
Recovery Attack on Bob’s Reused Randomness
in CRYSTALS-KYBER and SABER

Satoshi Okada1 and Yuntao Wang2?

1 Graduate School of Information Science and Technology, The University of Tokyo
okada-satoshi323@g.ecc.u-tokyo.ac.jp

2 School of Information Science, Japan Advanced Institute of Science and Technology
y-wang@jaist.ac.jp

Abstract. Quantum computing capability outperforms that of the clas-
sic computers overwhelmingly, which seriously threatens modern public-
key cryptography. For this reason, the National Institute of Standards
and Technology (NIST) and several other standards organizations are
progressing the standardization for post-quantum cryptography (PQC).
There are two contenders among those candidates, CRYSTALS-KYBER
and SABER, lattice-based encryption algorithms in the third round fi-
nalists of NIST’s PQC standardization project. At the current phase,
it is important to evaluate their security, which is based on the hard-
ness of the variants of Ring Learning With Errors (Ring-LWE) problem.
In ProvSec 2020, Wang et al. introduced a notion of “meta-PKE”for
Ring-LWE crypto mechanism. They further proposed randomness reuse
attacks on NewHope and LAC cryptosystems which meet the meta-PKE
model. In their attacks, the encryptor Bob’s partial (or even all) random-
ness can be recovered if it is reused. In this paper, we propose attacks
against CRYSTALS-KYBER and SABER crypto schemes by adapting
the meta-PKE model and improving Wang et al.’s methods. Then, we
show that our proposed attacks cost at most 4, 3, and 4 queries to recover
Bob’s randomness for any security levels of I (AES-128), III (AES-192),
and V (AES-256), respectively in CRYSTALS-KYBER. Simultaneously,
no more than 6, 6, and 4 queries are required to recover Bob’s secret for
security levels I, III, and V in SABER.

Keywords: PQC, Randomness Reuse Attack, Meta-PKE, CRYSTALS-KYBER,
SABER.

1 Introduction

The security of current public-key crypto algorithms is commonly based on the
difficulty of the large number factorization problem or the discrete logarithm
problem. However, it is possible to break these cryptosystems in polynomial time
by quantum computers in the near future, due to Shor’s quantum algorithm [19]

? corresponding author, ORCID: 0000-0002-2872-4508.

2 Satoshi Okada and Yuntao Wang

and the rapid development of quantum computing technique. Therefore, it is
urgent to develop the quantum-safe crypto algorithms, or academically named
by post-quantum cryptography (PQC) in general, to protect against the threat
of quantum computers. Several years ago, some international standards organi-
zations such as NIST, ISO, and IETF already started the PQC standardization
projects. Among the several categories, lattice-based cryptography is considered
as one of the most promising contenders for its reliable security strength, com-
parative light communication cost, fast performance and excellent adaptation
capabilities [1]. Indeed, three of four encryption/KEM algorithms and two of
three digital signature schemes are lattice-based candidates in the third round
finalists selected and announced by NIST in 2020.

CRYSTALS-KYBER [6] and SABER [7] are two of lattice-based encryp-
tion/KEM candidates that progressed to the third round of NIST’s PQC stan-
dardization project. Specifically, the security of CRYSTALS-KYBER is based
on the difficulty of the underlying Ring-LWE problem in the module lattice (i.e.
Module-LWE problem) [2]. Similarly, SABER’s security depends on the difficulty
of the Module-LWR problem, which chooses deterministic errors and consumes
less computational resources. Generally, owing to the ring structure, the key size
in the Ring-LWE based crypto schemes is smaller than that of the typical LWE
based ones. At the current stage, it is crucial to analyze their security carefully
to resist malicious attacks.

Recently, it has been common to reuse keys or randomness in network com-
munications in order to improve the performance of the protocols. For instance,
TLS 1.3 [18] adopts the pre-shared key (PSK) mode, where the server is al-
lowed to reuse the same secret key (randomness) and public key in intermittent
communication with the clients to reduce the procedure of handshakes. Such
key reuse mode has the risk of leaking information about a secret key when an
adversary has enough chances to send queries to the honest server and get cor-
rect responses from it. There are kinds of key reuse attacks on Ring-LWE based
crypto schemes. In this paper, we consider the case that the client Bob reuses
his randomness, which is used for the encryption process. This attack works as
follows: an adversary sends chosen public keys to the server and recovers Bob’s
partial or entire randomness by observing the returned public key and ciphertext.
For example, it is dangerous when the client Bob communicates with an honest
server after accessing a malicious one and reusing the same randomness. That is
because his ciphertext is easily decrypted by misusing his leaked randomness.

In [21], Wang et al. introduce a meta-PKE construction and show that both
NewHope and LAC follow this construction. Then, they observe that the meta-
PKE is vulnerable against the randomness reuse attack, and they propose attacks
on NewHope [2] and LAC [13], respectively. However, this attack for CRYSTALS-
KYBER or SABER has not been proposed so far.

