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ABSTRACT
We present a sub-exponential forger by using a 𝑘-sum algorithm
against the aggregate Γ-signature, which was proposed at AsiaCCS
2019 by Zhao. Our forger is a universal forger under a key-only
attack and effective in the knowledge of secret key model. We also
discuss the real impact of this attack in reality with Bitcoin ap-
plications. The discussions on the real impact of the attack also
highlight the significant differences between the usage of individ-
ual signatures like EC-DSA and that of aggregate signatures in
the blockchain systems like Bitcoin, which might be of indepen-
dent interest and could bring forth interesting questions for future
investigations.

CCS CONCEPTS
• Security and privacy→ Cryptanalysis and other attacks.
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1 INTRODUCTION
Blockchain is one of the technologies for realizing Bitcoin which
is a cryptocurrency scheme introduced by Satoshi Nakamoto [10].
This allows managing a ledger, guaranteeing unforgeability, and
achieving decentralization. Namely, nobody can tamper with trans-
actions that are managed by a publicly verifiable distributed ledger
without reliable administers. Blockchain is gathering attention glob-
ally in recent years due to the increasing popularity of Bitcoin and
is applied not only to a cryptocurrency but also to other industries.

In Bitcoin, the EC-DSA signature scheme [7] over the secp256k1
curve [13] is used to authenticate transactions. The size of signa-
tures and verification time are important terms for designing the
Bitcoin system because Bitcoin nodes need to verify all updates to
the ledger. Because of the non-linearity of the EC-DSA signature,
it is hard to combine signatures into a compact one while keeping
verifiability, and thus transactions contain a concatenation of all in-
dividual signatures. Namely, the signature size depends on the num-
ber of signatures and the signatures occupy a large part of the size
of Bitcoin transactions. Recently, there are interests in deploying
the Schnorr signature scheme [15] in Bitcoin instead of the EC-DSA
signature scheme in terms of linearity, well-established security,
and small computational complexity. Specifically, the linearity of
the Schnorr signature helps extensions to multi-signatures [1, 3, 9].

Aggregate signatures (AS) are a cryptographic primitive which
allows combining individual signatures on different messages into
a compact one, and it can also overcome the above bottlenecks.

https://doi.org/10.1145/1122445.1122456
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Boneh et al. introduced the notion of AS and proposed a pairing-
based AS scheme which achieves a constant signature size [4]. In
general, pairing-based AS schemes require pairing computation
to verify a signature, and the security of them is based on the
computational assumption in groups with bilinear maps which
is stronger than the discrete logarithm assumption in the elliptic
curve (EC) groups. Deploying pairing-based AS schemes in existing
applications, e.g., blockchain, is expensive because it requires not
only replacing the algorithms of a signature scheme with the those
of the pairing-based scheme but also replacing an EC with pairing
friendly ones. AS from general EC groups are attractive in terms of
the computational complexity and the cost of deployment.

Zhao showed the subtlety in constructing a secure AS scheme
from general groups and proposed an AS scheme from general EC
groups without bilinear maps by extending the Γ-signature [17],
which is called the aggregate Γ-signature [18]. He also proved that
it is secure in the plain public-key (PK) model [1] based on the new
assumption, named the non-malleable discrete logarithm (NMDL)
assumption.

In the Bitcoin forum [11], a sub-exponential time universal forger
under a key-only attack1 [6] against the aggregate Γ-signature
scheme was proposed anonymously by the name of ncklr. This
forger generates cosigners’ public keys by using the public key
of an honest signer (namely, this is a rogue-key attack [14]), and
finds a desirable set of cosigners’ messages by using the 𝑘-sum
algorithm [16]. Note that we can practically prevent this forger from
finding such a set together with a set of malicious public keys by
using a proof-of-possession of secret key [14], where all the signers
need to submit a certification to prove that the corresponding public
keys are generated honestly. Also, in the blockchain systems like
Bitcoin, it is hard to apply such a rogue-key attack because each
signer’s message commits to one’s public key.

