
1

The Age of Testifying Wearable Devices: The Case
of Intoxication Detection

Ben Nassi, Lior Rokach, Yuval Elovici
nassib@post.bgu.ac.il, {liorrk,elovici}@bgu.ac.il

Software and Information Systems Engineering, Ben-Gurion University of the Negev

ABSTRACT

Seven years ago, a famous case in which data from a Fitbit
tracker was used in the courtroom in a personal injury case
heralded a new age: the age of testifying wearable devices.
Prior to that, data from wearable devices was used in various
areas, including medicine, advertising, and scientific research,
but the use of such data in the Fitbit case attracted the
interest of a new sector: the legal sector. Since then, lawyers,
investigators, detectives, and police officers have used data
from pacemakers and smartwatches in order to prove/disprove
allegations regarding wearable device owners in several well-
known cases (sexual assault, arson, personal injury, etc.).
In this paper, we discuss testifying wearable devices. We
explain the advantages of wearable devices over traditional
IoT devices in the legal setting, the parties involved in cases
in which a wearable device was used to testify against/for the
device owner, and the information flow. We then focus on an
interesting area of research: intoxication detection. We explain
the motivation to detect whether a subject was intoxicated and
explain the primary scientific gap in this area. In order to
overcome this gap, we suggest a new method for detecting
whether a subject was intoxicated based on free gait data
obtained from a wearable device. We evaluate the performance
of the proposed method in a user study involving 30 subjects
and show that motion sensor data obtained from a smartphone
and fitness tracker from eight seconds of free gait can indicate
whether a subject is/was intoxicated (obtaining an AUC of
0.97) and thus be used as testimony. Finally, we analyze
the current state and the near future of the age of testifying
wearable devices and explain why we believe that (1) we are
still at the beginning of this age despite the fact that seven
years has passed since the original court case, and (2) the
number of cases in which wearable device data is used to
testify for/against the device owner is expected to increase
significantly in the next few years.

I. INTRODUCTION

Commercial wearable devices (e.g., wristbands, earbuds,
heart beat meters, and step counters) are currently sold by
many manufacturers (including Apple, LG, Samsung, and
Sony), and according to a recent forecast, annual shipments are
expected to reach 273 million in 2023 [1]. Wearable devices
are equipped with various sensors (e.g., heart rate, accelerom-
eter, gyroscope, skin conductivity, GPS), and a recent survey
[2] found that their owners carry/wear them all the time. As a

result, wearable devices collect unique, personal, and continu-
ous data which provides new opportunities and can be used to
derive insights about the device owners (regarding, e.g., health
condition/mood, activities performed, etc.). Such insights are
extremely valuable and used for a variety of commercial
and non-commercial purposes (e.g., for targeted advertising
and health monitoring). For these reasons, wearable device
data has attracted interest from many sectors (e.g., medicine,
advertising).

In 2014, another sector became interested in wearable
device data: the legal sector [3]. At that time, a law firm
used data obtained from Fitbit device as part of a personal
injury case to show that a client was less active after being
in a car accident [3]. With this case, the legal sector began to
understand the potential of the data collected from wearable
devices, and in recent years, lawyers, investigators, detectives,
and police officers have started to use data from wearable
devices (e.g., pacemakers, smartwatch, fitness tracker) to
prove/disprove allegations regarding wearable device owners
in several well-known criminal cases [4–7]. For example, in
2015, a Pennsylvania woman was charged with false reporting
after her Fitbit contradicted her rape claim by proving that she
was walking around at the time of her self-reported sexual
assault [6, 7]. In 2017, the police learned that a murdered
woman was moving around in her house an hour after the time
her husband said she had been shot by a home invader [4, 5],
by analyzing data obtained from the motion sensors of her
Fibit tracker and accused the man of murdering his wife [4, 5].
In 2017, the police charged an Ohio man with aggravated arson
and insurance fraud after data on his pacemaker was found
to be inconsistent with his claims about his physical activity
when his house burned down [8]. The abovementioned cases
[4–9] indicate that the era of testifying wearable devices has
arrived and show how wearable device data can be used to
support or contradict a device owner’s claims and discourage
deception [10].

In this paper, we discuss the age of testifying wearable
devices. Based on an analysis of past cases, we explain the
characteristics of cases in which wearable devices are used
to testify for/against the device owner: we consider the parties
involved; the advantages that wearable devices have over other
IoT devices in legal settings in terms of proving/disproving
allegations about the device owners; and the information flow
from an allegation that was raised about a wearable device
owner to the use of the wearable device data by investigators,
police officers, lawyers, etc. to prove/disprove the allegations.
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We then focus on a specific use case: the case of intoxication
detection via wearable devices. We explain the motivation to
detect intoxicated subjects, review related work, and explain
the scientific gap that exists in this area. We suggest a new
method for the detection of intoxication based on data that
is obtained from the motion sensors of wearable devices. In
order to assess the performance of the suggested method,
we collected data from 30 subjects (patrons of three bars)
using a smartphone and fitness tracker, and labeled the data
based on the results of an admissible breathalyzer used by the
police. We show that data obtained from a smartphone and
fitness tracker from eight seconds of movement is sufficient
to detect intoxication (obtaining an AUC of 0.97). Finally, we
analyze the age of testifying wearable devices: we explain
why we believe that we are only at the beginning of the
age of testifying wearable devices, explain why we expect
that external processes (e.g., deployment of 5G, integration
of eSIM, scientific progress regarding the insights that can be
derived from wearable devices) will play a role in significantly
increasing the number of cases in which wearable device data
will be used by the legal sector, discuss expected challenges,
and suggest future research directions associated with testify-
ing wearable devices.

We make the following contributions: (1) We compre-
hensively examine the age of testifying wearable devices,
analyzing the potential of this age, its current state, and
its near future in light of the expected processes mentioned
above. (2) We increase understanding about the potential of
wearable devices as a means of detecting whether a subject
was intoxicated post factum and passively. We demonstrate
how the task of intoxication detection can be formalized as
a supervised machine learning task, perform a user study
and show that the use of a fitness tracker and smartphone
is sufficient for detecting whether a subject is intoxicated.

The rest of the paper is divided into three main parts: In the
first part of the paper (Section II), we present characteristics of
cases in which wearable devices are used to testify for/against
the device owner. In the second part (Sections III-V), we
discuss the case of intoxication detection and demonstrate the
use of wearable devices as means of detecting intoxicated
subjects. In the third part of the paper (Section VI), we analyze
the current state and near future of the age of testifying
wearable devices.

II. TESTIFYING WEARABLE DEVICES

In this section, we analyze the characteristics of cases
in which data from wearable devices was used by lawyers,
investigators and other parties based on past cases. We explain
the (1) advantages of the use of wearable devices as witnesses
over traditional IoT devices, (2) the parties involved in cases
in which data from wearable devices is used to prove/disprove
allegations about its owner, and (3) the information flow from
an allegation that was raised about a wearable device owner
to the use of the wearable device data by the legal sector.

A. The Advantages of Wearable Devices as Witnesses
Wearable devices are smart electronic devices that are worn

close to and/or on the surface of the skin, where they detect,

analyze, and transmit information concerning body signals
(such as vital signs), which, in some cases, provide immediate
biofeedback to the wearer. The first type of commercial
wearable device was the fitness tracker which appeared in
2010 and was manufactured by Fitbit. During the last decade,
many manufacturers have developed their own smartwatches
and fitness trackers including: Apple, LG, Samsung, Sony,
and many others. Newer types of wearable technology include
devices such as glasses (VR/AR) and shirts. However, they are
not as popular as smartwatches and fitness trackers.