1.1 Our Contributions

The randomness reuse attacks on LAC and NewHope proposed in [21] are not
adaptable to CRYSTALS-KYBER and SABER because the encryption processes

Title Suppressed Due to Excessive Length 3

of the crypto schemes are different. In this paper, we first discuss necessary con-
ditions for the success of attacks against CRYSTALS-KYBER and SABER and
present attack methods when the conditions are satisfied. Then, we also propose
attack methods for crypto schemes that do not meet that condition. Furthermore,
we shows that in CRYSTALS-KYBER, our proposed attack costs at most 4, 3,
and 4 queries to recover Bob’s randomness for security levels of I (AES-128), III
(AES-196), and V (AES-256), respectively. Meanwhile, in SABER, at most 6, 6,
and 4 queries are needed for security levels of I, III, and V. Indeed, our proposed
algorithms can recover Bob’s randomness with 100% success rate. Furthermore,
we experimentally verified our proposed attacks. Considering the success rate
and the number of queries, the reuse of the randomness is very dangerous and
should be strictly avoided. It is notable that CRYSTALS-KYBER and SABER
are two of the leading contenders in NIST PQC standardization project, namely,
one of them may be applied in some randomness reuse scenarios such as TLS
communications in the near future.

Due to the vulnerability of randomness reuse, once the attacker recovered
the client’s (Bob’s) randomness, there is potential risk that the attacker can
obtain other parties’ symmetric keys issued by the server. Consequently, this
work may call attention to relevant countermeasures for such attacks in real-
world applications.

1.2 Related Works

There have been a number of key recovery attacks on Ring-LWE [14] based cryp-
tosystems under a key reuse scenario. In general, they are divided into two types:
the signal leakage attacks taking advantage of the signal function [8,10,12,5], and
key reuse attacks focusing on the final shared key or the ciphertext. Concerning
the latter, in ACISP 2018, Ding et al. [9] proposed a general key mismatch at-
tack model for Ring-LWE based key exchange protocol. Subsequently, there are
several key mismatch attacks on specific lattice-based cryptographic schemes.
For example, attacks on NewHope are proposed in [4,16,15,20]. In 2019, Qin
et al. [17] proposed attacks on CRYSTALS-KYBER, and Greuret et al. [11]
proposed attacks on LAC in 2020. Furthermore, there is also a key mismatch
attack using quantum algorithms proposed by Băetu et al. [3] in 2019. Besides
the key mismatch attack on Alice’s secrets, there is also a key reuse attack on
Bob’s randomness by observing his ciphertext. In 2020, Wang et al. [21] pro-
posed such attacks on NewHope and LAC, which are both the ring-LWE based
cryptosystems with compressing technique. In this paper, we improve the at-
tacks in [21] and apply them to the Module-LWE based CRYSTALS-KYBER
with compressing technique, and the Module-LWR based SABER with bitwise
shift operation.

1.3 Roadmap

We recall some preliminaries, including mathematical notations, CRYSTALS-
KYBER, SABER, and Wang et al.’s proposition in Section 2. Then, we apply

4 Satoshi Okada and Yuntao Wang

Wang et al.’s theorem and propose our key reuse attacks on CRYSTALS-KYBER
and SABER in Section 3. Finally, we give our experimental results and show how
our proposed attack works well in Section 4. Finally, we make a conclusion and
present some countermeasures against our proposed attack in Section 5.

2 Preliminary

In this section, we introduce the algebraic definitions and notations used in this
paper. Next, we show each protocol’s outline, including several core functions
in CRYSTALS-KYBER [6] and SABER [7]. Finally, we explain an important
theorem advocated by Wang et al. [21].

2.1 Mathematical Notations

Set Zq the integer residue ring modulo q, and Zq[x] represents a polynomial ring
whose coefficients are sampled from Zq. Rq is the quotient ring Zq[x]/ (xn + 1).
In this paper, bold upper-case letters such as A represent matrices, and bold
lower-case letters such as b represent vectors. The transpose of matrix A ∈ Rk×kq

is denoted by AT ∈ Rk×kq . Similarly, the transpose of vector b ∈ Rk×1q is denoted

by bT ∈ R1×k
q . For a ∈ Rq, a[i] represents ith coefficient of a

(
a =

∑n−1
i=0 a[i]xi

)
.

For b ∈ Rkq , bi means ith component of b (0 ≤ i ≤ k−1). The operation bxc on

real number x represents the largest integer no larger than x; and bxe = bx+ 1
2c.

For a probability distribution χ, x ← χ denotes that polynomial x’s coeffi-
cients are randomly sampled from χ; and x ← χk×1 denotes sampling polyno-
mial vector x with all coefficients sampled from χ. Given a set S, the notation
x← U(S) means selecting x from S uniformly at random.

2.2 CRYSTALS-KYBER [6]

We show the outline of the CRYSTALS-KYBER public key encryption protocol
in Figure 1. Note that the public polynomial matrix A is shared in advance.
Bη is a centered binomial distribution, and its element is sampled by calcu-
lating

∑η
i=1 (bi − b′i) (bi and b′i are sampled from {0, 1} uniformly at random).

CRYSTALS-KYBER consists of the below three steps.

1. Alice first selects a secret key sA and an error eA from Bk×1η . Then, she
calculates the public key PA = AsA + eA using the previously shared A(∈
Rk×kq), and sends PA to Bob. From the public key PA and the previously
shared polynomial A, it is difficult to obtain information about the secret
key sA due to the hardness of Module-LWE problem.

2. After receiving PA, Bob samples polynomial vectors sB , eB and polynomial
e′B from Bk×1η and Bη, respectively. Then, he computes the public key PB =

AT sB + eB . Subsequently, he generates m from U256({0, 1}) and computes
vB = PT

AsB + e′B +Decompressq(m, 1). Finally, he compresses PB , vB to c1,
c2 and sends them to Alice.