In this paper, we propose a stronger forger. Specifically, our
forger is a universal forger under a key-only attack in the knowl-
edge of secret key (KOSK) model [2, 8]. Since our attack is effective
even in the KOSK model, we cannot circumvent our attack even if a
trusted key-setup is executed. This forger runs in sub-exponential
time due to the 𝑘-tree algorithm [16]. Although our proposed attack
is not fatal theoretically since it is a sub-exponential time attack,
it affects the practical performance of Zhao’s scheme. More con-
cretely, in order to guarantee the security against our attack, the
aggregate Γ-signature scheme requires the bit-length of the order
of an underlying group to be approximately log𝑛 times the security
parameter where 𝑛 is the number of signers. In contrast, for most
other schemes based on general EC groups, the bit-length of the
order of the underlying group is only twice as long as the security
parameter (due to the 𝜌 method [12]).

The aggregate Γ-signature was introduced in [18] with the mo-
tivation for applications to the Bitcoin system. We then discuss
the real impact of this attack in reality in the blockchain systems
like Bitcoin in Section 5. Though the attack is itself quite effective,
we show that it is actually infeasible in reality in the blockchain
systems like Bitcoin, and is economically meaningless. The discus-
sions on the real impact of the attack also highlight the significant
1Universal forgeability is that there is a forger who can generate a forgery on an
arbitrary message and is more serious than existential forgeability. A key-only attack
does not allow a forger to make a signing query.

differences between the usage of individual signatures like EC-DSA
and that of aggregate signatures in the blockchain systems, which
might be of independent interest and could bring forth interesting
questions for future investigations.

2 PRELIMINARIES
The following is notations and some definitions which are used in
this paper.

2.1 Notation
For a prime integer 𝑞, we denote the ring of integers modulo 𝑞 by
𝑍𝑞 and the multiplicative group of 𝑍𝑞 by 𝑍 ∗𝑞 . Let 𝐺 be an additive
cyclic group of order 𝑞 and let 𝑃 be a generator of𝐺 . For a set𝐴, we

write 𝑎
$←− 𝐴 to mean that 𝑎 is chosen uniformly at random from 𝐴.

2.2 𝑘-sum Problem
We recall the definition of the 𝑘-sum problem.

Definition 2.1 (𝑘-sum problem). The 𝑘-sum problem in group
(𝑍𝑞 ;+) for an arbitrary 𝑞 provides 𝑘 lists 𝐿1, . . . , 𝐿𝑘 of equal sizes,
each list containing 𝑠𝐿 elements sampled uniformly and indepen-
dently from 𝑍𝑞 , and requires to find 𝑥1 ∈ 𝐿1, . . . , 𝑥𝑘 ∈ 𝐿𝑘 s.t.∑𝑘
𝑖=1 𝑥𝑖 ≡ 0 (mod 𝑞).

In [16], Wagner proposed the 𝑘-tree algorithm which can solve
the 𝑘-sum problem for 𝑠𝐿 = 2log𝑞/(1+log𝑘) in time at most
𝑂 (𝑘2log𝑞/(1+log𝑘) ) with non-negligible probability.

2.3 Aggregate Signatures
In this section, we show definitions of aggregate signatures and a
security model of it.

Definition 2.2. An aggregate signature scheme consists of the
following six algorithms. Let 𝑛 be the number of signers.

Setup(1𝜆) → pp. The public parameter generation algorithm
takes as input a security parameter 1𝜆 , then it outputs a
public parameter pp.

KeyGen(pp) → (pk, sk). The key generation algorithm takes
as input a public parameter pp, then it outputs a public key
pk and a secret key sk.

Sign(pp, pk, sk,𝑚) → 𝜎 . The signing algorithm takes as input
a public parameter pp, a public key pk, a secret key sk, and
a message𝑚, then it outputs a individual signature 𝜎 .

Verify(pp, pk,𝑚, 𝜎) → {0, 1} The verification algorithm takes
as input a public parameter pp, a public key pk, a message𝑚,
and a signature 𝜎 , then it outputs 0 (REJECT) or 1 (ACCEPT).

