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Abstract—Multi-signatures are used to attest that
a fixed collection of n parties, represented by their
respective public keys, have all signed a given mes-
sage. An emerging application of multi-signatures
is to be found in consensus protocols to attest that
a qualified subset of a global set of n validators
have reached agreement. In this paper, we point
out that the traditional security model for multi-
signatures is insufficient for this new application, as
it assumes that every party in the set participates
in the multi-signature computation phase and is
honest. None of these assumptions hold in the
typical adversarial scenarios in consensus protocols
(aka. byzantine agreement). We address this by
introducing a new multi-signature variant called
robust subgroup multi-signatures, whereby any eli-
gible subgroup of signers from the global set can
produce a multi-signature on behalf of the group,
even in the presence of a byzantine adversary.
We provide syntax and security definitions for the
new variant. We argue that existing unforgeability
security proofs for multi-signatures do not carry
over to the consensus setting; a consequence of
this observation is that many multi-signature based
consensus protocols lack a rigorous security proof
for correctness. To remedy this we propose several
constructions which we prove secure under widely
held cryptographic assumptions using our newly
introduced formal definitions and also improve
upon multi-signature computation time. Finally,
we report on benchmarks from a proof-of-concept
implementation.

1. Introduction

A multi-signature protocol1 enables n en-
tities indexed by their respective public keys
{pki}ni=1 to sign a message m and produce n in-
dividual signatures {si}ni=1 which are later com-
pressed into a multi-signature σ. Recently there
has been a renewed interest in multi-signatures
for securing distributed ledgers, e.g. [DGNW20],
[MPSW19], [GGJ+20]. Multi-signatures can be
used to build secure ledgers more efficiently,

1. We also use the term scheme.

namely they can help reduce block storage and/or
block correctness verification time or reduce the
time to validate that consensus on a block has
been reached [BDN18], [DGNW20].

A multi-signature can be trivially obtained
from any unforgeable signature scheme by con-
catenating every individuals’ signature on m,
while verification simply checks that each atomic
signature passes the individual signature verifi-
cation test. Often designs that improve on this
trivial construction in terms of the final sig-
nature length or the performance of the ver-
ification process are preferred. It is expected
that multi-signature designs achieve compactness
[BDN18], that is, the length of the final multi-
signature is independent of the number of sign-
ers. The verification of the short multi-signature
σ should convince a verifier that all the n en-
tities signed the message m. Multi-signatures
can be constructed, for example, from Schnorr
signatures e.g. [MPSW19], and from BLS sig-
natures [BGLS03], [Bol02], [BDN18]. Schnorr-
based multi-signatures involve multiple rounds
of communication, while pairing-based multi-
signature schemes can be non-interactive. The
latter is highly desirable for applications in dis-
tributed settings where the potential participants
are not known upfront and the network nodes
are sparsely connected, making the establishment
of multiple simultaneous point-to-point channels
to support the interaction costly. The focus on
this paper is therefore on non-interactive multi-
signature protocols.

Despite the recent popularity gained by
multi-signatures for the specific purpose of
recording blockchain consensus, both in the
literature [BDN18], [MPSW19], [DGNW20],
[GGJ+20] and implemented in production plat-
forms [eth], [Elr19], [Har], [Ten], [Cel], the ex-
isting multi-signatures formal models fail to ad-
dress the particularities of consensus protocols.
Indeed, existing multi-signatures formal models
apply in scenarios where the signing entities are
controlled by a single party or where they are
highly coordinated, so that the incoming indi-
vidual signatures are assumed to be valid before



being combined in a single multi-signature. Such
is the case for instance in a scenario where
a user owns multiple wallets that can transfer
funds by generating a multi-signature that, if cor-
rect, shows every wallet signed the corresponding
transfer (this actually constitutes their main usage
so far in the cryptocurrency space).

Thus, existing (non-interactive) multi-
signature schemes mechanics do not explicitly
address the verification and selection of valid
individual signatures before running the multi-
signature creation process. However, in the
context of signaling block agreement amongst a
group of validators in Proof-of-Stake consensus
protocols, it is not reasonable to assume that the
individual signatures coming from consensus
nodes are valid by default, as some of these
nodes may be Byzantine [Shi19]. This applies
likewise in the case of aggregating transaction
signatures. Therefore individual signatures need
to be verified before being aggregated into a
multi-signature, as we simply cannot assume
they are valid when the combining party runs the
combining process. To reflect this, we introduce
a notion of robustness for multi-signatures,
which is a form of correctness but allowing the
adversary to submit signatures to the signature
combination algorithm. This lets an attacker
launch signature poisoning attacks aimed at
halting the success of the signature combination
algorithm.

A variant of multi-signatures that can be par-
ticularly useful for consensus applications is sub-
group multi-signatures [MOR01], [Bol02]. Sub-
group multi-signatures allow any eligible sub-
group of signers from a global set to produce
a multi-signature on behalf of the global group.
This concept is most useful in scenarios where
the group of entities that will participate in the
signing process of a given message belong to a
fixed set but is not fully determined. For example
that is the case in t-out-of-n multi-signatures,
where a combined multi-signature is valid if any
t members out of a given n-member set have
signed.

The current practice of building a subgroup
multi-signature by modifying BLS-based multi-
signatures [BDN18] with bitmaps, as found for
example in [Elr19], [Har], [Cod], [GGJ+20] is
not necessarily provably secure. Let us take
the example of Elrond [Elr19], that uses a
modified version of the multi-signature scheme
MSP [BDN18]. Firstly, we note that no security
analysis is provided for the resulting modified
multi-signature scheme. The unforgeability of
the original MSP scheme is proven conditioned
to each signer having prior knowledge of all

entities that will definitely sign, which makes
MSP unsuitable to be used directly as a sub-
group multi-signatures2. Technically this condi-
tion is crucial for defending against the notori-
ous rogue-key attacks [RY07] and is guaranteed
by hashing all the signers in the coefficients
ai = H1(pki, {pk1, · · · , pkn}) during the sign-
ing process. In the security reduction of multi-
signature unforgeability, these coefficients enable
the generalised forking lemma to output two
different multi-signatures signed by the same set
of signers after rewinding to the point where
ai is chosen in order to extract the underlying
secret key of the target signer pk?. Elrond’s
modified version breaks this condition by using
the coefficients ai = H1(pki) instead, which can
no longer guarantee the set of signers is the same
when using the generalised forking lemma, thus
it cannot be proven secure using the techniques
in [BDN18]. Other in production consensus plat-
forms like [Har], [Cod], [GGJ+20] implement a
bitmap variant of the proof-of-possession (PoP)
based multi-signature MSP-pop [RY07]. How-
ever, MSP-pop with bitmap has not been proven
secure as a subgroup multi-signature.
Our contributions. We introduce robust
subgroup multi-signature protocols, a multi-
signature variant specially designed to be used
as a building block for consensus protocols.
We define robustness for multi-signatures,
and present a rigorous definition of existential
unforgeability for subgroup multi-signature
protocols. Robustness evaluates the correctness
of the signature combination algorithm in the
presence of an adversary that may control a
subset of the signers. As a side benefit of
explicitly capturing the signature combination
function, we are able to optimise the validation of
individual signatures by using zero-knowledge
proofs instead of time-consuming pairing
operations, which improves upon the efficiency
of signature combination algorithms of several
existing multi-signatures. Regarding existential
unforgeability, we point out that the previous
syntax and security definitions for subgroup
multi-signatures in [Bol02] are incomplete and
somewhat informal. This is undesirable from
a scientific point of view, and in fact this lack
of formality may explain why [Bol02] presents
a security proof for their construction while it
is known to be insecure [BDN18]. We believe
that robust subgroup multi-signatures capture
the variant of multi-signatures that best suits
consensus applications.

2. Indeed, the main application for their multi-signatures
discussed by the authors in [BDN18] is to Bitcoin n-of-n
Multisig addresses
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We shall present four constructions of
robust subgroup multi-signatures, that are
named RSMSP,RSMSP-zk,RSMS-pop and
RSMS-pop-zk respectively. While RSMS-pop
is a natural adaption of the MSP-pop scheme
[RY07] to our subgroup model, the other
three constructions RSMSP,RSMSP-zk and
RSMS-pop-zk are new. Our RSMSP scheme
is a twist of the MSP scheme [BDN18]: the
determination of the actual co-signers is deferred
to the signature combination phase thanks to our
explicit combine function, and we include the set
of identities I of the actual co-signers in the hash
values ai = H2(pki, I, {pk1, pk2, · · · , pkn})
for i ∈ I . This trick enables us to remove the
restriction that the set of co-signers needed
to be fixed upfront. It also enables us to use
the Generalised Forking Lemma [BCJ08] to
rewind the adversary to the point in the security
reduction where the value ai is generated and
produce a different multi-signature forgery
with the same set I of co-signers in order to
prove existential unforgeability. The variants
RSMSP-zk (resp. RSMS-pop-zk) optimise the
combination of individual signatures in RSMSP
(resp. RSMS-pop) by introducing NIZKs to
validate individual signatures. Note that the
combine function does not use any secret
information and can be run by any entity,
making it still a non-interactive process. Our
experiments show that this optimisation makes
the combination process 2x faster. Last but
not least, by proving secure the construction
RSMS-pop using our refined subgroup multi-
signature model, we provide the missing
evidence that the multi-signatures protocols for
consensus in [Har], [Cod], [GGJ+20] are indeed
sound.