There are several reasons why data from wearable devices
can provide a better indication about the device owner than
other IoT devices:

(1) The testimony of wearable devices is not limited to
a specific location. As opposed to static Internet-connected
home appliance devices (e.g., smart assistant, security camera),
wearable devices (e.g., pacemaker, smartwatch) are likely to be
carried/worn by their owner when he/she goes outside because
most people wear these devices all the time (according to a
recent survey [2]). As a result, wearable devices can provide
testimony about their owner for most/all of the day, whereas
other IoT devices can only be used when the user is inside
his/her house or in physical proximity to them.

(2) Wearable devices can provide unique biometric data
that cannot be acquired by other IoT devices. For example,
smartwatches can provide cardiovascular and skin conductivity
data about the device owner. This data was found effective
at verifying/refuting claims about a subject’s physical activity
(e.g., as in the case where data on a subject’s pacemaker led
to his arrest on arson charges [8]).

(3) Wearable devices can be used to track the device owner
and recognize activities he/she performs. This can be done
directly by acquiring GPS measurements from the wearable
devices or indirectly by analyzing data obtained from motion
sensors (e.g., accelerometers, gyroscope, magnetometer), as
suggested by [11, 12]. A subject’s digital location/activity
fingerprint was found effective at proving/disproving claims
regarding the subject in several well-known criminal cases
[4–7] where other IoT devices would be unable to provide
the necessary insights, since they are not worn by the subject.

(4) Wearable devices can be used to collect continuous data
about the device owner which can be used to create an accurate
profile of that individual. Many IoT devices can collect data
about a subject only during specific periods of a day (e.g., data
about the owner of a smart assistant cannot be collected while
the device owner is at work). However, wearable devices can
collect continuous data about the device owner 24/7 because
most people wear these devices all the time (according to a
recent survey [2]). This data can be used to accurately profile
a user in order to detect anomalies in the device owner’s
behavior (e.g., [8]) and mental/physical health condition.

(5) Wearable devices are not perceived as spying devices.
Unlike other IoT devices equipped with video cameras (e.g.,
drones and video cameras) and microphones (e.g., smart
assistants), most people do not consider smartwatches to be
spying devices. As a result, people do not take precautions
about their activities when wearing them, whereas they might
be more cautious regarding their actions when using a device
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Fig. 1: Information flow: (1) Data is collected from sensors of wearable devices and stored locally and/or remotely (on servers).
(2) An allegation regarding the wearable device owner is raised by a party from the legal sector. (3) The data is acquired
(sometimes with a warrant). (4) The data is analyzed by experts, and the allegations are proven/disproved.

with a video camera/microphone).
The advantages that wearable devices provide to track and

profile the device owner are the reasons that data obtained from
wearable devices has been used in well-known crime cases
over the last few years to prove/disprove claims regarding the
device owner [3–8].

B. Involved Parties & Information Flow

There are several entities/parties involved in obtaining tes-
timony from a wearable device: (1) the wearable device, (2)
the wearable device owner, (3) the entity that stores the data,
and (4) a party from the legal sector.

The data acquired from a wearable device can be used by
a party from the legal sector (e.g., investigator, police offi-
cer, lawyer) to prove/disprove claims regarding the wearable
device owner. Usually, the information flow of data from a
testifying wearable device consists of four stages (presented
in Figure 1):

(1) Data from wearable devices is continuously collected by
the device manufacturers, third party applications, and by the
device itself for various legitimate (e.g., used to detect a user’s
gestures) and illegitimate reasons (e.g., used by spyware that
sells data to third parties for targeted advertising campaigns).
The data acquired can be stored locally on the device’s local
storage (e.g., on the smartwatch hard drive) or stored remotely
on servers (e.g., at Fitbit’s data center [4–7]). The data can be
sent to the servers directly from the wearable device (using Wi-
Fi/cellular connectivity) or indirectly via a Bluetooth paired
device (e.g., via a smartphone’s Internet connectivity).

(2) An allegation is made about the wearable device owner
by a party from the legal sector. The allegation can be made
by an investigator, the lawyer of the owner of the wearable
device, a prosecutor, etc. during an investigation or trial. The
allegation about the wearable device owner can pertain to a
single short-term activity that was performed by the device
owner at a specific time; for example, the data can be used to
refute the allegation [6, 7], contradict claims about the owner
of the device [4, 5]. The claims about the device owner could
be about his/her long-term mental/physical change or ongoing
condition which may be the result of an accident [3] or disease.

(3) The relevant data is acquired by the party from the
legal sector from the entity storing the data in order to
prove/disprove the allegation. Access to the data may be
given freely by the subject (as was the case in [3]) or
forcibly obtained with a warrant (as in other cases [4–7]).
It is important to note that in cases where the data is stored
remotely, the policy of some manufacturers and third party

applications is to provide content and data obtained from the
devices only when a warrant has been issued [13].

(4) The data acquired is analyzed by experts. The insights
are used to prove/disprove the allegations made about the
wearable device owner.

III. THE CASE OF INTOXICATION DETECTION VIA
WEARABLE DEVICES

In this section, we discuss a specific case of using data
obtained from wearable devices for testifying whether the
device owner is/was intoxicated. We explain the motivation
for detecting intoxicated users and the scientific gap that
currently exists in this area. We also review related work in
the area of intoxication detection. We then suggest a method
for detecting intoxicated users based on data obtained from
wearable devices and explain the method’s significance with
respect to related studies.

A. Motivation & Scientific Gap

There are a variety of reasons why the case of intoxication
detection might be very interesting in terms of legal issues. In
some countries, alcohol is banned, and alcohol consumption
is considered a crime that can result in a six-month prison
sentence [14]. In countries that allow alcohol consumption, the
interest in whether a person is intoxicated or not is associated
with the judgment of a subject when he/she committed a
crime. In some cases the subject’s sentence may be affected
if intoxication is detected; for example, when a crime is
committed due to the subject’s impaired judgment resulting
from alcohol consumption the penalty can be more severe
than when the same crime is committed by a subject whose
judgement is not impaired by alcohol consumption.

The effect of alcohol consumption on driving (e.g., reduced
coordination, difficulty steering, and reduced ability to main-
tain lane position and brake appropriately) is the primary
reason for motor vehicle accidents across the US. In 2013,
one person died every 51 minutes in a motor vehicle accident
caused by an alcohol impaired driver, a tragic statistic that
represents more than 30% of all US traffic-related deaths
that year. Various measures have been taken to improve the
situation. The most well-known strategy employed to catch
intoxicated drivers is the breath alcohol concentration (BrAC)
test which measures the weight of alcohol present within a
given volume of breath [15]. This test is conducted with the
breathalyzer device [16] which uses the driver’s breath as a
specimen/sample.
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TABLE I: BrAC thresholds for intoxication around the world.

BrAC
Threshold Countries

0 Paraguay, Vietnam

220 Scotland, Finland, Hong Kong,
Netherlands, Belgium

240 Slovenia, South Africa, Israel
380 Malawi, Namibia, Swaziland

BrAC limits vary between each country, causing the def-
inition of intoxication to differ around the world. Table I
lists the four most common BrAC thresholds used. Based on
these standards, anyone with a breath alcohol concentration
measured by a breathalyzer above the defined threshold for
a given country is considered intoxicated. In the US, the
threshold varies widely between each state.

The biggest disadvantage of a BrAC test is that it can only
detect alcohol ingested within a short window of time. In
comparison to most drugs, alcohol is eliminated from the body
very quickly (at a constant rate of about .015% BAC per hour).
As a result, determining whether a subject is intoxicated or
not heavily relies on the local police department’s ability to
perform a BrAC test on a subject within the short timeframe. If
the BrAC test was not administered within this timeframe, it is
harder to prove whether a person was intoxicated post factum.
Detecting whether a person was intoxicated post factum is
currently considered a scientific gap, because of the fact that
alcohol is eliminated from the body very quickly and does not
leave any traces. As a result, a subject may not be accused of
impaired judgement (due to alcohol consumption), because the
BrAC test was not performed within the required timeframe.

