,1 − 2γ · ~wi,1‖∞ ≤ 2γ + 1

‖B~z′i − σi(c′) · 2D~t0,1 − 2γ · ~wi,1‖∞ ≤ 2γ + 1.

Then, by the triangle inequality we have:

B(~zi − ~z′i) + ~u′i = σi(c̄)2D~t0,1.

for all i ∈ {0, . . . , k − 1} where c̄ = c − c′ and ‖~u′i‖∞ ≤ 4γ + 2. Combining this with (25), unless
we find a Module-SIS solution for (B ‖ Iκ),

σe
′
(c̄f )(~zi − ~z′i) = σi(c̄)(~ze′ − ~ze′f ).

Therefore, since ~ze′ − ~ze′f = σe
′
(c̄f )~r∗,

σe
′
(c̄f )(~y∗i − ~y∗′i ) = 0.

Recall σe
′
(c̄f ) 6≡ 0 (mod pef ). Hence, ~y∗i ≡ ~y∗′i (mod pef ), and thus ~y∗i = ~y∗′i .

Simulatability. One can show similarly as in the proof of Theorem 3.4 and [DKL+18, Appendix
B] that the protocol is simulatable under the Extended M-LWEκ+1,k,λ,χd,Dds ,C′

where probability

distribution C ′ over Rk is defined as: first sample c← C and output (σ0(c), . . . , σk−1(c)). We only
remark that after perfectly simulating ~zi, ~t0,1, ~t0,0 one can then set the hint

~hi := MakeHintq
(
−σi(c)t0,0,B~zi − σi(c) · 2Dt0,1, 2γ

)
.

Also, the simulator can manually check conditions on ~li,1 and ~li,0 since ~wi−σi(c)~r2 = B~zi−σi(c)~t0.

B.4 Setting Parameters

The only additional parameters which get introduced when using the commitment compression
techniques are γ, δ, ω and D where 2γ|q−1. First, γ needs be set such that MSISκ,βSIS is hard where

βSIS = 8d ·max{β, 2γ + 1}.

Next, δ is the bound on ‖σi(c)~r2‖∞. For Lemma B.2 to work, we need δ < γ. Also, in order to
apply Lemma B.1, we need

‖σi(c)~t0,0‖∞ ≤ γ
for all i = 0, 1, . . . , k − 1 and c← C. Since ‖~t0,0‖∞ ≤ 2D−1, we only need to define γ such that

d2D−1 ≤ δ.

As for ω, the parameter is set so that heuristically the Hamming weight of ~hi is greater than ω
with probability less than 1% as in [DKL+18].

When computing proof sizes using the commitment compression, we already include the addi-
tional optimisations described in Section 3.2, especially reducing the Hamming weight of a challenge
from d to d/k.
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Proving log(q) d k λ κ log(γ) δ D proof size

Knowledge of an LWE Sample 32 128 4 10 9 17 32 14 33.3 KB

Integer Addition 30 128 4 10 10 17 32 14 16.9 KB

Integer Multiplication 30 128 4 10 10 17 32 14 28.2 KB

Fig. 10. Proof size for proving knowledge of a LWE sample, 128-bit integer addition and multiplication using com-
mitment compression.

C Further Reducing the Standard Deviation

We recall that Lyubashevsky et al. [LNS20] bound T = ‖~v‖, where ~v = c0~r ‖ · · · ‖ ck−1~r and ci, ~r
are defined in Section 3.2, by first finding α so that

Pr
[
∃i, ‖ci~r‖∞ > α : c← C, ~r ← χ(λ+κ+1)d

]
< 2−128

and then setting the bound ‖~v‖ ≤ α
√
λ+ κ+ 1. In this section, we show an alternative way to

compute an upper-bound on ‖~v‖ using similar methods as in [DDLL13].

We introduce the following definition of a “norm” of a matrix. Namely, for A ∈ Zn×mq and
α ≤ n, we define:

Nα(A) = max
I⊆[m],|I|=α

∑
i∈I

∑
j∈I
|Ti,j | where T = ATA.

Then, we have the following simple lemma.