Agg(pp, {(pk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑛𝑖=1) → 𝜎𝑎 . The aggregation algorithm
takes as input a public parameter pp, and a set of all signers’
public keys, messages, and signatures {(pk𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑛𝑖=1, then
it outputs an aggregate signature 𝜎𝑎 .

AggVer(pp, {(pk𝑖 ,𝑚𝑖 )}𝑛𝑖=1, 𝜎𝑎) → {0, 1}. The aggregate signa-
ture verification algorithm takes as input a public parameter
pp, a set of all signers’ public keys andmessages {(pk𝑖 ,𝑚𝑖 )}𝑛𝑖=1,
and an aggregate signature 𝜎𝑎 , then it outputs 0 (REJECT)
or 1 (ACCEPT).
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For any set of messages {𝑚𝑖 }𝑛𝑖=1, if a public parameter pp, all sign-
ers’ public keys {pk𝑖 }𝑛𝑖=1, and an aggregate signature 𝜎𝑎 are gen-
erated honestly by the above algorithms, then we require that
Pr[AggVer(pp, {(pk𝑖 ,𝑚𝑖 )}𝑛𝑖=1, 𝜎𝑎) = 1] = 1.

2.3.1 Security Game. For aggregate signatures, we define universal
unforgeability under key-only attacks in the knowledge of secret
key (KOSK) model. In this security model, a forger who corrupts an
aggregator and signers except one honest signer is given an hon-
est signer’s public key and a message and is required to generate
a forgery on the given message by making hash queries. When
outputting a forgery, it must output cosigners’ secret keys corre-
sponding to cosigners’ public keys which are chosen arbitrarily.

If, for all 𝑚∗, a forger F wins the following game with non-
negligible probability, then we say that F is a universal forger
under a key-only attack in the KOSK model.

Setup(1𝜆,𝑚∗). The challenger chooses a public parameter pp
$←−

Setup(1𝜆), an honest signer’s key pair (pk, sk) $←− KeyGen(pp).
It runs a forger F on input pp, pk and a message𝑚∗.

Output. F outputs𝑛 key pairs {(𝑝𝑘𝑖 , 𝑠𝑘𝑖 ,𝑚∗𝑖 )}
𝑛
𝑖=1 and a forgery

𝜎∗𝑎 where the following holds.
• (𝑝𝑘1,𝑚∗1), . . . , (𝑝𝑘𝑛,𝑚

∗
𝑛) are mutually distinct.

• (𝑝𝑘,𝑚∗) ∈ {(𝑝𝑘𝑖 ,𝑚∗𝑖 )}
𝑛
𝑖=1.

• 𝑠𝑘𝑙 is ⊥ where 𝑙 satisfies s.t. 𝑝𝑘𝑙 = 𝑝𝑘 .
• 𝑠𝑘𝑖 is a correct secrete key corresponding to 𝑝𝑘𝑖 for 𝑖 ∈
[1, 𝑛]\{𝑙}.

If AggVer(pp, {(pk𝑖 ,𝑚∗𝑖 )}
𝑛
𝑖=1, 𝜎

∗
𝑎) = 1 holds, then F wins.

3 AGGREGATE Γ-SIGNATURE SCHEME
In [18], the aggregate Γ-signature scheme is proposed by Zhao. This
scheme consists of the following six algorithms.

Setup(1𝜆) → (𝐺,𝑞, 𝑃, 𝐻0, 𝐻1). It chooses (𝐺,𝑞, 𝑃), hash func-
tions 𝐻0 : 𝐺 → 𝑍𝑞 and 𝐻1 : 𝐺 ×𝑀 → 𝑍𝑞 where 𝑀 is the
set of messages, then it outputs pp = (𝐺,𝑞, 𝑃, 𝐻0, 𝐻1).

KeyGen(pp) → (𝑋, 𝑥). It computes 𝑥
$←− 𝑍 ∗𝑞 and 𝑋 ← 𝑥𝑃 ,

then it outputs a public key 𝑋 and a secret key 𝑥 .