B. Related Work

Despite the importance of detecting intoxication, there has
been a limited amount of research that addresses the domain
of intoxication detection using ubiquitous technology. A recent
study [17] showed that intoxication can be detected via a
dedicated application for a smartphone that challenges the
subject with various tasks, such as typing, sweeping, and other
reaction tests. However this method is not passive and can be
considered a software alternative to a breathalyzer, because
it suffers from the same shortcoming of the breathalyzer: it
requires a cooperative subject in order for it to work.

Kao et al. [18] analyzed the accelerometer data collected
from the smartphones of three subjects and compared the
step times and gait stretch of sober and intoxicated subjects.
This research was limited in scope in that it only used three
subjects. In addition, it was not aimed at detecting whether
a person was intoxicated based on data collected from the
device; instead, the study compared differences in the gait of
intoxicated and sober subjects.

Arnold et al. [19] investigated whether a smartphone user’s
alcohol intoxication level (how many drinks they had) can
be inferred from their gait. They used time and frequency
domain features extracted from the device’s accelerometer to
classify the number of drinks a subject consumed based on the
following ranges: 0-2 drinks (sober), 3-6 drinks (tipsy), or 6+
drinks (drunk). However, their methodology is not admissible,

because some people do not become intoxicated from two
drinks while others do, as this depends on physiological
(e.g., the subject’s weight) and non-physiological factors (e.g.,
whether the subject has eaten while drinking).

Several studies have utilized ubiquitous technology to detect
intoxication based on driving patterns. Dai et al. [20] and
Goswami et al. [21] used mobile phone sensors and pattern
recognition techniques to classify drunk drivers based on
driving patterns. Other studies tried to detect intoxication using
various approaches. Thien et al. [22] and Wilson et al. [23]
attempted to simulate the HGN (horizontal gaze nystagmus)
test [24], in order to detect intoxication using a camera (i.e.,
smartphone camera) and computer vision methods. Hossain et
al. [25] used machine learning algorithms to identify tweets
sent under the influence of alcohol (based on text). None of the
abovementioned methods were validated against an admissible
breathalyzer, and the authors did not test the accuracy of the
methods on a large number of subjects.

C. Proposed Method & Significance

The short-term effects of alcohol consumption on subjects
range from a decrease in anxiety and motor skills and eu-
phoria at lower doses to intoxication (drunkenness), stupor,
unconsciousness, anterograde amnesia (memory ”blackouts”),
and central nervous system depression at higher doses. As a
result, various field sobriety tests are administered by police
officers as a preliminary step before a subject takes a BrAC
test using an admissible breathalyzer.

One of the most well-known field sobriety tests adminis-
tered by police departments in order to detect whether a person
is intoxicated is the walk and turn test in which a police officer
asks a subject to take nine steps, heel-to-toe, along a straight
line; turn on one foot; and return by taking nine steps in the
opposite direction. During the test, the officer looks for seven
indicators of impairment. If the driver exhibits two or more of
the above indicators during the test, there is a 68% likelihood
that the subject is intoxicated (according to the US National
Highway Traffic Safety Administration/NHTSA [26]).

We suggest a modified version of the walk and turn
test: detecting whether a subject is intoxicated based on the
differences in his/her free gait. We propose identifying the
physiological indicators that imply drunkenness (in terms of
body movement) based on the difference between two data
samples of free gait. Each sample consists of motion sensor
data obtained via wearable devices that are carried/worn by
the subject during free gate. The first data sample of free gait
is taken from a standard free gait sample of the subject. This
sample is used to create a free gait profile of the subject. This
can be done by obtaining one or more samples of a subject’s
free gait during time periods in which a subject is more likely
to be sober (e.g., during the morning or afternoon). The second
sample of free gait is obtained during the time of interest (e.g.,
the time the person was suspected of being intoxicated).

A few types of wearable devices can be used to identify
the physiological indicators that imply intoxication (in terms
of body movement). For example, smart glass can be used to
identify anomalies in a subject’s head movement during free
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gait. However, we suggest detecting intoxication via wrist-
worn devices: smartwatches and fitness trackers. We believe
that these devices are better candidates than other types of
wearable devices because (1) wrist-worn devices are heavily
adopted and the most commonly used and popular type of
wearable device. According to a 2014 survey, one out of
every six people owned a wrist-worn device [27], and a 2019
survey showed that their adoption rate increased, with 56% of
people owning a wrist-worn device [2]. (2) Wrist-worn devices
contain motion sensors, and (3) most people wear their fitness
tracker or smartwatch all the time (according to a recent survey
[2]), despite the fact that these devices require charging every
few days.

Algorithm 1 isIntoxicated?

1: Input: Model - Intoxication Detection Model
2: Input: sSober - Gait Measurements while Sober
3: Input: sSuspect - Suspected Gait Measurements
4: Input:Threshold - Confidence threshold
5: Output: Boolean - True/False for intoxication
6: procedure ISINTOXICATED?
7: fSober [] = features (sSober)
8: fSuspect [] = features (sSuspect)
9: n = length(fSober)

10: difference [] = new array[n]
11: for (i = 0 ; i < n ; i++) do
12: difference [i] = fSuspect[i] - fSober[i]
13: Probability = Model.classify(difference)
14: return(Probability > Threshold)

Algorithm 1 presents a high-level solution for detecting
intoxication based on a wrist-worn device. It receives four
inputs: a trained intoxication detection Model; two samples
of free gait: (1) when the subject is sober (sSober), and (2)
when the subject is suspected of being intoxicated (sSuspect);
and a learned Threshold. First, features are extracted for each
sample of a free gait for fSuspect and sSober (lines 7-8).
Then, the difference between the features fSuspect and fSober
is calculated (lines 10-12). The difference is then classified
using a trained intoxication detection Model (line 8). Finally,
the result is returned according to a learned Threshold.

In the subsections that follow, we explain how to: (1) extract
the features, (2) train an intoxication detection model, and (3)
determine a model’s threshold according to two desired policy
(each intoxicated subject that was classified as intoxicated
was actually intoxicated in reality or each intoxicated subject
is predicted as intoxicated). Finally, we evaluate the trained
model’s performance.

The significance of the suggested method with respect to
related work is that our method: (1) is passive and does not
rely on a subject’s cooperation (as opposed to the method
that was suggested by [17] and a standard breathalyzer),
(2) detects intoxication based on a given BrAC threshold
(unlike other methods [18] intended at predicting whether a
subject is intoxicated), (3) was validated against the results
of an admissible police breathalyzer (in contrast to other
methods [20–23, 25] that did not label the collected data with

admissible breathalyzer), (4) can be used post factum and is
not limited to detecting intoxication within a short timeframe
dependent on the rate at which alcohol is eliminated from the
body (unlike a BrAC test).

IV. THE EXPERIMENT

In this section, we describe the experiments that we con-
ducted in order to evaluate whether data from wrist-worn
devices can be used to detect whether the device owner is in-
toxicated. We present the application we developed, the ethical
considerations we had to take into account, the experiment’s
protocol, and we explain the data collection process.

A. Experimental Framework

Most commercial wrist-worn devices are equipped with
motion sensors and include an SDK to allow users to program
them easily. We chose to use the Microsoft Band for the
experiment, because: (1) its SDK has clear documentation,
(2) it is easy to program the device, and (3) the device has
both accelerometer and gyroscope sensors, and each sample
is provided over three axes (x, y, and z).

We paired the Microsoft Band to a smartphone (Samsung
Galaxy S4) using Bluetooth communication. We used the Mi-
crosoft Band’s SDK in order to develop a dedicated application
for the smartphone that sampled motion sensor data from the
Microsoft Band and the Samsung Galaxy S4. The motion
sensor data was sampled from the Samsung Galaxy S4 at 180
Hz and from the Microsoft Band at 62 Hz, and was recorded
as a time series in nanoseconds.

