
Machine-checking the universal verifiability of
ElectionGuard

Thomas Haines1, Rageev Goré2, and Jack Stodart2

1 Norwegian University of Science and Technology, Trondheim, Norway
{firstname.lastname}@ntnu.no

2 The Australian National University, Canberra, Australia
{firstname.lastname}@anu.edu.au

Abstract. ElectionGuard is an open source set of software components
and specifications from Microsoft designed to allow the modification of
a number of different e-voting protocols and products to produce public
evidence (transcripts) which anyone can verify. The software uses ElGa-
mal, homomorphic tallying and sigma protocols to enable public scrutiny
without adversely affecting privacy. Some components have been for-
mally verified (machine-checked) to be free of certain software bugs but
there was no formal verification of their cryptographic security.

Here, we present a machine-checked proof of the verifiability guaran-
tees of the transcripts produced according to the ElectionGuard spec-
ification. We have also extracted an executable version of the verifier
specification, which we proved to be secure, and used it to verify elec-
tion transcripts produced by ElectionGuard. Our results show that our
implementation is of similar efficiency to existing implementations.

Keywords: verifiable e-voting · interactive theorem provers · code ex-
traction.

1 Introduction

Electronic voting has been in use for at least the last fifty years; however, the na-
ture of elections makes it very hard to verify whether the electronic components
are behaving as they should. Current best practice is to ensure that each software
component creates publicly verifiable evidence that its output is correct with re-
spect to certain criteria. A cascade of such processes then guarantees that the
whole process is end-to-end-verifiable [1]. Such systems invariably require using
increasingly complicated cryptographic techniques.

A particular group of techniques for adding verifiability to electronic voting
is homomorphic tallying in which each vote is encrypted under a homomorphic
encryption scheme to produce a ciphertext with all ciphertexts publicly tallied
(without decrypting them) to produce an encryption of the tally. The tally ci-
phertext is then decrypted by the authorities. Zero-knowledge proofs can be used
to prove publicly that the encrypted ballots are well-formed and that the tally
was decrypted correctly. This does not suffice for overall verifiability since we do

2 T. Haines et al.

not know whether the collected ballots contain the votes intended by the eligible
voters but is rather evidence that the collected ballots are counted correctly.
There are various ways to extend homomorphic tallying to have end-to-end veri-
fiability, so that the counted ballots are guaranteed to be the intended ballots of
the eligible voters, which we omit for brevity. The most famous deployed e-voting
scheme using homomorphic tallying is surely the online voting system Helios [2],
which is used by the International Association for Cryptologic Research.

ElectionGuard is a set of open-source software components and specifications re-
leased by Microsoft in 2019 [3]. It is designed to quickly allow ballot-collecting de-
vices (such as ballot-marking devices and optical scanners) to work with trustees
(so called because they are trusted to maintain privacy) to produce public evi-
dence. Specifically, to allow such devices to produce evidence that the encrypted
ballots are well-formed, that the ballots were correctly tallied, and that the
announced result was correct with respect to the tally. All references to Elec-
tionGuard in this document are to version 0.85.3

An election in the context considered by ElectionGuard is a protocol involv-
ing Election Officials, Trustees, Voters, and Interested Citizens. The Trustees are
responsible for generating the required cryptographic keys and then decrypting
the encrypted tally at the end of the election. The Election Officials have numer-
ous responsibilities including providing the Ballot Marking Devices, Electronic
Ballot Boxs, and Electronic Poll Books.

Prior to election day, the ballot style is determined by the Election Officials
and the Trustees generate their cryptographic keys (including what threshold is
required to decrypt); for brevity we elide much of the other preparation and refer
the reader to the ElectionGuard documentation.4 In the booth, the Voter selects
her candidates using the Ballot Marking Device. The Ballot Marking Device
then creates both a paper ballot and an electronic Cast Vote Record (CVR).
It assigns the ballot a unique ID number, encrypts the CVR and constructs a
non-interactive zero-knowledge proof that the ballot is well-formed. In addition
to the paper ballot, the voter is also provided with a tracker which contains
a human-comparable hash of the encrypted ballot. The voter is then given the
option to cast or spoil the ballot. If the ballot is cast, the paper ballot is added to
the ballot box and the CVR is added to the Electronic Ballot Box. If the ballot
is spoiled the Ballot Marking Device must prove to the voter that it correctly
encrypted the voter’s selection (and the voter must create another ballot).

After the election, the encrypted ballots are homomorphically aggregated;
the paper ballots are also tallied. Prior to tallying, the zero-knowledge proofs
should be checked by trustees to ensure that we tally only well-formed ballots.
The Trustees then decrypt the aggregated ciphertexts containing the election
result. Voters need not check the result, however a diligent voter should check
that any ballots (cast or spoiled) which match the trackers they posses appear

3 https://github.com/microsoft/electionguard/wiki/Informal/
ElectionGuardSpecificationV0.85.pdf

4 For simplicity, we describe a fairly narrow use case of ElectionGuard.

Machine-checking the universal verifiability of ElectionGuard 3

correctly on the bulletin board. Any observer can check the well-formedness of
voter encryptions and correct tallying by running a computer program called a
verifier over the published transcripts, and ElectionGuard includes a reference
verifier. The goal of this process is to give the voters high confidence that their
ballot was recorded correctly and that the collected ballots are correctly tallied.
The security guarantees from voter-initiated checks ensure individual verifiabil-
ity. The checks performed by any interested party ensure universal verifiability.

