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The security of digital communication relies on few cryptographic proto-
cols that are used to protect internet traffic, from web sessions to instant
messaging. These protocols and the cryptographic primitives they rely on
have been extensively studied and are considered secure.Yet, sophisticated
attackers are often able to bypass rather than break security mechanisms.
Kleptography or algorithm substitution attacks (ASA) describe techniques
to place backdoors right into cryptographic primitives. While highly rele-
vant as a building block, we show that the real danger of ASAs is their use
in cryptographic protocols. In fact, we show that a highly desirable security
property of these protocols—forward secrecy—implies the applicability of
ASAs. We then analyze the application of ASAs in three widely used proto-
cols: TLS, WireGuard, and Signal. We show that these protocols can be easily
subverted by carefully placing ASAs. Our analysis shows that careful design
of ASAs makes detection unlikely while leaking long-term secrets within a few
messages in the case of TLS and WireGuard, allowing impersonation attacks.
In contrast, Signal’s double-ratchet protocol shows high immunity to ASAs,
as the leakage requires much more messages. But once Signal’s long-term
key is leaked, the security of the Signal messenger is completely subverted
by our attack due to unfortunate choices in the implementation of Signal’s
multi-device support.
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1. Introduction

In the past few years, the widespread use of cryptography to protect digital communica-
tion has become the norm. More than 90% of web traffic are now end-to-end encrypted
via protocols such as TLS for synchronous web sessions or the popular Signal protocol
for asynchronous instant messaging. Besides increased awareness and new privacy laws
requiring better protection, leaks like the Snowden revelations showed that government
agencies are heavily invested in eavesdropping and intercepting web traffic. To overcome
cryptographic protection, agencies do not only apply cryptanalytic techniques, but also
circumvent cryptosystems. More recently, such knowledge has become available to less
well-funded governments and police forces, which have been reported to even bypass
highly protected messenger communications of Telegram [7] and EncroChat [15]. While
the latter examples rely on exploitation of implementation bugs and phishing, Snow-
den’s documents also revealed efforts to achieve longer term access. One class of attacks
tries to manipulate the algorithms used in implementations. The main idea behind this
manipulation is the injection of a backdoor into otherwise secure implementations, e.g.
via the compiler, as proposed by Ken Thompson and later observed as XCodeGhost [48].
Even cryptographically secure algorithms can be subverted, e.g. through the manipula-
tion of standardization processes (like the issues surrounding the Dual EC DRBG number
generator [10, 41, 42]).

A formal treatment of these manipulations was first given by Young and Yung under
the name kleptography [49, 50]. The recent developments started by Snowden’s publi-
cation reignited the interest in this kind of attacks, starting with the work of Bellare,
Paterson, and Rogaway [6], that studied the attacks under the name of algorithm sub-
stitution attacks (ASA).

1.1. Our Contributions

Instead of focusing on a single algorithm, we extend the study of ASA to cryptographic
protocols. We first formally define an appropriate notion of such attacks and then
prove that an important, widespread property of modern protocols — forward secrecy —
directly implies the vulnerability against such attacks. We then focus on three concrete
protocols — TLS, WireGuard, and Signal — and show that all of these protocols have
multiple vulnerabilities against ASA. In two of these protocols, TLS and WireGuard, these
vulnerabilities can be used to leak the long-term secret key with at most four messages,
which allows us to perform Man-in-the-Middle attacks.

Leaking the long-term secret key from Signal takes more messages, but we show that
the leak of this key has dramatic consequences: We are able to completely circumvent
the forward secrecy of the protocol, by using Signal’s multi-device option to register a
new device that is also able to access messages of an already established communication.
While the theoretical vulnerability to such an attack on Signal was already proposed in
2016 by Cohn-Gordon, Cremers, and Garratt [13], we show that this attack is indeed
feasible: The Signal messenger implements the “subtle details” mentioned by Cohn-
Gordon et al. [12] in such a way that an attacker knowing the long-term key is able to
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easily manipulate the protocol to completely invalidate Signal’s end-to-end encryption.
Our finding highlights that even protocols that could have a high resistance to ASA and
are widely considered secure, fail due to the complexity of their implementation, making
ASA a practical threat.

In order to show that these vulnerabilities are not only theoretical, we modified the
implementation of these protocols in OpenSSL (TLS), the Linux kernel (WireGuard), and
the Signal desktop client. We experimentally verified that these modified implementa-
tions are able to leak the long-term keys with minimal computational overhead and only
a few changed lines of code, making the attacks hardly detectable.

1.2. Related Work

As described above, the concept of algorithm substitution attacks was first formalized by
Young and Yung under the name kleptography [49, 50]. The current name of algorithm
substitution attacks was proposed by Bellare, Paterson, and Rogaway, who also presented
several attacks on certain symmetric encryption schemes [6]. Degabriele, Farshim, and
Poettering criticised this model as it relied on the assumption that all ciphertexts pro-
duced by the subverted algorithm must be valid [16]. The model of Bellare, Paterson,
and Rogaway was extended to signature schemes by Ateniese, Magri, and Venturi [3].
Bellare, Jaeger, and Kane strengthened the result of Bellare, Paterson, and Rogaway by
showing the proposed attacks can be made stateless [4]. Berndt and Lískiewicz showed
that algorithm substitution attacks can be interpreted as steganographic systems, which
allowed them to generalize the above results and give upper bounds for the number of in-
formation embeddable in a single message via black-box attacks [8]. Just recently, Chen
et al. showed that this upper bound can indeed be beaten via non-black-box attacks
against certain key encapsulation mechanisms [11]. As the authors only focus on algo-
rithms and aim to replace the encapsulation algorithm, they can only embed the (often
short-lived) session key in their algorithms, as this is the only sensitive information that
the encapsulation algorithm can access. Furthermore, they also introduced asymmetric
algorithm substitution attacks that use asymmetric keys.

There is a wide literature about countermeasures against ASA: the split-program
methodology that immunizes the randomness generation [39]; the use of purely deter-
ministic primitives [6]; cryptographic reverse firewalls, that re-randomize all outgoing
communications [30]; self-guarading mechanisms, which contain an untamperable initial
first phase [22]; backdoored pseudorandom generators that add a salt to the pseudoran-
dom generator [19].

2. Preliminaries

In the following, we fix the notations used in this work, introduce the notion of algorithm
substitution attacks against protocols, and show that a widely used property of cryp-
tographic protocols — forward secrecy — always leads to vulnerabilities against such
substitution attacks. We often consider randomized algorithms R and for fixed ran-
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Figure 1: A run of ΠA,B on XA and XB.

domness r, we denote their deterministic output on input x as R(x; r). We also define
log(x) := dlog2(x)e.

2.1. Cryptographic Protocols

Let A and B be two randomized algorithms, called parties. In a protocol ΠA,B, both of
these algorithms exchange messages back and forth. More formally, such a protocol is
described by a sequence of messages msg1,msg2, . . ., where messages with odd indices
are sent from A to B and messages with even indices are sent from B to A. The run
of a protocol ΠA,B on inputs XA and XB is described by such a sequence of messages,
with msgi = P (XP ,msg1, . . . ,msgi−1), where P = A for odd i and P = B for even i
(see Fig. 1). We denote this sequence by ΠA,B(XA, XB). Usually such protocols are
used to transfer information between A and B in a secure manner. For example, in
a zero-knowledge protocol, A wants to convince B that f(XA) = 1 for some public
function f without actually revealing the input XA. Protocols play an essential part
in cryptography and are widely used. Nowadays, nearly 90% of the internet traffic is
encrypted via such protocols [28].