The application generated a beep sound that was played
to the subject (via headphones) and triggered the subject to
start walking (while wearing the devices) until the application
generated a second beep 16 seconds later. In order to measure
the subject’s gait, the application sampled the sensors for eight
seconds, a time period that started on the sixth second of
the experiment and continued until the fourteenth second. The
stages of the experiment are presented in Figure 2.

We decided that using eight seconds of movement (repre-
senting the user’s free gait) is the optimal way to conduct the
experiment and obtain the samples for the following reasons:
(1) Gait is probably the best way to ensure that the devices are
carried/worn by the user instead of sitting on a desk. (2) Free
gait measurements can be obtained from the user passively
by detecting walking instances (from smartwatch/smartphone
sensors such as the accelerometer, gyroscope, and GPS). (3)
Intoxication affects a subject’s gait and balance.

In addition, we purchased a Drager Alcotest 5510 breath-
alyzer in order to obtain BrAC samples. This breathalyzer
outputs results in micrograms of alcohol per liter of breath.
We chose this type of breathalyzer, because it is a professional
breathalyzer used by our local police department and other
departments in different countries around the world.

B. Ethical Considerations

The experiment involved collecting data from intoxicated
and sober subjects. We did our best to preserve the subjects’
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Fig. 2: Experiment’s protocol: a sample of eight seconds of
motion sensor data from a subject’s free gait was obtained.

Fig. 3: A subject outfitted with a Microsoft Band and Samsung
Galaxy S4.

privacy and reduce any risks associated with participating
in the experiment. The experiment was approved by the
institutional review board (IRB), subject to the following
precautions:

(1) Only individuals that went to a bar in order to drink of
their own accord can participate in the experiment; in this way,
the onus for any consequences resulting from such drinking is
on the subjects.

(2) Only individuals that did not drive to the bar with a car
and will not drive back from the bar with a car can participate
in the experiment.

(3) Anonymization must be applied to the data. At the
beginning of the experiment, a random user ID was assigned
to each subject, and this user ID served as the identifier of the
subject, rather than his/her actual identifying information. The
mapping between the experiment’s user ID and the identity of
the subjects was stored in a hard copy document that was kept
in a safe box; at the end of the experiment, we destroyed this
document.

(4) During the experiment, the data collected was stored
encrypted in the local storage of the smartphone (which was
not connected to the Internet during the experiment). At
the end of the experiment, the data was copied to a local

server (i.e., within the institutional network), which was not
connected to the Internet. Only anonymized information of the
subjects was kept for further analysis.

(5) Participants were paid for their participation in the study
(each subject received the equivalent of 15 USD in local
currency).

C. Methodology
In order to sample as many people as possible, our ex-

periment took place at three different bars that offer an ”all
you can drink” option. We waited for people to arrive at
the bars, and just before they ordered their first drink, we
asked them to participate in our research (participation entailed
providing a gait sample during two brief experimental sessions
while wearing wearable devices, as well as providing two
breath samples a few seconds before the sessions started). We
explained that they would receive the equivalent of 15 USD in
local currency for their participation. We also told the subjects
that they would be compensated even if they chose not to drink
at all, so drinking was not obligatory. Each subject signed a
document stating that he/she came to the bar in order to drink
of his/her own accord and that he/she did not drive to the bar
and would not drive from the bar (as we were instructed by
the IRB). The breathalyzer was calibrated at the beginning of
each evening according to the manufacturer’s instructions.

The experiment was conducted in two sessions. The first
session took place before the subjects had their first drink.
The second session took place at least 15 minutes after the
subject’s last drink, just before they intended to leave the bar.
We consulted with police authorities regarding the breathalyzer
test, and they told us to wait 15 minutes after the subject had
their last drink in order to obtain an accurate BrAC specimen.
During each session, our subjects provided us with a gait
sample and a BrAC specimen. Their gait was recorded using
the application that we developed (described at the beginning
of this section). The BrAC specimen was measured with the
breathalyzer; the result was used to label each gait sample.

Our subjects were outfitted with the devices as follows:
they were asked to wear the Microsoft Band on their left or
right hand (as they wished) and carry a smartphone in a rear
pocket (as can be seen in Figure 3). Each subject also wore
headphones that were used to hear the beeps used to indicate
that the subject should start/stop walking.

Thirty subjects participated in our study, each of whom was
instructed to walk (while wearing the devices) in any direction
they wished until they heard a beep in the headphones.
Table II provides information about the subjects. Most of our
participants were in their early 20s, which, according to the
NHTSA [28], is the group considered to have the highest risk
of causing fatal accidents due to alcohol consumption (in 30%
of the accidents resulting from intoxicated drivers in 2014, the
drivers were between the ages of 21 and 24).

Figure 4 presents the analysis and distribution of the
breathalyzer results. Our data needed to include samples of
both sober and drunk states. This was crucial for the model
creation phase (described later) in order to learn the movement
differences that imply intoxication, as well as the differences
that do not suggest intoxication.
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Gender Number of
Subjects Age(Year) Height(CM) Mass(KG)

Male 24 (80%) 24.1± 3.6 176.4± 9.2 73.1± 10.5
Female 6 (20%) 24.5± 5.9 168.5± 4.5 60± 4.5

TABLE II: Information about the subjects. Each cell presents
the average and standard deviation.

Fig. 4: Breathalyzer samples - the bars represent the results of
the subjects’ breathalyzer tests (the amount of micrograms of
alcohol per liter of breath).

V. EVALUATION & RESULTS

In this section, we describe the features that were extracted,
the process of creating the dataset, the algorithms that were
used, the evaluation protocol, and the results that we obtained
in our experiment.

A. Feature Engineering

The impact of intoxication on individuals has been exten-
sively researched. There are many noticeable behaviors that
an individual may display as he/she becomes intoxicated. As
the intoxication level rises, differences can be observed (1)
behaviorally, and (2) physically. In this study we focus on a
specific physical indicator for intoxication: differences in gait
(walking).

Differences in walking are expressed as difficulty walking
in a straight line and maintaining balance, and swaying. These
indicators appear even with the consumption of a small amount
of alcohol and can be detected by police officers in the field
sobriety test (walk and turn test) without any dedicated device.
The walk and turn test is usually performed by officers before a
breathalyzer test in order to save the long process of obtaining
a breath sample from individuals that are not shown to be
intoxicated based on the field sobriety test.

Since we use data that was obtained from motion sensors,
we extract features that can be informative as a means of
detecting the abovementioned gait differences. The first type
of features that we used are features from the spectrum
domain. Previous studies demonstrated the effectiveness of
extracting such features from motion sensors [29, 30]. We
extract features that represent the distribution of the power
of the signals across the spectrum domain. Such features
may indicate physiological changes resulting from alcohol
consumption that are associated with reduced frequency of
movement as a result of difficulties in maintaining balance
while walking.

Fig. 5: A breakdown of the subjects’ state (sober/drunk) at
various BrAC levels.

The second type of features that were used are statistical
features. Previous studies demonstrated the effectiveness of
extracting such features from motion sensors [31, 32]. We
extract five features (mean, variance, skewness, kurtosis, and
RMS) that represent high-level information about the signals.
Such features may indicate physiological changes associated
with intoxication, such as decreased average acceleration as a
result of difficulty maintaining balance.

The third type of features that were used are histogram
features. We present the signals as histograms, as done in
previous studies [33, 34]. We extract a histogram that rep-
resents the distribution of the values of the signals across the
time domain between the maximum and minimum value. Such
features may indicate differences in the patterns of movement
(and specifically, the distribution of the movement) as a result
of the abovementioned indicators.

Finally, we extract known gait features that have been shown
to yield good results in previous studies [35, 36]. We extract
four features (zero crossing rate, mean crossing rate, pairwise
correlation, and spectral entropy). These features may indicate
differences in the characteristics of a person’s gait that are the
result of difficulty walking.