Sign(pp, 𝑋, 𝑥,𝑚) → 𝜎 . It computes 𝑟
$←− 𝑍 ∗𝑞 , 𝐴 ← 𝑟𝑃 , 𝑑 ←

𝐻0 (𝐴), and 𝑒 ← 𝐻1 (𝑋,𝑚). It computes 𝑧 ← 𝑟𝑑 −𝑒𝑥 mod 𝑞,
then it outputs 𝜎 = (𝑧, 𝑑) as a signature.

Verify(pp, 𝑋,𝑚, 𝜎) → {0, 1} It computes 𝑒 ← 𝐻1 (𝑋,𝑚) and
𝐴 ← 𝑧𝑑−1𝑃 + 𝑒𝑑−1𝑋 . If 𝐻0 (𝐴) ≠ 𝑑 holds, then it outputs 0.
Otherwise it outputs 1.

Agg(pp, {(𝑋𝑖 ,𝑚𝑖 , 𝜎𝑖 )}𝑛𝑖=1) → (𝑇,𝐴, 𝑧). It initializes 𝑇 = ∅, 𝐴 =

∅, and 𝑧 = 0. For 𝑖 = 1 to 𝑛, if Verify(pp, 𝑋𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1 ∧
(𝑋𝑖 ,𝑚𝑖 ) ∉ 𝑇 ∧𝐴𝑖 ∉ 𝐴 holds, it sets 𝑇 ← 𝑇 ∪ {(𝑋𝑖 ,𝑚𝑖 )} and
𝐴← 𝐴 ∪ {𝐴𝑖 } and computes 𝑧 ← 𝑧 + 𝑧𝑖 mod 𝑞. Finally, it
outputs (𝑇,𝐴, 𝑧).

AggVer(pp, (𝑇,𝐴, 𝑧)) → {0, 1}. If the elements in𝑇 are not mu-
tually distinct, the elements in 𝐴 are not mutually distinct,
or |𝑇 | ≠ |𝐴| holds, then outputs 0. It sets 𝑛′ ← |𝑇 |, and for
𝑗 = 1 to 𝑛′, it computes 𝑑 𝑗 ← 𝐻0 (𝐴 𝑗 ) and 𝑒 𝑗 ← 𝐻1 (𝑋 𝑗 ,𝑚 𝑗 ).
If

∑𝑛′
𝑗=1 𝑑 𝑗𝐴 𝑗 = 𝑧𝑃 +

∑𝑛′
𝑗=1 𝑒 𝑗𝑋 𝑗 holds, it outputs 1, Otherwise

it outputs 0.
Zhao presented the ephemeral rouge-key attack against an intu-

itive AS scheme built from the Schnorr signature which combines

only the response components of the Σ-protocol [5] and showed
that the above AS scheme can prevent this attack. Also the secu-
rity of this scheme is proved based on the non-malleable discrete
logarithm (NMDL) assumption. We review the definition of this
assumption.

Definition 3.1 (non-malleable discrete logarithm (NMDL) assump-
tion). Let 𝐻1, . . . , 𝐻𝐾 : {0, 1}∗ → 𝑍 ∗𝑞 be cryptographic hash func-
tions, whichmay not be distinct. On input (𝐺, 𝑃, 𝑞, 𝑋 ) where𝑋 = 𝑥𝑃

for 𝑥 ← 𝑍 ∗𝑞 a PPT algorithm A (called an NMDL solver) succeeds
in solving the NMDL problem, if it outputs ({𝑏𝑖 , 𝑌𝑖 ,𝑚𝑖 }𝐾𝑖=1, 𝑧) satis-
fying:
• 𝑧 ∈ 𝑍𝑞 , and for any 𝑖 , 1 ≤ 𝑖 ≤ 𝐾 , 𝑌𝑖 ∈ 𝐺 ,𝑚𝑖 ∈ {0, 1}∗ that
can be the empty string, and 𝑏𝑖 ∈ {0, 1}.
• For any 1 ≤ 𝑖 , 𝑗 ≤ 𝐾 , it holds that (𝑌𝑖 ,𝑚𝑖 ) ≠ (𝑌𝑗 ,𝑚 𝑗 ). It
might be the case that 𝑌𝑖 = 𝑌𝑗 or𝑚𝑖 =𝑚 𝑗 .
• 𝑋 ∈ {𝑌𝑖 }𝐾1 , and 𝑧𝑃 =

∑𝐾
𝑖=1 (−1)𝑏𝑖 𝑒𝑖𝑌𝑖 where 𝑒𝑖 = 𝐻𝑖 (𝑌𝑖 ,𝑚𝑖 ).