To distinguish between symmetric keys and asymmetric keys, we denote symmetric
keys with lower case letters and asymmetric keys with upper case letters. Furthermore,
for an asymmetric key-pair K, we denote the secret key by sec(K) and the public key
by pub(K).

Adversaries trying to attack such a cryptographic protocol are typically characterized
by their abilities. A passive adversary or eavesdroppper can only listen to the commu-
nication between the parties. In contrast, an active attacker can directly interact with
the parties. For example, an active attacker can impersonate A and convince B to share
sensitive information.

2.2. Algorithm Substitution Attacks

In this work, we consider algorithm substitution attacks against cryptographic protocols.
As noted above, all previous work concentrated on the replacement of a single algorithm
from a cryptographic primitive. In the work of Chen et al., this led to the problem that
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Figure 2: A run of the ASA

they were only able to leak session keys in this model [11]. But primitives are usually
embedded in protocols and usually, both parties of a key encapsulation mechanism have
some secret. Hence, in this scenario, an attack against the protocol would allow a
subverted encapsulation algorithm to leak the long-term secret key of a party instead of
only the short-term session key.

Usually, at least one of the inputs XA or XB of a cryptographic protocol contains some
value that is to be kept secret. The goal of an algorithm substitution attack against ΠA,B

is to manipulate one of the parties such that the run of the protocol leaks this secret to
an observer. For everyone but this observer, the run of the manipulated protocol should
be indistinguishable from the original protocol. For the sake of simplicity, we only give a
formal definition of an algorithm substitution attack against party A, but the adaption
against party B is straightforward. An algorithm substitution attack ASA against ΠA,B

is a tuple of randomized algorithms (ASA.A,ASA.Ext). In addition to the inputs given
to A, the algorithm ASA.A is also given an attacker key ak. To separate the input in the
protocol from this key, we write ASA.Aak to denote that ASA.A has knowledge about
ak. The extraction algorithm ASA.Ext is also given this attacker key and the sequence
of messages msg1,msg2, . . . and tries to extract XA from these messages.

We say that ASA is undetectable, if no probabilistic polynomial-time algorithm Dist is
able to distinguishA(z1), A(z2), . . . from ASA.Aak(z1),ASA.Aak(z2), . . . with non-negligible
probability upon random choice of ak, even if Dist is allowed to choose the inputs zi.
Furthermore, ASA is reliable, if the probability that ASA.Ext(ak,msg1,msg2, . . .) 6= XA is
negligible, where ΠASA.Aak,B(XA, XB) = msg1,msg2, . . . and the probability is taken over
the random choice of ak and the internal randomness of the algorithms. Throughout
this work, κ denotes the key length of the attacker key ak.

Bellare et al. showed the existence of a black-box (or universal) algorithm substitution
attack, i. e. an algorithm substitution attack, based on rejection sampling, that works
against every randomized symmetric encryption scheme [5]. Berndt and Lískiewicz were
able to show that this substitution attack can be used against every randomized algo-
rithm with sufficient high min-entropy [8].

Theorem 1 (Theorem 7.1 in [8]). Let R be any randomized algorithm that has a secret
input s. If pseudorandom functions exist, there exists a generic algorithm substitution
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attack ASA against R such that ASA is secure and reliable as long as the secret input s
to R is sufficiently long and the min-entropy of R is sufficiently high.

Universal ASA The general idea behind this universal ASA is the following: Suppose
that we want to embed λ bits of the secret s in the output of the randomized algorithm
R on input x. Let si be the i-th block of s of length λ, i. e. s = s1 || s2 || . . . sL with
L = |s|/λ. We assume that we have access to a pseudorandom function F that —
equipped with key ak — on some input y outputs a pair (b, i), where |b| = λ and
|i| = log(L). The universal ASA now samples random bits r until it finds r? with
Fak(R(x; r?)) = (si, i), i. e. until the pseudorandom function outputs the i-th block of
s and the index i for some i. A common target for our attack in this work is the
Diffie-Hellman key exchange and we thus illustrate the attack here for clarity. Given
a finite cyclic group G of order n and some generator g ∈ G, a non-subverted party
generates 1 < a < n, keeps a secret and sends ga to the other party. Our goal is now to
embed information about some secret s into ga. Hence, to embed a single bit (λ = 1)
in the universal attack, we sample a ← {2, . . . , n − 1} until we obtain a? such that
Fak(g

a?) = (s[i], i), where s[i] is the i-th bit of the secret s.
It can easily be seen that the probability that we do not find a suitable candidate after

2λ ·κ samples of random bits is negligible in κ. Using the analysis of the coupon collector
problem, it is easy to see that O(L · log(L)) received ciphertexts are sufficient to recon-
struct s with high probability. In fact, for sufficiently large values of L, the probability
that more than L ln(L) + βL samples are needed is at most 1 − exp(− exp(−β)) [31,
Theorem 5.13]. For example, the probability that the number of samples is within
[L ln(L)− 4L,L ln(L) + 4L] is at least 0.98.

Optimizing the universal ASA: As the probability that no fitting block (si, i) is found is
negligible in κ, there is no need to deal with embedding errors on the side of the extractor.
By only trying at most 2λ · γ samples, an embedding error occurs with probability 2−γ .
Adding error correction to the extractor would thus allow us to reduce the number of
samples. For example, setting γ = 3 yields an error probability of at most 1/8. The
extractor could now use a simple majority rule whenever they encounter multiple blocks
{(s(j), i)}j , where not all s(j) are identical. Another optimization that can be used to
save bandwidth is the fact that the secrets s that we want to leak are often highly
structured and contain some redudancy. For example, if we aim to leak long-term RSA
keys, it is sufficient to leak only half of the bits of one of the prime factors p or q, as the
remaining bits can be reconstructed via the lattice algorithm of Coppersmith [14, 23].

Modified IV-replacement ASA Another important non-universal algorithm substitu-
tion attack can be applied, whenever a uniformly random string is transferred. This
is often the case, if both parties communicate via a symmetric encryption scheme that
requires a random nonce or IV. The modified IV-replacement attack is a simple adaption
of the IV-replacement attack described by Bellare et al. in [6]. For the sake of simplic-
ity, we assume in the following that the complete message msgi is a uniformly random
string (otherwise, we only apply the technique on the nonce-part). Again, if we want
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to embed λ bits of the secret s, split into s1 || s2 || . . . || sL, we first choose a string r
of length |msgi | − λ completely random. This string r encodes some index j consisting
of log(L) bits (e. g. via its most significant bits or its least significant bits). Then, we
compute msg′i = r || (Fak(r)⊕ sj) via a pseudorandom function F and output msg′i. The
extractor, knowing λ and ak, can easily compute both j and sj from msg′i. As described
above, about O(L · log(L)) samples are needed to reconstruct the secret s. The main
advantage of this attack is that no repeated sampling is necessary, i. e. the running time
of the protocol is only increased by a single call to the pseudorandom function F . The
optimal value for λ here depends on the length of msgi, but must be small enough that
the length of r is sufficiently high to avoid detectability.

Passive and Active Attacks While the deployment of the modified algorithm (i. e. ex-
changing A with ASA.A) is an active attack, the extraction of the information via
ASA.Ext is done in a purely passive way. In this work, we do not consider how to deploy
the modified algorithm ASA.A, but focus on the possible places where such a substitu-
tion attack might be used in cryptographic protocols. Furthermore, we also study how
the long-term keys can be used after extraction, both by a passive attacker and an active
attacker.