Title Suppressed Due to Excessive Length 5

pre-shared key A ∈ Rk×kq

Alice Bob
sA, eA←Bk×1η

PA = AsA + eA
PA−−−→ sB , eB←Bk×1η

e′B←Bη
PB = AT sB + eB
m←U256({0, 1})
vB = PT

AsB + e′B + Decompressq(m, 1)
c1 = Compressq(PB , dPB

)

uA = Decompressq(c1, dPB
)

c=(c1,c2)←−−−−−− c2 = Compressq(vB , dvB)
vA = Decompressq(c2, dvB)

m′ = Compressq
(
vA − sTAuA, 1

)
Fig. 1. A sketch of CRYSTALS-KYBER public key encryption scheme

Table 1. Parameter choices in CRTSTALS-KYBER [6]

n k q dPB dvB security level

Kyber-512 256 2 3329 10 3 I (AES-128)

Kyber-768 256 3 3329 10 4 III (AES-192)

Kyber-1024 256 4 3329 11 5 V (AES-256)

3. When Alice receives (c1, c2) from Bob, she decompresses them and get uA

and vA. In order to obtain m′, she calculates vA− sTAuA using her secret key
sA and compresses it.

Here, Compressq(a, d) and Decompressq(a, d) are defined as follows.

Definition 1. The compression function Zq → Z2d :

Compress(a, d)q =

⌊
2d

q
· a
⌉ (

mod2d
)

Definition 2. The decompression function Z2d → Zq:

Decompress(a, d)q =
⌊ q

2d
· a
⌉

When these two functions are used with x ∈ Rq or x ∈ Rk×1q , the procedure
is applied to each coefficient of them.

We list three parameter sets for KYBER: KYBER-512, KYBER-768, and
KYBER-1024 in Table1.

2.3 SABER [7]

Figure 2 shows the outline of SABER crypto scheme. The polynomial matrix A
is shared in advance. βµ is a centered distribution with probability mass function

6 Satoshi Okada and Yuntao Wang

pre-shared key A ∈ Rk×kq

Alice Bob
sA, eA←βk×1µ

PA = ((AsA + h) mod q)� (εq − εp)
PA−−−→ sB←βk×1µ

PB = ((AsB + h) mod q)� (εq − εp)
m←U256({0, 1})
vB = ((PT

AsB) mod p)

vA = ((PT
BsA) mod p)

(PB ,c)←−−−− c =
(
vB + h1 − 2εp−1m mod p

)
� (εp − εT)

m′ = ((vA − 2εp−εT c+ h2) mod p)� (εp − 1)

Fig. 2. A sketch of SABER public key encryption scheme

P [x | x← βµ] = µ!
(µ/2+x)!(µ/2−x)!2

−µ. Thus, the integer sampled from βµ is in

the range [−µ/2, µ/2]. Different from CRYSTALS-KYBER, SABER uses three
constants instead of selecting error polynomials: a constant polynomial h1 ∈ Rq
with all coefficients being 2εq−εp−1, a constant vector h ∈ Rk×1q whose polynomi-
als are equal to h1 and a constant polynomial h2 ∈ Rq with all coefficients set to
be
(
2εp−2 − 2εp−εT−1 + 2εq−εp−1

)
. The bitwise shift operations � and � have

the usual meaning when applied to an integer and are extended to polynomials
and matrices by applying them coefficient-wise. We list the parameter sets with
respect to security levels in Table 2, and review the main procedure of SABER
below.

Table 2. Parameter choices in SABER [7]

n k q p T µ security

LightSaber 256 2 213 210 23 10 I (AES-128)

Saber 256 3 213 210 24 8 III (AES-192)

FireSaber 256 4 213 210 26 6 V (AES-256)

1. Alice first selects a secret key sA from βk×1µ . Then, she calculates the public
key PA = ((AsA + h) mod q) � (εq − εp) using the previously shared A(∈
Rk×kq), and sends PA to Bob. It is difficult to recover sA from PA due to
the hardness of Module-LWR problem.

2. After receiving PA, Bob samples sB from βk×1µ . Then, he computes the
public key PB = ((AsB + h) mod q)� (εq− εp). After that, he generates m
from U256({0, 1}) and computes vB = ((PT

AsB) mod p). Finally, he calculates
c and sends PB and c to Alice.

3. When Alice receives (PB, c), she calculates vA = ((PT
BsA) mod p), and ob-

tains m′ = ((vA − 2εp−εT c+ h2) mod p)� (εp − 1) using vA.

2.4 Wang et al.’s Proposition

Wang et al. propose the so-called “meta-PKE” construction and show both
NewHope and LAC follow this construction. Next, they observe that the ci-

Title Suppressed Due to Excessive Length 7

phertext may reveal the encryptor’s randomness information using the feature
of meta-PKE if the public key satisfies certain conditions.

In the encryption algorithm adopting meta-PKE construction, there is a key
step of

V = t×B + f + Y.

B is the public key sent by Alice, V is the ciphertext encoded by Bob, and Y is the
plaintext. t and f are randomnesses which are usually sampled from a centered
binomial distribution. There Wang et al. proposed the following theorem.

Lemma 1. [21] t, f, Y ∈ Rq, and the coefficients t[i], f [i] are in {−D, . . . ,D}, D �
q, Yi ∈

{
0, q2
}
, i = 1, . . . , n. B ∈ Zq and V = B × t + f + Y mod q. If

2D + 1 ≤ B < q/(4D)− 1, then V will reveal the values of t, f, Y completely.