The NMDL assumption means that there are no PPT algorithm
which succeeds in solving the NMDL problems with non-negligible
probability in log𝑞.

For more detail of this assumption, see Section 5.1 of [18].

4 SUB-EXPONENTIAL UNIVERSAL FORGERY
UNDER A KEY-ONLY ATTACK AGAINST
AGGREGATE Γ-SIGNATURE IN THE KOSK
MODEL

Here we present a sub-exponential universal forger under a key-
only attack against the aggregate Γ-signature in the KOSK model.
The cause of this cryptanalysis is that there is an algorithm that
can solve the NMDL problem in sub-exponential time by using a
𝑘-sum algorithm.

The input and the goal of a forger against aggregate Γ-signature
in the security game in Section 2.3.1 are as follows:

Input: A challenge key 𝑋1 and a target message𝑚∗1.
Goal: To output a forgery (𝑧∗, {𝐴𝑖 }𝑛𝑖=1) and a set of cosigners’

keys and messages {(𝑋𝑖 , 𝑥𝑖 ,𝑚∗𝑖 )}
𝑛
𝑖=2 s.t. the following holds:

𝑛∑
𝑖=1

𝑑𝑖𝐴𝑖 = 𝑧
∗𝑃 +

𝑛∑
𝑖=1

𝑒𝑖𝑋𝑖 (1)

where 𝑋𝑖 = 𝑥𝑖𝑃 for 𝑖 ∈ [2, 𝑛], 𝑑𝑖 = 𝐻0 (𝐴𝑖 ), and 𝑒𝑖 =

𝐻1 (𝑋𝑖 ,𝑚∗𝑖 ) for 𝑖 ∈ [1, 𝑛].
Now, we explain an overview of our forger. To achieve the above

goal, our forger generates ephemeral rogue-keys by exploiting a

𝑛-sum algorithm. Specifically, it chooses uniformly 𝑟𝑖
$←− 𝑍 ∗𝑞 and

computes an ephemeral rogue-key 𝐴𝑖 ← 𝑟𝑖𝑃 + 𝑋1 for each signer,
respectively. In this case, for the equation (1), when we assume that
(i)

∑𝑛
𝑖=1 𝑑𝑖 = 𝑒1 holds, the terms related to𝑋1 are canceled out. Then

this forger can compute a consistent 𝑧∗ because it knows discrete
logarithms corresponding to remaining terms. Thus, to achieve
the goal, it is sufficient for the forger to obtain a set of ephemeral
rogue-keys {𝐴𝑖 }𝑛𝑖=1 which make (i) hold. A 𝑛-sum algorithm is
used for such a purpose. Concretely, the forger prepares many
ephemeral keys and finds a set of such keys {𝐴𝑖 }𝑛𝑖=1 by using an
𝑛-sum algorithm.

Below, we show the procedure of our proposed forger F .
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Main Procedure
(1) Choose arbitrary cosigners’ secret keys {𝑥𝑖 }𝑛𝑖=2 ∈ (𝑍

∗
𝑞 ) (𝑛−1)

and assign the public keys as follows:

𝑋2 ← 𝑥2𝑃, . . . , 𝑋𝑛 ← 𝑥𝑛𝑃 . (2)

(2) Launch an 𝑛-sum attack via 𝑛 · 𝑠𝐿 times hash computations
to obtain {(𝑑𝑖 , 𝑟𝑖 , 𝐴𝑖 )}𝑛𝑖=1 s.t. the following holds:

𝑛∑
𝑖=1

𝑑𝑖 ≡ 𝑒1 (mod 𝑞) (3)

where 𝐴𝑖 = 𝑟𝑖𝑃 + 𝑋1, 𝑑𝑖 = 𝐻0 (𝐴𝑖 ) for 𝑖 ∈ [1, 𝑛] and 𝑒1 =

𝐻1 (𝑋1,𝑚∗1).
(3) Choose any messages {𝑚∗

𝑖
}𝑛
𝑖=2 and assign the followings:

𝑒2 ← 𝐻1 (𝑋2,𝑚∗2), . . . , 𝑒𝑛 ← 𝐻1 (𝑋𝑛,𝑚∗𝑛), (4)

𝑧∗ ← −
𝑛∑
𝑖=2

𝑥𝑖𝑒𝑖 +
𝑛∑
𝑖=1

𝑟𝑖𝑑𝑖 . (5)

(4) Output (𝑧∗, {𝐴𝑖 }𝑛𝑖=1) and {(𝑋𝑖 , 𝑥𝑖 ,𝑚
∗
𝑖
)}𝑛
𝑖=2.

In Step 2 of the above, F executes the𝑛-sum algorithm according
to the following.

𝑛-sum Attack Procedure.

(1) Choose {𝑟𝑖, 𝑗 }𝑛,𝑠𝐿𝑖=1, 𝑗=1 ∈ (𝑍
∗
𝑞 )𝑛×𝑠𝐿 and computes {𝐴𝑖, 𝑗 }𝑛,𝑠𝐿𝑖=1, 𝑗=1

where

𝐴𝑖, 𝑗 = 𝑟𝑖, 𝑗𝑃 + 𝑋1 . (6)

(2) Compute 𝑑𝑖, 𝑗 ← 𝐻0 (𝐴𝑖, 𝑗 ) for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑠𝐿].
(3) Make lists as follows:

𝐿1 ← {𝑑1, 𝑗 − 𝑒1}𝑠𝐿𝑗=1,

and 𝐿𝑖 ← {𝑑𝑖, 𝑗 }𝑠𝐿𝑗=1 for 𝑖 ∈ [2, 𝑛] .

(4) Run the 𝑛-sum algorithm on input the 𝑛 − 1 lists {𝐿𝑖 }𝑛𝑖=1 to
obtain {𝑑𝑖, 𝑗𝑖 }𝑛𝑖=1 s.t. Eq. (3) holds.

(5) Output {(𝑑𝑖, 𝑗𝑖 , 𝑟𝑖, 𝑗𝑖 , 𝐴𝑖, 𝑗𝑖 )}𝑛𝑖=1.

Correctness
Now we confirm the correctness of the above attack procedure.
For an output of F , (𝑧∗, {𝐴𝑖 }𝑛𝑖=1) and {(𝑋𝑖 , 𝑥𝑖 ,𝑚

∗
𝑖
)}𝑛
𝑖=2, we have the

following equations hold:

𝑧∗𝑃 +
𝑛∑
𝑖=1

𝑒𝑖𝑋𝑖

= (−
𝑛∑
𝑖=2

𝑥𝑖𝑒𝑖 +
𝑛∑
𝑖=1

𝑟𝑖𝑑𝑖 )𝑃 + 𝑒1𝑋1 +
𝑛∑
𝑖=2

𝑒𝑖𝑥𝑖𝑃 (from, Eq.(5))

=

𝑛∑
𝑖=1

𝑟𝑖𝑑𝑖𝑃 + 𝑒1𝑋1

=

𝑛∑
𝑖=1

𝑟𝑖𝑑𝑖𝑃 +
(
𝑛∑
𝑖=1

𝑑𝑖

)
𝑋1 (from Eq.(3))

=

𝑛∑
𝑖=1

𝑑𝑖 (𝑟𝑖𝑃 + 𝑋1)

=

𝑛∑
𝑖=1

𝑑𝑖𝐴𝑖 (from Eq.(6)).