2.3. ASA and Forward Secrecy

An important feature of modern cryptographic protocols is called forward secrecy, which
concerns encrypted communication. Informally, this means that a breach of the long-
term keys is not sufficient for the decryption of the messages encrypted before the breach.
In our setting introduced above, some of the messages msgi are encryptions, i. e. msgi =
Enc(ki, pi) for some plaintext pi, some key ki and a symmetric encryption scheme Enc.
Forward secrecy now means that an attacker that knows the secret inputs XA and XB

of the parties and all of the msgi (but neither ki nor pi) cannot distinguish the key ki
from a random key [24].1

A common way to enable this forward secrecy is to only use ephemeral keys for some
part of the communication. For example, in TLS, a handshake starting a session consists
of a key exchange of such an ephemeral key. At the end of the session these ephemeral
keys are completely discarded and the next communication between the parties starts a
new session with new ephemeral keys.

Lemma 1. If ΠA,B is a cryptographic protocol with forward secrecy, then there is an
ASA against A or B.

Proof. Consider the earliest message msgi = Enc(ki, pi), where some attacker cannot
distinguish ki from a random key. As the attacker knows both XA and XB, the key ki
is not part of these secrets. Hence, the communication between the parties must include
some messages msgj ,msgj+1, . . . where this key ki is exchanged. If all of the messages
msg1,msg2, . . . ,msgi are chosen deterministically, the attacker can simulate this with

1Note that this notion is called weak forward secrecy in [24], as it does not prevent active attacks.
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their knowledge of XA and XB and can thus also reconstruct the key ki. Therefore,
there is a message msgi? which is chosen randomly. Furthermore, as the protocol has
forward secrecy, the attacker is not able to brute-force all possible choices of randomness
for the construction of msgi? . Hence, the requirements for Theorem 1 are fulfilled and
we can embed information about XA in msgi? .

3. Substitution Attacks against Protocols

In light of Lemma 1, we looked at multiple widely used protocols that support forward
secrecy and analyzed their vulnerability with regard to algorithm substitution attacks. In
addition to the attacks on the forward secrecy parts of the protocols, we also discovered
that TLS 1.2 and WireGuard are vulnerable to IV-replacement attacks.

3.1. TLS

The Transport Layer Security (TLS) protocol is arguably one of the most important pro-
tocols for secure communication, providing encryption, integrity protection and authen-
ticity confirmation. TLS is located between the application-layer and transport-layer of
the Internet Protocol (IP) Stack. It provides a transparent way of secure communication
to the application-layer. In general, TLS supports a large number of different algorithms
used for key exchange, signatures, and encryption.

The protocol is split into two (main) layers: The Handshake layer (composed by
the Handshake-, Change Cipher Spec-, and Alert Protocols), which initiates a connection
between the parties, and the Record layer (formed by the Record Protocol), which is used
to send application data. Usually, TLS is used for communication between a server S
and a client C. The protocol distinguishes between sessions, which are an association
between the parties with some state that specifies the used algorithms, and connections,
which are secure streams within a session. The most current version of TLS is TLS
1.3, but it is currently only supported by 40% of servers. Its predecessor, TLS 1.2, is
supported by nearly 99% of the servers [35].

We first introduce the two protocol layers of TLS 1.3, highlight the differences to TLS
1.2, and discuss possible targets for ASA afterwards.

Handshake layer [36] To initiate a session, a handshake between the parties is per-
formed. The server S has a certificate CERTS to authenticate itself. The client C sends
a ”Hello” message to the server which includes a list of preferred algorithms and a ran-
dom string rC of length 32 bytes. It also guesses, which key exchange algorithm will be
chosen by the server, generates an appropriate ephemeral key EKC and send its public
component pub(EKC) to the server. If C tries to resume a session, it also send a session
ID. The server S chooses the algorithms to be used from the client’s list, a random
string rS of length 32 bytes, and an ephemeral key EKS and sends all of this as ”Hello”
message to the client. If the client wanted to resume a session, S can also send a session
ID. Both parties then derive a handshake secret hs from the ephemeral keys EKC and
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EKS and from a hash of both ”Hello” messages via HKDF [25]. From hs, both parties
also derive the handshake traffic key htk via HKDF. Then, the server computes a hash
of the current communication and signs it using its certificate. The server S encrypts
this signature and the public key of the certificate via htk and sends it to the client. The
client decrypts these values and verifies the signature. Both parties then derive several
other symmetric secrets/keys from hs via HKDF: the finished key fk, the master secret
ms, the traffic secret ts, and the traffic key tk. The client now computes a MAC of the
current transcript via fk and encrypts this with htk and sends this ”Finish” message to
the server. The server then also computes such a MAC in the same way and sends this
encrypted with htk as ”Finish” message to the client. A more detailed description of the
handshake can be found in the work of Diemert and Jager [17].

In TLS 1.2 [18], the client does not guess the key exchange algorithm, causing the
need for another roundtrip between the parties. Furthermore, the handshake messages
are not encrypted, i. e. htk is not present in the protocol.

Record layer [36] In the record layer, the application data is encrypted via the sym-
metric traffic key tk. The encryption is performed via an authenticated encryption with
associated data (AEAD) encryption scheme [37, 38] chosen during the handshake, which
is either AES GCM, AES CCM, or ChaCha20-Poly1305 [27, 34]. The nonce needed for this
AEAD is produced by XOR-ing the sequence number (describing how many messages
were already sent) and an initialization vector derived from the master secret ms.

In contrast, TLS 1.2 allows a much wider range of encryption schemes, not only
AEADs. Also, the nonce used for the schemes is constructed differently. It consists
of an initialization vector derived from the master secret ms concatenated with an ex-
plicit initialization vector (eIV), which is chosen randomly and transmitted. In earlier
versions of TLS, no eIV was used, which led to vulnerabilities [32].

3.1.1. Security Analysis w.r.t. Substitution Attacks

In the following, we identify possible attack vectors against both versions of TLS. The
first thing to consider is which key-material we want to leak. By leaking the short-term
keys (either sec(EKS), sec(EKC), or hs and the derived keys), an attacker is able to
decrypt the complete communication within a single connection. Usually, the only long-
term key that exists is the certificate of the server, allowing an attacker to impersonate
the server and perform Man-in-the-Middle attacks. Note that the short-term keys are
only derived from later messages in the Handshake layer. Hence, attacks on the early
messages in the Handshake layer can only leak long-term keys.

Leaking in the Handshake Layer The TLS handshake consists of different messages
that may or may not be sent when initiating a connection. These messages may or
may not be encrypted. These factors vary between the specific setup, as well as TLS
versions. But one message always contains a nonce, is always unencrypted, and will
always be sent: The ”Hello” message. This nonce can be chosen in a way that reveals
information without compromising the subsequent calculations. As the ”Hello” messages
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are unencrypted, they allow an IV-replacement ASA, resulting in a setup independent
attack across all versions of TLS.

Furthermore, the key shares pub(EKC) and pub(EKS) are also transmitted in the
clear. As both of these shares are public keys, we cannot simply replace them by random
strings (as obtaining the corresponding private keys would be very expensive), but the
universal ASA can be used to repeatedly sample EK until the public key contains some
information.

Leaking in the Record layer In TLS 1.3, all communication deterministically depends
on the master secret ms. As deterministic algorithms cannot be used for algorithm
substitution attacks [8], no attack vector seems to exist against the Record layer of
TLS 1.3.

In contrast, the usage of the explicit IV in the Record layer of TLS 1.2 introduces
randomness, which we can use for an attack. As described above, the nonce used in
the encryption scheme is split in two halves: the implicit IV or static IV (sIV) and the
explicit IV (eIV). The sIV is usually a session number, which is known to both client and
server. As both parties know the sIV, there is no need to transmit this part. The eIV is
randomly chosen and transmitted with the ciphertext. The other party does not know
this random number and has no way to derive it from previously shared knowledge.
Therefore it is necessary to transmit the eIV with the ciphertext, but the eIV is not
necessarily transmitted in the clear (see below).