The checks that the voter needs to make are simple. But the checks that the
verifier software must make are considerably more complicated. Indeed, Elec-
tionGuard is useful only if we can be sure that a verifier that correctly imple-
ments the ElectionGuard verifier specification will indeed give the security guar-
antees claimed by ElectionGuard. As we point out next, this critical relationship
between the specification and implementation is easy to break.

1.1 Implementation issues in E-Voting Systems

The theoretical foundations of verifiable electronic voting has matured greatly.
Simple schemes, such as ElectionGuard, using homomorphic tallying are well-
known and theoretically easy to construct. Nevertheless, we are now seeing small
but critical bugs in the implementation of such schemes. For instance, the Swiss
Post system, while not itself using homomorphic tallying, contained many of the
same components, many of which were broken despite extensive review [4]. This
is the tip of the proverbial iceberg in terms of failures and issues in allegedly
end-to-end verifiable systems; other examples have included the iVote system
deployed in the Australian state of New South Wales [5], and the e-voting system
used in national elections in Estonia [6]. In addition, many general issues have
been discovered [7–9] which need to be carefully avoided in any implementation.
Most of these issues were present in the Helios e-voting system [2]. Thus even
simple systems are prone to critical software errors.

General software development aims at increasing security through a process
of best practice which is not specific to the particular goal of that software. This
kind of development avoids many kinds of errors, including but not limited to,
division by zero, off-by-one errors, syntax errors, and resource errors. Various
organisations offer services for checking that software is developed according to
these standards and indeed this is commonly done for e-voting software. It is
interesting, then, that the bugs mentioned previously occurred even though the
software, in many cases, was certified according to these best practice standards.

The reason that the bugs slipped through is due to their nature. These bugs
are not standard programming bugs which might be caught by standard best
practice techniques. Rather, the code does not correctly capture the logical flow
of the protocol, as required by the cryptographic primitives. Compounding these
issues is that many of the bugs were present in the specification as well as the
code. So, at present, the problem of securely deploying electronic voting does
not appear to be primarily about improving theory or requiring more secure
programming; rather, it appears to be improving our ability to check that the
specification and implementation contain the logical flow they should.

4 T. Haines et al.

A key observation here is that while end-to-end verifiability protects against
bugs in the software running the elections, it transfers the correctness require-
ments to the software that checks (verifies) the produced evidence. This is an
excellent trade since the software required to check the evidence is much simpler
and multiple independent verifiers can be developed. However, the independence
of the verifiers is normally only skin deep since they are implementations of a
common specification which may itself be incorrect. (The common practice to
have under-graduate computer science students implement the independent ver-
ifiers is unlikely to result in insightful detection of errors in the cryptographic
specification.) Our work here can be viewed as a formal proof that the spec-
ification is cryptographically secure and that our extracted verifier tests that
our encoding of the specification is compatible (interoperable) with the existing
implementations, as well as being another independent verifier itself.

1.2 Contribution

We have formally verified the (universal) verifiability of the ElectionGuard spec-
ification: that is, we have encoded the specification in Coq and proved its crypto-
graphic soundness. Specifically, we prove special soundness (that if any adversary
is able to produce multiple accepting transcripts then the collected ballots must
be counted correctly) which is known to imply soundness [14].

We extend previous work on formally verifying the verifier of Helios by:

– Creating a richer type system to allow the ballots to be encoded into Coq;
– Defining a stand-alone verifier for these ballots and the associated proofs;
– Proving this verifier to be correct; that is to have correctness, special sound-

ness, and honest-verifier zero-knowledge.

This compares to prior work [13] where the various components of the verifier
were defined and proven secure in Coq but then composed in the extracted
version. The fact that the components should compose correctly is trivial (it
amounts to saying that the logical conjunction of n statements is true if all the
statements are true) but defining it formally in Coq results in complicated types.

These contributions allow us to extract our formally verified verifier into an
executable verifier which is comparable in efficiency to existing implementations.
We used this verifier to verify transcripts produced by ElectionGuard. We have
not proved any privacy properties of the ElectionGuard system but we have
proved the honest-verifier zero-knowledge of the verifier in Coq.