Proof. We refer the readers to [21] for a proof of this lemma.

3 Our proposed attack

We observe that CRYSTALS-KYBER and SABER also follow meta-PKE con-
struction. Therefore, Lemma 1 can be adapted to these two protocol schemes.
However, when an adversary tries to recover Bob’s randomness, he can only ac-
cess the compressed ciphertext (V). Thus, we take this fact into consideration
and propose the following Theorem 1 for CRYSTALS-KYBER and Theorem 2
for SABER.

Theorem 1. t, f, Y ∈ Rq, and the coefficients t[i], f [i] are in {−D, . . . ,D}, D �
q, Yi ∈

{
0, q2
}
, i = 1, . . . , n. B ∈ Zq and V = B × t + f + Y mod q. Let

compress function be Compress : Zq → Zp(q > p) and Compress(x) =
⌈
p
qx
⌋

.

If
⌊
p(B−2D)

q

⌋
= 1,

p(q
2−2DB−2D)

q ≥ 1, and 4D + 2 ≤ p, then Compress(V) will

reveal t and Y completely in attacking CRYSTALS-KYBER schemes.

Proof. Since f is small and has little effect on Compress(V) and B is constant,
V can be regarded as a bivariate function V (t, Y). When Compress ◦ V is injec-
tive, t and Y can be completely recovered from Compress(V (t, Y)). Then in the
remain of the proof, we just need to show the above three conditions guarantee
Compress ◦ V injective. We consider two V s:

V1 = B1 × t1 + f1 + Y1 mod q (1)

V2 = B2 × t2 + f2 + Y2 mod q. (2)

When t1 and t2 are different from each other, the minimum difference be-

tween V1 and V2 is B − 2D. Thus, when the condition
⌊
p(B−2D)

q

⌋
= 1 holds,

Compress(V1) 6= Compress(V2) and
Compress(V1)− Compress(V2) = 1. Furthermore, when Y1 = 0 and Y2 = q

2 , the
minimum difference between V1 and V2 is q

2 − 2DB − 2D (Figure 3).

8 Satoshi Okada and Yuntao Wang

Fig. 3. The minimum difference between V1 and V2 when Y1 = 0 and Y2 = q
2
.

Hence, if
p(q

2−2DB−2D)

q ≥ 1, Compress(V1) 6= Compress(V2). Additionally, the
size of the image of Compress◦V must be smaller than that of Zp, i.e. 4D+2 ≤ p.
In summary, under the three conditions of 1○

⌊
p(B−2D)

q

⌋
= 1, 2○ p(q

2−2DB−2D)

q ≥
1, 3○ 4D + 2 ≤ p, Compress ◦ V is injective and reveals t and Y .

Theorem 2. t, f, Y ∈ Rp, and the coefficients t[i] are in {−D, . . . ,D}, D �
p, f [i] = h, h < p Yi ∈

{
0, p2

}
, i = 1, . . . , n. B ∈ Zp, p = 2εp , T = 2εT , and

V = B × t + f + Y mod q. If B � (εp − εT) = 1, (p2 − 2DB) � (εp − εT) ≥ 1,
and 4D+ 2 ≤ p, then V � (εp − εT) will reveal t and Y completely in attacking
SABER schemes.

Proof. For convenience, we set Compress as εp − εT bit shift to the right (i.e.
� (εp − εT)). In this proof, we also show the above three conditions guarantee
Compress ◦ V injective. We consider two V s such as (1) and (2). Different from
Theorem 1, f [i] is constant. Therefore, when t1 and t2 are different from each
other, the minimum difference between V1 and V2 is B. So if the condition
B � (εp − εT) = 1 holds, Compress(V1) 6= Compress(V2) and
Compress(V1)− Compress(V2) = 1. Furthermore, when Y1 = 0 and Y2 = p

2 , the
minimum difference between V1 and V2 is p

2 − 2DB. Due to this, the condition
(p2 − 2DB)� (εp − εT) ≥ 1 realizes Compress(V1) 6= Compress(V2). Finally, the
size of the image of Compress◦V must be smaller than that of Zp, i.e. 4D+2 ≤ p.

3.1 General Attack Model

In the key reuse attack model, we assume that Bob reuses the same randomness
and honestly responds to a number of queries. Namely, an adversary sends freely
chosen public keys to Bob and can get the corresponding ciphertexts several
times. For convenience, to simulate the behavior of Bob, we build an oracle
Ok (Algorithm 1) and Os (Algorithm 4) for CRYSTALS-KYBER and SABER,
respectively. Each time the adversary can choose a public key arbitrarily and put
it into the oracle. He can get information about sB by observing the responses.

3.2 Key Reuse Attack on CRYSTALS-KYBER

We build an oracle Ok in Algorithm 1 for the key reuse attack on CRYSTALS-
KYBER. This oracle takes public key PA as an input and returns c2.