B. Creating the Dataset

As was indicated in Section IV, each subject contributed two
breath specimen and gait samples (obtained in two sessions -
before and after drinking). Each gait sample is comprised of
sensor readings (measurements) obtained from a smartphone
and fitness tracker. The accelerometer and gyroscope were
sampled from the fitness tracker and smartphone.

Given person p and his/her two gait samples: s-before
(measurement taken before alcohol consumption) and s-after
(measurement taken after alcohol consumption), we process
the samples as follows:

(1) Feature Extraction - We extract two feature vectors: the
f-before vector (extracted from s-before) and the f-after vector
(extracted from s-after).

(2) Difference Calculation - We calculate a new feature
vector called the f-difference. These features represent the
difference (for each feature) between the f-after and f-before
values. The difference signifies the effects of alcohol consump-
tion on the subject’s movement and is calculated by subtracting
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each of the features from f-after with its correlative feature in
f-before.

(3) Labeling - We label the sample of each subject as
intoxicated/sober according to the result of the professional
breathalyzer for known BrAC thresholds.

The dataset creation process resulted in 30 labeled instances
extracted from 30 users, representing the differences between
the extracted features before and after drinking. We used this
data to train supervised machine learning models for intoxi-
cation detection. We analyze the data as a classification task,
with the goal of determining whether a person is intoxicated
or sober according to known BrAC thresholds as measured
using a breathalyzer. More precisely, we aim to train a model
that determines whether a person is intoxicated or not using
differences in the subject’s gait features. We chose to classify
our instances according to each of four BrAC thresholds 0,
220, 240, and 380 (presented in Table III). We consider an
instance labeled by a breathalyzer result (BrAC) to be sober if
its value is less than the threshold and intoxicated if its value
exceeds the threshold.

The breakdown of the subject’s sober/drunk states according
to BrAC thresholds 0, 220, 240, and 380 is presented in Figure
5. At the lower BrAC threshold (0), 86% of the subjects
were considered drunk. At the middle BrAC thresholds of
alcohol concentration (220, 240) the data is distributed, such
that 20-33% of the total number of subjects were considered
intoxicated. At the highest threshold (380) 10% of the subjects
were considered drunk.

C. Algorithms & Evaluation Protocol

Five different machine learning models were evaluated to
allow for a versatile yet comprehensive representation of
model performance. The first model that we evaluated was
Naive Bayes which belongs to a family of simple proba-
bilistic classifiers. The second model evaluated was Logistic
Regression. This model is able to obtain good results in cases
where the two classes can be adequately separated using a
linear function. The third model used was Support Vector
Machines which is used to identify the maximum margin
hyper-plane that can separate classes. Finally, we evaluated
two ensemble-based classifiers: Gradient Boosting Machine
(GBM) and AdaBoost. GBM trains a sequence of trees where
each successive tree aims to predict the pseudo-residuals of
the preceding trees. This method allows us to combine a
large number of classification trees with a low learning rate.
AdaBoost trains a set of weak learners (decision trees) and
combines them into a weighted sum that represents the final
outcome.

Since our data is based on samples from 30 subjects, we
can utilize the leave-one-user-out protocol, i.e., the learning
process is repeated 30 times, and in each test, 29 subjects
are used as a training set, and one subject is used as a test
set for evaluating the predictive performance of the method.
The leave-one-user-out protocol allows us to evaluate the
performance of the suggested method by utilizing the entire
set of instances in the data for training and evaluation. We
report the following metrics: area under the receiver operating

Thresholds
0 220 240 380

AdaBoost 0.540 0.945 0.979 0.500
GBC 0.290 0.915 0.952 0.926
LR 0.760 0.560 0.577 0.457
NB 0.330 0.290 0.196 0.414

SVM 0.500 0.500 0.500 0.500

TABLE III: AUC of classification algorithms: AdaBoost,
Naive Bayes (NB), Linear Regression (LR), Support Vector
Machines (SVM), and Gradient Boosting Classifier (GBC) for
BrAC thresholds of 0, 220, 240, and 380.

Predicted
0 220 240 380

Drunk Sober Drunk Sober Drunk Sober Drunk Sober
Drunk 1 3 6 4 9 0 0 3
Sober 4 22 1 19 2 19 0 27

TABLE IV: Confusion matrices of the Gradient Boosting
Classifier for BrAC thresholds of 0, 220, 240, and 380.

characteristic curve (AUC), false positive rate (FPR), and true
positive rate (TPR). The results that we report in this section
are the average of 30 models that were trained and evaluated
on the dataset for each task.

D. Results

Here we report the performance of Algorithm 1 with the
models that we trained. We use Algorithm 1 in order to answer
the following research questions:

1) What is the performance of our method according to
various BrAC thresholds?

2) What is the performance of our method for various
detection policies?

3) What is the importance of each device, sensor, and set
of features?

1) Performance for Various BrAC Thresholds: We start by
assessing the performance of the intoxication detection model
from data obtained from a fitness tracker and smartphone.
Table III presents the AUC results for each of the classification
models for BrAC thresholds of 0, 220, 240, and 380. As can
be seen from the results presented in Table III, the GBM and
AdaBoost classifiers yielded excellent results for thresholds
of 220, 240, and 380. The GBM and AdaBoost classifiers did
not yield the same results for a BrAC threshold of zero, since
alcohol’s short-term effects on the physiological state (such as
imbalanced gait, dizziness) do not appear in small doses of
alcohol consumption; hence, they are very difficult to detect
by using motion sensors.

Figures 6 and 7 present the ROC for thresholds of 0, 220,
240, and 380. We also analyze the classifiers’ decisions. The
confusion matrices for the AdaBoost and Gradient Boosting
classifiers for BrAC thresholds of 0, 220, 240, and 380
are presented in Tables IV and V. As can be seen from
the confusion matrices presented in the table, some of the
instances that were considered as drunk were misclassified as
sober and vice versa.

2) Performance for Various Detection Policies: Here we
set out to test the performance of the intoxication detection
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Fig. 6: ROC curve of the Gradient Boosting classifier for BrAC
thresholds of 220, 240, and 380 from data that was obtained
from a smartphone and fitness tracker.

Fig. 7: ROC curve of the AdaBoost classifier for BrAC
thresholds of 220, 240, and 380 from data that was obtained
from a smartphone and fitness tracker.

model according to two policies. Figures 8 and 9 present
misclassifications (FNR and FPR) for BrAC thresholds of 0,
220, 240, and 380. The implication of a drunk subject that
is misclassified as sober is a reduced sentence for the subject
for a crime that he/she performed (e.g., a reduced sentence
for a fatal accident that was caused as a result of driving
under the influence and was not detected). In order to avoid
such incidents, we wanted to test the performance of a model
on a policy whereby each intoxicated subject is predicted as
intoxicated. In order to do so, we fixed the TPR at 1.0 (the true
class is intoxicated) and assessed the impact of this limitation
on the FPR.

Table VI presents the FPR results of the Gradient Boosting
and AdaBoost classifiers for BrAC thresholds of 0, 220, 240,
and 380. As can be seen from the results, applying a constraint
of detecting all intoxicated subjects caused up to 30% of the
sober subjects to be misclassified as intoxicated for BrAC
thresholds of 220, 240, and 380.

Predicted
0 220 240 380

Drunk Sober Drunk Sober Drunk Sober Drunk Sober
Drunk 1 3 8 2 9 0 0 3
Sober 4 22 3 17 1 20 0 27

TABLE V: Confusion matrices of the AdaBoost for BrAC
thresholds of 0, 220, 240, and 380.

Fig. 8: AdaBoost classifier performance for BrAC thresholds
of 0, 220, 240, and 380.

Fig. 9: Gradient Boosting Classifier performance for BrAC
thresholds of 0, 220, 240, and 380.