1.3 Interactive theorem provers

Interactive theorem provers are pieces of software that check that mathematical
“proofs” are correct. A human encodes the mathematical theorem and (pur-
ported) proof within the language of the interactive theorem prover and the
interactive theorem prover checks the proof using a given finite collection of
proof-rules. Trust rests upon three pillars: first, the code base for interactive

Machine-checking the universal verifiability of ElectionGuard 5

theorem provers is usually very small and has been scrutinised by many ex-
perts, typically over decades; second, most interactive theorem provers produce
a machine-readable proof of the claimed theorem and these can be checked either
by hand or by a different interactive theorem prover; third, interactive theorem
provers typically enjoy extremely rigorous mathematical foundations, which have
withstood decades of peer review. Many interactive theorem provers transliterate
(extract) correct proofs into ML, Haskell, Scheme or OCaml programs.

The main impediment to using interactive theorem proving and code extrac-
tion is the rather steep learning curve involving exotic mathematical logic(s) and
the associated proof-rules. Consequently, interactive theorem provers mostly re-
mained in an academic setting [10, 11], and were rarely considered for real life
software-engineering. Recent debacles, such as heartbleed5, have led companies
and researchers to focus on avoiding bugs by using formal verification, to the
point where it is now gaining momentum in mainstream development.

In this work, we used the interactive theorem prover Coq [12] to: encode
specifications; verify (machine-check) that (functional) programs are correct with
respect to these encoded specifications; and extract the code corresponding to
the verified functional programs.

1.4 Verification and Code Extraction Via Coq

We now explain how to use the interactive theorem prover called Coq [12] to:
encode specifications; encode functional programs; and to verify them correct
against these encoded specifications to finally extract corresponding code.

Below, we exemplify one way to produce verified programs via Coq using
addition of two natural numbers. As in the sequel, we first give a natural language
definition as might be found in a mathematics text, then its encoding into Coq,
followed by an explanation of the encoding. Doing so is important as it helps to
ensure that the encoding really does do the job we intend it to do.

Definition 1. The set mynat is the smallest set formed from the clauses:

1. the term O is in mynat;
2. if the term n is in mynat then so is the term S n;
3. nothing else is in mynat.

I n du c t i v e mynat : Se t :=
| O : mynat (∗ O i s a mynat ∗)
| S : mynat −> mynat . (∗ S o f a mynat i s a mynat ∗)

Here, the first line encodes that mynat is of type Set and the vertical bar
separates the two subclauses of the encoding. The terms O and S are known
as constructors and anything in between “(*” and “*)” are comments. The first
subclause illustrates that the colon can also be read as set membership ∈ while
the second clause illustrates that the constructor S is actually a function that

5 http://heartbleed.com/

6 T. Haines et al.

accepts a member from mynat and constructs another member of mynat by
prefixing the given member with S. Thus the explicit mention of n in the natural
language definition is elided. Clause (3) of the natural language definition is
encoded by the declaration Inductive. Intuitively, the natural numbers are the
terms O, (S O), (S (S O)), · · · corresponding to 0, 1, 2, · · ·.

Definition 2 (Specification of addition). Adding O to any natural number
m gives m, and for all natural numbers n, m, and r, if adding n to m gives r
then adding (S n) to m gives (S r).

I n du c t i v e add : mynat −> mynat −> mynat −> Prop :=
| addO : f o r a l l m, (add O m m)
| addS : f o r a l l n m r , add n m r −> add (S n) m (S r) .

Here, the notation mynat → mynat → mynat → Prop encodes that add is
ternary and that it is a “Proposition” which returns either true or else false, but
in intuitionistic logic rather than classical logic. Our specification of addition is
encoded as a ternary predicate add n m r that is true iff “adding n to m gives r”,
based purely on the only two ways in which we can construct the first argument:
either it is O, or it is of the form (S ·). The “extraction” facilities of Coq allow
us to produce actual code in OCaml, Haskell, or Scheme. The encoding below is
our hand-crafted function myplus in which the “where” keyword allows an infix
symbol + for myplus and ⇒ (not →) indicates the return value of the function:

Fixpoint myplus (n m: mynat) : mynat :=
match n with
| O => m
| S p => S (p + m)
end
where ”p + m” := (myplus p m) .

Our function is correct if it implies the specification below.

Theorem 1. For all natural numbers n, m, r, if r = myplus n m then add n m r
is true.

Theorem myp lu s co r r e c t :
f o r a l l n m r : mynat , (r = myplus n m) −> (add n m r) .

Proof .
i nduc t i on n . i n t r o m. i n t r o r . i n t r o H. s imp l in H.
s u b s t r . app l y addO . i n t r o s m r H. r ew r i t e H.
s imp l myplus1 . app l y addS . app l y IHn . r e f l e x i v i t y .

Qed .

The text shown between the words Proof and Qed consists of commands
typed in by the user to guide Coq to the proof of the theorem. That is, the
user interacts with Coq to obtain the proof, with Coq checking each step to
ensure that it is acceptable. The Coq extraction mechanism turns our function
“myplus” into Ocaml, Haskell or Scheme code giving us a program which is
provably correct with respect to our specification of addition.

