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Abstract. Σ-Protocols form a well-understood basis for plug-and-play
secure algorithmics. Bulletproofs (Bünz et al., SP 2018) have been in-
troduced as a “drop-in” for Σ-Protocols in some important applications;
notably, zero-knowledge (ZK) for arithmetic circuits and range proofs,
each with logarithmic communication instead of linear. At the heart of
Bulletproofs is an ingenious, logarithmic-size proof of knowledge (PoK),
denoted BP, showing that a compact Pedersen commitment to a long
vector satisfies a quadratic equation (“an inner product relation”). How-
ever, applications, like those mentioned, meet with technical difficulties:
(1) BPs are not ZK and (2) protocol theory requires “reinvention” with
the quadratic constraint proved as its “pivot.” This leads to practical,
yet complex ZK protocols where applying natural plug-and-play intuition
appears hard.

Our approach is radically different. We reconcile Bulletproofs with the
theory of Σ-Protocols such that (a) applications can follow established
protocol theory, thereby dispensing with the need for “reinventing” it,
while (b) enjoying exactly the same communication reduction. We do
this by giving a precise perspective on BPs as a significant strengthening
of the power of Σ-protocols. We believe this novel perspective is rather
useful for practical design.

Our program combines two essential components. First, we isolate a nat-
ural Σ-Protocol as alternative pivot that directly yields ZK proofs for
arbitrary linear statements, while deploying suitable BPs to compress
communication. We also develop some convenient utility enhancements
of the pivot. Second, to enable ZK proofs of nonlinear statements, we
integrate the pivot as a blackbox with a novel variation on – hitherto
largely overlooked – arithmetic secret sharing based techniques for Σ-
Protocols (ICITS 2012); this linearizes “all nonlinear statements” using
the fact that arbitrary linear ones can be proved. This yields simple
circuit ZK with logarithmic communication. Similarly for range proofs,
which are now trivial. Our results are based on either of two assumptions,
the Discrete Logarithm assumption, or an assumption derived from the
Strong-RSA assumption.

Keywords: Σ-protocols, Bulletproofs, Zero-Knowledge, Plug-and-Play,
Secure Algorithmics.



1 Introduction

The theory of Σ-Protocols provides a well-understood basis for plug-and-play
secure algorithmics. Recently, Bulletproofs [BBB+18] have been introduced as
a “drop-in replacement” for Σ-Protocols in several important applications. No-
tably, this includes ZK for arithmetic circuits with communication O(log |C| · k)
bits where |C| is the circuit size4 and k is the security parameter, down from
O(|C| · k) bits. A similar result holds for range proofs.

At the heart of Bulletproofs is an interactive proof of knowledge between a
Prover and Verifier showing that a Pedersen commitment to a vector of large
length n satisfies a multi-variate polynomial equation of degree 2, defined with
an inner product. We refer to this PoK by BP. Concretely, suppose G is a cyclic
group of prime order q (denoted multiplicatively) supporting discrete-log-based
cryptography. Suppose, furthermore, that g = (g1, . . . , gn) ∈ Gn and h ∈ G (each
gi as well as h generators of G) have been set up once-and-for-all such that, for
parties that may subsequently act as provers, finding nontrivial linear relations
between them is computationally as hard as computing discrete logarithms in G.
For each x ∈ Znq , define gx =

∏n
i=1 g

xi
i . A Pedersen-commitment P to a vector

x ∈ Znq is then computed as P = gx · hρ where ρ ∈ Zq is selected uniformly at
random. This commitment is information-theoretically hiding and, on account
of the set-up, computationally binding. Note that it is compact in the sense that,
independently of n, a commitment is a single G-element. Suppose that n is even
and write n = 2m. Setting x = (x0,x1) ∈ Zmq × Zmq , a Bulletproof allows the
prover to prove that it can open P such that the inner-product 〈x0,x1〉 equals
some value claimed by the prover.5

BPs stand out in that they ingeniously reduce communication to O(log n)
group elements from O(n) via traditional methods. Although this is at the ex-
pense of introducing logarithmic number of moves (instead of constant), its
public-coin nature ensures that it can be rendered non-interactive using the
Fiat-Shamir heuristic [FS86]. However, design of BP applications meet with a
number of technical difficulties. First, BPs are not zero-knowledge, and second,
cryptographic protocol theory has to be “reinvented” with the quadratic con-
straint proved as its “pivot.” This leads to practical yet rather opaque, complex
protocols where applying natural plug-and-play intuition appears hard.