Lemma C.1. For any matrix A ∈ Zn×mq and ~c ∈ {−1, 0, 1}m such that ‖~c‖1 ≤ α. Then, ‖A~c‖ ≤√
Nα(A).

Proof. Let J ⊆ [m] be the set of indices j such that cj ∈ {−1, 1}. We can then easily expand J to
a set I such that J ⊆ I and |I| = α. Hence, if we define T = ATA then we have:

‖A~c‖2 = ~ctAtA~c ≤
∑
i∈J

∑
j∈J
|Ti,j | ≤

∑
i∈I

∑
j∈I
|Ti,j | ≤ Nα(A).

ut

Let us fix i ∈ {0, 1, . . . , k − 1}. We will bound ‖ci~r‖ in the following way. Let ~c be the coefficients
of ~ci. Then, we have ‖~c‖1 ≤ d/k. Then, we set the matrix R as

R =

 Rot(r0)
...

Rot(rλ+κ)

 ∈ Z(λ+κ+1)d×d
q .

Clearly, we have ‖ci~r‖ = ‖R~c‖. Therefore, by Lemma C.1, ‖R~c‖ ≤
√
Nd/k(R).

The only question left is how to efficiently bound
√
Nd/k(R). We apply the approximation by

Ducas et al. [DDLL13, Section 4.1]. Concretely, we compute the matrix T = RTR and put absolute
values for all entries in T . Next, for each column i of T , we compute the sum si of d/k largest
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elements in the i-th column. Eventually, we output the sum of d/k largest values in the vector
(s0, s1, . . . , sd−1).

This approximation can be described even easier when considering the algebraic structure of R.
Indeed, note that

T = RTR =
λ+κ∑
i=0

Rot(ri)
TRot(ri) =

λ+κ∑
i=0

Rot (σ−1(ri)ri) = Rot

(
λ+κ∑
i=0

σ−1(ri)ri

)
.

Therefore, if we put the absolute value in all entries of T , then T becomes a circulant matrix and
thus the d/k largest values in each column are the same. Hence, we can describe the bound on
Nd/k(R) as Nd/k(R) ≤ d/k · ( sum of the d/k largest coefficients of

∑λ+κ
i=0 σ−1(ri)ri in the absolute

value). Finally, we bound ‖~v‖ as

‖~v‖2 =

k−1∑
i=0

‖ci~r‖2 ≤ k ·Nd/k(R).

Identically as in [DDLL13], we will force the randomness ~r ← χ(λ+κ+1)d to satisfy Nd/k(R) ≤ t for
some threshold t. In concrete instantiations, e.g. Section 3.3, we will heuristically choose t so that
the probability of Nd/k(R) ≤ t is around 99%.

D Extended LWE

In this section we analyse hardness of the Extended LWE (ELWE) problem analogous to the one in
Definition 3.3 but without any polynomial structure. The problem can thus be phrased as follows.
Let χ, ξ1 and ξ2 be efficiently sampleable probability distributions over Z, Z` and Z`×m respectively.

Then, the challenger generates matrices B ← Z(m−n)×m
q , C ← ξ2 and vectors ~r ← χm, ~z ← ξ1 and

~u← Zm−nq . Then, it flips a bit b← {0, 1} and if b = 1 then it sets ~u = B~r. Eventually, the challenger
outputs

(B, ~u, ~z, C, sign(〈~z, C~r〉)) .

We say an adversary A has advantage ε if it can distinguish whether b = 0 or b = 1 with probability
ε.

Assume that the challenger sends 〈~z, C~r〉 ∈ Z in the clear instead of the sign. Then, the “no-
noise” version of the Extended-LWE problem defined by Alpen-Sheriff and Peikert [AP12] can be
seen as the Extended-LWE with ` = m and C being the identity matrix.

We will prove using similar techniques as in [AP12] that hardness of ELWE can be reduced to
plain LWE.

Lemma D.1. Let T ∈ R+, χ, ξ1 and ξ2 be efficiently sampleable probability distributions over Z,
Z` and Z`×m respectively such that for ~r ← χm, ~z ← ξ1, C ← ξ2, the probability that |〈~z, C~r〉| <
T is overwhelming. Suppose there is a PPT adversary A which has advantage ε when solving
ELWE. Then, there is also a PPT adversary S which has advantage ε/(2T −1)−negl(n) in solving
Decisional-LWE.