Title Suppressed Due to Excessive Length 9

Algorithm 1: KYBER Oracle(PA)

Input: PA ∈ Rk×1
q

Output: c2 ∈ R2
dvB

1 m←U256({0, 1})
2 e′B←Bη
3 vB = PT

AsB + e′B + Decompress(m, 1)
4 c2 = Compress(vB , dvB)
5 Return c2

Attack on Kyber-768 and Kyber-1024. Kyber-768 and Kyber-1024 satisfy
Lemma 1 and Theorem 1 when appropriate B is chosen. For example, in Kyber-
1024, D = 2, q = 3329, p = 32. If we set B = 109, the following formulas hold:

2D + 1(= 5) ≤ B(= 109) ≤ q/4D − 1(; 416),⌊
p

q
(B − 2D)

⌋
=

⌊
32

3329
· 105

⌋
= 1,

p

q
(
q

2
− 2DB − 2D) =

32

3329
· 1224.5 ; 11.7 > 1, and

4D + 2 = 10 ≤ 32.

Therefore, an adversary can recover one polynomial of sB per query. We show
the details of the attack in Algorithm 2.

In this attack, when an adversary wants to recover polynomial sBi (0 ≤ i ≤
k), he sets public key PA = [0, · · · , 0, B, 0, · · · 0] i.e. PAi = B. Then he sends
PA to the oracle and obtain ciphertext c2. We show how the coefficient c2[j]
changes according to the coefficient of sBi and m in Table 3 for Kyber-768 and
Table 4 for Kyber-1024, respectively.

By using these tables, an adversary can recover sBi (and m simultaneously)
completely by observing c2[j] corresponding to sBi[j] and m[j]. Because he can
recover one element of sB per query, the total cost of this attack is k queries.

Attack on Kyber-512. In contrast, Kyber-512 does not satisfy Theorem 1
(∵ 4D + 2 = 10 > 23). Actually, when the adversary sets B = 421, which

satisfies
⌊
p(B−2D)

q

⌋
= 1, the relationship between ciphertext c2 and (sB ,m) is

shown in Table 5.

Table 3. The behavior of c2[j] corresponding to (sBi[j], m[j]) when B = 213 in Kyber-
768

m[j]

c2[j] sBi[j]
-2 -1 0 1 2

0 14 15 0 1 2
1 6 7 8 9 10

10 Satoshi Okada and Yuntao Wang

Table 4. The behavior of c2[j] corresponding to (sBi[j],m[j]) when B = 105 in Kyber-
1024

m[j]

c2[j] sBi[j]
-2 -1 0 1 2

0 30 31 0 1 2
1 14 15 16 17 18

Algorithm 2: KYBER 768 1024 Attack()

Output: s′B ∈ Rk×1
q

1 B = d q

2
dvB
e+ 4

2 for i← 0 to k do
3 PA = []
4 for j ← 0 to k do . Set optimized PA

5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c2 = Ok(PA)
9 for l← 0 to n do . Recover the randomness based on Table 3 or 4

10 if 2dvB−1 − η ≤ c2[l] ≤ 2dvB−1 + η then

11 s′Bi[l] = c2[l]− 2dvB−1

12 else if c2[l] ≤ η then
13 s′Bi[l] = c2[l]

14 else

s′Bi[l] = c2[l]− 2dvB

15 Return s′B

In this case, when an adversary get c2[j] = 6 or c2[j] = 2, he can not judge
whether sBi[j] = 2 or −2. As a countermeasure, we set one more B = 631 and
observe how c2[j] changes in Table 5. It shows that an adversary can recover
sBi[j] = 2,−2 from c2[j]. Consequently, the attack on Kyber-512 works and we

Table 5. The behavior of c2[j] corresponding to (sBi[j], m[j]) when B = 421, 631 in
Kyber-512

B 421 631

m[j]

c2[j] sBi[j]
-2 -1 0 1 2 -2 -1 0 1 2

0 6 7 0 1 2 5 6 0 2 3
1 2 3 4 5 6 1 2 4 6 7

Title Suppressed Due to Excessive Length 11

Algorithm 3: KYBER 512 Attack()

Output: s′B ∈ Rk×1
q

1 B = 421
2 for i← 0 to k do
3 PA = []
4 for j ← 0 to k do
5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c2 = Ok(PA)
9 for l← 0 to n do

10 if c2[l] == 2 or c2[l] == 6 then
11 continue

12 else if 3 ≤ c2[l] ≤ 5 then
13 s′Bi[l] = c2[l]− p/2
14 else if c2[l] == 0 or c2[l] == 1

then
15 s′Bi[l] = c2[l]

16 else
17 s′Bi[l] = c2[l]− p

18 B = 631
19 for i← 0 to k do
20 PA = []
21 for j ← 0 to k do
22 if j == i then
23 PA.append(B)

else
24 PA.append(0)

25 c2 = Ok(PA)
26 for l← 0 to n do
27 if c2[l] == 1 or c2[l] == 5 then
28 s′Bi[l] = −2

29 if c2[l] == 3 or c2[l] == 7 then
30 s′Bi[l] = 2

31 Return s′B

show its details in Algorithm 3. In this attack. the adversary can recover all the
coefficients of sB completely by at most 2k(= 4) queries.

3.3 Key Reuse Attack on SABER

In the key reuse attack on SABER, we build oracle Os (Algorithm 4). Given
PA, this oracle outputs c.

Algorithm 4: SABER Oracle(PA)

Input: PA ∈ Rk×1
q

Output: c ∈ RT
1 m←U256({0, 1})
2 vB = ((PT

AsB) mod p)
3 c =

(
vB + h1 − 2εp−1m mod p

)
� (εp − εT)

4 Return c

Attack on FireSaber. FireSaber, whose security level is V, satisfies Theorem 2
when B = 16. Therefore, the attack method is almost the same as that for
Kyber-768 and Kyber-1024. In this case, the relationship between ciphertext c
and (sB ,m) is shown in Table 6. From Table 6, we can see that c[j] corresponds
to sBi[j] one-to-one. Thus, an adversary can recover sB with k queries. The
detail of this attack is described in Algorithm 5.