3.2. WireGuard

WireGuard is a Virtual Private Network (VPN) solution that has recently been added
to the Linux kernel [20]. It is becoming increasingly popular due its simple design and
implementation, especially compared to other widely used protocols, and it uses generally
acknowledged and fast algorithms. For example, all public-key operations are performed
on Curve25519, all hashes are computed via blake2s, all keys are derived via HKDF,
and the symmetric authenticated encryption schemes used are either ChaCha20Poly1305
or XChaCha20Poly1305 [40, 26, 25, 33]. As usual for VPNs, WireGuard allows peers to
communicate with each other in a secure manner. A central part in the design and one
reason for the simplicity of the protocol is that each peer is identified only by its static
asymmetric key pair. Before they can create a connection, both peers have to manually
share their static public key via a secure channel, such that they can prove that each is
communicating with the correct party.

Again we give an overview of the protocol and afterwards discuss potential targets for
ASA.

Handshake The WireGuard protocol does not distinguish between clients and servers,
however, to distinguish between the two parties one is called the initiator I and the
other one the responder R. Both parties have an asymmetric static key SKI , resp. SKR.
To communicate, I also needs to know pub(SKR) and R needs pub(SKI). In addition, I
needs an IP address of R in order to send the initial message. As a first step, I generates

10



an ephemeral key EKI and computes a symmetric handshake key hsk by performing a
Diffie-Hellman key exchange on pub(SKR) and sec(EKI) and a second symmetric hand-
shake key hsk′ by performing a Diffie-Hellman key exchange on pub(SKR) and sec(SKI).
Then, it initiates the connection via the handshake initiation message. This message
contains among other things the public key pub(EKI), an encryption of pub(SKI) using
hsk, a random string rI consisting of 4 bytes used for the session ID, and a timestamp
encrypted with hsk′. All encryptions are AEADs and the authenticated data are hashes
of the currently computed values that will be given to R. The responder uses pub(EKI)
and sec(SKR) to also derive the symmetric handshake key hsk and another key exchange
on pub(SKI) and sec(SKR) to derive hsk′. It then decrypts the encrypted messages
and verifies them. Afterwards, R generates an ephemeral key EKR and derives another
symmetric handshake key hsk′′ from key exchanges on the pairs (pub(EKI), sec(EKR))
and (pub(SKI), sec(EKR)). They then send a message containing pub(EKR), a random
string rR of 4 bytes used for the session ID, the string rI , and an encryption of the the
empty string with hsk′′. When these messages have been exchanged, both parties derive
their transport data keys tdkI and tdkR (one for sending and one for receiving) from the
ephemeral keys EKI and EKR and the handshake is complete.

Transport Data In the following, every message sent between I and R contains a
counter used as a nonce and an encryption of the application data either with tdkI (if I
sends a message to R) or tdkR (if R sends a message to I).

Denial-of-Service Protection To avoid that a malicious party performs a Denial-of-
Service (DoS) attack by abusing the CPU-intensive asymmetric cryptographic operations
of a handshake, WireGuard introduces a special cookie mechanism: If a peer (initiator
or responder) P receives a handshake packet with a valid MAC, but currently cannot
perform the necessary elliptic curve computations due to being under load, it returns a
cookie message. This message contains a randomly generated nonce rn of 24 bytes, which
is used alongside the peer’s public key pub(SKP ) to encrypt a secret number s, that is
randomly generated by P every two minutes. The other peer P ′ decrypts the cookie,
and waits until the initiator’s internal rekey timeout has passed. During the ensuing
restarted handshake, P ′ sends their handshake message along with an additional MAC,
using the secret number s as the MAC key. The peer P then checks whether that MAC
is valid, and if it is, continues or completes the handshake. Note that the random nonce
rn is transported in the clear.

3.2.1. Security Analysis w.r.t. Substitution Attacks

As discussed above, the identity of a peer P is given by an asymmetric key pair SKP .
The 256-bit private key sec(SKP ) is therefore the most valuable target for attackers, as
it allows stealing the identity of the victim: An attacker who has obtained sec(SKP ) can
perform Man-in-the-Middle attacks or impersonate the victim, thus gaining access to a
formerly secure VPN. The public keys of other peers are designed to be kept secret within
a VPN, and are only accessible when one is able to decrypt a handshake initiation packet;
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if a peer I sends a handshake initiation packet to the attacker, the attacker can use
sec(SKR) to decrypt the packet and obtain pub(SKI), possibly enabling other attacks.
Since only the handshake initiation message contains an encryption of the public key of
the initiator I, leaking the secret key of a responder R allows an attacker to also collect
public keys. If a victim on the other hand only acts as initiator, no public keys of other
peers in the VPN can be decrypted by an attacker. In this case one could additionally
leak the public key of the responder, thus enabling an attacker to connect to the VPN
as I.

Another possible target are the symmetric short-term transport keys: If, for example,
the attacker obtains tdkI , they may decrypt all messages sent from I to R, until a new
handshake occurs. In order to be able to decrypt the entire communication between
I and R over multiple sessions, the attacker needs a way to leak both transport keys
tdkI and tdkR within one session. Alternatively this could be achieved by leaking the
private static key pub(SKP ) of the victim once and then leaking the private ephemeral
key within each session, thus enabling the attacker to compute both transport keys.
WireGuard presents three opportunities for embedding data into randomly generated

values: The ephemeral keys pub(EKP ) exchanged during the handshake, the random
session IDs rP , and the nonce rn of the cookie message.

Leaking via Handshake Messages WireGuard’s handshake messages have two sources
of randomness: The session IDs rI or rR, and the public ephemeral keys EKI or EKR.
The handshake messages are suitable to leak long-term secrets such as the static private
key of the transmitting party. Unfortunately, the short-term secrets are refreshed every
few minutes via the handshakes and their leakage in these handshake messages is thus
not feasible.

The session IDs of both I and R have a length of 4 bytes and are chosen uniformly at
random for each handshake, thus the attacker could perform a modified IV-replacement
ASA. However, this attack may be easily detectable due to the short length of the session
IDs: If an attacker decides to embed one byte of secret data, the number of possible
session IDs decreases to 224. Since handshakes are designed to be executed every few
minutes, one can thus expect a collision within a few days, as opposed to several months.

The public ephemeral keys can be used to conduct an universal ASA, by sampling
random private keys until the resulting public key contains the desired secret. Since this
approach requires repeated elliptic curve computations, it is quite expensive to embed
more than a few bits per handshake. Long delays may get noticed by the user, due to
slow connection establishment or frequent connection losses.

Leaking via Cookie Messages The nonce rn used in the cookie messages is chosen
uniformly at random and transmitted in plaintext. Since its length of 24 bytes is quite
high, the nonce is well-suited for a modified IV-replacement attack. By generating the
first 8 bytes (64 bits) randomly, detecting the attack becomes practically infeasible. This
leaves 16 bytes (128 bits) for payload, which means that one half of a 256-bit key can
be leaked in a single message.
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This approach allows leaking long-term secrets as well as previous short-term secrets,
since cookie messages are only sent prior to completing a handshake. Also, cookie
messages are only sent when a peer is under load.