1.1 Summary of Our Contributions and Organization of the Paper

In this work we take a radically different approach. We reconcile Bulletproofs
with theory of Σ-Protocols such that (a) applications can follow (established)
cryptographic protocol theory, thereby dispensing with the need for “reinvent-
ing” it, while (b) enjoying exactly the same communication reduction. We do
this by giving a precise perspective on BPs as a significant strengthening of the

4 Actually, the result in question only depends on the number of inputs and multipli-
cation gates.

5 Alternatively, this inner-product value may be taken as part of the committed vector.
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power of Σ-protocols. We believe this novel perspective is rather useful for intu-
itive, plug-and-play design of practical secure algorithmics. Perhaps surprisingly
our approach yields the same communication complexity; up to and including
the constants.

We combine two essential components. First, we isolate a natural, alterna-
tive pivot: compact commitment with “arbitrary linear form openings”. Given a
Pedersen commitment to a long vector x, consider ZKPok that the prover knows
x, while also revealing, for an arbitrary, public, linear form L, the scalar L(x)
correctly and nothing else. This has a simple Σ-Protocol. We then compress it by
replacing the final (long) prover-message with an appropriate BP that the prover
knows it. Indeed, the relation that this message is required to satisfy turns out
amenable to deployment of a suitable BP. As a result, PoK and honest-verifier
ZK are preserved, but overall communication drops from linear to logarithmic.
In the process, we simplify known run-time analyses of knowledge extractors
involved and give concrete estimates. On top of this, we introduce a further
necessary utility enhancements. First, without harming overall complexity, we
show, using the pivot as blackbox, how to open several linear form evaluations
instead of just one. Second, we show how to apply these ideas in a setting where
the secret, long vector is actually “dispersed” across several compact commit-
ments, by compactifying these into a single compact commitment. This is useful
in important applications. From this point on, the only facts about the pivot that
we will need is that we have access to a compact commitment scheme that al-
lows a ZKPoK with low overall communication, showing that the prover knows
the long secret committed vector and showing the correct openings of several lin-
ear evaluations on that committed vector; the technical details do not matter
anymore.

Second, the pivot’s significance now surfaces when integrated with a novel
variation on – hitherto largely overlooked – arithmetic secret sharing based tech-
niques for Σ-Protocols [CDP12], inspired by MPC. These techniques allow for
linearization of “nonlinear relations”. It is here that free choice of linear forms in
the pivot is fully exploited; the maps arising from our adaptation of [CDP12] do
not form a well-structured subclass of maps. All in all, this yields simple logarith-
mic communication solutions for circuit ZK. Similarly for range proofs, which
are now trivial to design. We also offer trade-offs, i.e., “square-root” complex-
ity in constant rounds. Our results are based on either of two assumptions, the
Discrete Logarithm assumption, or an assumption derived from the Strong-RSA
assumption [BP97].

We proceed as follows. We start by outlining our program, in nearly ex-
clusively conceptual fashion. We believe that the fact that it is possible to do
so further underscores our main points. Later on we detail how this program
deviates exactly from the paths taken in the recent literature.

1.2 A More Detailed View of Our Program

A. Our Pivotal Σ-Protocol
We isolate a basic Σ-protocol Πs that, given a compact commitment to a secret
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vector x of large length n, allows to partially open it. Concretely, given an ar-
bitrary, public, linear form L, only the value L(x) is released and nothing else.
Briefly, the prover has a compact commitment P to a long secret vector x. By
a simple twist on basic Σ-protocol theory, the prover then selects a compact
commitment A to a secret random vector r. The prover sends, as first move, this
commitment A and the values y = L(x) and y′ = L(r). In the second move, the
verifier sends a random challenge c ∈ Zq. In the third, final move, the prover
then opens the commitment AP c to a vector z (i.e., z is its committed vector;
we leave the randomness underlying the commitment implicit here). Finally, the
verifier checks the opening of the commitment and checks that L(z) = cy + y′.
The communication in this Σ-protocol is dominated by the opening of AP c. The
latter amounts to O(nk) bits (where k is the security parameter), whereas the
remainder of the protocol has O(k) bits in total. That said, it is an honest-verifier
zero-knowledge proof of knowledge (with unconditional soundness).

Using the pivotal Σ-protocol as a blackbox, its utility can be enhanced, which
will be important later on. More concretely, many linear forms can be opened
for essentially the price of a single one. First, by deploying a “polynomial amor-
tization trick” (known, e.g., from MPC) we can do any number of nullity checks
without any substantial increase in complexity. Second, building on this trick, we
can extend the utility to the opening of several arbitrary linear forms L1, . . . , Ls
instead of a single one, at the cost of increasing the communication by exactly
s − 1 values in Zq (i.e., the evaluations of s − 1 additional forms). Finally, we
note the entire discussion on these enhancements holds verbatim when we replace
linear forms by affine forms.6 For the details we refer to Section 5.