12 Satoshi Okada and Yuntao Wang

Algorithm 5: FireSaber Attack()

Output: s′B ∈ Rk×1
q

1 B = 2εp−εT

2 for i← 0 to k do
3 PA = []
4 for j ← 0 to k do
5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c = Os(PA)
9 for l← 0 to n do

10 if T
2
− η ≤ c[l] ≤ T

2
+ η then

11 s′Bi[l] = c[l]− T
2

12 else if c[l] ≤ η then
13 s′Bi[l] = c[l]

14 else
s′Bi[l] = c[l]− T

15 Return s′B

Table 6. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 16 in
FireSaber

m[j]

c[j] sBi[j]
-3 -2 -1 0 1 2 3

0 61 62 63 0 1 2 3
1 29 30 31 32 33 34 35

Attack on Saber. Meanwhile, Saber, whose security level is III, does not sat-
isfy Theorem 2. Here we take the similar discussion to that for Kyber-512 in
Section 3.2. First, we show how c[j] changes according to m[j] and sBi[j] in Ta-
ble 7 when B = 64. If c[j] = 12 or c[j] = 4, an adversary can not judge whether
sBi[j] = 4 or sBi[j] = −4 only from c[j]. Then, we set B = 96 and show the
relationship between c[j] and (sBi,m) in Table 7. It shows that an adversary can
judge sBi[j] = −4 when c[j] = 10, 2 and judge sBi[j] = 4 when c[j] = 6, 14 if he
knows all the coefficients of sBi in [−3, 3]. Namely, an adversary first recovers
the coefficients [−3, 3] by sending a query with B = 64 to the oracle, and next
recovers the coefficients in {−4, 4} by a query with B = 96. As a result, all the
coefficients of sBi in Saber can be recovered by at most 2k(= 4) queries. The
details of this attack are described in Algorithm 6.

Attack on LightSaber. LightSaber, which has the lowest security level I (AES-
128) in SABER, does not satisfy Theorem 2 neither. Actually, when an adversary
set B = 128 so that B � (εp− εT) = 1, the behavior of c[j] is shown in Table 8.

Title Suppressed Due to Excessive Length 13

Table 7. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 64, 96 in
Saber

B 64 96

m[j]

c[j] sBi[j]
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

0 12 13 14 15 0 1 2 3 4 10 11 13 14 0 1 3 4 6
1 4 5 6 7 8 9 10 11 12 2 3 5 6 8 9 11 12 14

Algorithm 6: Saber Attack()

Output: s′B ∈ Rk×1
q

1 B = 64
2 for i← 0 to k do
3 PA = []
4 for j ← 0 to k do
5 if j == i then
6 PA.append(B)

else
7 PA.append(0)

8 c = Os(PA)
9 for l← 0 to n do

10 if c[l] == 4 or c[l] == 12 then
11 continue

12 else if 5 ≤ c[l] ≤ 11 then
13 s′Bi[l] = c[l]− T/2
14 else if 0 ≤ c[l] ≤ 3 then
15 s′Bi[l] = c2[l]

16 else
17 s′Bi[l] = c2[l]− T

18 B = 96
19 for i← 0 to k do
20 PA = []
21 for j ← 0 to k do
22 if j == i then
23 PA.append(B)

else
24 PA.append(0)

25 c = Os(PA)
26 for l← 0 to n do
27 if c[l] == 2 or c[l] == 10 then
28 s′Bi[l] = −4

29 if c[l] == 6 or c[l] == 14 then
30 s′Bi[l] = 4

31 Return s′B

There is no pair of (c[j],m[j]) which corresponds to sBi[j]. In other words, from
Table 8, an adversary can not obtain any information about sBi[j]. Thus, we
consider the case B = 16 (Table 9). In this case, when c[j] = 7 or c[j] = 3, sBi[j]
is judged to be negative and when c[j] = 0 or c[j] = 4, sBi[j] is non-negative.
After he knows whether sBi[j] is negative or non-negative, he can distinguish
the coefficients in [−4,−2] and those in {2, 3} from Table 8. Further, to identify
the coefficients in {−5,−1} or in {0, 1, 4, 5}, the adversary again set B = 192
(Table 9). We summarize the attack on LightSaber by the following three steps.

1. An adversary first sends a query with B = 16 and tell whether sBi[j] is
negative or non-negative.

2. He sends a query with B = 128 and recover the coefficients in [−4,−2] ∪
{2, 3}.

14 Satoshi Okada and Yuntao Wang

Table 8. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 128 in
LightSaber

m[j]

c[j] sBi[j]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0 3 4 5 6 7 0 1 2 3 4 5
1 7 0 1 2 3 4 5 6 7 0 1

Table 9. The behavior of c[j] corresponding to sBi[j] and m[j] when B = 16, 128, 192
in LightSaber

B 16 128 192

m[j]

c[j] sBi[j]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Refer to
Table 8

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 7 7 7 7 7 0 0 0 0 0 0 0 2 3 5 6 0 1 3 4 6 7
1 3 3 3 3 3 4 4 4 4 4 4 4 6 7 1 2 4 5 7 0 2 3

3. Finally, he recover the coefficients in {−5,−1} or {0, 1, 4, 5} by a query with
B = 192.

The details of this attack are shown in Algorithm 7.