Proof. Adversary S works as follows. It receives an LWE instance in knapsack form:B ∈ Z(m−n)×m
q , ~u ∈

Zm−nq . It then samples ~z ← χ1, C ← χ2, ~r
′ ← χm and ~v ← Zm−nq and sets:

B′ = B − ~v~zTC and ~u′ = ~u− ~v · 〈~z, C~r′〉.
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Eventually, S sends (B′, ~u′, ~z, C, 〈~z, ~r′〉) to A and returns the bit output by A.
First, suppose that B, ~u were chosen independently and uniformly at random. Then, ~B′ and ~u′

are also uniformly random. As a consequence, S perfectly simulates the case b = 0. Next, suppose
that ~u = B~r. Then, we have:

~u′ = B~r − ~v · 〈~z, C~r′〉 = B′~r + ~v · 〈~z, C~r − C~r′〉.

If 〈~z, C~r〉 = 〈~z, C~r′〉 (mod q) then ~u′ = B′~r over Zq and thus S perfectly simulates the case b = 1.
However, if 〈~z, C~r−C~r′〉 is non-zero modulo q then for fixed B,C, ~z, ~r, ~r′ we have that ~u is uniformly
random since ~v is. Consequently, because ~r, ~r′ are identically distributed, it follows that S perfectly
simulates the case b = 0.

Finally, the probability that 〈~z, C~r〉 = 〈~z, C~r′〉 modulo q is at least 1/(2T − 1) − negl(n). The
statement now follows from simple calculation. ut

The value T can be easily found using the tail bound inequalities e.g. for χ defined as in Section
2.6, ξ1 = D`

s and ξ2 = C`×m where C is defined in 2.7.

E Proving the L2 Norm as a Commit-and-Prove Functionality

We can define the protocol in Fig. 5 as a “commit-and-prove” functionality CP = (Gen,Com,Prove,Verify)
using random oracles G : {0, 1}∗ → {−1, 0, 1}τd×`d, H : {0, 1}∗ → {−1, 0, 1}d as follows. Here, G
and H output according to the distribution Cτd×`d and C respectively. First, we define a relation
RL as:

(ck, a,~v) ⇐⇒ ~v ∈ Z`dq ∧ ‖~v‖ < a = 2a < q/2.

Next,

– ck ← Gen(1µ) specifies the public parameters e.g. q, message space Mck = Z`dq , randomness

space Rck = {−1, 0, 1}(λ+κ+2`+τ+3)d ⊂ Rλ+κ+2`+τ+3
q and commitment space Cck = Rκ+`q .

It also generates the matrix B0 ← Rκ×(λ+κ+n+2)
q and vectors ~b1, . . . ,~bn+2 ← Rλ+κ+n+2

q for
n = 2`+ τ + 1.

– Comck(~v1, . . . , ~v`; ~r): output (~t0, t1, . . . , t`) where

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+ NTT−1 (~vi) mod q for i ∈ [`].

– Proveck(a,~v, ~r): generate ~y = (~y1, . . . , ~yτ ) ← Dτd
s′ and compute (~u1, . . . , ~u`) = ~u = ~v2. Also,

binary decompose ‖~v‖2 into a vector ~w = (w0, w1, . . . , wd−1) ∈ {0, 1}d. Next, calculate:

t`+i = 〈~b`+i, ~r〉+ NTT−1 (~ui) mod q for i ∈ [`]

t2`+i = 〈~b2`+i, ~r〉+ NTT−1 (~yi) mod q for i ∈ [τ ]

t2`+τ+1 = 〈~b2`+τ+1, ~r〉+ NTT−1 (~w) mod q.

After that, obtain the challenge matrix B = G(t`+1, . . . , t2`+τ+1) and compute ~z = ~y + B~u. If
1← Rej0(~z,B~u, s

′), then run

π′ ← LNSProveDck′ ((pp, ulp), ~m, ~r)
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where: (i) pp, ulp are defined in (23), (ii) ck′ denotes a message space Zndq , randomness space

Rck = {−1, 0, 1}d·(κ+λ+n+α) and the commitment space Rκ+nq for n = 2` + τ + 1 and α = 2.
Finally, output

π = (t`+1, . . . , t2`+τ+1, B, ~z, π
′).