We can also reason about our specification itself inside Coq. For example,
the theorem below encodes that our definition of addition is commutative:

Machine-checking the universal verifiability of ElectionGuard 7

Theorem 2. For all natural numbers n, m, r, if add n m r then add m n r

Theorem add commutative :
f o r a l l n m r : mynat , (add n m r) −> (add m n r) .

Proof Qed .

In the sequel, we give all of our theorems in both plain text and in Coq to
enable the reader to confirm that our encodings do indeed capture our intentions.

1.5 Protecting against flaws in code and specifications

Haines et al. [13] suggested combining techniques for verifiable e-voting and
formal verification of software. The idea is that the key component, at least for
integrity, in a verifiable e-voting system is not the e-voting software but the
verifier that checks the public evidence produced by the e-voting software; if the
verifier is correct (and used) then the properties it guarantees will hold regardless
of any bugs present in the e-voting software. This is useful because the verifier
is a far simpler and more self contained than the e-voting software. Rivest [1]
called this “Software independence” but the term is perhaps slightly misleading
because there is still a fundamental reliance on the software that implements a
correct verifier.

If the verifier is the key entity to verify (machine-check), the next logical ques-
tion is what properties of the verifier need to be checked? Specifically, Haines et
al. argued that the logical properties of the verifier are what need to be checked.
In the context of e-voting systems built largely upon zero-knowledge proofs, the
key property of the verifier is soundness. That is, the verifier should not accept
the transcript unless the statement is true, at least with overwhelming proba-
bility. Collectively, this means that the integrity of a deployed e-voting scheme
can be reduced to the strong guarantees of correctness provided by interactive
theorem provers rather than the new and understudied e-voting scheme.

Haines et al. demonstrated the feasibility of this approach by creating several
machine-checked sub-verifiers for the Helios e-voting system which collectively
sufficed for universal verifiability. They achieved this by providing the logical
machinery to easily prove secure the sigma protocols used in e-voting; we reuse
this machinery in our work. The similarities in ElectionGuard and Helios mean
many of the underlying components (sub-verifiers) are similar but in our work
we take care of the various differences and extend Haines et al.’s work to prove
the completed verifier secure rather than the sub-verifiers.

1.6 Residual trust assumptions

The residual trust assumptions differ between the different aspects of our con-
tribution. In general, the work in Coq has fairly low trust assumptions whereas
the extracted verifier has higher trust assumptions.

The correctness of the work in Coq depends on the correctness of Coq but also
that we have correctly defined verifiability and ElectionGuard. The definition of
verifiability takes the well established form of special soundness. The soundness

8 T. Haines et al.

of the ElectionGuard definition is resolved by proving that it satisfies verifiability;
the compatibility of the definition is demonstrated by showing that it can handle
real ElectionGuard transcripts.

The extracted verifier incurs several additional trust assumptions and for this
reason we suggest that our extracted verifier should be one of many. First, the
extraction facility in Coq has not been formally verified and this could introduce
errors. In addition, we replace some of the inefficient Coq arithmetic functions
with significantly faster native OCaml functions. Finally, since deployed sigma
protocols are made non-interactive via the Fiat-Shamir transform, this transform
also needs to be checked for correctness to ensure the deployed elections are
secure.This is not challenging to do manually despite the prevalence of careless
implementations. It would be nice to prove the correctness of the Fiat-Shamir
transform inside an interactive theorem prover but unfortunately this would
involve rewinding random oracles which is not currently supported in any prover
known to the authors.

2 Machine checking the verifiability of ElectionGuard

In this section we will introduce our Coq specification which encapsulates the
relevant parts of ElectionGuard. We will aim to provide sufficient detail to give
an overview of what we did without completely overwhelming readers who are
unfamiliar with Coq. It is important to provide such details so that readers can
check that our Coq encodings do actually capture what we claim we capture.
For conciseness we will not provide details of the sigma protocols and interested
readers may consult [13].

2.1 ElectionGuard Elections

An election in the context of ElectionGuard consists of a fixed number of contests
with one or more candidates in each contest. This style of voting varies between
plurality voting and approval voting depending on the number of candidates
which are allowed for selection. We assume for simplicity that each voter is
allowed to select exactly one candidate in each contest: this is easy to change
but doing so unduly complicates the presentation. We use numContests as the
number of contests in any given election.

ElectionGuard uses ElGamal in Schnorr groups. We abstract our verifier over
any group G of prime order since the exact group does not matterfor the security
reduction. For a given group G, the ElGamal ciphertext space is the product
group DG.G of G and G: a product group is the group-theoretic analogue of the
Cartesian product where all operations are taken component-wise. In the Coq
examples that follow G and DG.G will refer to the sets that underly these groups.