Thresholds
0 220 240 380

GBC 1 0.3 0.09 0.11
AdaBoost 1 0.15 0.04 0

TABLE VI: Detecting all intoxicated subjects: FPR (false
positive rate) of classifiers with a fixed TPR (true positive
rate) of 1.0.

Thresholds
0 220 240 380

GBC 0 0.4 0 0
AdaBoost 0 0.4 0.55 0

TABLE VII: Detecting an intoxicated instance with no errors:
TPR (true positive rate) of classifiers with a fixed FPR (false
positive rate) of zero.
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Fig. 10: Precision-recall curve of the Gradient Boosting Clas-
sifier for BrAC thresholds of 0, 220, 240, and 380 from data
that was obtained from a smartphone and fitness tracker.

We wanted to test the performance of a model on another
policy whereby each intoxicated subject that was classified as
intoxicated by a model was actually intoxicated in reality. In
order to do so, we fixed the FPR at zero (the positive class is
drunk) and assessed the impact of this limitation on the TPR,
i.e., we looked at the percentage of intoxicated subjects that
were misclassified as sober.

Table VII presents the TPR results of the Gradient Boosting
and AdaBoost classifiers for BrAC thresholds of 0, 220, 240,
and 380. As can be seen from the results, the impact of ap-
plying a constraint of detecting all intoxicated subjects is that
this approach is only effective for a BrAC threshold of 220,
since 40-55% of the intoxicated subjects are detected (when
using GBM as an intoxication detection model). However, for
all other BrAC thresholds, all of the intoxicated subjects are
misclassified.

Figures 10 and 11 present the precision-recall curve of
the Gradient Boosting and AdaBoost classifiers for BrAC
thresholds of 0, 220, 240, and 380.

3) Importance of Devices, Features, and Sensors: In this
section, we aim to detect the impact of every device, sensor,
and set of features on the performance. We started by testing
the performance for data that was obtained from a smartphone
and fitness tracker exclusively. We trained AdaBoost and
Gradient Boosting classifiers with data obtained from a single
device for BrAC thresholds of 0, 220, 240, and 380.

Table VIII presents the results of the AdaBoost and Gra-
dient Boosting classifiers for data that was obtained from a
smartphone, fitness tracker, and both (for comparison). As can
be seen from the results, measurements of movements from
both devices are required to accurately classify a subject as
intoxicated/sober.

In the feature extraction process we extracted four types of
features. Since the gait of individuals changes as a result of
alcohol consumption, we wanted to identify the best set of
indicators to detect drunkenness (based on body movement
patterns) and determine which of the following is most effec-
tive at this task: the distribution of the movement (histogram),

Fig. 11: Precision-recall curve of the AdaBoost classifier for
BrAC thresholds of 0, 220, 240, and 380 from data that was
obtained from a smartphone and fitness tracker.

Thresholds
0 220 240 380

Gradient Boosting Classifier
Smartphone 0.15 0.74 0.38 0.46

Fitness Tracker 0.39 0.52 0.68 0.92
Both 0.290 0.915 0.952 0.926

AdaBoost
Smartphone 0.46 0.75 0.57 0.59

Fitness Tracker 0.75 0.33 0.73 0.5
Both 0.540 0.945 0.979 0.500

TABLE VIII: AUC results of the AdaBoost and Gradient
Boosting classifiers based on data obtained from a fitness
tracker, smartphone, and both devices.

frequency of the movement, statistical features, or known gait
features.

In order to do so, we used the dataset and trained Gradient
Boosting and AdaBoost classifiers for BrAC thresholds of 0,
220, 240, and 380. We classified each instance using two
methods. The first classification method was performed using a
specific set of features among the sets (histogram, known gait
features, frequency features, statistical features). The second
classification method was performed using all of the other sets
of features (except the set used in the first method). Figure 12
presents the average AUC results for BrAC thresholds of 0,
220, 240, and 380. As can be seen from the results, only the
models that were trained on statistical features outperformed
the models that were trained without them. All other models
that were trained on features were unable to obtain higher
scores than the models that were trained without them. From
this we conclude that a combination of the entire set of features
is required to train an effective/accurate intoxication detection
model.

Finally, we test the impact of data from every sensor on the
results. In order to do so, we utilized the same protocol used to
test the feature robustness: we trained Gradient Boosting and
AdaBoost classifiers for BrAC thresholds of 0, 220, 240, and
380. We classified each instance using a model that was only
trained on accelerometer features and a model that was only



11

Fig. 12: Average AUC results of the AdaBoost and Gradient
Boosting classifiers based on specific types of features and
without them.

Fig. 13: Average AUC results of the AdaBoost and Gradient
Boosting classifiers based on measurements that were obtained
from a single sensor and from both sensors.

trained on gyroscope features. Figure 13 presents the average
AUC results for BrAC thresholds of 0, 220, 240, and 380. As
can be seen from the results, a model that was only trained on
accelerometer measurements can yield nearly the same results
as a model that was trained on both sensors. Given this, we
conclude that subjects’ acceleration when walking is highly
informative in order to detect intoxication.

VI. TESTIFYING WEARABLE DEVICES IN THE NEAR
FUTURE

In this section we analyze the age of testifying wearable
devices: the current state, expectations for the near future,
expected challenges, and future research directions.

A. Current State: Analysis & Limitations

Despite the fact that seven years has passed since the first
case in which data from wearable device was used to testify
against/for the device owner [3], we believe that we are only
at the beginning of the era of testifying wearable devices. In
the last seven years, data from wearable devices has only been
used to prove/disprove allegations regarding the device owner

by a few pioneers in the legal sector in a limited number of
cases despite the fact that individuals’ textual (e.g., emails),
visual (e.g., videos), and acoustic (e.g., recordings) data has
been used by the legal sector for many years.

We believe that there are three primary reasons why the
data from testifying wearable devices has not commonly been
used by the legal sector:

(1) Limited understanding of a testifying wearable device’s
potential: While, there is broad understanding on how the data
from wearable devices can be used for commercial purposes,
there is more limited understanding on how insights from
such devices can be used for legal purposes. The case of
wearable devices is different from other IoT devices (e.g.,
video cameras, smart assistants) whose data the legal sector is
already familiar with and utilizes by employing professionals
with expertise in mining and processing textual/visual/acoustic
data in order to leverage this asset’s potential. Deriving in-
sights from data obtained from motion, heart rate, and skin
conductivity sensors requires different types of expertise. In
addition, many questions must be answered in order to realize
the potential of the data from testifying wearable devices,
including: What insights that can be derived from this data
might be valuable to the legal sector? How can these insights
be derived? What is required to derive these insights?

(2) Limited accessibility to data: Currently, most wearable
devices are not equipped with a SIM card (except for just
a few). As a result, the communication between a wearable
device and servers is not continuous, and data collected from
wearable devices is sent to data centers via a Bluetooth paired
device (e.g., smartphone) or Wi-Fi when the wearable device
is located in proximity to a router and connected to a LAN.
The fact that the communication between wearable devices
and data centers is not direct limits the ability to collect data
on a user and in some cases, limits the amount of data that can
be collected to the amount of data that can be stored locally.
As a result, wearable device data is less accessible to the legal
sector than data obtained from other IoT devices (e.g., wireless
video cameras).

(3) Limited opportunities: A decade after the first wearable
device appeared on the market, the only heavily adopted
wearable device is the wrist-worn device (e.g., smartwatches
and fitness trackers) which has been adopted by over half of
the adults in the US (according to a recent survey [2]). Other
types of wearable devices (e.g., Google Glass) that looked very
promising when they first appeared on the market have have
not been adopted due to the lack of added value, high price,
and UX issues. As a result, the insights that can be obtained
in this area are limited to those that can be derived from the
wrist-worn devices.