3.3. Signal

The Signal (formerly Axolotl) protocol [43] provides end-to-end encryption for text mes-
sages and multimedia files. It is widely used in different communication applications
such as WhatsApp [47], Skype [29] and the Signal messenger itself. The protocol is based
on the Double Ratchet algorithm and uses a triple Elliptic-curve Diffie–Hellman hand-
shake (X3DH) to initiate new conversations. The Sesame protocol is used to enable
multi-device support. Signal uses a number of cryptographic primitives including
• Elliptic Curve Diffie-Hellman functions (implemented by X25519 or X448 [26]);
• a signature scheme called XEdDSA producing EdDSA-compatible signatures from

X25519 or X448 using the hash function SHA-512 [43];
• a hash function (implemented by SHA-256 / -512);
• a key derivation function KDF based on the HKDF algorithm [25];
• an authenticated encryption (AEAD) scheme [37, 38]. Concretely, KDF is used

to produce an encryption key, an authentication key, and an initialization vector
(IV). The plaintext is then encrypted with AES-256 in CBC mode.Finally, HMAC
with the hash function and the authentication key is used on the authenticated
data.

We explain the three protocol parts and discuss possible targets for ASA attacks
afterwards.

X3DH [44] Every user in the Signal protocol has an identity key IK. These keys
are long-term keys and are needed to setup the initial communication between two
parties. All of the public keys are stored on the central server. Furthermore, in or-
der to enable an initial communication even if one of the parties is offline, all parties
store a signed prekey pub(SPK) along with its signature and a set of one-time prekeys
pub(OPK(1)), pub(OPK(2)), . . . on the server. If party A now wants to initialize commu-
nication with party B, they obtain the following information from the server: The public
identity key pub(IKB), the signed prekey pub(SPKB) along with its signature, and a
one-time prekey pub(OPKB) (if available). Now, A produces an ephemeral key EKA and
verifies the signature of pub(SPKB). Afterwards, three Diffie-Hellman key agreements
are performed: Between sec(IKA) and pub(SPKB), between sec(EKA) and pub(IKB),
and between sec(EKA) and pub(SPKB). A symmetric key sk is then derived from these
agreements. If a one-time prekey pub(OPKB) was available, a fourth key agreement
between sec(EKA) and pub(OPKB) is performed and also taken into account in the
computation of sk. Finally, A sends an initial message to B that contains pub(IKA),
pub(EKA), the index of pub(OPKB) (if available), and an initial ciphertext encrypted
with key sk. After B got this initial message, B performs the symmetric computations
of A to obtain the symmetric key sk and then decrypts the initial ciphertext to verify sk.
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Double Ratchet [45] The Double Ratchet protocol (Figure 3 in Appendix A) tracks
the cryptographic state of communication between two parties A and B. It is designed
to provide forward and backward secrecy even when several of the involved keys are
leaked.

The protocol state consists of four chains, which are stored by each party: The asym-
metric Diffie-Hellman ratchet, and the symmetric root, sending and receiving chains.

Diffie-Hellman Ratchet: The Diffie-Hellman ratchet is a sequence of Diffie-Hellman key

exchanges on ephemeral keys. Let EK
(i)
P denote the ephemeral key of party P ∈ {A,B}

in round i. Each round is partitioned into two phases. At the start of the first phase

of round i, party A knows pub(EK
(i)
B ) and generates an ephemeral key EK

(i)
A . First, A

performs a Diffie-Hellman key-exchange between sec(EK
(i)
A ) and pub(EK

(i)
B ) to derive a

shared secret ssv
(i)
1 . Now, A sends pub(EK

(i)
A ) to B. All further messages send from A

to B are encrypted via a key derived from ssv
(i)
1 (see below for details) until B sends a

response. A response of B starts the second phase, in which B generates a new ephemeral

key EK
(i+1)
B . Then, B performs a Diffie-Hellman key-exchange between pub(EK

(i)
A ) and

sec(EK
(i+1)
B ) to derive a shared secret ssv

(i)
2 . Now, B sends pub(EK

(i+1)
B ) to A. All

further messages send from B to A are encrypted via a key derived from ssv
(i)
2 , until A

sends a response, which ends round i and starts round i+ 1.

Root Chain: The root chain is a sequence of symmetric-key derivations. Given the

shared secret ssv
(i)
j from the Diffie-Hellman Ratchet and its current root chain key rk

(i)
j ,

it computes
(

rk
(i′)
j′ , ck

(i,1)
j

)
:= KDF

(
rk

(i)
j , ssv

(i)
j

)
, where ck

(i)
j is the first chain key of a

sending/receiving chain and rk
(i′)
j′ is the next root chain key, with (i′, j′) := (i, 2) if j = 1,

or (i′, j′) = (i + 1, 1) if j = 2. The root chain is initialized with rk
(1)
1 = rk, where rk

corresponds to the initial ciphertext key generated by X3DH.

Sending Chain / Receiving Chain: Like the root chain, the sending chain and the receiv-
ing chain are sequences of symmetric-key key derivations. The receiving chain of A is

the sending chain of B and vice versa. The first chain key ck
(i,1)
j is generated by the root

chain. In the first phase of round i, party A sends messages to B. For each message,

the chain is advanced by one step, which yields
(

ck
(i,k+1)
1 , sk

(i,k)
1

)
:= KDF

(
ck

(i,k)
1

)
. The

k-th message from A to B in round i (i. e. in the first phase) is encrypted with sk
(i,k)
1 .

Similarly, messages from B to A in round i (i e. in the second phase) are encrypted with

sk
(i,k)
2 , where

(
ck

(i,k+1)
2 , sk

(i,k)
2

)
:= KDF

(
ck

(i,k)
2

)
.

Sesame [46] The Sesame protocol [43] enables the usage of multiple devices for users.
In general, the protocol describes two scenarios: the per-user scenario, where the identity
key of the user is used on all devices of that user and the per-device scenario, where every
device has its own identity key.

Each device has a set of sessions on the server, which are initialized via the X3DH
protocol and maintained by the double ratchet protocol. Whenever a device of user A
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sends a message to user B, it sends this message to every device associated with A or B
either via its current active session or by initializing a new session via X3DH. The server
then puts the messages in the mailbox of the receiving devices. The receiving device
simply obtains the message from the mailbox and decrypts it via the corresponding
session key.

The registration of new devices in the system is not explained in the specification
and highly depends on whether a per-device or a per-user scenario is used. Later on,
we will show that the current implementation in the Signal messenger is vulnerable to
impersonation attacks.

3.3.1. Security Analysis w.r.t. Substitution Attacks

In this section, we investigate whether an attacker is able to conduct an algorithm
substitution attack in order to circumvent/break end-to-end encryption, allowing them
to read messages sent by the victim and its peers. We discuss the requirements of attacks
against the end-to-end encryption, and identify possible attack vectors for algorithm
substitution attacks in the protocol.

For simplicity, in this analysis, we assume that the protocol messages are sent via
an insecure channel, which can be accessed by the attacker. In practice, the Signal
protocol is wrapped into a TLS layer, but our discussion above shows how to leak the
long-term key of TLS and thus justifies the insecure channel assumption. Without loss
of generality, we also assume that we attack A’s side of the protocol, as illustrated in
Figure 3 in Appendix A.

Prerequisites for decrypting messages In order to decrypt a message, the attacker

needs to get access to the respective symmetric key sk
(i,k)
j . This key directly depends

on the chain key ck
(i,k)
j , which in turn directly depends on the root chain key rk

(i)
j . The

root chain key depends on the previous root chain key, and the shared secret from the
DH ratchet.

The attacker can thus choose one of the following approaches:

(1) Leak sk
(i,k)
j : This allows to decrypt a single message.

(2) Leak ck
(i,k)
j : This allows to compute an entire send/receive chain, leading to decryp-

tion of one or more messages.