Running example: here we give a running example to show how we encode
ballots into Coq using the digit 1 to signify “preferred candidate” and using 0 to
signify “unpreferred candidate”. Suppose we have an election with three contests
with four candidates in the first contest, three candidates in the second contest,

Machine-checking the universal verifiability of ElectionGuard 9

and two candidates in the third contest. To vote for a candidate in the first
contest, a voter has to create a list of natural numbers of length four containing
exactly one 1 with the others all 0. The list entries are then mapped into the
group G (which is the message space of the encryption scheme) before being
encrypted to give ciphertext members of DG.G so we use E(1) and E(0) to stand
for “encryption of 1” and “encryption of 0” respectively. For example, the vector
[E(1),E(0),E(0),E(0)] of length four is a vote for the first candidate out of the
four candidates in contest 1 where E(1) ∈ DG.G and E(0) ∈ DG.G . Suppose that
the election has two cast ballots with the first ballot cast for candidates 1, 2,
and 1 in the three respective contests and the second ballot cast for candidates
2, 1, 2. respectively, as shown below:

Contests 1 2 3
Ballot 1 [E(1),E(0),E(0),E(0)] [E(0),E(1),E(0)] [E(1),E(0)]
Ballot 2 [E(0),E(1),E(0),E(0)] [E(1),E(0),E(0] [E(0),E(1)]
We now describe how we encoded such ballots into Coq using vectors and

product types.

2.2 Vector and Product Types

We assume that the reader is not an expert in Coq and therefore explain how we
encoded ballots into Coq in some detail. There is nothing particularly original
in our encoding but it may appear complicated to a naive reader.

We encode most of our information in vectors which are defined in Coq via
the command vector type length where type is the the type of the elements
of the vector and length is the length of the vector: thus vector int 3 encodes
that the vector contains integers and is of length three. To maintain generality,
the declaration vector nat numContests tells Coq that each vector is of length
numContests and contains natural numbers nat. Our running example of an
election with three contests with four, three, and two candidates, respectively,
would be a vector called numSel = [4,3,2] of type vector nat 3. The functions
Vhead and VTail are provided by Coq to allow us to split a vector (a list) into
its components, so Vhead [4,3,2] would return 4 and Vtail [4,3,2] would
return [3,2].

In Coq, if A and B are two arbitrary types, then the type prod A B contains
all pairs (a, b) such that a is of type A and b is of type B. If A and B are of type
Set then so is prod A B.

An (encrypted) ballot, such as Ballot 1 above, is an ordered tuple where each
member of the tuple is itself a tuple of ciphertexts. We define it in Coq as shown
below. The type of a ballot is a nested product of vectors of ciphertexts where the
depth of the product is the number of contests and at each layer of the product
it contains a vector of ciphertexts of length equal to the number of candidates in
that contest. For example, continuing our previous example above, a ballot would
be of type vector DG.G 4 * vector DG.G 3 * vector DG.G 2. It is easy to
see that the ballots in our example, ([E(1), E(0), E(0), E(0)], [E(0), E(1), E(0)],
[E(1), E(0)] and ([E(0), E(1), E(0), E(0)], [E(1), E(0), E(0], [E(0), E(1)]), are of
this type.

10 T. Haines et al.

The type ballot is defined in Coq as a set of functions which accept a vector
of natural numbers of length numContests. By making ballot depend upon the
argument numContests, we tell Coq that the type of the vector input depends
on numContests. The function also specifics that the type it outputs will be a
set. The function fun ... consists of two clauses depending upon the value of
the natural number numContests:

Base case: the first is for the base case when the number of contests is zero in
which case we simply return the empty set.

Inductive case: the second is for when the number of contests is non-zero when
we recursively define the result as the Cartesian product of two sets whose
types are, respectively, vector DG.G (Vhead v) and ballot (Vtail v).
The first set has type vector DG.G (Vhead v) where (Vhead v) is the num-
ber of candidates in the first contest. The second set has type ballot (Vtail

v) as returned by ballot on all remaining contests.

Fixpoint ballot (numContests : nat) :
vector nat numContests -> Set :=

match numContests with
| 0%nat => fun _ => Empty_set
| _ => fun v => prod (vector DG.G (Vhead v)) (ballot (Vtail v))
end.

A ballot on its own may be ill formed and contain a large number of votes for
each candidate. ElectionGuard, therefore, requires that each ballot come with a
cryptographic proof that it is well formed. We define the type of the ballot proof
as shown below.

Fixpoint ballotProof (numContests : nat) :
vector nat numContests -> Type :=

match numContests with
| 0%nat => fun _ => Empty_set
| _ => fun v1 => prod (ProofTranscript (OneOfNSigma (Vhead v1)))

(ballotProof (Vtail v1))
end.

In essence, it is a nested tuple where each element in the tuple corresponds
to the cryptographic proof, in the form of a sigma-protocol transcript, that the
corresponding ciphertexts are all encryptions of zero or else one and that the
summation of the ciphertexts is equal to one. That is, in this context, the votes
for each candidate are either yes or no and exactly one candidate has a yes vote.

The sigma protocol transcript type is returned by the function ProofTranscript

which takes a sigma protocol and returns the type of its transcripts. In this case,
the sigma protocol is OneOfNSigma which takes a natural number n and returns
a sigma protocol to check that n chiphertexts are all encryptions of one or else
zero and the product of the ciphertexts is one.