B. Testifying Wearable Devices in the Near Future

We expect that in the near future other intended and
unintended processes (unrelated to the legal sector) will result
in the increased use of wearable device data as a means of
testifying against/for the device owner. Such processes include:

(1) Greater understating of a testifying wearable device’s
potential: Interest in performing studies that may result in
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insights valuable to the legal sector may stem from scien-
tific curiosity, commercial prospects, medical applications,
and more. For example, a recent study was able to predict
Parkinson’s disease in users based on wearable device data
[37]. Researchers are often motivated to perform such studies
in order to derive insights that could enable early disease di-
agnosis and improve patient outcome. However, such insights
could also be beneficial to the legal sector and could, for ex-
ample, be used by insurance companies or police departments
to charge wearable device owners in accidents by linking
them to driving behavior associated with the early stages of
Parkinson’s disease. In addition, computational criminology
centers could perform or fund academic research to increase
understanding about the insights that can be derived from
wearable device data. We expect that insights from studies
conducted by the legal sector (e.g., by police departments)
and other sectors (e.g., medicine) will increase understanding
about the potential of wearable devices and the interest of the
legal sector.

(2) Improved accessibility to data: Data is about to become
more accessible due to the integration of eSIM (embedded-
SIM) in the next generation of wearable devices [38, 39].
This will allow wearable device manufacturers and installed
applications to send data collected from the wearable device
continuously and directly to data centers via cellular connec-
tivity (without the use of a smartphone as a mediator). More-
over, 5G will improve an endpoint’s cellular connectivity and
provide improved infrastructure to collect data from wearable
devices due to its higher average speed, lower latency, and
wider bandwidth. All of this will increase the volume of data
that can be collected from wearable devices and stored in data
centers. We also believe that there will be increased motivation
to collect data from wearable devices, since research continu-
ously reveals new and valuable insights about wearable device
owners obtained from the data collected. Companies can use
such insights to increase revenue or decrease loss from clients
that own wearable devices. For example, several studies have
demonstrated how data obtained from wearable devices can be
used to identify a subject’s eating episodes, [32] and predict
future heart disease [40]. Such information can be helpful to an
insurance company that must decide whether or not to issue
an insurance policy to someone. New insights will expand
commercial interest in wearable device data and this in turn
will result in increased data collection.

(3) New opportunities: Wearable device manufacturers con-
tinue to integrate new sensors into existing wearable devices
in order to obtain data that could not previously be collected.
For example, commercial earbuds are now sold with motion
sensors to support head gesture and activity recognition [41].
In addition, new commercial wearable devices are being devel-
oped to improve computer human interaction. This technology
will likely create additional opportunities for the legal sector
to derive new insights that cannot be derived from existing
wearable devices (e.g., reading a user’s mind using data
obtained from brain-computer interface [42]).

C. Expected Challenges

In an era in which data from wearable devices is used to
testify against device owners, an interesting question arises:
What would happen if a hacker or the owner of a device
managed to compromise a device whose data was being used
as testimony or evidence in a legal case? Compromising
such data can be done by hackers via a cyber-attack on
data centers that store the collected data; alternatively, the
owner of a wearable device could spoof the data collected
by his/her device in order to create an alibi. This can be
done, for example, by applying GPS spoofing to fool the GPS
of a smartwatch so as to be detected in another place, or
by applying motion sensor spoofing in order to fabricate an
activity (e.g., by spoofing the step counter of a fitness tracker
using ultrasound [43]). These scenarios might seem like the
subject of science fiction, but a few years ago, the scenario of
data obtained from a fitness tracker being used in a courtroom
to testify against the device owner was also considered far-
fetched [3–7], so it is likely just a matter of a time until such
an incident occurs. As a result, in the near future we also
expect to hear about cases in which compromised data causes
investigators to reach erroneous conclusions.

D. Future Research Directions

Additional research is required in several directions in order
to increase the value of wearable device data to the legal
sector:

(1) Short-term activity recognition and anomaly detection:
additional research is required to recognize short-term ac-
tivities that can be used by the legal sector in order to
prove/disprove allegations regarding a wearable device owner.
For example, smartwatches usually consist of three motion
sensors (accelerometer, gyroscope, compass) that each provide
data from three axes and together provide 9-DOF (degrees
of freedom) data. While research has already demonstrated
how standard short-term hand gestures (e.g., eating episodes
[32], smoking [44], and other gestures [45]) can be detected
by analyzing 9-DOF data obtained from a smartwatch, ad-
ditional research should be performed to detect short-term
hand gestures associated with criminalism; for example, we
suggest performing research to detect the following unique
hand gestures: stabbing, strangling, etc. Additional research is
also required to detect anomalies that can be associated with
short-term unique behavior. Since continuous data is collected
from wearable devices, an accurate profile about the owner
can be created from cardiovascular/skin conductivity data. As
a result, anomalies in the profile can be identified in order
to prove/disprove allegations regarding a user. This method
was already found effective in a prior case [8], but additional
research is required to understand the potential and limitations
of such a method.

(2) Insights from long-term differences: additional research
is required to derive insights from long-term changes. For
example, data from a Fitbit fitness tracker was used to prove
that a client was less active after being in a car accident in a
personal injury case [3]. Wearable devices can provide the
infrastructure needed to derive insights about physiological
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and psychological changes that a subject has experienced due
to an accident or injury (e.g., increased anxiety from heart rate
data [46]).

(3) Deriving insights via alternative virtual, passive meth-
ods: in some cases, the tests needed to detect a crime (e.g.,
drug use) require specific tests (e.g., blood test) that require
dedicated hardware/equipment/procedures and rely on a sub-
ject’s cooperation. Additional research is needed to detect
a crime indirectly via passive and virtual methods. For ex-
ample, in our study we demonstrated an alternative, virtual,
and passive method to detect intoxication by identifying the
physiological changes that are associated with intoxication via
wearable devices. The physiological indicators (e.g., sweat,
reduced movement, etc.) associated with drug use might also
be identified via wearable device sensors (skin conductivity
and motion sensors).

(4) Deriving insights from aggregated/low resolution data:
additional research is also required in order to derive insights
from aggregated data. For example, a recent study [35] com-
pared the effectiveness of various statistical features used to
detect a subject’s gait from wearable devices. The ability to
derive insights from aggregated data can help the legal sector
in turn derive insights about wearable device owners in cases
in which the data collected from the users is stored aggregated
in data centers.

(5) Data quality: additional research is required to under-
stand whether the quality of the data obtained by the sensors
of commercial wearable devices can replace dedicated sensors
for legal purposes. For example, cardiovascular data obtained
from a dedicated sensor can be used to detect lies, however
a recent study revealed that the cardiovascular data obtained
from an Apple watch generates false alarms 90% of the time
for pulse readings that are associated with a patient’s cardiac
condition [47]. We believe that additional research is also
required to explore the accuracy and errors of the sensors that
are integrated in wearable devices.

VII. RELATED WORK

In this section, we review related work in the area of privacy
and motion sensors. We note that related work regarding the
area of intoxication detection is provided in Section III.

Recent studies have demonstrated how attackers can exploit
measurements obtained from motion sensors for various pur-
poses. Various studies have demonstrated methods to create
keyloggers using data obtained from smartwatches [48, 49]
and smartphones [50]. These studies have demonstrated the
risk that data obtained directly from a hand (via a smartwatch)
or indirectly (via a smartphone) pose to a user’s privacy. Other
studies have presented methods to eavesdrop sound using data
obtained from a gyroscope [51], accelerometer [52, 53], and
geophone [54]. However, as was indicated in a recent study
[55], motion sensors usually respond to sound at a high volume
(over 70 dB) which is beyond the sound level of a typical
conversation. Other studies have shown that data obtained from
motion sensors can be used to track users [11, 12]. Given a
known starting location, these studies presented methods to
track a user’s location based on data from the accelerometer.