– Verifyck

(
a,~v, (~t0, t1, . . . , t`), (t`+1, . . . , t2`+τ+3, B, ~z, π

′)
)

: return 1 if ‖~z‖∞ < 1
2

√
q/(2`d) and

LNSVerifyDck′
(

(pp, ulp), ~t0, t1, . . . , t2`+τ+1, π
′
)

= 1.

Security Analysis. We prove the following properties of CP defined above.

Theorem E.1. Let q, k be selected such that q−k is negligible. Then, the commit-and-prove CP =
(Gen,Com,Prove,Verify) defined above has correctness error 1 − 1/(M ′ · 2M), where M ′ is the
repetition rate for the first rejection sampling Rej0. Also, it has negligible soundness error under the
M-SISκ,8dβ assumption, where β = s

√
2(κ+ λ+ 2`+ τ + 1), and is simulatable under the Extended

M-LWEκ+2`+τ+1,k,λ,χd,Dds ,C̃
assumption 9.

Proof. Firstly, correctness follows directly from Lemma 3.1 and further analysis in Section 3. As
for soundness, suppose there exists a PPT adversary which finds (a, ~t0, t1, . . . , t`, π) such that

Verifyck

(
a, (~t0, t1, . . . , t`), π

)
= 1. Let us parse π = (t`+1, . . . , t2`+τ+3, B, ~z, π

′). Consequently, A
found ~t0, t1, . . . , t2`+τ+1 and π′ which satisfy

LNSVerifyDck′
(

(pp, ulp), ~t0, t1, . . . , t2`+τ+1, π
′
)

= 1.

Therefore, we can construct an efficient extractor E , similarly as in Section B or [LNS20,ENS20],
which finds a weak opening (Definition B.3) to (~t0, t1, . . . , t2`+τ+1) under the assumption that
M-SIS is hard. In particular, it finds ~r∗ such that B0~r

∗ = ~t0 and sets ~v∗ = (~v∗1, . . . , ~v
∗
` ) where

~v∗i := NTT
(
ti − 〈~bi, ~r∗〉

)
for i ∈ [`].

Similarly it computes ~u∗, ~w∗, ~y∗. As shown by [LNS20], these vectors indeed satisfy:

~m∗ = (~v∗, ~u∗, ~y∗, ~w∗) ∈ L2`+τ+1 (pp, ulp)

As a consequence, we have

~u∗ = ~v∗ ◦ ~v∗ mod q and ~w∗ ∈ {0, 1}a × {0}d−a

Also, by Lemma 2.5 we obtain
‖~v‖∞ <

√
q/(2`d)

with probability at least 1−max{p, 1− p}τd. Therefore,

‖~v∗ · ~v∗‖∞ <
√
q/(2`d)

2
< q/2.

This implies that the equation above holds over integers.

9 We recall that distribution C̃ is defined in Section 2.4.
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Let t =
(
1 2 · · · 2d−1

)
~w∗. Then, we know that t < 2a = a < q/2. Now, we just need to prove

that the L2 norm of ~v∗ is exactly
√
t. From the linear relations we obtain:(

1 1 · · · 1
)
~u∗ −

(
1 2 · · · 2d−1

)
~w∗ =

(
1 1 · · · 1

)
~u∗ − t = 0 (mod q). (27)

On the other hand, we have ‖~u‖∞ = ‖~v∗ ◦ ~v∗‖∞ < q/(2`d). Therefore,

‖
(
1 1 · · · 1

)
~u∗‖∞ < `d · q/(2`d) < q/2.

We conclude that over integers:

‖~v∗‖2 =
(
1 1 · · · 1

)
[~v∗ ◦ ~v∗] =

(
1 1 · · · 1

)
~u∗ = t < a.