Computational Complexity
By using Wagner’s 𝑘-tree algorithm, Step 4 of 𝑛-sum Attack Pro-
cedure takes atmost𝑂

(
𝑛2log𝑞/(1+log𝑛)

)
time. In addition, inMain

Procedure, there are 𝑛 − 1 exponentiations and 𝑛 computations
of the hash function in Steps 1 and 3, respectively. Also, in 𝑛-sum
Attack Procedure, there are respectively 𝑛 × 𝑠𝐿 exponentiations
and 𝑛×𝑠𝐿 computations of the hash function in Steps 1 and 2 where
𝑠𝐿 is 2log𝑞/(1+log𝑛) .

A value of 𝑛2log𝑞/(1+log𝑛) is minimized when 𝑛 = 2
√
log𝑞−1. In

particular, assuming that the bit-length of 𝑞 is 256-bits, the running
time of the above forger is minimized to 𝑂 (231) when 𝑛 is approxi-
mately 215. In this parameter (i.e., 𝑛 = 215), the number of cosigners
should be fixed to 215 − 1 and cannot be chosen flexibly. Instead,
if we want to reduce the number of cosigners, we can mount the
above attack with a smaller 𝑛 at the cost of much time and space
complexity. In the reality of the Bitcoin system, 𝑛 is about 212 and
the time complexity is about 𝑂 (232). Note that this complexity is
almost the same as the optimal. Fig. 1 shows the relation between
𝑛2log𝑞/(1+log𝑛) and log𝑛, namely, the one between the complexity
of an 𝑛-sum algorithm and the number of signers.

5 ON THE REAL IMPACT OF THE ATTACK IN
BITCOIN APPLICATION

The aggregate Γ-signature was introduced in [18] with the moti-
vation for applications to the Bitcoin system. We review some key
facts about the attack, the real Bitcoin system, and the application
of aggregate Γ-signature in the Bitcoin system, and discuss the
real impact of the attack in reality in the blockchain systems like
Bitcoin.

In a nutshell, though the forging attack proposed in the fore-
going section is quite effective on its own, it is far ineffective in
reality with a real blockchain system like Bitcoin. Briefly, the attack
can only be launched by a malicious miner. Unlike the forging of
the individual signature like EC-DSA or the Γ-signature that is
indistinguishable from signatures honestly generated, the forge
of the aggregated Γ-signature can always be detected in reality.
Moreover, for the forged aggregated signature to cause real damage
to the Bitcoin system, the attacker needs to succeed in the mining
of the current block containing the forged aggregated signature
and to make sure that the malicious block to be confirmed with six
subsequent blocks. The following facts and discussions show that
the attack is impossible in reality with the Bitcoin system, and is
also economically meaningless. These facts and discussions also
highlight the significant differences between the usage of individ-
ual signatures like EC-DSA and that of aggregate signature in the
blockchain systems, which might be of independent interest and
could bring forth interesting questions for future investigations.

Fact-1: The attack can only be mounted by a malicious miner
in the real system of blockchain, who creates all the public
keys and transactions {𝑋 𝑗 ,𝑚∗𝑗 }, 2 ≤ 𝑗 ≤ 𝑛.

Fact-2: The transaction and valid signature of the victim user
{𝑋1,𝑚∗1, 𝜎1 = (𝑧1, 𝑑1)} cannot be generated by the attacker,
and thus they will not be broadcasted into the Bitcoin system.
Consequently, all the honest users in the system will never
receive this victim transaction and signature. But for the
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Figure 1: Complexity of an 𝑛-sum algorithm where log𝑞 = 256.

attack to succeed, the block containing the victim transaction
must be confirmed and be followed by at least six subsequent
blocks.