Once all the ballots are homomorphically combined, the authorities decrypt
the summation of all ballots. They do this by each using their share of the
secret key to produce decryption factors. These decryption factors can then be
publicly combined by anyone to decrypt the ciphertext. We define the type of
the decryption factors as shown below.

Machine-checking the universal verifiability of ElectionGuard 11

Algorithm 1: Election Verifier

Data: numTrustees numCast numContests
Data: vector containing the number of selections in each contest numSel
Data: group generator g, public key shares pks
Data: castBallots ballotProofs decFactors decProofs
Result: valid
valid := true;
acc := Encryption of zero;
for (ballot,proof) ∈ (castBallots,ballotProofs) do

if proof of correct encryption for ballot are invalid then
valid := false;

end
acc := acc × ballot

end
if If decProofs are invalid for decFactors with respect to acc then

valid := false;
end

Fig. 1. Algorithm of the Verifier

Fixpoint decryptionFactors (numContests numTrustees : nat) :
vector nat numContests -> Set :=
match numContests with

| 0%nat => fun _ => Empty_set
| S n’ => fun v1 => prod (vector (vector G numTrustees) (Vhead v1))

(decryptionFactors numTrustees (Vtail v1))
end.

Since we do not trust the authorities (trustees) to honestly decrypt the result,
ElectionGuard uses sigma protocols to prove that the decryption factors are
computed correctly. We define the type of these proofs as below.

Fixpoint decryptionProof (numContests numTrustees : nat) :
vector nat numContests -> Type :=

match numContests with
| 0%nat => fun _ => Empty_set
| S n’ => fun v1 => prod

(ProofTranscript (BallotDecSigma (Vhead v1) numTrustees))
(decryptionProof numTrustees (Vtail v1))

end.

2.3 Verifier

We will largely skip over the details of our implementation of the verifier be-
cause we have proven its cryptographic soundness and have checked that it is
compatible with ElectionGuard, and as such, the exact details are not particu-
larly important.

At a high level, the verifier is defined in Figure 1 (for simplicity we use
parameters implicitly); it takes in the election parameters, the cast ballots and
various cryptographic proofs and decryption factors. It then checks that the

12 T. Haines et al.

cryptographic proofs that the ballots are well formed are valid and that the
crytographic proofs of correct decryption for the summation of all the ballots
are valid. The Coq variant is shown below. bVforall2 takes a predicate p on two
values, and two vectors v, v′ of the same length m and checks that p(v[i], v′[i])
is true for all i in 1 to m.

Definition Verifier
(* Parameters *)
(numTrustees numCast numContests : nat)
(numSel : vector nat numContests)
(g : G) (pks : vector G numTrustees)

(* Cast ballots *)
(castBallots : vector (ballot numContests numSel) numCast)

(* Proofs of correct encryption *)
(ballotProofs : vector (ballotProof numContests numSel) numCast)
(decFactors : decryptionFactors numTrustees numSel)
(decProofs : decryptionProof numTrustees numSel) : bool :=
let pk := (g, VG_prod pks) in
let tally := Vfold_left (multBallots numContests numSel)

(zeroBallot numContests numSel) castBallots in
(* Check proof of correct encryption *)
(bVforall2 (BallotVerifier pk numContests numSel)) castBallots ballotProofs
(* Checks proof of correct decryption *) &&
DecryptionVerifier g pks numContests numSel tally decFactors decProofs.

We describe each component of the Coq definition:

numtrustees: is the number of election authorities participating in the election;
numCast: is the number of ballots cast in the election;
numContests: is the number of contests in the election;
numSel: is a vector containing the number of candidates in each contest;
g: is the generator of the underlying Schnorr group G for ElGamal;
pks: is the vector of length numtrustees containing elements from G ie the

public keys of the authorities;
ballot numContests numSel: is the set of all ballots for numContests contests

with numSel candidates in each contest.
castBallots: of type vector (ballot numContests numSel) numCast is then

the vector of length numCast containing each ballot of type (ballot numSel);
multBallots numContests numSel: is a function which forms the multiplica-

tion of two ballots in ballot numContests numSel by multiplying the ci-
phertexts component-wise.

2.4 Machine Checked Verifiability

In this subsection we will present our main theorem about the validity of the
verifier. We will present it first in more standard notation and then in Coq
notation. A reader familiar with sigma protocols will notice that it takes the
form of cryptographic special soundness.

Recall that a zero knowledge proof demonstrates that a statement s belongs
to a particular language, and it is common to use R to denote the relationship
between statements and witnesses. Special soundness says that if any adversary

Machine-checking the universal verifiability of ElectionGuard 13

can produce two accepting transcripts for different challenges then it is possible
to extract a witness w from those transcripts efficiently such that (s, w) ∈ R.
Bellare and Goldreich give the standard definition of proofs of knowledge in their
work “On Defining Proofs of Knowledge” [15]. They define knowledge error,
which intuitively denotes the probability that the verifier accepts even when
the prover does not know a witness. It has been shown that a sigma protocol
satisfying special soundness is a proof of knowledge with negligible knowledge
error in the length of the challenge, as stated next.