We only sketch out the proof of simulatability since it is almost identical to the proof of Theorem
3.4. Firstly, define the hybrid algorithms Prove1 and Prove2 where the first one differs from Prove
by programming the random oracle queries and the latter one additionally generates ~z ← Dτd

s , sets
~y = ~z − B~u and outputs the proof with probability 1/M ′. Then, by Lemma 3.1 we have that for
all PPT adversaries A:

Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ; (~t0, t1, . . . , t`) = Comck(~v; ~r);

π ← Proveck(a,~v, ~r) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]
≈ Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ; (~t0, t1, . . . , t`) = Comck(~v; ~r);

π ← Prove2ck(a,~v, ~r) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]
.

(28)

On the other hand, since LNS functionality is simulatable, we can construct algorithms LNSSimProve
and LNSSimCom which can simulate honest transcripts. Hence, we define simulators SimCom and
SimProve as follows:

– SimComck(a): Sample ~t0 ← Rκq and t1, . . . , t` ← Rq uniformly at random and output ~t =

(~t0, t1, . . . , t`).
– SimProveck(a, ~t): Pick t`+1, . . . , t2`+τ+1 ← Rq uniformly random, B ← Cτd×`d and ~z ← Dτd

s′ .
Then, get

π′ ← LNSSimProveck′
(

(pp, ulp), ~t0, t1, . . . , t2`+τ+1

)
and output

π = (t`+1, . . . , t2`+τ+1, B, ~z, π
′)

with probability 1/M .

We claim that for all PPT adversaries A:

Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ(λ+κ+n+2)d; (~t0, t1, . . . , t`) = Comck(~v; ~r);

π ← Prove2ck(a,~v, ~r) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]
≈ Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ(λ+κ+n+2)d; (~t0, t1, . . . , t`) = SimComck(a);

π ← SimProveck(a, ~t0, t1, . . . , t`) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]
.

(29)

for n = 2`+ τ + 1.
Suppose there is an efficient adversary A which distinguishes the two cases with probability ε.

We construct B which will try to win the simulatability game of LNSD as follows. When A outputs
(a,~v), B samples ~z ← Dτd

s′ and B ← Cτd×6`d and computes (i) ~u = ~v2, (ii) binary decomposition
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~w ∈ {0, 1}d of ‖~v‖2 and (iii) y = ~z−B~u. Then, it constructs the multiplicative and linear relations
as in (23) and outputs ((pp, ulp), ~m) where ~m = (~v, ~u, ~y, ~w). When B is given (~t0, t1, . . . , t2`+τ+1, π

′),
it outputs ~t = (~t0, t1, . . . , t`) as a “commitment output” and π = (t`+1, . . . , t2`+τ+1, B, ~z, π

′) to A.
Eventually, B passes the bit output by A.

Suppose B interacts with LNSComck′ and LNSProveDck′ . recall that ck′ denotes a message space
Zndq , randomness space Rck = {−1, 0, 1}d·(κ+λ+n+α) and the commitment space Rκ+nq for n =

2` + τ + 1 and α = 2. Then, the vector ~t = (~t0, t1, . . . , t`) output by B is indeed a commitment
Comck(~v; ~r) and π is the proof output by Prove2. Hence, we have:

Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ(λ+κ+n+2)d; (~t0, t1, . . . , t`) = Comck(~v; ~r);

π ← Prove2ck(a,~v, ~r) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]

= Pr

ck′ ← Gen(1µ); ((pp, ulp), ~m)← B(ck′); ~r ← χ(λ+κ+n+2)d;

(~t0, t1, . . . , tn)← LNSComck′(~m; ~r); π ← LNSProveDck′((pp, ulp), ~m, ~r) :

(ck, (pp, ulp), ~m) ∈ RLNS ∧ B(~t0, t1, . . . , tn, π) = 1

 (30)

Now, assume that B interacts with LNSSimComck′ and LNSSimProveDck′ . We recall from [ALS20]
that LNSSimComck′ simply outputs (~t0, t1, . . . , tn) ← Rκ+nq . Hence, the vector ~t sent from B to
A indeed has the same distribution as SimComck. Similarly, the proof π constructed from B is
generated exactly as in SimProveck. Therefore:

Pr

[
ck ← Gen(1µ); (a,~v)← A(ck); ~r ← χ(λ+κ+n+2)d; (~t0, t1, . . . , t`) = SimComck(a);