Note that we have identified two distinct intractability assumptions, each of
which supports this pivot: the Discrete Logarithms assumption (as used in prior
work involving Bulletproofs [BCC+16, BBB+18]) but also one derived from the
Strong-RSA assumption (as nailed down in a recent, unpublished work [BFS19]
on Bulletproofs and their improved applications). The introduction focuses on
the DL assumption, but the Σ-protocol for the solution derived from the Strong-
RSA assumption follows similarly. Our program can be based on either platform.

The details of our pivotal Σ-protocol can be found in Section 3, and the
utility enhancements are described in Section 5.

B. Compressing the Pivot
We argue that protocol Πs can be compressed using the ideas underlying Bul-
letproofs, yielding a protocol Πc that has the same functionality and is still
an honest-verifier zero-knowledge proof of knowledge for the relation in ques-
tion, but that has communication O(k log n) bits instead, and O(log n) moves.
Technically the compression degrades the soundness from unconditional to com-
putational, and protocols with computational soundness are called arguments
of knowledge. However, we will use the terms proof and argument of knowledge
interchangeably.

6 I.e., a linear form plus a constant.
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Main compression idea. The idea is simply as follows, starting from Πs. Suppose
that P is the commitment in question. The linear forms are constants as they
are part of the relation proved, so they will not be made explicit for now. Fur-
thermore suppose that the prover has sent the message a as first move of Πs,
and that the verifier has subsequently sent challenge c as the second move. Thus,
in the third –and final– move, the prover would be required to send the reply
z. The verifier would, finally, apply the verification function φ attached to Πs

to check that φ(P ; a, c, z) = 1, and accept only if this is the case. To define the
compressed protocol Πc, instead of requiring the prover to send the long vector
z, a suitable instantiation of Bulletproof’s PoK will be deployed to let the prover
convince the verifier that it knows some z such that φ(P ; a, c, z) = 1, which is
much more efficient. Note that it is immaterial that the Bulletproof part is not
zero knowledge as, in Πs, the prover would have revealed z anyway.

This will ensure the claimed communication reduction, i.e., O(k log n) bits
in O(log n) moves. We show that, as a trade-off, we may opt for constant num-
ber of rounds (instead of logarithmic) and O(k

√
n) communication (instead of

logarithmic). But of course, in non-interactive Fiat-Shamir mode (which clearly
applies here), the logarithmic variant may be preferable.

Note that this compression idea equally applies to the enhancements of the
basic utility as discussed above. It gives essentially the same complexities. Of
course, this assumes that the number of openings of linear forms is not too large;
it is not sensitive to the number of nullity checks though.

The details of the compression idea can be found in Section 4.

Refined Analysis of Knowledge Extractors. In the theory of Σ-protocols, it is
well known that special soundness implies knowledge soundness with knowledge
error 1/q, where q is the size of the challenge set. This result can be shown to
follow from the convexity of the function f(X) = X(X − 1/q) and an appli-
cation of Jensen’s inequality [Cra97]. Recently, and particularly for the above
mentioned compressing techniques, natural generalizations of special soundness
have become relevant. These more general notions of special soundness can
again be shown to imply knowledge soundness. However, the proof technique
using Jensen’s inequality is no longer directly applicable. For this reason prior
works [BCC+16, BBB+18] resort to heavy row type arguments without comput-
ing the exact knowledge error. Here, we show that an adaptation of the proof
using Jensen’s inequality does apply. This results in a simple proof and a refined
analysis of the protocols in this paper.

The details of the extractor analysis can be found in Appendix A.

C. Compactifying a Vector of Commitments
Our compressed pivot may be summarized as compact commitments to long
secret vectors that allow for very efficient partial openings, i.e., arbitrary lin-
ear forms applied to the secret committed vector. As we show later on this is
sufficient for proving any (nonlinear) relation. To make this work, all relevant
prover data (secret data vector plus secret auxiliary data, such a random coins)
is required to be committed to in a single compact commitment.
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However, in many relevant practical scenarios, we must assume that the
commitment(s) to the prover’s secret data vector about which something is to be
proved in zero knowledge have already been produced before the zero knowledge
protocol is run. In order to handle this, we require the prover to compactify
these commitments together with the secret auxiliary data in a single compact
commitment.

We consider two extreme scenarios: (1) the prover has a single compact com-
mitment to the secret data vector about which some zero knowledge proof is to
be conducted and (2) same, except that the prover has individual commitments
to the coordinates of that secret data vector.