Related work. Sequential aggregate multi-
signatures are studied in [BGOY07], [LMRS04],
[LOS+06] where each signer modifies the aggre-
gate signature in turn. Such signatures are suit-
able for applications such as secure route attesta-
tion and certificate chains. Pixel [DGNW20] is a
forward-secure multi-signature scheme based on
hierarchical identity-based encryption (HIBE),
which involves a key update method in order
to provide forward security. Despite Pixel being
used to record consensus on a block its secu-
rity model only covers n-of-n multi-signatures.
Plumo [GGJ+20] implements a SNARK based
validation for checking aggregated BLS signa-
tures, with the atomic subgroup multi-signatures
being built with the above-referred MSP scheme,
with the public keys corresponding to the signers
subset are succinctly expressed as a bitmap.

Accountable subgroup multi-signatures

[MOR01], [BDN18] allow any subgroups to
produce a multi-signature for a message in a
provably secure way but involve an interactive
key setup per subgroup. This is mainly due to the
requirement of not involving individual public
keys for multi-signature verification. While this
setting can be useful for some applications
(e.g., multisig wallets with 2 or 3 addresses
[And11]), it is not in general acceptable in the
consensus setting. Indeed that would require
validator nodes to run a joint setup phase which
is expensive. In the decentralised consensus
application, validator groups are formed ad
hoc by the network nodes which are sparsely
connected. An interactive key setup requires
synchronisation among n participating nodes
which is a difficult challenge for implementation
of decentralised applications, especially when
n is big. For example, Ethereum 2.0 requires a
minimum of 128 validators for each committee.
This requirement is the motivation for the
multi-signature schemes developed in this paper.
The individual public keys are used in the
verification of our multi-signatures but they are
only stored on the blockchain once when nodes
register themselves as validators.

2. Preliminaries

In this section we briefly recall some building
blocks needed in the rest of the paper, such as
the computational assumptions under which our
constructions are proven secure, the equality of
discrete logarithms proof system and the gener-
alised forking lemma.

2.1. Bilinear Groups

Definition 2.1 (Asymmetric Pairing Groups). Let
G1 = 〈g1〉 , G2 = 〈g2〉 and GT be (cyclic)
groups of prime order q. A map e : G1 ×G2 →
GT to a group GT is called a bilinear map, if it
satisfies the following three properties:
• Bilinearity: e(gx1 , g

y
2 ) = e(g1, g2)xy for all

x, y ∈ Zp.
• Non-Degenerate: e(g1, g2) 6= 1.
• Computable: e(g1, g2) can be efficiently com-

puted.
We assume there exists an efficient bilinear pair-
ing instance generator algorithm IG that on
input a security parameter 1λ outputs the de-
scription of 〈e(·, ·),G1,G2,GT , q〉.

Asymmetric pairing groups can be efficiently
generated [GJNB11]. Pairing group exponenti-
ations and pairing operations can also be effi-
ciently computed [DSD07].
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2.2. Computational Assumptions

Definition 2.2 (Computational co-CDH assump-
tion [BDN18]). Let X ← (G1,G2, q, g1, g2, g

α
1 ,

gβ1 , g
α
2 ) where G1 = 〈g1〉 and G2 = 〈g2〉 are

cyclic groups of prime order q, and α, β $← Z∗q .
We define the advantage Advco-CDH

A of an ad-
versary A as

Advco-CDH
A := Pr

[
A(X) = gαβ1

]
We say A (τ, ε)-breaks the co-CDH problem if it
runs in time at most τ and Advco-CDH

A ≥ ε. co-
CDH is (τ, ε)-hard if no such adversary exists.

Definition 2.3 (Computational ψ-co-CDH as-
sumption [BDN18]). Let X ← (G1,G2, q, g1,
g2, g

α
1 , g

β
1 , g

α
2 ) where G1 = 〈g1〉 and G2 =

〈g2〉 are cyclic groups of prime order q, and
α, β

$← Z∗q . Let Oψ(·) be an oracle that on
input gα2 ∈ G2 returns gα1 ∈ G1. We define the
advantage Advψ-co-CDH

A of an adversary A as

Advψ-co-CDH
A := Pr

[
AO

ψ(·)(X) = gαβ1

]
We say A (τ, ε)-breaks the ψ-co-CDH problem
if it runs in time at most τ and Advψ-co-CDH

A ≥
ε. ψ-co-CDH is (τ, ε)-hard if no such adversary
exists.

2.3. Equality of Discrete Logarithms

We need NIZK proof systems as an ingre-
dient to our construction, namely the Equality
of Discrete Logarithms proof system. Formally,
given a cyclic group G of order q and g, h ∈
G, the NIZK proof (PrEqH ,VerEqH) to show
k = logg x = logh y for x, y ∈ G, k ∈ Zq is
described as below [CP93]:

• PrEqH(g, h, x, y, k): choose r
$← Zq, com-

pute R1 = gr, R2 = hr and set c ←
H(g, h, x, y,R1, R2). Output is (c, s = r +
k · c).

• VerEqH(g, h, x, y, (c, s)): compute R1 ←
gs/xc and R2 ← hs/yc and output c ?

=
H(g, h, x, y,R1, R2).

2.4. Generalized Forking Lemma

The forking lemma [PS00] for proving the
security of schemes based on Schnorr signatures
was generalised to a wider class of schemes
[BN06], [BCJ08]. Below we describe the version
due to [BCJ08].

Consider an algorithm A that on input in in-
teracts with a random oracle H : {0, 1}∗ 7→ Zq.

GFA(in) :

f = (ρ, h1, . . . , hqH )
$← ω

(J, {outj}j∈J)← A(in, f)

If J = ∅ then output fail
Let J = {j1, . . . , jn} such that j1 ≤ · · · ≤ jn
For i = 1, . . . , n do
succi ← 0; ki ← 0; kmax ← 8nqH/ε · ln (8n/ε)

Repeat until succi = 1 or ki > kmax

f ′′
$← Ω such that f ′|ji = f |ji

Let f ′′ = (ρ, h1, . . . , hji−1, h
′′
ji , . . . , h

′′
qH )

(J ′′, {out ′′j }j∈J′′)← A(in, f ′′)

If h′′ji 6= hji and J ′′ 6= ∅ and ji ∈ J ′′ then
out ′ji ← out ′′ji ; succi ← 1

If succi = 1 for all i = 1, . . . , n

Then output (J, {outj}j∈J , {out ′j}j∈J)

Else output fail

Figure 1: Algorithm GF

Let f = (ρ, h1, . . . , hqH ) be the randomness
involved in an execution of A, where ρ is A’s
random tape, hi is the response to A’s i-th query
to H , and qH is its maximal number of random-
oracle queries. Let Ω be the space of all such
vectors f and let f |i = (ρ, h1, . . . , hi−1). We
consider an execution of A on input in and
randomness f , denoted by A(in, f), as success-
ful if it outputs a pair (J, {outj}j∈J), where
J is a multi-set that is a non-empty subset of
{1, . . . , qH} and {outj}j∈J is multi-set of side
outputs. We say that A failed if it outputs J = ∅.
Let p be the probability that A(in, f) is success-
ful for fresh randomness f $← Ω and for an input
in

$← IG generated an input generator IG.

For a given input in, the generalised forking
algorithm GF is defined as shown in Figure 1.
We say that GFA succeeds if it doesn’t output
fail.

Lemma 2.1 (Generalised Forking Lemma
[BCJ08]). Let IG be a randomised algorithm
and A be a randomised algorithm running in
time τ making at most qH random-oracle queries
that succeeds with probability ε. If q > 8nqH/ε,
then GFA(in) runs in time at most τ ·8n2qH/ε ·
ln(8n/ε) and succeeds with probability at least
ε/8, where the probability is over the choice of
in

$← IG and over the coins of GFA.
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3. Definitions of Robust Subgroup
Multi-signatures

We now introduce syntax and security defi-
nitions for our robust subgroup multi-signatures.
We describe a notion of robustness, a generalised
notion of correctness, by allowing adversaries to
participate in the signature combination process.
Then we define unforgeability in a subgroup
model where the adversary outputs a forgery
(J, σ?) where J is a subset of indices of signers
from a group PK chosen by the adversary and
σ? is a multi-signature.