(3) Leak rk
(i)
1 and the private ephemeral key sec(EK

(i)
A ): This informs the attacker about

the current state of the root chain, which they can use to compute the next two states
of the root chain and thus learn the next send and receive chains.

(4) Leak one or multiple long-term keys and conduct a Man-in-the-Middle attack against
new conversations: If the identity sec(IKA) gets leaked, the attacker can register

new prekeys SPKA and OPK
(i)
A , which allows them to control the next X3DH key

exchange. Also, as we will show in Section 4.3, leaking the identity key is sufficient
to register new devices via the Sesame protocol and thus completely circumvent
Signal’s end-to-end encryption.
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Leaking via X3DH The X3DH handshake fully relies on the presence of several ran-
domly generated inputs, which are stored on the server: The signed public prekey
pub(SPK), and a list of public one-time prekeys pub(OPK(1)), pub(OPK(1)), . . .. Each
client device tracks the available prekeys, and generates new ones, if necessary.

While the identity key and the signed prekey are long-lived, the one-time prekeys are
replaced on a regular basis, whenever a new encryption session (conversation) is started.
The attacker may thus choose to use the universal ASA to embed secret values into these
one-time prekeys, and subsequently drain the pool of available prekeys by conducting a
lot of X3DH handshakes, so the client is forced to generate new ones. While in theory this
straightforward approach is sufficient to implement the proposed attack strategies, it has
a few drawbacks in practice: First, the key generation is usually triggered whenever the
client restarts or receives a new conversation, which may not be frequent enough to leak
a meaningful amount of short-term secrets. Second, if this is compensated by modifying
the prekey generation job to generate a large amount of prekeys at once (i.e., a sufficient
amount to leak a short-term secret), the high processor usage (and energy consumption,
on mobile devices) may be noticed by the user. Last, the server owners (and possible
other peers) may detect this type of attack, if the affected device uploads unreasonably
large amounts of one-time prekeys, and the extractor consumes these without starting
new conversations.

Leaking via Double Ratchet The only source of randomness in the Double Ratchet is
provided by the ephemeral keys; all other shared secrets, states and keys are derived de-
terministically, making the Double Ratchet very resistant against algorithm substitution
attacks.

This property restricts the attacker to leaking information via the ephemeral keys

pub(EK
(i)
A ), which are re-generated each time the peers exchange messages. As we show

in Section 4.3, embedding secret data into ephemeral keys is computationally cheap and
hardly detectable due to the asynchronous nature of the protocol. However, this also

thwarts attacks that try to leak an entire conversation: For each ephemeral key EK
(i)
A ,

there are two root keys rk
(i)
1 and rk

(i)
2 , which in turn lead to two sending/receiving chains

and multiple message encryption keys sk
(i,k)
j , where each of them cannot be leaked in

a single step. The attacker thus needs to focus on specific parts of the conversation,
and leak the involved secrets over multiple rounds. However, this method is sufficient to
leak long-term secrets, as we demonstrate by implementing attack approach (4) using
ephemeral keys in Section 4.3.

4. Attacks on Implementations

In this section, we show the results of applying ASA on implementations of the analyzed
protocols. We describe the changes to the implementations and ASA design decisions.
The two most probable ways to detect the presence of ASA is either observing a widely
different runtime behavior or by detecting modifications to the correct implementation.
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Table 1: Benchmark results for generating 1000 ephemeral keys while embedding λ bits
of the secret via the universal ASA.

Protocol original λ = 1 λ = 2 λ = 4 λ = 8

TLS 0.096ms 0.23ms (2.37x) 0.24ms (2.48x) 0.34ms (3.56x) 2.45ms (25.54x)
WireGuard 0.68ms 0.83ms (1.23x) 1.16ms (1.71x) 2.65ms (3.92x) 11.28ms (16.22x)
Signal 0.29ms 1.55ms (5.35x) 2.46ms (8.48x) 8.07ms (27.83x) 94.85ms (327.08x)

Table 2: Benchmark results for the leakage of λ bits via the IV-replacement ASA.

Protocol original abs. rel. λ

TLS 0.14ms 0.18ms 1.28x 64
WireGuard 0.014ms 0.016ms 1.16x 128

For all implementations, the number of lines of code that we changed is negligible com-
pared to the rest of the code-base of the implementations. To verify empirically that
the change of the runtime of the algorithm is sufficiently small, we did an experimental
performance analysis and calculated the corresponding overhead. In all of the attacks,
the parameters can be chosen, such that this overhead hardly detectable (see Table 1
and Table 2).

4.1. TLS

To evaluate our theoretical attacks in practice, we modified the widely used OpenSSL2

library, which offers extensive cryptographic functionality, including an implementation
of the TLS protocol. We focussed on leaking the long-term private key sec(CERTS).

We captured the generated data using the tshark 3 command-line utility, and sub-
sequently invoked a script which did a majority based key material reconstruction once
every captured data block was processed.

”Hello” message We applied our IV-replacement attack in the ssl fill hello random()

function of the s3lib.c file, which generates the random string embedded in the ”Hello”
message of the server. The function ssl fill hello random() provides this random
string. As pseudorandom function we picked Fak(x) = AES-128(x, ak), which was al-
ready available in the given code base.

The runtime of this attack was measured in the state machine OpenSSL uses to imple-
ment the message flow of the TLS protocol. Therefore, the generation of the complete
”Hello” message was measured. This is based on the assumption that a victim, who
wants to monitor the runtime of their implementation, does monitor the generation of
a whole message, instead of the individual operations used to generate a message. The
corresponding times are given in Table 2.

2https://www.openssl.org/
3https://www.wireshark.org/
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The results show that we are able to leak a significant amount of key material (64 bit)
per session with only a very moderate overhead of less than 30% in the running time.
This attack works both against TLS 1.2 and against TLS 1.3.

Explicit IV With out loss of generality, we assume that we use the AES-CBC block
cipher in this section.

To securely transmit the eIV, it is concatenated with the plaintext and then encrypted
using the static IV, so we cannot perform an IV-replacement ASA on eIV: Instead, we
need to find an eIV such that Fak(AES-CBC(eIV.plain, sIV) encodes the desired secret
information, which is achieved on the protocol level by sampling random eIVs.

The data encryption and decryption functionality of TLS is implemented in tls1 enc()

in s3record.c. We adjusted this function to generate a random eIV, encrypt the entire
message, and check whether the resulting ciphertext encodes a part of sec(CERTS). If
it does not, we reset the function’s encryption state and try again with a different eIV.

This trial-and-error approach required us to encrypt the entire record several times,
increasing the computation time. As an optimization, an attacker may perform this
attack at the algorithm level instead, by encrypting a single block (which will contain
the eIV) and then checking for embedded secrets. However, this comes with the cost of
having to make these adjustments for each available cipher, instead of doing one generic
attack on the protocol level.

The resulting measurements for different amounts of leaked bits are shown in Table 1.
We conclude that even due to the higher overhead of repeatedly encrypting a record,
the required computation time for embedding 8 bits still resides well below a common
network latency, making this attack hard to notice in a scenario like serving a low-traffic
website. If the victim however transmits huge amounts of data (e.g., by sending a large
file), the bandwidth is significantly reduced and the attack may be detected, forcing the
attacker to choose a smaller λ.

Note that this attack can only be used against TLS 1.2, as explicit IVs do not exist
anymore in TLS 1.3.