Theorem 3. A sigma protocol P for relation R with challenge length t is a
proof of knowledge with knowledge error 2−t.

The intuition for why special soundness implies soundness is straightforward.
Special soundness says that, for any given commitment, if the adversary can
answer for two different challenges then the adversary must know a witness for
the statement. This implies that if no witness is known there must be at most
one challenge for which the adversary could successfully respond. The chance of
drawing the single challenge for which the adversary can successfully respond
is negligable in the security parameter. (The formal argument in the case of a
proof of knowledge is slightly different and can be found in [14].)

The reader may also find that the upcoming Theorem 5 has a slightly odd
feel. The proofs of correct encryption and decryption intuitively have a temporal
ordering, the protocol even specifies that the trustees should check the proofs of
correct encryption before decrypting. However, since we are defining the verifier
for the public information after the election is concluded, we can fold these proofs
into one large proof for simplicity. Formally, we are allowed to do this because
the properties of sigma protocol are invariant under parallel composition [14],
which was proven to be true for the formalisation of Sigma protocols we use
in [13].

Theorem 4. For all number of trustess, number of cast ballots, number of con-
tests, for all ballot formats, generators, public key shares, cast ballots, for all
decryption factors, if there exists an adversary A which can produce accepting
proofs for the verifier for two different challenges on the same commitment then
the ballots are all correctly formed and the summation is correctly decrypted.

The Coq theorem is stated slightly differently, we show that the existence
of two accepting proofs with two different challenges on the same commitment
implies that the ballots are all correctly formed and the summation is correctly
decrypted. Since this holds for any two transcript of this form it clearly holds
for any A producing transcripts of this form. We show this modified theorem in
Theorem 5.

Theorem 5. For all number of trustees, number of cast ballots, number of con-
tests, for all ballot formats, generators, public key shares, cast ballots, for all
decryption factors, for all pairs of accepting proof transcripts, if the pair of proof
transcripts have two different challenges on the same commitment, then the bal-
lots are all correctly formed and the summation is correctly decrypted.

14 T. Haines et al.

Theorem 5 is encoded into Coq as shown below.

Theorem VerifierCorrect :
forall

(numTrustees numCast numContests : nat)
(numSel : vector nat numContests)
(g : G)(pks : vector G numTrustees)
(* Cast ballots *)
(castBallots : vector (ballot numSel) numCast)
(* Proofs of correct encryption *)
(balProf1 balProf2 : vector (ballotProof numSel) numCast)
(decFactors : decryptionFactors numTrustees numSel)
(decProf1 decProf2 : decryptionProof numTrustees numSel)
(result : tally numSel),

let pk := (g, VG_prod pks) in
let summation := Vfold_left (multBallots numSel) (zeroBallot numSel)

(castBallots) in

(* The tally and the decryption factors are consistent *)
ResultDecFactorsConsistent numTrustees g numSel summation result decFactors
-> Verifier numSel g pks castBallots balProf1 decFactors decProf1
-> (* Conditions for special soundness *)

Verifier numSel g pks castBallots balProf2 decFactors decProf2 ->
Vforall2 (ballotProofDis numSel) balProf1 balProf2 ->
Vforall2 (ballotProofComEq numSel) balProf1 balProf2 ->
decryptionProofDis numTrustees numSel decProf1 decProf2 ->
decryptionProofComEq numTrustees numSel decProf1 decProf2 ->

Vforall (BallotCorrectlyFormed pk g numSel) castBallots /\
BallotCorrectlyDecrypted pk numSel summation result.

Vfold left Takes a binary function, an initial value, and a vector and re-
duces the vector to a single value. In this case it multiplies all the encrypted
ballots using the function multBallots. The proof of Theorem 5 follows from
the soundness of the underlying sigma protocols; in essence we extract witness to
all the underlying statements and show that they collectively imply that all the
encrypted ballots are well-formed and the aggregation of all encrypted ballots is
correctly decrypted.

3 Using the Extracted Verifier

Having defined the verifier we could use it inside Coq to check election tran-
scripts, but unfortunately, this is prohibitively slow. Instead, we make use of the
Coq extraction facility to produce OCaml code which matches the Coq specifi-
cation. This extraction facility is the subject of the CertiCoq project [16] which
aims to verify its correctness. Our verifier is proven secure for any Schnorr groups
in the sense that the reductions and logical proofs hold for any such group; of
course, if the decisional Diffie-Hellman problem is easy in the chosen group then
privacy is lost. We note that our extracted verifier replaces the Coq implemen-
tation of arithmetic with the native OCaml implementation for efficiency.