These methods present an alternative method for tracking
a user that is not based on GPS measurements. However,
these methods have two significant disadvantages: they are
not effective in detecting passengers and drivers, and their
error increases significantly for long distances. Other studies
demonstrated that data obtained from motion sensors can be
used for the purpose of device fingerprinting [56, 57].

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we discuss testifying wearable devices and
show that data obtained from the motion sensors of wearable
devices can be used to testify whether the wearable device
owner is/was intoxicated. We conducted an experiment with
30 subjects at three different bars in order to demonstrate the
proposed intoxication detection method in action. Supervised
machine learning models were trained and resulted in an AUC
of 0.97 for a BrAC threshold of 240 micrograms of alcohol
per liter of breath using only a smartphone and fitness tracker.

Some might argue that intoxication detection via wearable
devices provides a new opportunity to solve new and unsolved
crime cases when a breath/blood test was not taken within the
required timeframe and police cannot prove/disprove whether
the subject was intoxicated or not. Others might argue that
intoxication detection via wearable devices is a growing threat
to individual’s privacy, because it can be used to violate
an individual’s privacy by learning about the device owner’s
habits (e.g., which could lead an employer to fire a worker due
to his/her drinking habits). The main objective of this research
was to show that data from commercial wearable devices can
be used to detect whether a person is intoxicated rather than
taking any side in an argument about the advantages and
disadvantages of such a method.

The findings of this research should also raise the awareness
about the threat that motion sensor data can pose to an indi-
vidual’s privacy. This threat might look obvious to a security
researcher/expert but a user study published three years ago
found that most users unaware of the privacy risks associated
with motion sensor data [58]. We find the fact that data from
motion sensors can still be collected by applications without
any permission from the user very worrying, especially given
the findings of prior studies regarding the risks that motion
sensors pose to an individual’s privacy [48, 49, 51–57, 59, 60]).

In future work, we suggest performing a more extensive
user study that will enable a few dedicated models to be
trained rather than one global model. For example, training
an intoxication detection model for each gender, weight, and
height. Another means of improving the results is to profile the
gait of a user based on several gait samples instead of one.
Another interesting research direction is examining whether
intoxication can be detected by a subject’s GPS measurements.
While data from motion sensors provides a high resolution
indication about a subject’s free gait, GPS data can provide
a low resolution indication. This could possibly be used to
detect highly intoxicated subjects whose gait speed decreased
significantly due to alcohol consumption. The greatest chal-
lenge of such a method is to overcome the known average
GPS error of 3.5 meters [61].
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Munafò, “Stopwatch: The preliminary evaluation of
a smartwatch-based system for passive detection of
cigarette smoking,” Nicotine and Tobacco Research,
vol. 21, no. 2, pp. 257–261, 2019.

[45] O. D. Lara and M. A. Labrador, “A survey on human
activity recognition using wearable sensors,” IEEE com-
munications surveys & tutorials, vol. 15, no. 3, pp. 1192–
1209, 2012.

[46] J. M. Gorman and R. P. Sloan, “Heart rate variability
in depressive and anxiety disorders,” American heart
journal, vol. 140, no. 4, pp. S77–S83, 2000.

[47] K. D. Wyatt, L. R. Poole, A. F. Mullan, S. L.
Kopecky, and H. A. Heaton, “Clinical evaluation
and diagnostic yield following evaluation of abnormal
pulse detected using Apple Watch,” Journal of the
American Medical Informatics Association, vol. 27,
no. 9, pp. 1359–1363, 09 2020. [Online]. Available:
https://doi.org/10.1093/jamia/ocaa137

[48] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole:
Motion leaks through smartwatch sensors,” in Proceed-
ings of the 21st Annual International Conference on
Mobile Computing and Networking. ACM, 2015, pp.
155–166.

[49] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang,
“When good becomes evil: Keystroke inference with
smartwatch,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2015, pp. 1273–1285.

[50] L. Cai and H. Chen, “On the practicality of motion based
keystroke inference attack,” in International Conference
on Trust and Trustworthy Computing. Springer, 2012,
pp. 273–290.

[51] Y. Michalevsky, D. Boneh, and G. Nakibly,
“Gyrophone: Recognizing speech from gyroscope
signals,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX
Association, 2014, pp. 1053–1067. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/michalevsky

[52] L. Zhang, P. H. Pathak, M. Wu, Y. Zhao, and P. Mo-
hapatra, “Accelword: Energy efficient hotword detec-
tion through accelerometer,” in Proceedings of the 13th
Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 2015, pp. 301–315.

[53] Z. Ba, T. Zheng, X. Zhang, Z. Qin, B. Li, X. Liu,
and K. Ren, “Learning-based practical smartphone eaves-
dropping with built-in accelerometer,” in Proceedings of

http://dl.acm.org/citation.cfm?id=2825041.2825062
https://channellife.co.nz/story/vodafone-to-launch-esims-for-devices-and-wearables
https://channellife.co.nz/story/vodafone-to-launch-esims-for-devices-and-wearables
https://www.oasis-smartsim.com/connecting-wearable-devices-with-esim/
https://www.oasis-smartsim.com/connecting-wearable-devices-with-esim/
https://audioxpress.com/article/how-motion-sensors-can-revolutionize-hearables
https://audioxpress.com/article/how-motion-sensors-can-revolutionize-hearables
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/martinovic
https://doi.org/10.1093/jamia/ocaa137
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky


16

the Network and Distributed Systems Security (NDSS)
Symposium, 2020, pp. 23–26.

[54] J. Han, A. J. Chung, and P. Tague, “Pitchln:
Eavesdropping via intelligible speech reconstruction
using non-acoustic sensor fusion,” in Proceedings
of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks, ser. IPSN
’17. New York, NY, USA: ACM, 2017, pp. 181–
192. [Online]. Available: http://doi.acm.org/10.1145/
3055031.3055088

[55] S. A. Anand and N. Saxena, “Speechless: Analyzing
the threat to speech privacy from smartphone motion
sensors,” in 2018 IEEE Symposium on Security and
Privacy (SP), vol. 00, pp. 116–133. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2018.00004

[56] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelaku-
diti, “Accelprint: Imperfections of accelerometers make
smartphones trackable.” in NDSS. Citeseer, 2014.

[57] A. Das, N. Borisov, and M. Caesar, “Tracking mobile
web users through motion sensors: Attacks and de-
fenses.” in NDSS, 2016.

[58] K. Crager and A. Maiti, “Information leakage through
mobile motion sensors: User awareness and concerns,”
in Proceedings of the European Workshop on Usable
Security (EuroUSEC), 2017.

[59] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend
or foe? your wearable devices reveal your personal pin,”
in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, 2016, pp. 189–
200.

[60] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang,
“Accessory: password inference using accelerometers on
smartphones,” in Proceedings of the Twelfth Workshop
on Mobile Computing Systems & Applications, 2012, pp.
1–6.

[61] “Gps accuracy,” https://www.gps.gov/systems/gps/
performance/accuracy/.

http://doi.acm.org/10.1145/3055031.3055088
http://doi.acm.org/10.1145/3055031.3055088
doi.ieeecomputersociety.org/10.1109/SP.2018.00004
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/

	Introduction
	Testifying Wearable Devices
	The Advantages of Wearable Devices as Witnesses
	Involved Parties & Information Flow

	The Case of Intoxication Detection via Wearable Devices
	Motivation & Scientific Gap
	Related Work
	Proposed Method & Significance

	The Experiment
	Experimental Framework
	Ethical Considerations
	Methodology

	Evaluation & Results
	Feature Engineering
	Creating the Dataset
	Algorithms & Evaluation Protocol
	Results
	Performance for Various BrAC Thresholds
	Performance for Various Detection Policies
	Importance of Devices, Features, and Sensors


	Testifying Wearable Devices in the Near Future
	Current State: Analysis & Limitations
	Testifying Wearable Devices in the Near Future
	Expected Challenges
	Future Research Directions

	Related Work
	Conclusions & Future Work