4.2. WireGuard

For WireGuard we implemented a proof-of-concept for attacks against both the handshake
and the cookie messages, as discussed in Section 3.2.1. We picked the Linux kernel
module4, which can be installed on systems with older Linux kernels, where no built-
in WireGuard support is available yet. Both proof-of-concept attacks leak the private
component sec(SKR) of the static identity key, from which the public component is
trivially derived.

4.2.1. Implementation

Handshake The ephemeral key generation for the handshake is used in two places: One
is called whenever the peer initiates a new handshake, the other when the peer responds

4https://git.zx2c4.com/WireGuard-linux-compat
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to a handshake message. Both are located in /src/noise.c, which we modified to
implement our universal ASA: We changed the key generation, such that it samples a new
random private key sec

(
EKcand

)
, tests whether the associated public key pub

(
EKcand

)
contains a part of the secret which is designated to be leaked, and repeats if necessary.
Since the code base already offers the blake2s hash function, we used it in conjunction
with an attacker key ak as the pseudo random function for hiding the leaked secret.

Cookie Message To implement the IV-replacement attack for cookie messages, we
modified the generation of the random nonce rn in /src/cookie.c, such that it only
chooses the first 8 bytes at random. Subsequently, we inserted code that embeds the
private key into the remaining 16 bytes of rn by XOR-ing it with a pseudorandom value
generated with the blake2s hash function. Like described in Section 2.2, the first 8
bytes of randomness as well an an attacker key ak are used for the hashing.

4.2.2. Results

We tested the validity of our modifications on a simple setup consisting of two peers.
For both attacks, WireGuard connections could be established correctly with both the
original and another modified version, meaning that the attack does not influence the
stability of the protocol. Further, we tested that the desired key is actually leaked by
the modified implementation, by using pyshark 5 to trace the communication between
the peers. We were able to reconstruct the leaked bits correctly in all cases.

To evaluate the impact of our attacks on the computation time, we benchmarked our
proof-of-concept and compared it to the original implementation of WireGuard on an
Intel Core i5-6260U. We measured the time to create a whole message, in order to get
an impression of the relative overhead that is introduced by our attacks.

Handshake The results for embedding the private key sec(SKR) into the handshake
response messages can be found in Table 1. We conclude that embedding one or two
bits into the ephemeral key does not produce a significant overhead relative to the original
code. Increasing the number of embedded bits to four or eight results in a significantly
higher relative overhead; however, in absolute terms the delays introduced by our attack
may still be difficult to notice, since WireGuard operates over networks, where one can
expect latencies in the range of tens to hundreds of milliseconds.

Embedding eight bits into the ephemeral keys results in a feasible attack, since 8 ·32 =
256 handshake messages have to be recorded by an attacker to reconstruct the key with
a 98% chance (see the discussion on the universal ASA in Section 2.2). The default
WireGuard configuration swaps the symmetric key every 2 minutes by initiating a new
handshake, meaning that at most 9 hours of a running session would have to be recorded
in order to leak a victim’s key. This means that eavesdropping on a victim for a single
work day would be sufficient to obtain their private key and steal their identity.

5https://github.com/KimiNewt/pyshark
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Cookie Message Table 2 shows the results for embedding the private static identity key
sec(SKR) into cookie messages. As this attack is not probabilistic, one half of the private
key can be embedded into the random nonce with nearly no computational overhead,
which is almost impossible to detect when communicating via a network connection.

Here it is also noteworthy, that the victim has to be under load to send cookie messages,
however, an active attacker can easily cause this load on their victim by sending forged
messages or resending recorded handshake initiations. This does not make a detection
of the ASA trivial, because such an attack cannot be distinguished from a simple DoS
attack. Note, that the load needs to be caused by other handshake messages, whereas
the number of parallel requests needed depends on the WireGuard configuration (the
default is 4096).

4.3. Signal

Our proof-of-concept attack against the Signal protocol consists of two stages: First, we
leak the long-term identity key IKA of A via an algorithm substitution attack; then, we
use the leaked identity key to register a new device, which is controlled by the attacker.

4.3.1. Leaking the identity key

Implementation For our attack, we modified the desktop client implementation of
Signal [1]. The desktop client is based on Electron and written in JavaScript and
TypeScript. Its core Signal protocol implementation is contained in a single file, which
is called /libtextsecure/libsignal-protocol.js, and has more than 25.000 lines,
where around 20.000 lines are taken up by an emscripten runtime and corresponding
pre-compiled code. We discuss possible implications of this and other implementation
decisions in Section 4.3.3.

To implement the algorithm substitution attack, we modified the mentioned source file
and added an alternative key generation function for ephemeral keys in the asymmetric
ratchet. The existing key generation function is called in two places: When a new chat
conversation is started, and whenever a message is received. We used the universal

ASA method: Given an ephemeral key candidate sec(EK
(i),cand
A ) and our ASA key ak,

we checked whether the value Fak(pub(EK
(i),cand
A )) encoded a part of the identity key

IKA. As pseudorandom function we picked Fak(x) = HMAC(x, ak), which was already
available in the given code base. Finally, we modified the new conversation and message
received event handlers to use our modified key generation.

We tested our implementation by setting up two accounts on Signal’s staging (devel-
opment) servers, exchanging messages between those, and writing the generated keys
to the debug log. Afterwards, we used a small script to verify that the keys indeed
contained parts of the secret identity key.

Results To benchmark our implementation, we generated 1000 manipulated ephemeral
keys and measured the spent computation time on an Intel Core i3-5010U. The results
can be found in Table 1. As the measurements show, even encoding 8 secret bits per
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ephemeral keys leads to a hardly noticeable overhead of around 95 milliseconds in the
average case. Note that, in contrast to TLS and WireGuard, the generation of the new
ephemeral keys is done in a non-interactive way, after a message is received. Since the
Signal protocol is designed to be used in such an asynchronous setting, the perceptibility
further diminishes: Peer A cannot be sure whether peer B does read and answer messages
immediately, and A also doesn’t know the time B needs for typing an answer. We thus
conclude that we can efficiently transmit 1 byte of A’s secret identity key IKA per round,
without risking detection by the user. If it is known that the users only rarely exchange
messages (i. e. the time between two messages is sufficiently long), we can increase this
payload even more.

4.3.2. Exploiting the Sesame multi-device feature

After extracting the identity key, we can continue bypassing the Signal messenger’s
end-to-end encryption: Signal’s implementation of the device registration, which is a
prerequisite for running the Sesame protocol, solely depends on few long-term secrets (see
below for details), which allows an attacker to register arbitrary devices after learning
those secrets.

Protocol for adding new devices The protocol for registering a new device, called
provisioning by the Signal implementation, is illustrated in Figure 4 in Appendix A. We
use A to denote the phone (main) instance of A’s Signal account, and D to denote the
desktop client instance which A tries to register as a new device.

When starting the desktop client, the implementation will open a provisioning Web-
Socket to the Signal servers, which will generate and send a random device UUID
uuidD. The desktop client then generates a provisioning key pair PR and encodes
uuidD and pub(PR) into a QR code, which is presented to the user. Upon scanning
the QR code using the Signal app, it will first request a verification code code from
the server, and then encrypt some of the app’s private data with a symmetric key prs:
Encprs ({pub(IKA), sec(IKA), code, pnA, pkA}). The encrypted data and the encrypted
key EncPR (prs) is send to the server, which relays it via the provisioning socket to the
desktop client. The desktop client uses the private provisioning key sec(PR) to obtain
prs and thus decrypt the data packet sent by the app. The desktop client registers with
the Signal servers by sending a packet containing the phone number pn, the string code
for verification, a random password pwD, a random registration ID regId, and the device
name nameD, as chosen by the user and encrypted using the identity key IKA. Upon
receiving the registration packet, the servers return a new device ID deviceIdD, com-
pleting the protocol. Since the Signal servers require HTTP authentication, the desktop
client will include the username unD := pn.deviceId and the password pwD in any future
communication.