Definition 3.1. A robust subgroup multi-
signature scheme (RSMS) Π = (KeyGen,
KeyAgg,GroupSet,Sign,Combine,VerifyMul)
consists of the following algorithms:
KeyGen(1λ): on input a security parameter λ,

this algorithm outputs a key pair (sk, pk) for
each entity where the public key pk is made
public.

GroupSet(PK): on input a set of public keys
PK, the algorithm forms a group and outputs a
group public key gpk = (gtag,PK) with gtag
a unique group tag. When the algorithm fails
to form the group, gpk = ⊥.

KeyAgg(J,PK): on input an index set J and a
set of public keys PK, this algorithm aggre-
gates PK into a single aggregate public key
apk. Output apk.

Sign(m, ski, pki, gtag): on input a message m,
a secret key ski, a public key pki, a group
tag gtag, the algorithm outputs an individual
signature si.

Combine(m, E , gpk): on input a message, a set
of individual signatures E = {si}i originating
from |E| different entities, a group public key
gpk, the algorithm identifies an index set J of
valid individual signatures and combines them
into a single multi-signature σ and outputs
(J, σ). When the algorithm fails to combine
the individual signatures, (J, σ) = (∅,⊥).

VerifyMul(m,J, σ, gpk): on input a message m,
an index set J , a group public key gpk, the al-
gorithm outputs 1 if σ is a valid multi-signature
and outputs 0 otherwise.

Definition 3.2 (Robustness). The robustness
of a RSMS scheme Π = (KeyGen,KeyAgg,
GroupSet,Sign,Combine,VerifyMul) is defined
by a three-stage game:
Setup The challenger generates the system pa-

rameters pp and a challenge entity with key
tuple (sk?, pk?) ← KeyGen(1λ). It gives
(pk?, pp) to the adversary.

Signature queries A is allowed to make sig-
nature queries on any message m for any

gtag, meaning that it has access to ora-
cle OSign(·,sk?,pk?,·) that simulates the honest
signer signing a message m.

Output Finally, the challenger receives from the
adversary a message m? and a group public
key gpk = (gtag,PK = {pki}i∈U ), and a
set of individual signatures E = {si}i∈I from
|I| different entities such that I ⊆ U . The
adversary wins if

1) pk? = pkk for some k ∈ U and k /∈ I
2) gpk 6= ⊥ and gpk = GroupSet(PK)
3) VerifyMul(m?, J, σ?, gpk) = 0 where s? ←

Sign(m?, sk?, pk?, gtag) and (J, σ?) ←
Combine(m?, E∪{s?}, gpk) and J\{k} 6= ∅

We say A (τ, qS , qH , ε)-breaks the robustness of
RSMS if A runs in time at most τ , makes at most
qS signing queries and at most qH random oracle
queries, and the above game outputs 1 with
probability at least ε. RSMS is (τ, qS , qH , ε)-
robust if no such adversary exists.

Definition 3.3 (Unforgeability). The unforgeabil-
ity of a RSMS scheme Π = (KeyGen,KeyAgg,
GroupSet,Sign,Combine,VerifyMul) is defined
by a three-stage game:
Setup The challenger generates the system

parameters pp and a challenge key pair
(sk?, pk?) ← KeyGen(1λ). It gives (pk?, pp)
to the adversary.

Signature queries A is allowed to make signa-
ture queries on any message m for any group
tag gtag, meaning that it has access to ora-
cle OSign(·,sk?,pk?,·) that simulates the honest
signer signing a message m.

Output Finally, the adversary outputs a multi-
signature forgery (J, σ?), a message m?, a
group public key gpk = (gtag?,PK =
{pki}i∈U ). The adversary wins if

1) gpk 6= ⊥ and gpk = GroupSet(PK)
2) pk? = pkk for some k ∈ U ∩ J
3) A made no signing queries on (m?, gtag?)

and VerifyMul(m?, J, σ?, gpk) = 1

We say A is a (τ, qS , qH , ε)-forger for RSMS
if A runs in time at most τ , makes at most qS
signing queries and at most qH random oracle
queries, and wins the above game with probabil-
ity at least ε. RSMS is (τ, qS , qH , ε)-unforgeable
if no such adversary exists.

4. Our pairing-based robust-subgroup
multi-signature scheme

Generally speaking, the major technical prob-
lem in constructing a secure multi-signature
scheme is to prevent the rogue-key attack
[RY07], [MPSW19] which enables an adversary
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to use a specially crafted public key to deprive all
other entities of their signing right. We consider
two ways to prevent rogue-key attacks for our
robust subgroup multi-signatures: one is using
techniques proposed in [MPSW19], [BDN18] to
combine individual signatures with hash values
derived from the related public keys; the other
way is called the proof-of-possession [RY07],
[BDN18] which introduces an additional pub-
lic key H(pki)

ski to show the knowledge of
the secret key ski. Moreover, we optimise the
Combine process by introducing NIZKs to vali-
date individual signatures to replace the checking
based on time-consuming pairing equations. This
optimisation can make the signature combination
process x2 faster.

In this section, we present four constructions
of robust-subgroup multi-signatures: RSMSP and
its optimised version RSMSP-zk, and RSMS-pop
and its optimised version RSMS-pop-zk.

4.1. Construction of RSMSP

Our RSMSP is constructed based on MSP
scheme proposed in [BDN18]. As mentioned in
the introduction, MSP in [BDN18] cannot be
used as a subgroup multi-signature scheme in the
provably secure sense. Here we propose a twist
to MSP in order to construct a secure robust-
subgroup multi-signature: we defer the determi-
nation of the actual co-signers to the combine
phase thanks to the explicit introduction of the
Combine function in our robust subgroup multi-
signature scheme, and we include the identities
of the subset J of co-signers in the hash val-
ues H2(pkj , J,PK) generated for each co-signer
j ∈ J . In the security proof, this twist allows
us to determine the co-signers at the moment
when the hash value cjf = H2(pk?, J,PK) is
generated so that we can use the generalised
forking lemma to rewind the adversary to this
point and produce another multi-signature with
the same set of cosigners J in order to extract
the underlying secret key sk? of pk?. Note that
the Combine function does not use any secret
information and can be run by any entity, making
it still a non-interactive process.

Construction of RSMSP. Let (q,G1,G2,GT ,
e, g1, g2) be a bilinear group with prime order
q and g1 ∈ G1, g2 ∈ G2. Assume hash functions
H1 : {0, 1}∗ 7→ Zq, H2 : {0, 1}∗ 7→ G1 and
H3 : {0, 1}∗ 7→ G1.

KeyGen(1λ): Choose sk
$← Zq, compute pk =

gsk2 , and output (sk, pk). The public key pk is
made public.

GroupSet(PK): Compute gtag = H1(PK).
Output gpk = (gtag,PK).

KeyAgg(J,PK): Parse PK = {pki}i∈I . Output
⊥ if J 6⊆ I . Compute aj = H2(pkj , J,PK)
for each j ∈ J . Output apk =

∏
j∈J pk

aj
j .

Sign(m, ski, gtag): Output an individual signa-
ture si = H3(gtag,m)ski .

Combine(m, E , gpk): Parse E = {si}i∈I of indi-
vidual signatures originating from |I| different
entities, and gpk = (gtag,PK). The combiner
verifies each signature by checking e(si, g2) =
e(H3(gtag,m), pki). Assume the index set of
valid signatures is J ⊆ I . The combiner com-
putes the multi-signature as σ =

∏
j∈J s

aj
j

with aj = H2(pkj , J,PK) for j ∈ J . Output
(J, σ).

VerifyMul(m,J, σ, gpk): Parse gpk = (gtag,
{pki}i∈I). If J = ∅ or J 6⊆ I , then output 0.
Otherwise, compute apk ← KeyAgg(J,PK).
Output 1 if e(σ, g2) = e(H3(gtag,m), apk);
else output 0.

Remark 1. Note that when hashing the message
m in the signing algorithm, it is a good practice
to include the unique group tag gtag in the hash
function H1(gtag,m) since the same node may
be able to join different committee groups at
the same time using the same public key (e.g.,
[HMW18]). In this way, in the security definition
of unforgeability, the adversary is allowed to
issue signing query on different combinations
(m?, ·) and (·, gtag?) of the challenge message
and the challenge group tag as long as it does
not query (m?, gtag?).