For the first scenario the prover uses new generators to commit to the aux-
iliary information. Using the compressed Σ-protocol, the prover shows that this
is indeed a commitment that exclusively involves the new generators. Prover
and verifier multiply the two compact commitments to obtain a single compact
commitment to all relevant data.

For the second scenario, a basic (amortized) Σ-protocol shows that the prover
knows openings to all individual commitments. From this basic protocol, we
define a new Σ-protocol as follows. The prover appends the first message a of
the basic protocol with a compact commitment containing all relevant data and
the randomness sampled in the first move of the basic Σ-protocol. After receiving
the challenge the prover’s response can now be computed as a public linear form
(parameterized by the challenge c) evaluated on the vector to which the prover
committed. Instead of sending this message directly, the prover and verifier run
the interactive protocol to open the associated linear form on the compact vector
commitment. The verifier checks that the opening of the vector commitment is
also an opening of the commitment in the Σ-protocol. As a result the prover has
shown that it knows openings to all the individual commitments and that these
openings are contained in the compact commitment together with the auxiliary
data.

Note that each of these approaches offers a solution for either scenario. How-
ever the complexity of the first solution is linear in the number of commitments,
whereas the complexity of the second solution is linear in the dimension of the
vector. Hence, these modular utility enhancements are subject to trade-offs when
designing ZK applications.

The details on the compactification of vector commitments can be found in
Section 5.3.

D. Plug-and-Play Secure Algorithmics from Compressed Pivot
We will now explain the power of our compressed pivot. It will turn out that
we only need blackbox access. Our key point is to show how to combine this
with a hitherto largely overlooked part of Σ-protocol theory, namely the work
of [CDP12] that shows how to prove arbitrary constraints on committed vectors
by exploiting techniques from secure multi-party computation based on arith-
metic secret sharing, more concretely, the ideas underlying the Commitment
Multiplication Protocol from [CDM00]. It is this combination of “compact com-
mitments with linear openings” and arithmetic secret sharing that allows for
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“linearizing nonlinear relations”. So this explains also why our compressed pivot
does not need any “direct” provision to handle nonlinearity.

We need to make some appropriate adaptations to make this work for us
here. We first outline the technique from [CDP12] and then we discuss adapta-
tions. The work of [CDP12] considers homomorphic commitment schemes where
the secret committed to is not a vector of large length, but a single element
of Zq instead. The primary result is a Σ-protocol showing the correctness of
commitments to m multiplication triples (αi, βi, γi := αiβi), with low amortized
complexity for large m. In other words, the protocol verifies the multiplicative
relations, and the costs per triple are relatively small.

Each of the αi’s (resp., the βi’s and γi’s) is individually committed to.
Their solution employs strongly-multiplicative packed-secret sharing. For in-
stance, consider Shamir’s scheme over Zq, with privacy parameter t = 1, but
with secret-space dimension m. This uses random polynomials of degree ≤ m,
subject to the evaluations on the points 1, . . . ,m comprising the desired secret
vector. Note that, for each sharing, a single random Zq-element is required (which
can be taken as the evaluation at 0).

It is important to note that, given secret vector and random element, it
holds by Lagrange Interpolation that, for each c ∈ Zq, the evaluation f(c) of
such polynomial f(X) is some public Zq-linear combination over the coordinates
of the secret vector and the random element. Namely, consider the map that
takes m + 1 arbitrary evaluations on the points 0, . . . ,m and that outputs the
unique polynomial f(X) of degree ≤ m interpolating them to the evaluations of
f(X) in all other points. A transformation matrix describing this map does not
correspond to a Vandermonde-matrix, but it can be determined from it.

Now, assume that 2m < q (for strong-multiplicativity). The protocol goes as
follows.

– The prover selects a random polynomial f(X) that defines a packed secret
sharing of the vector (α1, . . . , αm). The prover also selects a random poly-
nomial g(X) that defines a packed secret sharing of the vector (β1, . . . , βm).
Finally, the prover computes the product polynomial

h(X) := f(X)g(X)

of degree ≤ 2m < q.
– The prover commits to the random Zq-element for the sharing based on
f(X), i.e., f(0), and commits to the random Zq-element for the sharing
based on g(X), i.e., g(0). The prover also commits the evaluations of h(X)
on the points 0, . . . , 2m.7

– The prover sends these commitments to the verifier. The vectors of commit-
ments to the multiplication triples are assumed to be part of the common
input already.

– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and
sends it to the prover.