Registering a malicious device Before we can register a malicious device, we evaluate
the information which the attacker needs to acquire. The device provisioning protocol
only has a single step where private information from the primary instance is required,
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namely sending the encrypted identity key to the newly registered device. Thus the
attacker is required to obtain the following information in order to conduct the device
registration attack:
• the (private) identity key IKA: As shown in Section 4.3.1, this key can be leaked

by an ASA.
• the phone number pn: As it identifies the user, the phone number can be assumed

to be known to the attacker. Alternatively, it can also be leaked by the attack
with small overhead, as it is typically fairly short.
• the profile key pkA: The profile key allows accessing certain meta information like

the list of contacts; we found that sending the profile key is optional for device
registration. If the attacker wants access to that information, they may leak the
profile key via an ASA.
• the app’s username unA and password pwA: These are used in HTTP authentica-

tion when communicating with the server. The username directly depends on the
phone number and the device ID, and can thus be easily guessed; the password is
random and needs to be leaked. Since the authentication data is sent in the clear,
but inside the TLS layer, the attacker may also access it either by performing an
ASA against TLS, or by gaining (limited) access to the server, which is assumed
untrusted by the Signal protocol.

An attacker can then easily build a dummy implementation of the Signal app A, which
takes the above information and the content of the displayed QR code, and executes the
necessary protocol steps to register a new, attacker-controlled device: The dummy app
requests a new verification code from the server, and then forges the private data packet
which the server then relays to the desktop app. This entire process does not need any
interaction from the account’s owner.

Evaluation We implemented the attacker dummy app as described in the last para-
graph, and used it to register a new desktop client device, in order to estimate the de-
tectability of our attack. Our first observation is the missing notification of the account’s
owner, that a new device has been registered: All conversations continue transparently,
there is no entry in the chat history that the number of devices has changed. This infor-
mation is already available at the Sesame protocol layer, so showing it prominently in the
chat UI may be a simple countermeasure. As of now, the victim needs to manually check
their device list in order to detect the attack. Second, if the attacker has limited control
over the Signal servers, they may be able to manipulate the list of devices returned to the
victim, thus making their malicious device almost undetectable; the only implication of
its presence is the additional session in the Sesame protocol, which is not shown in the
UI. Third, the safety number feature, which can be used to authenticate the peers via
a secure channel, only includes the identity keys of the communication partners; thus,
a new device (using the same identity key) is automatically considered trusted. While
this improves usability, it poses a security risk.

We thus conclude that the Signal messenger is indeed vulnerable against the registra-
tion of a malicious device, where the attacker can read (and write) any messages on the
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victim’s behalf. The victim has little chance to detect the attack in a timely manner, if
they don’t check their device list regularly. If the attacker gains control over the Signal
servers and suppresses the device entry, the attack is completely undetectable from the
Signal app’s UI.

4.3.3. On the Signal implementation

For our security analysis, we had to reverse engineer the device provisioning protocol
from the desktop client, the Android app, and the server implementation, which turned
out to be quite time-consuming. Since the device registration proves to be a crucial part
of the messenger’s security, the lack of up-to-date documentation is troubling. The same
is true for other implementation details, like the server APIs, which, to the best of our
knowledge, are not included in the official protocol specification. As of writing this, the
latest revision of the API documentation in the wiki is from October 2014 [2].

To implement the ASA in the desktop client, we had to modify its Signal protocol
implementation, which is contained in a single source file. This file has more than 25000
lines, where a large majority seems to be a pre-compiled Curve25519 implementation.
The sheer amount of lines makes it relatively easy to hide manipulated codes. To detect
such manipulation more easily, one could keep auto-generated parts in a separate file
and/or generate these on-the-fly during compilation.

4.4. Countermeasures

Clearly, the most severe places to position algorithm substitution attacks, are the ones,
where the IV-replacement ASA could be used, i.e. in cases where sender-generated ran-
domness is transmitted in the clear. These attacks allowed us to leak sensible information
in only a few messages. To prevent this rapid disclosure of information, the following
modifications to the affected protocols may be used: The high bandwidth of the attack
on TLS comes from the random nonces used in the ”Hello” messages. Note that the
security analysis of Dowling et al. does not make use of these nonces at all [21]. Hence, a
possible mitigation to the described attacks is simply the removal of these nonces, which
would however require an update of the standard. For Wireguard, our attack used the
random nonce in the cookie messages. To counteract this, the nonce could be derived
from values available to peer P ′, e. g. a hash of the message causing the cookie to be
sent (which already contains randomness due to the session ID and the ephemeral key).
This way it is possible to remove the nonce from the cookie message, leaving only the
universal ASA on the encrypted cookie as a potential target.

Due to their low bandwidth, the attacks based on the universal ASA are only suited
for long-term keys: the short-term keys are usually refreshed often enough to prevent
their leakage via this low-bandwidth channel. Nevertheless, the long-term keys can
easily be leaked via this method. As shown above, the forward secrecy of the protocols
guarantees that these universal ASAs are always possible. While this is certainly a
drawback, forward secrecy also has a very positive aspect. As the universal ASAs can
only leak long-term keys, forward secrecy implies that these keys do not allow a purely
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passive attacker to read the encrypted messages. If an attacker wants to use these long-
term keys, they need to be active, e. g. by performing a Man-in-the-Middle attack. It is
therefore clearly preferable to prevent IV-replacement attacks, as these attacks can also
leak short-term secrets, which can be used by a passive attacker.

An explicit exception for this discussion is Signal, as the leakage of the long-term
key allows the registration of new devices, which completely shuts down the protocol’s
forward secrecy. As described above, the information needed to detect this attack are
already present on the side of the client, but inaccessible from the app’s UI. To counter
this attack, we propose to give a notification that a new device was registered in all chats
that the new device participates in, and transition from a user-level authentication to
a device-level authentication, such that each pair of devices generates a unique safety
number, which both users have to compare whenever a new device is registered. Just
recently, an alternative multi-device version of Signal was proposed by Campion et al. [9]
that uses per-device IDs and is thus not vulnerable to our attack.

5. Conclusion

In this work, we introduced algorithm substitution attacks against cryptographic pro-
tocols. We first showed that such attacks are always possible against any protocol
achieving forward secrecy. Afterward, we analyzed the three widely used protocols TLS,
WireGuard, and Signal on their vulnerabilities against such attacks. We discovered that
TLS and WireGuard are especially vulnerable against these kind of attacks, as the se-
cret long-term key could be leaked using only few messages. While Signal is not as
vulnerable, the leak of the secret long-term key led to a catastrophic failure of the pro-
tocol’s security guarantees due to its multi-device feature. We experimentally verified
that all of these attacks are indeed practically relevant and usable. Finally, we suggested
countermeasures against the highly efficient IV-replacement ASA.

We believe that many more cryptographic protocols are indeed vulnerable to such
attacks. Especially in times where the majority of users download their software from
few controlled app stores, it is not unlikely that state level players can apply ASA
on select targets with ease. It is therefore important to study how countermeasures
developed to prevent ASA against single algorithms can be applied at the protocol-level.

Responsible Disclosure We have informed the Signal organization of our findings. Ac-
cording to their answer, they don’t plan to address this issue in the near future.
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A. Appendix: Illustrations for the Signal protocol

28



DH Ratchet Root Sending Receiving

Figure 3: The Signal Double Ratchet protocol, from A’s perspective.
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Figure 4: The Signal device provisioning protocol.
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