Batch verification. As usual, n multi-signatures
on n-distinct pairs of (gtag,m) can be verified
as a batch faster than verifying them one by one:
• Compute an aggregate multi-signature Σ =
σ1 · · ·σn ∈ G1

• Accept all n multisignatures as valid iff

e(Σn, g2) =
∏

1≤i≤n

e(H3(gtagi,mi), apki)

Theorem 4.1. RSMSP is robust.

Proof. Suppose there exists an adversary A that
(τ, qS , qH , ε)-breaks robustness of RSMSP. We
will show that this leads to a contradiction. At the
end of the robustness game, the adversary out-
puts (m?, gpk = (gtag?,PK = {pki}i∈U ), E =
{si}i∈I) with pk? = pkk for some k ∈
U . When the challenger outputs 1, we know
e(σ?, g2) 6= e(H3(gtag?,m?), apk) where s ←
Sign(m?, sk?, pk?, gtag?), (J, σ?) ← Combine(
m?, E ∪ {s}, gpk) and apk ← KeyAgg(J,PK).
This means there exists j ∈ J such that
e(sj , g2) 6= e(H3(gtag?,m?), pkj). We consider
two cases. If j = k, then this is impossible
because sj = H3(gtag?,m?)sk

?

and pkj = gsk
?

2 .
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If j 6= k, this directly contradicts to the veri-
fication e(sj , g2) = e(H3(gtag?,m?), pkj) per-
formed in the Combine process. This completes
the proof.

Theorem 4.2. RSMSP is unforgeable under
the computational co-CDH assumption in the
random oracle model. Formally, RSMSP is
(τ, qS , qH , ε)-unforgeable if q > 8qH/ε and co-
CDH is ((τ + (qH + qS) · τexp1

+ ` · τexp2
) ·

8q2H/ε · ln(8qH/ε), ε/(8qH))-hard where ` is the
maximum number of signers involved in a single
multi-signature and τexp1

is the time required to
compute one exponentiation in G1.

Proof. Suppose A is a (τ, qS , qH , ε) forger
against RSMSP. We shall first construct an ad-
versary B using A as a subroutine and then
construct another adversary F to run GFB to
derive a solution to the co-CDH instance.

Given a co-CDH instance (e,G1,G2,GT ,
q, g1, g2, g

α
1 , g

β
1 , g

β
2 ) with g1 ∈ G1, g2 ∈ G2,

α, β
$← Zq. The goal is to find the solution gαβ1

to the instance. We first construct B to run A as
follows:

1) Give to A the public parameters (e,G1,
G2,GT , q, g1, g2) and the challenge public
key pk? = gβ2 as input. B runs A on ran-
domness f = (ρ, c1, · · · , cqH ).

2) The random oracle H1 is answered as fol-
lows: initialise a list LH1

= ∅. For a query
on y, if there exists (y, c) ∈ LH1

then output
c; otherwise choose a random c

$← Zq, update
LH1

= LH1
∪ {(y, c)} and output c.

3) The random oracle H2 is programmed as
follows: Define a list LH2

= ∅. For a query
on y, if there exists (y, c) ∈ LH2

, then output
c; otherwise

a) If y = (pk, J,PK) with pk ∈ PK and
pk? ∈ PK, assume this is the i-th query
to H2. For each j ∈ J and pkj 6= pk?,

choose a random value dj
$← Zq and set

H2(pkj , J,PK) = dj . For (pk?, J,PK), it
fixes H2(pk?, J,PK) = ci. Output H2(y).

b) Else choose a random d
$← Zq and set

H2(y) = d. Output d.
4) The random oracle H3 is answered as fol-

lows: initialise LH3 = ∅. Let qH be the to-
tal number of distinct random oracle queries
asked in this game. Choose an index η?

$←
[qH ] uniformly at random.
• If there exists a tuple (x, r, h) ∈ LH3

,
output h.

• Otherwise,

– If this is the η?-th distinct call, set r = ⊥
and h = gα1 where gα1 is from the co-
CDH problem.

– Else choose a random r
$← Zq and set

h = gr1 .
– Update LH3

= LH3
∪(x, r, h) and output

h.
5) To answer the sign query Sign(·, sk?, pk?, ·)

on a message x, call the H3 oracle to obtain
(x, r, h) ∈ LH3

,

• If r = ⊥, return ⊥
• Else output gβ·r1

Finally A outputs a forgery (J, σ?), a message
m?, a group public key gpk = (gtag?,PK). If
(gtag?,m?) is not the η?-th query to H3, then B
aborts. Since η? is randomly chosen, the proba-
bility that B does not abort is 1/qH . Let’s assume
B does not abort. Parse PK = {pk1, . . . , pkn}.
Suppose pk? = pkk for some 1 ≤ k ≤ n. Let
jf be the index such that H1(pk?, J,PK) =
cjf . Let apk ← KeyAgg(J,PK) and aj =
H2(pkj , J,PK) for each j ∈ J . B outputs
({jf}, {(σ?,PK, J, apk, {aj}j∈J)}).

The running time of B is that of A plus
the additional computations that B makes. Let
τexp1

(resp. τexp2
) be the time required to com-

pute one exponentiation in G1 (resp. G2). Let
qH be the combined number of random oracle
queries to H1, H2, H3. To answer qH random
oracle queries, B spends at most qH · τexp1

time. To answer the signing queries, B spends
at most qS · τexp1

time. To construct apk, it
takes ` · τexp2

time where ` is the maximum
number of signers involved in a single multi-
signature. In total, B’s running time is therefore
τ + (qH + qS) · τexp1

+ ` · τexp2
. B’s success rate

εB is the probability that A succeeds and that B
correctly guesses the hash index of A’s forgery,
thus εB = ε/qH

Now we construct another adversary F that
on input a co-CDH instance and a forger A,
outputs a solution to the co-CDH instance. F
runs the generalised forking lemma GFB with
algorithm B constructed above. If GFB outputs
({jf}, {out}, {out′}), then B proceeds as fol-
lows. B parses out = (σ,PK, J, apk, {aj}j∈J)
and out′ = (σ′,PK′, J ′, apk′, {a′j}j∈J′). Let K
be the index of pk? in PK. Then we know
ak = cjf and a′k = c′jf and ak 6= a′k. Since
out, out′ are obtained from two executions of B
with randomness f, f ′ such that f |jf= f ′ |jf ,
we can derive that PK = PK′, J = J ′ and
aj = a′j for j ∈ J \ {k}. Therefore we have

apk/apk′ = g
β(ak−a′k)
2 . Since B’s output sat-

isfies e(σ, g2) = e(gα1 , apk) and e(σ′, g2) =
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e(gα1 , apk
′), we can compute (σ/σ′)1/(ak−a

′
k) as

a solution to the co-CDH instance.
Using the generalised forking lemma, if q >

8qH/ε, F runs in time at most (τ + (qH + qS) ·
τexp1

+` ·τexp2
) ·8q2H/ε · ln(8qH/ε) and succeeds

with probability at least ε/(8qH).

4.2. Optimising RSMSP with NIZKs

We can use NIZKs validate individual sig-
natures in order to speed up the verification
of individual signatures in the Combine func-
tion in RSMSP. We call this optimised scheme
RSMSP-zk.

Construction of RSMSP-zk. The algorithms
KeyGen,GroupSet,KeyAgg,VerifyMul are im-
plemented exactly the same as RSMSP, but the
algorithms Sign and Combine are optimised as
below:
Sign(m, ski, gtag): Output si = (vi, πi) where
vi = H3(gtag,m)ski and πi ← PrEqH4

(g2,

H3(gtag,m), pki, vi; r) for randomness r $←
Zq.

Combine(m, E , gpk): Parse E = {(vi, πi)}i∈I
of individual signatures originating from |I|
different entities, and gpk = (gtag,PK). The
combiner verifies each signature by checking
VerEqH4

((g2, H3(gtag,m), pki, vi, πi) = 1.
Assume the index set of valid signatures is J ⊆
I . The combiner computes the multi-signature
as σ =

∏
j∈J v

aj
j with aj = H2(pkj , J,PK)

for j ∈ J . Output (J, σ).

Theorem 4.3. RSMSP-zk is robust in the ran-
dom oracle model.

The proof of the robustness of RSMSP-zk
can be found in Appendix A.

Theorem 4.4. RSMSP-zk is unforgeable un-
der the computational co-CDH assumption in
the random oracle model. Formally, RSMSP is
(τ, qS , qH , ε)-unforgeable if q > 8qH/ε and co-
CDH is (τ + (qH + 3qS) · τexp1

+ (2qS + `) ·
τexp2

) · 8q2H/ε · ln(8qH/ε), ε/(8qH))-hard where
` is the maximum number of signers involved in
a single multi-signature and τexp1

(resp. τexp2
) is

the time required to compute one exponentiation
in G1 (resp. G2).