Fact-3: The attack can always be detected. In the real Bitcoin
system, for each individual transaction and signature to be
broadcast, each full node (where the miners are a special
kind of full nodes) verifies the validity of each individual
signature and stores them into its own transaction pool.2
When applying the aggregate Γ-signature into the Bitcoin
system, transactions and signatures are stored in the trans-
action pool with the data structure of Merkle-Patricia tree
for performing duplication check. For each block mined to
be broadcast, each full node in the Bitcoin system will check
the validity of each individual signature contained in that
block. This is typically implemented by checking whether
the transaction and signature contained in the mined block
appear in the transaction pool, where the validity of all the
transactions and signatures in the pool has already been veri-
fied. As the transaction and signature of the victim user were
never broadcast into the system and thus will not appear
in the transaction pool of any honest full node. This means
that the attack can always be detected.

Fact-4: The attack is uncontrollable. To minimize the detection
probability, the attacker at least needs to broadcast most
of the transactions {(𝑋 𝑗 ,𝑚∗𝑗 )} for 𝑗 ≥ 2 together with the
signatures honestly generated by itself. Then, the attacker
needs to pray for that none of the {(𝑋 𝑗 ,𝑚∗𝑗 )} for 𝑗 ≥ 2
will be collected and written into the blockchain by other
competitive miners before the attack succeeds; otherwise,

2We stress that for each block being confirmed in the blockchain, the validity of all
the transactions included in that block is verified only w.r.t. the aggregated signature,
which does indeed save the verification time with the aggregated Γ-signature. But
before that, the validity of the individual transactions and signatures and that of the
mined blocks are verified by each full node in the Bitcoin system.

the attack fails. This is out of control through the competitive
proof-of-work (POW) hashing.

Fact-5: The attack is costly and infeasible in reality. For the
attack to succeed, besides the sub-exponential-time calcula-
tions, the attacker needs also to succeed through the com-
petitive POW hashing. Specifically, besides making sure the
forgery attack succeeds, the attacker also needs to ensure
that: (1) it succeeds in the current block mining with the
competitive POW hashing; and (2) that the mined block is
finally confirmed with six subsequent blocks. However, as
mentioned, the attack can always be detected, and no honest
miners will follow the malicious block. This means that the
attacker should own the majority of the POWhashing power,
but this is as hard as a successful double-spending attack
against the Bitcoin system that never happens in reality.

Fact-6: The attack can actually cause significantlymore serious
damage and loss to the attackers themselves. Specifically, the
fact that only a malicious miner can perform such an attack
may already be a more serious concern, and this fact itself
may make the attack economically meaningless. Concretely,
for the miners in the Bitcoin system, their most important
benefit is to keep the Bitcoin system healthy and safe. An
attack, which only gains one bitcoin (with the following up-
per bound mechanism to be specified) even if it succeeds,
fortunately, can be easily detected and can then cause signif-
icantly more serious damage and loss to the miner attacker
itself.

As discussed above, though the attack is itself quite effective, it is
actually infeasible in reality in the blockchain systems like Bitcoin.
In practice, we can make the attack even harder and economically
more meaningless.

One simple countermeasure against the attack is to put an upper
bound (e.g., one bitcoin) to be transferred for each transaction that
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is allowed to be aggregated; otherwise, such transactions cannot
be aggregated. This will make the attack economically more mean-
ingless. Specifically, an honest miner can earn much more than
performing the attack. Currently, a miner can earn about seven
bitcoins with each successful block mining. However, if the miner
is malicious and performs the attack that can always be detected,
it has the risk of paying much more but earning nothing. On the
other hand, note that honest mining with signature aggregation can
actually help the miners to earn more than the traditional mining
with individual signatures.

To make the attack even harder, in reality, another approach
is to include some unpredictable values into the input of 𝑒𝑖 . For
example, the random nonce appeared in the last confirmed block of
the Bitcoin system that can be publicly available from the Bitcoin
system, together with some other information (e.g., time stamp
and the confirmed blockchain length), is also input to 𝑒𝑖 . In addi-
tion, we can specify a short time window such that only relatively
fresh transactions can be aggregated. For example, suppose the last
confirmed block is of blocklength 𝑘 , i.e, the 𝑘-th block, the transac-
tions conveying the random nonce of the 𝑘-th block can only be
aggregated within the subsequent 𝑘 + 12 blocks, which amounts for
an about two-hour time window for aggregating relatively fresh
transactions.
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