We now encounter an issue, the reference verifier released with ElectionGuard6

does not appear to be compatible with the parameters in the ElectionGuard
specification.7 The reference verifier works for a limited set of safe prime groups

6 https://github.com/microsoft/electionguard-verifier
7 https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecificationV0.85.pdf

Machine-checking the universal verifiability of ElectionGuard 15

whereas the specification requires a Schnorr group which is not a safe prime
group. To test our verifier, we therefore changed the parameters from those in
the specification to the 1536-bit group from the reference verifier. We produced
test cases (in the form of JSON files) with the reference verifier; we then wrote
code to parse this JSON and feed it into our verifier. Our verifier accepted on
the test cases and rejected on the incorrect inputs we tried.

3.1 Efficiency

Our extracted verifier with some underlying Coq functions replaced by OCaml
counterparts is twice as efficient as the reference verifier provided by Elec-
tionGuard. The time to verify is dominated by the number of ciphertexts which
is the total number of candidates in all contests multiplied by the number of
voters. Our verifier takes about 50 seconds per 1000 ciphertexts, so for an elec-
tion with one million ciphertexts, it would take roughly 14 hours. This compares
to the reference verifier which takes 110 seconds per 1000 ciphertexts. We were
surprised that our verifier was faster; the OCaml implementation we use of the
mathematics is faster by a factor of two which might explain the difference.

Note, our current encoding is a first attempt and mimicks the underlying
mathematics as closely as possible to ensure that the encoding does not con-
tain transliteration errors. Our encoding can be further optimised for speed and
parallelised if required, but this requires further work.

The performance of our ElectionGuard verifier on the test cases, while com-
parable in efficiency to other implementations, is significantly slower than the
machine-checked verifier for Helios created by Haines et al. [13]. This is due to
the use of a safe prime group in the ElectionGuard reference verifier even though
the specification requires a Schnorr group. If we replace that safe prime group
with a Schnorr group of comparable security, as used by Helios, but with prime
order of around 256 bits, our implementation would be ∼6 times faster than it
currently is, meaning that an election of one million ciphertexts would take only
2 hours to verify. The ElectionGuard specification mandates a Schnorr group
with a prime order of around 256 bits, so in a real election, our verifier would
be faster than it was on tests produced by the reference implementation.

4 Conclusion

In this work we machine-checked the verifiability specification of ElectionGuard
to be cryptographically sound. We achieved this by encoding the specification
inside the interactive theorem prover Coq and then proving that it has crypto-
graphic soundness. In addition, we proved the zero-knowledge properties of the
verifier. We extracted an executable version of the verifier specification which is
of comparable efficiency to existing implementations and used it to verify election
transcriptions produced by the reference implementation of ElectionGuard.

Acknowledgments. This work was supported by the Luxembourg National
Research Fund (FNR) and the Research Council of Norway for the joint project
SURCVS

16 T. Haines et al.

References

1. Rivest, R.L.: On the notion of ’software independence’ in voting systems. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 366 (2008) 3759–3767

2. Adida, B.: Helios: Web-based open-audit voting. In van Oorschot, P.C., ed.:
USENIX Security Symposium, USENIX Association (2008) 335–348

3. Microsoft: Electionguard (2019)
4. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election

outcome. In Oprea, A., Shacham, H., eds.: 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Jose, CA, USA, May 17-21, 2020, IEEE (2020) 784–800

5. Halderman, J.A., Teague, V.: The New South Wales iVote system: Security failures
and verification flaws in a live online election. In: International Conference on E-
Voting and Identity, Springer (2015) 35–53

6. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine, M.,
Halderman, J.A.: Security analysis of the Estonian internet voting system. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, ACM (2014) 703–715

7. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting He-
lios for provable ballot privacy. In: ESORICS. Volume 6879 of Lecture Notes in
Computer Science., Springer (2011) 335–354

8. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy.
Journal of Computer Security 21 (2013) 89–148

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In: ASIACRYPT. Volume 7658
of Lecture Notes in Computer Science., Springer (2012) 626–643

10. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,
D., ed.: Computer Mathematics, Berlin, Heidelberg, Springer Berlin Heidelberg
(2008) 333–333

11. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A constructive proof of the fundamental
theorem of algebra without using the rationals. In: Selected Papers from the
International Workshop on Types for Proofs and Programs. TYPES ’00, Berlin,
Heidelberg, Springer-Verlag (2002) 96–111

12. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts
in theoretical computer science. Springer (2004)

13. Haines, T., Goré, R., Tiwari, M.: Verified verifiers for verifying elections. In: ACM
Conference on Computer and Communications Security, ACM (2019) 685–702

14. Damg̊ard, I.: On Σ-protocols (2002)
15. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: CRYPTO. Volume

740 of Lecture Notes in Computer Science., Springer (1992) 390–420
16. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,

O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: The Third
International Workshop on Coq for Programming Languages (CoqPL). (2017)

A Coq source

Our code is available via the link below:

https://github.com/gerlion/secure-e-voting-with-coq