Proof. The analysis is similar to Theorem 4.2
except that the Sign queries are answered with
simulated NIZKs generated by an additional ran-
dom oracle H4 : {0, 1}∗ 7→ Zq:
• The random oracle H4 is programmed as fol-

lows: Define a list LH4 = ∅. For a query on
y, if (y, c) ∈ LH4 , then output c. Otherwise

choose a random c
$← Zq, update the list

LH4
= LH4

∪ (y, c) and output c.
• To answer the sign query Sign(·, sk?, pk?, ·)

on a message x, call the H3 oracle to obtain
(x, r, h) ∈ LH3 ,
– If r = ⊥, return ⊥
– Else output gβ·r1 and a simulated NIZK proof
π using the random oracle H4

To compute a simulated NIZK proof, it costs B
2(τexp1

+ τexp2
) time. Adding the time τexp1

for
computing each signature, B spends at most qS ·
(3τexp1

+ 2τexp2
) time to answer all the signing

queries. In total B’s running time is at most τ +
(qH + 3qS) · τexp1

+ (2qS + `) · τexp2
and success

rate is ε/qH . The running time of the adversary
F that runs GFB is (τ + (qH + 3qS) · τexp1

+
(2qS+`)·τexp2

)·8q2H/ε·ln(8qH/ε) and succeeds
with probability at least ε/(8qH).

4.3. Construction of RSMS-pop from
proof-of-possession

In proof-of-possession (PoP) based multi-
signatures, an additional public key is generated
as a proof of knowledge of the secret key. Ob-
viously the disadvantage of using PoPs is the
extra storage and computation overhead intro-
duced by the PoPs. However, PoPs offer a few
competitive advantages as well. The aggregation
of signatures and public keys in PoPs are simply
multiplications without any exponentiation. The
security argument of PoPs does not require the
generalised forking lemma which gives much
tighter reductions. Constructing secure robust-
subgroup multi-signatures from PoPs [RY07],
[BDN18] turns out to be quite straightforward,
since security reductions of PoPs do not require
to fix the set of co-signers. For the completeness
of this work, we describe the construction of
RSMS-pop and give security proofs below.

Construction of RSMS-pop. Let (q,G1,G2,GT ,
e, g1, g2) be a bilinear group with prime order
q and g1 ∈ G1, g2 ∈ G2. Assume hash func-
tions H1 : G2 7→ G1, H2 : {0, 1}∗ 7→ Zq,
H3 : {0, 1}∗ 7→ G1.

KeyGen(1λ): Choose sk
$← Zq, compute pk =

(pk, pop) with pk = gsk2 and pop = H1(pk)sk,
and output (sk, pk). The public key pk is made
public and its validity can be checked by
e(pop, g2) = e(H1(pk), pk).

GroupSet(PK): Parse PK = {(pki, popi)}i∈I .
For each i ∈ I , check if e(popi, g2) =
e(H1(pki), pki). If all successful, compute
gtag = H2(PK) and output gpk =
(gtag,PK); else output ⊥.
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KeyAgg(J,PK): Parse PK = {(pki, popi)}i∈I .
If J 6⊆ I , then output ⊥. Compute and output
apk =

∏
j∈J pkj .

Sign(m, ski, pki, gtag): Output an individual
signature si = H3(gtag,m)ski .

Combine(m, E , gpk): Parse gpk = (gtag,
{pki}i∈U ) and the set E = {si}i∈I of indi-
vidual signatures originating from |I| different
entities such that I ⊆ U . The combiner verifies
each signature in E by checking e(si, g2) =
e(H3(gtag,m), pki) where pki = (pki, pop).
Assume the index set of valid signatures is
J ⊆ I . The combiner computes the multi-
signature as σ =

∏
j∈J σj and outputs (J, σ).

VerifyMul(m,J, σ, gpk): Parse gpk = (gtag,
PK = {pki}i∈I). If J = ∅ or J 6⊆ I ,
then output 0. Otherwise, compute apk ←
KeyAgg(J,PK). Output 1 if e(σ, g2) =
e(H3(gtag,m), apk); else output 0.

Theorem 4.5. RSMS-pop is robust.

Proof. Suppose there exists an adversary A
(τ, qS , qH , ε)-breaks robustness. We will show
that this leads to a contradiction. At the end
of the robustness game, the adversary outputs
(m?, gpk = (gtag?,PK = {pki}i∈U ), E =
{si}i∈I) with pki = (pki, popi) for each i ∈
U and pk? = pkk for some k ∈ U . When
the challenger outputs 1, we know e(σ?, g2)
6= e(H3(gtag?,m?),

∏
j∈J∪{k} pkj) where s ←

Sign(m?, sk?, pk?, gtag?), (J, σ?) ← Combine(
m?, E∪{s}, gpk?). This means there exists j ∈ J
such that e(sj , g2) 6= e(H3(gtag?,m?), pkj)
and pkj = (pkj , popj). This contradicts to
the fact that all the individual signatures with
indices included in J? satisfy e(sj , g2) =
e(H3(gtag?,m?), pkj) for j ∈ J .

Theorem 4.6. RSMS-pop is unforgeable un-
der the computational co-CDH assumption in
the random oracle model. Formally, RSMS-pop
is (τ, qS , qH , ε)-unforgeable if co-CDH is (τ +
(qH + qS + `) · τexp1

, ε/qH)-hard where ` is the
maximum number of signers involved in a single
multi-signature and τexp1

is the time required to
compute one exponentiation in G1.

Proof. Given a co-CDH problem (e,G1,G2,GT ,
q, g1, g2, g

α
1 , g

β
1 , g

β
2 ) with g1 ∈ G1, g2 ∈ G2,

α, β
$← Zq. B’s goal is to output gαβ1 :

1) Give to A the public parameters (e,G1,G2,
GT , q, g1, g2), the challenge public key pk? =
(pk?, pop?) where pk? = gβ2 and pop? =

gβ·r
?

1 with r? $← Zp.
2) The random oracle H1 is answered as fol-

lows: initialise a list LH1
= ∅.

• If there exists a tuple (x, r, h) ∈ LH1
,

output h.
• Otherwise,

– If x = pk?, set h = gr
?

1 and update
LH1

= LH1
∪ (x, r?, h) and output h.

– Else choose a random r
$← Zq and set

h = gα·r1 where gα1 is from the co-CDH
problem, update LH1

= LH1
∪ (x, r, h)

and output h.
3) The random oracle H2 is programmed as

follows: Define a list LH2
= ∅. For a query on

y, if (y, c) ∈ LH2
, then output c. Otherwise

choose a random c
$← Zq, update the list

LH2
= LH2

∪ (y, c) and output c.
4) The random oracle H3 is answered as fol-

lows: initialise LH3 = ∅. Let qH3 be the to-
tal number of distinct random oracle queries
asked in this game. Choose an index η?

$←
[qH3

] uniformly at random.
• If there exists a tuple (x, r, h) ∈ LH3

,
output h.

• Otherwise,
– If this is the η?-th distinct call, set r = ⊥

and h = gα1 where gα1 is from the co-
CDH problem.

– Else choose a random r
$← Zq and set

h = gr1 .
– Update LH3 = LH3∪(x, r, h) and output
h.

5) To answer the sign query Sign(·, sk?, pk?, ·)
on a message x, call the H3 oracle to obtain
(x, r, h) ∈ LH3

,
• If r = ⊥, return ⊥
• Else output gβ·r1

Finally A outputs a forgery (J, σ?), a message
m?, a group public key gpk? = (gtag?,PK).
If (m?, gtag?) is not the η?-th query to H3,
then B aborts. Since η? is randomly chosen, the
probability that B does not abort is 1/qH3 . Let’s
assume B does not abort. Parse PK = {pki}i∈U
with each pki = (pki, popi). Suppose pk? = pkk
for some k ∈ U . Based on the construction
of H1, we have H1(pki) = gα·ri1 for each
i ∈ U \ {k}. Combing with e(H1(pki), pki) =
e(popi, g2) obtained from Condition 1 in Defi-
nition 3.3, we have e(gα1 , pki) = e(pop

r−1
i
i , g2)

for each i ∈ U \ {k}. Because e(σ?, g2)
= e(H3(gtag?,m?),

∏
i∈J pki) by the Con-

dition 3 in Definition 3.3, we can derive
e(σ?, g2) = e(gα1 , g

β
2 ·

∏i 6=k
i∈J pki) = e(gα1 , g

β
2 ) ·

e(gα1 ,
∏i 6=k
i∈J pki) = e(gα1 , g

β
2 ) · e(

∏i 6=k
i∈J pop

r−1
i
i ,

g2). Let δ = σ? ·
∏i 6=k
i∈J pop

−r−1
i

i . Then we

have e(δ, g2) = e(σ? ·
∏i 6=k
i∈J pop

−r−1
i

i , g2) =
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e(σ?, g2)/e(
∏i6=k
i∈J pop

r−1
i
i , g2) = e(gα1 , g

β
2 ).