4 Experiments

We implement and verify the attack algorithms from Algorithm 1 to 7 by
Python3. The experimental results are shown in Table 10. From this table, it is
clear that the number of queries necessary for each attack is remarkably small.
Furthermore, we plot the relationship between the number of queries and the
rate of coefficients recovered in Bob’s randomness for each crypto scheme in
Appendix A. It is notable that the final success rate of each attack is 100%.

5 Conclusion and Discussion

In this paper, we extended Wang et al.’s idea and proposed new theorems and
practical attacks on CRYSTALS-KYBER and SABER. The attacks are designed
to be optimized for each crypto scheme and each security category. Furthermore,
we actually implemented the crypto schemes and attacks and confirmed that

Table 10. The results in each parameter sets of CRYSRALS-KYBER and SABER

crypto scheme CRYSTALS-KYBER SABER
Parameter set Kyber-512 Kyber-768 Kyber-1024 LightSaber Saber FireSaber

Number of queries ≤ 4 3 4 ≤ 6 ≤ 6 4

Title Suppressed Due to Excessive Length 15

Algorithm 7: LightSaber Attack()

Output: s′B ∈ Rk×1
q

1 B = 16
2 negative list = []
3 for i← 0 to k do
4 PA = []
5 for j ← 0 to k do
6 if j == i then
7 PA.append(B)

else
8 PA.append(0)

9 c = Os(PA)
10 for l← 0 to n do
11 if c[j] == 7 or c[j] == 3 then
12 negative list.append(true)

else
13 negative list.append(false)

14 B = 128
15 for i← 0 to k do
16 PA = []
17 for j ← 0 to k do
18 if j == i then
19 PA.append(B)

else
20 PA.append(0)

21 c = Os(PA)
22 for l← 0 to n do
23 if negative list[l] then
24 if 4 ≤ c[l] ≤ 6 then
25 s′B [l] = c[j]− 8

26 else if 0 ≤ c[l] ≤ 2 then
27 s′B [l] = c[j]− 4

28 else
29 continue

else
30 if 2 ≤ c[l] ≤ 3 then
31 s′B [l] = c[j]

32 else if 6 ≤ c[l] ≤ 7 then
33 s′B [l] = c[j]− 4

34 else
35 continue

36 B = 192
37 for i← 0 to k do
38 PA = []
39 for j ← 0 to k do
40 if j == i then
41 PA.append(B)

else
42 PA.append(0)

43 c = Os(PA)
44 for l← 0 to n do
45 if negative list[l] then
46 if c[l] == 0, 4 then
47 s′B [l] = −5

48 else if c[l] == 2, 6 then
49 s′B [l] = −1

50 else
51 continue

else
52 if c[l] == 0, 4 then
53 s′B [l] = 0

54 else if c[l] == 1, 5 then
55 s′B [l] = 1

56 else if c[l] == 2, 6 then
57 s′B [l] = 4

58 else if c[l] == 3, 7 then
59 s′B [l] = 5

60 else
61 continue

62 Return s′B

16 Satoshi Okada and Yuntao Wang

our proposed method can recover Bob’s randomness completely. We also count
the number of queries necessary for each attack. Taking into consideration the
success rate and the number of queries, the reuse of randomness is very dangerous
and should be strictly avoided.

There is potential risk that the attacker may obtain other parties’ symmetric
keys issued by the client (Bob) if his randomness variants are leaked in the com-
munication. Consequently, for a more robust real-world applications, we suggest
two feasible countermeasures against our attacks as follows: 1. Rejecting any
freely chosen queries, 2. Refreshing randomness every time public key are sent.
About the first countermeasure, it is easy to check whether sent queries match
the forms of those proposed in our attack. However, adversaries can develop
our attacks and change the forms of queries. Thus, such signature detection is
not suitable. From above discussion, anomaly detection may be better, but one
should also consider the problem about false positive and false negative is com-
mon with it. The second one is fundamental and more effective to our attack
than the first one. However, it should also be considered that the disadvantage
of this countermeasure is that there will be an additional load on the server.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Num-
ber JP20K23322 and JP21K11751, Japan.

References

1. US Department of Commerce, National Institute of Standards and Technol-
ogy. Post-Quantum Cryptography, 2019. http://csrc.nist.gov/projects/

post-quantum-cryptography/.
2. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange

- A New Hope. In 25th USENIX Security Symposium, USENIX Security 16, August
10-12, 2016, Proceedings, pages 327–343, 2016.

3. C. Băetu, F. B. Durak, L. Huguenin-Dumittan, A. Talayhan, and S. Vaudenay.
Misuse attacks on post-quantum cryptosystems. In EUROCRYPT 2019, May 19-
23, 2019, Proceedings, Part II, pages 747–776, 2019.

4. A. Bauer, H. Gilbert, G. Renault, and M. Rossi. Assessment of the key-reuse
resilience of NewHope. In The Cryptographers’ Track at the RSA Conference
2019,CT-RSA 2019, March 4-8, 2019, Proceedings, pages 272–292, 2019.

5. N. Bindel, D. Stebila, and S. Veitch. Improved attacks against key reuse in learning
with errors key exchange. Cryptology ePrint Archive, Report 2020/1288, 2020.
https://eprint.iacr.org/2020/1288.

6. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018, pages 353–367. IEEE,
2018.

7. J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure KEM. In A. Joux, A. Nitaj,
and T. Rachidi, editors, Progress in Cryptology - AFRICACRYPT 2018 - 10th
International Conference on Cryptology in Africa, Marrakesh, Morocco, May 7-
9, 2018, Proceedings, volume 10831 of Lecture Notes in Computer Science, pages
282–305. Springer, 2018.

http://csrc.nist.gov/projects/post-quantum-cryptography/
http://csrc.nist.gov/projects/post-quantum-cryptography/
https://eprint.iacr.org/2020/1288

Title Suppressed Due to Excessive Length 17

8. J. Ding, S. Alsayigh, R. V. Saraswathy, S. R. Fluhrer, and X. Lin. Leakage of
signal function with reused keys in RLWE key exchange. In IEEE International
Conference on Communications, ICC 2017, May 21-25, 2017,Proceedings, pages
1–6, 2017.

9. J. Ding, S. R. Fluhrer, and S. RV. Complete attack on RLWE key exchange
with reused keys, without signal leakage. In Information Security and Privacy -
23rd Australasian Conference, ACISP 2018, July 11-13, 2018, Proceedings, pages
467–486, 2018.

10. S. R. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive, 2016:85, 2016. http://eprint.iacr.org/2016/
085.

11. A. Greuet, S. Montoya, and G. Renault. Attack on LAC key exchange in misuse
situation. IACR Cryptology ePrint Archive, 2020:63, 2020. http://eprint.iacr.
org/2020/063.

12. C. Liu, Z. Zheng, and G. Zou. Key reuse attack on NewHope key exchange proto-
col. In Information Security and Cryptology, ICISC 2018, November 28-30, 2018,
Revised Selected Papers, pages 163–176, 2018.

13. X. Lu, Y. Liu, Z. Zhang, D. Jia, H. Xue, J. He, and B. Li. LAC: practical ring-lwe
based public-key encryption with byte-level modulus. IACR Cryptol. ePrint Arch.,
2018:1009, 2018.

14. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT 2010, May 30 - June 3, 2010, Proceedings,
pages 1–23, 2010.

15. S. Okada, Y. Wang, and T. Takagi. Improving key mismatch attack on newhope
with fewer queries. In J. K. Liu and H. Cui, editors, Information Security and Pri-
vacy - 25th Australasian Conference, ACISP 2020, Perth, WA, Australia, Novem-
ber 30 - December 2, 2020, Proceedings, volume 12248 of Lecture Notes in Computer
Science, pages 505–524. Springer, 2020.

16. Y. Qin, C. Cheng, and J. Ding. A complete and optimized key mismatch attack on
NIST candidate newhope. In 24th European Symposium on Research in Computer
Security,ESORICS 2019,September 23-27, 2019, Proceedings, Part II, pages 504–
520, 2019.

17. Y. Qin, C. Cheng, and J. Ding. An efficient key mismatch attack on the NIST
second round candidate Kyber. IACR Cryptology ePrint Archive, 2019:1343, 2019.
http://eprint.iacr.org/2019/1343.

18. E. Rescorla. The transport layer security (TLS) protocol version 1.3. Technical
report. http://www.rfc-editor.org/info/rfc8446.

19. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

20. J. Vacek and J. Václavek. Key mismatch attack on newhope revisited. IACR
Cryptol. ePrint Arch., 2020:1389, 2020.

21. K. Wang, Z. Zhang, and H. Jiang. Security of two NIST candidates in the presence
of randomness reuse. In Provable and Practical Security - 14th International Con-
ference, ProvSec 2020, Singapore, November 29 - December 1, 2020, Proceedings,
pages 402–421, 2020.

http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2020/063
http://eprint.iacr.org/2020/063
http://eprint.iacr.org/2019/1343
http://www.rfc-editor.org/info/rfc8446

18 Satoshi Okada and Yuntao Wang

Appendix A Plots of experimental results.

We show the relationships between the number of queries and the rate of re-
covered Bob’s randomness from Figure 4 to Figure 9. Figure 4 shows that the
whole randomness can be recovered with at most 4 queries (at least 2 queries) in
the attack on KYBER-512, and Figure 5 and 6 show it requires 3 and 4 queries
in the attacks on KYBER-768 and KYBER-1024, respectively. Simultaneously,
Figure 7 and 8 show it requires at most 6 queries (at least 4 and 3 queries) to
recover the whole randomness in LightSaber and Saber, while just 4 queries is
needed in the key recovery attack on FireSaber (Figure 9).

Fig. 4. KYBER-512. Fig. 5. KYBER-768.

Fig. 6. KYBER-1024. Fig. 7. LightSaber.

Fig. 8. Saber Fig. 9. FireSaber

	 Recovery Attack on Bob's Reused Randomness in CRYSTALS-KYBER and SABER
	Introduction
	Our Contributions
	Related Works
	Roadmap

	Preliminary
	Mathematical Notations
	CRYSTALS-KYBER BDKLLSSSS18
	SABER DKRV18
	Wang et al.'s Proposition

	Our proposed attack
	General Attack Model
	Key Reuse Attack on CRYSTALS-KYBER
	Key Reuse Attack on SABER

	Experiments
	Conclusion and Discussion
	Plots of experimental results.