π ← SimProveck(a, ~t0, t1, . . . , t`) : (ck, a,~v) ∈ RL ∧ A(~t0, t1, . . . , t`, π) = 1

]

= Pr

ck′ ← Gen(1µ); ((pp, ulp), ~m)← B(ck′); ~r ← χ(λ+κ+n+2)d;

(~t0, t1, . . . , tn)← LNSSimComck′(pp, ulp); π ← LNSSimProveDck′(pp, ulp) :

(ck, (pp, ulp), ~m) ∈ RLNS ∧ B(~t0, t1, . . . , tn, π) = 1

 . (31)

Since the LNS functionality is simulatable under the Extended M-LWE assumption, we conclude
that ε has to be negligible. Thus, the statement holds by the hybrid argument. ut

F Bimodal Gaussians and Approximate Range Proofs

In Section 2.7 we described how to prove that coefficients of ~s ∈ Z`dq are relatively small compared to

q. We recall that the prover P first samples ~y from a discrete Gaussian Dτd
s′ and sends the BDLOP

commitments to ~s, ~y. For simplicity, let us set τ = 1 and p = 0.5. Then, given a challenge matrix
B ← Cd×`d, where its coefficients are sampled from C, P computes ~z = ~y + B~s and applies the
standard rejection sampling, i.e. Rej0 from Fig. 2. If it does not abort, it sends ~z and next proves
the linear relation: ~z = ~y +B~s.

In order to reduce the standard deviation s′, we apply the Bimodal Gaussians technique
[DDLL13,TWZ20]. Concretely, the prover P starts by sampling ~y from a discrete Gaussian Dm

s′

and sending the BDLOP commitments to ~s, ~y as before. Additionally, it samples a bit b ← {0, 1}
uniformly at random and commits to ~b = (b, b, . . . , b). Then, given a challenge matrix B ← Cd×`d,
the prover computes

~z = ~y + (−1)b ·B~s (32)

and applies the rejection sampling Rej2(~z,B~s, s
′) from Fig. 11. Eventually, P needs to prove Equa-

tion 32. This can be done within the LNS framework as follows. First, the prover computes ~u = B~s
and proves it (unstructured linear proof). Next, it proves that ~z = ~y +~b ◦ ~u (product proof).
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Rej2(~z,~v, s)
01 u← [0, 1)

02 If u > 1
M
· exp

(
‖~v‖2
2s2

)
/ cosh

(
〈~z,~v〉
s2

)
03 return 1
04 Else
05 return 0

Fig. 11. Bimodal Gaussian rejection sampling [DDLL13].

Last but not least, P needs to convince the verifier that ~b indeed consists of only 1’s or -1’s.
Note that showing (~b − ~1) ◦ (~b + ~1) = ~0 only proves that ~b ∈ {−1, 1}d. We additionally prove that

NTT−1
(
~b
)
∈ Zq. As discussed in e.g. [dPLS18], m ∈ Zq if and only if σ5(m) = σ−1(m) = m.

Note that in the fully-splitting ring Rq, where l = d, each ring automorphism σi permutes the NTT
coefficients of the polynomials and thus can represented as a permutation matrix, say Ai ∈ Zd×dq .

Therefore, the prover additionally needs to check that A5
~b = A−1~b = ~b mod q which is again a

linear proof.
In the knowledge extraction argument, suppose that one can efficiently extract ~z∗, ~y∗, ~s∗,~b∗, ~u∗

which satisfy all the linear and multiplicative relations above. Then, we conclude that ~z∗ = ~y∗ +
(−1)b

∗ ·B~s∗ for some fixed b∗ ∈ {0, 1}. Note that since the probability distribution C is symmetric
around 0, the matrix (−1)b

∗ ·B is still randomly generated from Cd×`d for a fixed bit b∗. Hence, we
can apply Lemma 2.5.

With this technique, we significantly reduce the standard deviation s′ as described in [DDLL13]
at the cost of committing to two more vectors ~b, ~u ∈ Zτdq . Concretely, for a repetition rate M ′ we
would set s′ which satisfies:

exp

(
T 2

2s′2

)
= M ′

where T ′ is the upper-bound on the norm of ‖B~s‖.
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