Therefore, B can return δ as a solution to the
co-CDH problem with a success probability at
least ε/qH .

The running time of B is that of A plus the
additional computations that B makes. Let τexp1

be the time required to compute one exponentia-
tion in G1. The setup of the challenge verification
key costs τexp1

. Let qH be the combined number
of random oracle queries to H1, H2, H3, H4. To
answer qH random oracle queries, B spends at
most (qH − 1) · τexp1

time. B spends at most
qS · τexp1

to answer all the signing queries. To
construct the solution δ, it takes at most ` · τexp1

time where ` is the maximum number of signers
involved in a single multi-signature. In total, B’s
running time is τ + (qH + qS + `) · τexp1

.

Remark 2. Theorems 4.5 and 4.6 validate the
correctness of using the multi-signatures proto-
cols for achieving consensus in [Har], [Cod],
[GGJ+20].

In the next subsection, we shall discuss how
to optimise RSMS-pop with NIZKs to obtain a
more efficient scheme RSMS-pop-zk. The perfor-
mance evaluation given in Section 6 will show
our RSMS-pop-zk is 2x faster than RSMS-pop
in terms of combination of individual signatures.

4.4. Optimising RSMS-pop with NIZKs

Construction of RSMS-pop-zk. The algorithms
KeyGen,KeyAgg,GroupSet,VerifyMul are in-
stantiated in the same way as RSMS-pop, but the
algorithms Sign and Combine now use NIZKs to
validate individual signatures:
Sign(m, ski, pki, gtag): Parse pki = (pki, popi).

Compute vi = H3(gtag,m)ski and πi ←
PrEqH4

(H1(pki), H3(gtag,m), popi, vi; r)

for randomness r $← Zq. Output si = (vi, πi).
Combine(m, E , gpk): Parse gpk = (gtag,
{(pki, popi)}i∈U ) and the set E =
{(vi, πi)}i∈I of individual signatures
originating from |I| different entities such
that I ⊆ U . The combiner verifies each
signature in E by checking VerEqH4

(H1(pki),
popi, H3(gtag,m), vi, πi) = 1. Assume the
index set of valid signatures is J ⊆ I . The
combiner computes the multi-signature as
σ =

∏
j∈J vj and outputs (J, σ).

Theorem 4.7. Our RSMS-pop-zk scheme is ro-
bust in the random oracle model.

The proof of the robustness of RSMS-pop-zk
can be found in Appendix A.

Theorem 4.8. RSMS-pop-zk is unforgeable un-
der the computational co-CDH assumption in the
random oracle model. Formally, RSMS-pop-zk
is (τ, qS , qH , ε)-unforgeable if co-CDH is (τ +
(qH + 5qS + `) · τexp1

, ε/qH)-hard where ` is the
maximum number of signers involved in a single
multi-signature and τexp1

is the time required to
compute one exponentiation in G1.

Proof. The analysis is the same as Theorem 4.6
except that Sign queries are answered with sim-
ulated NIZKs generated by an additional random
oracle H4 : {0, 1}∗ 7→ Zq:
• The random oracle H4 is programmed as

follows: Define a list LH4 = ∅. For a query on
y, if (y, c) ∈ LH4 , then output c. Otherwise
choose a random c

$← Zq, update the list
LH4

= LH4
∪ (y, c) and output c.

• To answer the sign query Sign(·, sk?, pk?, ·)
on a message x, call the H3 oracle to obtain
(x, r, h) ∈ LH3

,
– If r = ⊥, return ⊥
– Else output gβ·r1 and a simulated NIZK

proof π using the random oracle H4

For each Sign query, B needs to generate a sim-
ulated NIZK proof which takes 4τexp1

time for
each proof. Adding the time τexp1

for computing
each signature, B spends at most qS ·5τexp1

to an-
swer all the signing queries. Therefore, B’s total
running time is at most τ +(qH +5qS +`) ·τexp1

and B’s success probability is ε/qH .

5. Extensions

In this section, we extend our robust sub-
group multi-signatures with two useful functions:
compression and aggregation. We give formal
definitions and security analysis for these exten-
sions.

5.1. Compressing two multi-signatures on
the same message

It is possible to compress two multi-
signatures on the same message if signed by
disjoint subgroups. In practice, this enables any
entity to start the signature combination process
without the need of waiting until the entity gets
all the individual signatures. This incremental
aggregation feature was previously mentioned in
[DGNW20] but was never formalised. Below we
shall extend our definition of robust subgroup
multi-signature scheme RSMS with an additional
algorithm called Compress:
Compress(m,J1, σ1, J2, σ2, gpk): on input a

message m, two multi-signatures (J1, σ1),
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(J2, σ2), and a group public key gpk, the
algorithm compress two multi-signatures into
a single multi-signature and outputs (J, σ)
with J = J1 ∪ J2. When the algorithm fails
to compress the multi-signatures the output is
(J, σ) = (∅,⊥).

Robustness. We extend the robustness in Def-
inition 3.2 to include compressibility: for any
m,J1, J2, σ1, σ2, gpk such that J1 ∩ J2 = ∅ and
J1, J2 6= ∅, if VerifyMul(m,Jb, σb, gpk) = 1 for
b = 1, 2, then VerifyMul(m,J, σ, gpk) = 1 where
(J, σ)← Compress(m,J1, σ1, J2, σ2, gpk).

Unforgeability. The definition of unforgeability
does not change since the function Compress
does not involve any secret information and thus
the adversary can run this algorithm without
interacting with the signers.

Instantiations. Unfortunately, RSMSP and
RSMSP-zk are not compressible, because
two multi-signatures σb =

∏
i∈Jb s

ai,b
i with

coefficients ai,b = H2(pki, Jb,PK) and b = 0, 1,
cannot be compressed into σ =

∏
i∈J1∪J2 s

ai
i

with coefficients ai = H2(pki, J1 ∪ J2,PK).
However, the PoP-based schemes RSMS-pop
and RSMS-pop-zk can be extended with
Compress as follows:

Compress(m,J1, σ1, J2, σ2, gpk): Check if J1 ∩
J2 = ∅ and VerifyMul(m,Jb, σb, gpk) = 1 for
b = 0, 1. If successful, output (J1∪J2, σ1 ·σ2).
Otherwise output (∅,⊥).

Theorem 5.1. The extended RSMS-pop and
RSMS-pop-zk schemes satisfy robustness in the
random oracle model.

Proof. We only need to show the compress-
ibility defined above. Indeed, since e(σi, g2) =
e(H2(gtag,m), apki) for i = 1, 2 it follows
that e(σ, g2) = e(H2(gtag,m), apk) where σ =
σ1 · σ2 and apk = apk1 · apk2.

Theorem 5.2. The extended RSMS-pop and
RSMS-pop-zk schemes are unforgeable under
the computational co-CDH problem in the ran-
dom oracle model.

Proof. As mentioned above, adding the
Compress algorithm does not change the
definition of unforgeability since the adversary
can run Compress by themselves. The
proofs of unforgeability of RSMS-pop (resp.
RSMS-pop-zk) are therefore the same as for
Theorem 4.6 (resp. 4.8) and are omitted.

5.2. Aggregating multi-signatures on dif-
ferent messages

Multi-signatures on different messages can be
further aggregated into a single aggregate signa-
ture, e.g., [BDN18]. In this section, we show that
the multi-signatures on different messages signed
by different groups in our robust-subgroup multi-
signature schemes can also be aggregated, and
we call this extension aggregate robust-subgroup
multi-signatures (ARSMS).

Definition 5.1 (Aggregate Robust-Subgroup
Multi-Signature). An aggregate robust-subgroup
multi-signature scheme (ARSMS) is defined
as Π = (KeyGen,GroupSet,KeyAgg,Sign,
Combine,VerifyMul,Aggregate,VerifyAgg),
where algorithms KeyGen,GroupSet,KeyAgg,
Sign,Combine and VerifyMul are exactly the
same as RSMS in Definition 3.1, and

Aggregate({(mi, Ji, σi, gpki)}i∈I): on input a
set of tuples of message, multi-signature and
group public key, the algorithm identifies an
index set K ⊆ I of valid multi-signatures
and aggregates them into a single aggregate
signature Σ and outputs ({Ji}i∈K ,Σ). When
the algorithm fails to aggregate signatures,
output ⊥.

VerifyAgg({(mi, Ji, gpki)}i∈K ,Σ): on input tu-
ples of messages, indices and group public
keys, and an aggregate signature Σ, the al-
gorithm outputs 1 if Σ is a valid aggregate
signature and outputs 0 otherwise.

Robustness of ARSMS. We define robustness
for an ARSMS scheme by extending Definition
3.2 with the robustness for aggregate signatures:
if VerifyMul(mi, Ji, σi, gpki) = 1 for each i ∈
I , and Σ ← Aggregate({(mi, Ji, σi, gpki)}i∈I),
then it holds that VerifyAgg({(mi, Ji, gpki)}i∈I ,
Σ) = 1.

Definition 5.2 (Unforgeability of ARSMS).
The unforgeability of an ARSMS scheme Π
= (KeyGen,KeyAgg,GroupSet,Sign,Combine,
VerifyMul,Aggregate,VerifyAgg) is defined by a
three-stage game:

Setup The challenger generates the system
parameters pp and a challenge key pair
(sk?, pk?) ← KeyGen(1λ). It gives (pk?, pp)
to the adversary.

Signature queries A is allowed to make sig-
nature queries on any message m for any
group tag gtag, meaning that it has access
to oracle OSign(·,sk?,pk?,·) that simulates the
honest signer signing a message m.

11



Output Finally, the adversary outputs an ag-
gregate signature forgery ({mi, Ji, gpki =
(gtagi,PKi)}i∈K ,Σ?). The adversary wins if

1) For each i ∈ K, gpki 6= ⊥ and gpki =
GroupSet(PKi)

2) For each i ∈ K, let PKi = {pki,j}j∈Ii ,
then Ji ⊆ Ii. pk? = pkk?,j? for some k? ∈
K and j? ∈ Jk? .

3) The pairs (gtagi,mi) with i ∈ K
are pairwise-distinct. A made no signing
queries on (mk? , gtagk?).

4) VerifyAgg({(mi, Ji, gpki)}i∈K ,Σ?) = 1.
We say A is a (τ, qS , qH , ε)-forger for ARSMS
if A runs in time at most τ , makes at most
qS signing queries and at most qH random or-
acle queries, and wins the above game with
probability at least ε. ARSMS is (τ, qS , qH , ε)-
unforgeable if no such adversary exists.

Instantiations. All of our robust-subgroup multi-
signatures, i.e., RSMSP,RSMSP-zk,RSMS-pop,
RSMS-pop-zk, can be extended with the follow-
ing algorithms:
Aggregate({(mi, Ji, σi, gpki)}i∈I): Output

Σ←
∏
i∈I σi.

VerifyAgg({(mi, Ji, gpki)}i∈I ,Σ): For each i ∈
I , parse gpki = (gtagi,PKi) and com-
pute apki ← KeyAgg(Ji,PKi). Output 1 if
e(Σ, g2) =

∏
i∈I e(H3(gtagi,mi), apki); else

output 0.
We call the extended schemes ARSMSP,
ARSMSP-zk,ARSMS-pop,ARSMS-pop-zk, re-
spectively.

Theorem 5.3. ARSMSP,ARSMSP-zk,ARSMS-pop
and ARSMS-pop-zk are robust in the random
oracle model.

Proof. To show robustness, we only
need to prove the robustness for
aggregate signatures. Let ({Ji}i∈K ,Σ) ←
Aggregate({(mi, Ji, σi, gpki)}i∈I). From the
instantiation of Aggregate and definition of
robustness, we have Σ =

∏
i∈K σi, and

for each i ∈ K, VerifyMul(mi, Ji, σi, gpki)
= 1. From the instantiation of VerifyMul,
we have e(σi, g2) = e(H3(gtagi,mi), apki)
where gpki = (gtagi,PKi) and apki ←
KeyAgg(Ji,PKi) for each i ∈ K. Therefore
e(Σ, g2) =

∏
i∈K e(H3(gtagi,mi), apki). This

completes the proof.

The proofs of the following theorems for
unforgeability can be found in Appendix B.

Theorem 5.4. ARSMSP and ARSMSP-zk are
unforgeable under the computational ψ-co-CDH
assumption in the random oracle model. For-
mally,

1) ARSMSP is (τ, qS , qH , ε)-unforgeable if q >
8qH/ε and ψ-co-CDH is ((τ+(qH+qS+n) ·
τexp1

+`·τexp2
)·8q2H/ε·ln(8qH/ε), ε/(8qH))-

hard;
2) ARSMSP-zk is (τ, qS , qH , ε)-unforgeable if

q > 8qH/ε and ψ-co-CDH is (τ + (qH +
3qS + n) · τexp1

+ (2qS + `) · τexp2
) · 8q2H/ε ·

ln(8qH/ε), ε/(8qH))-hard.
where ` is the maximum number of signers in-
volved in an aggregate signature, n is the max-
imum number of multi-signatures involved in an
aggregate signature, and τexp1

(resp. τexp2
) is

the time required to compute one exponentiation
in G1 (resp. G2).

Theorem 5.5. ARSMS-pop and ARSMS-pop-zk
are unforgeable under the computational co-
CDH assumption in the random oracle model.
Formally,
1) ARSMS-pop is (τ, qS , qH , ε)-unforgeable if

ψ-co-CDH is (τ + (qH + qS + ` + n) ·
τexp1

, ε/qH)-hard.
2) ARSMS-pop-zk is (τ, qS , qH , ε)-unforgeable

if ψ-co-CDH is (τ + (qH + 5qS + ` + n) ·
τexp1

, ε/qH)-hard
where ` is the maximum number of signers
involved in a single multi-signature, n is the
maximum number of multi-signatures involved in
an aggregate signature, and τexp1

is the time
required to compute one exponentiation in G1.

Compressibility. The schemes ARSMS-pop and
ARSMS-pop-zk are compressible and can be ex-
tended with the same Compress algorithm for
RSMS-pop and RSMS-pop-zk.

6. Performance Evaluation

We implement the four multi-signature
schemes, i.e., RSMSP, RSMSP-zk, RSMS-pop
and RSMS-pop-zk, using the libray MCL
[Mis19]. RSMSP and RSMSP-zk are imple-
mented by swapping G1 and G2, i.e., putting the
public keys on G1 and the signatures on G2. This
is because VerifyMul and VerifyAgg involve re-
construction of the aggregate public keys which
contains time-consuming exponentiation opera-
tions on the public keys. Putting public keys
on G1 can mitigate this issue since the expo-
nentiations on G1 are typically faster than the
ones on G2. However, this will make Combine
slower because the signature aggregations are
now performed on G2. We note that Combine
only needs to be run by a limited set of nodes like
validators, but VerifyMul and VerifyAgg need to
be run by any node that first obtains the multi-
signatures. In addition, our RSMSP-zk scheme
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has optimised Combine using NIZKs which sig-
nificantly improves the efficiency of Combine
and offsets the loss. Therefore, switching G1 and
G2 can provide better overall performance.

Performance evaluation of the Combine func-
tion. The Combine function can be executed
by any node in the network since it does not
require any secret information. Combine only
needs to be run once when computing the multi-
signature from a set of individual signatures.
Table 1 gives timing for combining a majority
number b`/2c+1 of individual signatures from a
group of size ` with ` = 64, 128, 256. RSMSP-zk
(resp. RSMS-pop-zk) is the optimised version
of RSMSP (resp. RSMS-pop) by validating an
individual signature using NIZK proofs instead
of pairing equations. This optimisation makes
Combine in RSMSP-zk (resp. RSMS-pop-zk) 2x
faster than RSMSP (resp. RSMS-pop).

Performance comparison between multi-
signatures and ECDSA. We shall compare the
performance of the four multi-signature schemes
with ECDSA signatures, in order to show that
it is feasible to replace ECDSA with multi-
signatures. The performance of ECDSA depends
on the optimisations implemented in different
libraries. The secp256k1 curve is used in Bitcoin
for ECDSA signatures. The OpenSSL implemen-
tation of secp256k1 is not well optimised which
leads to the low efficiency of ECDSA signing
and verification operations. The Sodium library
[BD19] provides a particularly efficient imple-
mentation of ECDSA over the curve Ed25519.

As shown in Table 2, the size of a multi-
signature that combines/aggregates n individual
signatures are constant, regardless of n. In com-
parison, n ECDSA signatures is of 64n bytes.
We take consensus as an example. Suppose each
committee has 200 validators and a notarisation
of a new block requires at least 101 signa-
tures. With ECDSA signatures, this accounts for
6.464KB storage overhead for each block, while
it is just 48 Bytes for RSMS-pop/RSMS-pop-zk
and 96 bytes for RSMSP/RSMSP-zk.

In terms of the size of the public key for
each entity, RSMS-pop and RSMS-pop-zk in-
curs the extra overhead introduced by the use
of proof-of-possession for preventing rogue-key
attacks. The public keys and PoPs only need to
be verified once and stored in the blockchain for
future reference. In comparison, the public keys
in RSMSP and RSMSP-zk are 66% smaller than
RSMS-pop and RSMS-pop-zk. For 200 valida-
tors, this means saving 19.2KB for storing public
keys.

In Table 3, we compare the efficiency of the
four multi-signature schemes with ECDSA. The
Sign column measures the timing for creating an
individual signature which are less than 1ms for
all four multi-signature schemes.

The VerifyMul columns in Table 3 present
the timings for verifying a multi-signature signed
by a threshold (or majority) number of mem-
bers from a group of ` members with ` =
64, 128, 256. The threshold is set to be b`/2c+1.
When using ECDSA for the same purpose as
multi-signatures, this is equivalent to b`/2c + 1
ECDSA signatures. From the table we can see
that RSMS-pop and RSMS-pop-zk outperforms
ECDSA and RSMSP and RSMSP-zk in terms
of the verification time for a multi-signature.
This is because VerifyMul in RSMS-pop and
RSMS-pop-zk mainly involves computing two
pairings which is almost constant. In comparison,
VerifyMul in RSMS-pop and RSMS-pop-zk re-
quires computing a sequence of exponentiations
on the public keys in order to reconstruct the
aggregate public keys for the subgroup.

The VerifyAgg columns in Table 3 give
the timings for verifying an aggregate signa-
ture signed by k groups (k = 64, 128, 256)
where each group consists of 128 members and
a majority number (i.e., 65) of members signed.
When using ECDSA for the same purpose, this
corresponds to 65 · k ECDSA signatures. For
all four multi-signature schemes, the timing for
verifying k multi-signatures using VerifyAgg is
less than k · t where t is the time for verifying a
multi-signature using VerifyMul. This is because
VerifyAgg functions as a batch verification which
saves k − 1 pairing computations. Similar to
VerifyMul, RSMS-pop and RSMS-pop-zk out-
performs RSMSP and RSMSP-zk and ECDSA in
terms of the verification of aggregate signatures.
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Appendix A.
Missing proofs in Section 4

Proof of Theorem 4.3. Suppose there exists an
adversary A that (τ, qS , qH , ε)-breaks robustness
of RSMSP-zk. We will show that this leads
to a contradiction. At the end of the robust-
ness game, the adversary outputs (m?, gpk =
(gtag?,PK), E = {si}i∈I) with PK =
{pki}i∈U and pk? = pkk for some k ∈
U . When the challenger outputs 1, we know
e(σ?, g2) 6= e(H3(gtag?,m?), apk) where s ←
Sign(m?, sk?, pk?, gtag?), (J, σ?) ← Combine(
m?, E ∪ {s}, gpk) and apk ← KeyAgg(J,PK).
This means there exists j ∈ J such that sj =
(vj , πj) and e(vj , g2) 6= e(H3(gtag?,m?), pkj).
We consider two cases. If j = k, then this
is impossible because vj = H3(gtag?,m?)sk

?

and pkj = gsk
?

2 . If j 6= k, from the
way Combine is instantiated, we know that
VerEqH4

(g2, pkj , H3(gtag?,m?), vj , πj) = 1 for
sj . Using the forking lemma to rewind A
we can obtain a witness sk′j such that vj =

H3(gtag?,m?)sk
′
j and pkj = g

sk′j
2 . This gives us

e(vj , g2) = e(H3(gtag?,m?), pkj) which con-
tradicts to the hypothesis.

Proof of Theorem 4.7. Suppose there exists an
adversary A that (τ, qS , qH , ε)-breaks robustness
of RSMS-pop. We will show that this leads
to a contradiction. At the end of the robust-
ness game, the adversary outputs (m?, gpk? =
(gtag?,PK? = {pki}i∈U , E = {(σi, πi)}i∈I)
with pk? = pkk for some k ∈ U . When the chal-
lenger outputs 1, the verification of σ? fails, i.e.,
e(σ?, g2) 6= e(H3(gtag?,m?),

∏
j∈J?∪{k} pkj)

where (v, π) ← Sign(m?, sk?, pk?, gtag?) and
(J, σ?) ← Combine(m?, E ∪ {(v, π)}, gtag?).
This means there exists j ∈ J such
that pkj = (pkj , popj) and e(vj , g2) 6=
e(H3(gtag?,m?), pkj). We consider two cases.
If j = k, then this is impossible because
vj = H3(gtag?,m?)sk

?

and pkj = gsk
?

2 .
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When j 6= k, we have VerEqH4
(H1(pkj),

popj , H3(gtag?,m?), σj , πj) = 1 for (vj , πj).
Using the forking lemma to rewind A we
can obtain a witness sk′j such that vj =

H3(gtag?,m?)sk
′
j and popj = H1(pkj)

sk′j . Since
e(H1(pkj), pkj) = e(popj , g2), we can derive
that pkj = g

sk′j
2 . This contradicts to the hypothe-

sis e(σj , g2) 6= e(H3(gtag?,m?), pkj).

Appendix B.
Missing proofs in Section 5

Proof of Theorem 5.4 (1). Given a (τ, qS , qH ,
ε)-forger A of ARSMSP, we construct
an adversary B exactly the same as in
the proof of Theorem 4.2, except that
A outputs an aggregate signature forgery
({mi, Ji, gpki = (gtagi,PKi)}i∈K ,Σ?) with
pk? = pkk?,j? for some k? ∈ K and j? ∈ Jk? .
If (gtagk? ,mk?) is not the η?-th query to
H2, B aborts. The probability that B does
not abort is at least 1/qH . Let’s assume this
is the case. Let apki ← KeyAgg(Ji,PKi)
for each i ∈ K. We have e(Σ?, g2) =∏
i∈K e(H3(gtagi,mi), apki) = e(H3(gtagk? ,

mk?), apkk?)
∏
i∈K,i6=k? e(H3(gtagi,mi), apki).

B looks up the table LH3 to find ri such that
H3(gtagi,mi) = ri for each i ∈ K \ {k?}.
Then B uses the oracle Oψ to compute σ? =
Σ ·

∏
i∈K\{k?}Oψ(apk−rii ). We can easily verify

that e(σ?, g2) = e(H3(gtagk? ,mk?), apkk?).
Now B obtains a RSMSP forgery and the
rest of the proof is similar to Theorem 4.2.
B’s running time is increased by extra steps
required to compute σ?, which in total is at
most τ + (qH + qS + n) · τexp1

+ ` · τexp2
time.

B’s success probability is still ε/qH .

Proof of Theorem 5.4(2). The proof is similar as
above, except that B needs to spend 2(τexp1

+
τexp2

) extra time to compute a simulated NIZK
proofs to answer each Sign query. In total, B
spends at most τ + (qH + 3qS + n) · τexp1

+
(2qS + `) · τexp2

time.

Proof of Theorem 5.5(1). Given a (τ, qS , qH , ε)-
forger A of ARSMS-pop, we construct
an adversary B exactly the same as in
the proof of Theorem 4.6, except that
A outputs an aggregate signature forgery
({mi, Ji, gpki = (gtagi,PKi)}i∈K ,Σ?)
with pk? = pkk?,j? for some k? ∈ K and
j? ∈ Jk? . If (gtagk? ,mk?) is not the η?-
th query to H2, B aborts. The probability
that B does not abort is at least 1/qH .
Let’s assume this is the case. Let apki ←
KeyAgg(Ji,PKi) for each i ∈ K. We have

e(Σ?, g2) =
∏
i∈K e(H3(gtagi,mi), apki) =

e(H3(gtagk? ,mk?), apkk?)
∏
i∈K,i 6=k? e(H3(gtagi,

mi), apki). B looks up the table LH3
to find

ri such that H3(gtagi,mi) = ri for each
i ∈ K \ {k?}. Then B uses the oracle Oψ to
compute σ? = Σ ·

∏
i∈K\{k?}Oψ(apk−rii ).

We can easily verify that e(σ?, g2) =
e(H3(gtagk? ,mk?), apkk?). Now B obtains
a RSMS-pop forgery and the rest of the
proof is similar to Theorem 4.6. B’s running
time is increased by extra steps required
to compute σ?, which in total is at most
τ + (qH + qS + `+ n) · τexp1

time. B’s success
probability is still ε/qH .

Proof of Theorem 5.5(2). The proof is similar as
above, except that B needs to spend 4 · τexp1

extra time to compute a simulated NIZK proofs
to answer each Sign query. In total, B spends at
most τ + (qH + 5qS + `+ n) · τexp1

time.
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