7 By Lagrange evaluation these points uniquely determine h(X).
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– By public linear combinations, both prover and verifier can compute three
commitments: one to u := f(c), one to v := g(c) and one to w := h(c). The
prover opens each of these (assuming, of course, that c is in the right range).
The verifier checks each of these three openings and checks whether

w = uv.

If the committed polynomials do not satisfy f(X)g(X) = h(X), and under
the assumption that the commitment scheme is binding, there are at most 2m
values of c out of the q−m possibilities such that the final check goes through.
So a lying prover is caught with probability greater than 1 − 2m/(q −m).
With q exponential in the security parameter and m, say, polynomial in it,
this is exponentially close to 1. Honest-verifier zero-knowledge essentially
follows from 1-privacy.

Our first observation here is as follows. In the above protocol, the prover may
as well use our compressed pivot as a blackbox. Indeed, the entire vector x of
data that the prover commits to in the protocol above can be committed to in a
single compact commitment. Furthermore, all of the data opened to the verifier
is some fixed linear form on the (long) secret committed vector x. Indeed:

1. Each of the values u, v correspond to an opening of a public linear form
applied to x. The linear form is determined by some row in a transformation
matrix as addressed above, under the convention that the form takes zeroes
on the portion of the coordinates of x not relevant to the computation.

2. Similarly for the value w, except that this simply corresponds to an “eval-
uation of a polynomial whose coefficients are defined by a part of x”. So
evaluation is a public linear form as well.

Overall, we get an honest-verifier proof of knowledge for showing correctness of
m secret multiplication-triples with O(k logm) bits communication in O(logm)
moves (or in constant rounds but with O(k

√
m) bits communication).

Our second observation here is as follows. Suppose we have an arithmetic
circuit8 C over Zq. We can easily turn the observation above into a solution for
“circuit zero-knowledge”. I.e., the prover convinces the verifier that the com-
mitted vector x ∈ Znq satisfies some constraint captured by a given circuit C
which (wlog) returns 0. We note that [CDP12] also gives a solution for circuit
zero-knowledge. But that one does not work for us here as it gives too large
complexity. So we make some changes.

By the aforementioned compactification techniques it is now sufficient to
consider the ZK scenario where the prover wants to demonstrate that C is sat-
isfiable; this means that we may assume that the prover commits to all relevant
data (inputs and all auxiliary data) in a single compact commitment. Other ZK
scenarios, in which the prover has already commited to input data, are dealt

8 The circuit has a single output vertex, and each addition/multiplication vertex has
fan-in two, but unbounded fan-out.

8



with by first compactifying existing commitments and auxiliary information into
a single compact commitment.

The prover first determines the computation graph implied by instantiating
the circuit C with its input vector x ∈ Znq . Let m be the number of multiplica-
tion gates in C, which we will handle as above. Using the compressed pivot, the
prover commits to each of the coordinates of x, to each output of the multipli-
cation vertices and to the auxiliary values required to verify the multiplications.
The length γ of the committed vector equals n + 2m + 3. Note that each wire,
particularly each input of a multiplication vertex, can be accessed as affine com-
binations of the values committed to. The multiplication gates will be dealt
with as before with polynomials f(X), g(X) and h(X). With this observation in
hand, the protocol comes down to the opening of the affine map Φ that outputs
(C(x), f(c), g(c), h(c)) for which the verifier checks that h(c) = f(c)g(c). As a
result, circuit zero knowledge can be done O(k log γ) bits in O(log γ) moves.
Trade-off between communication and moves applies as above.

More details on circuit ZK can be found in Section 6.

E. Range Proofs
The “polynomial trick” used in the pivotal Σ-Protocol immediately allows for a
generalization to circuits C : Znq → Zsq with an arbitrary number (say polynomial
in k) output vertices without increasing the complexity of the compressed Σ-
protocol. In fact, the overall communication complexity is independent of s. Note
that the polynomial trick introduces an additional soundness error of (s− 1)/q.

From this observation range proofs immediately follow. A prover simply con-
siders the bit decomposition x ∈ Zn of an integer w, the length of this decomposi-
tion determines the range. Prover and verifier run the above circuit satisfiability
protocol to commit to x and prove that C(x) = 0 for C : Znq → Znq , x 7→
x ∗ (1 − x), where ∗ represents the component-wise product. The nullity-check
for C shows that the committed coefficients are indeed bits. The communication
complexity of this range proof is O(k log n) bits. Using the techniques described
in Section 5.3, this functionality can be extended to scenario where a prover has
to prove that a Pedersen commitment to v ∈ Zq is in a certain range.

The details can be found in Section 7.

F. Our Program from the Strong-RSA Assumption
Thus far we have implemented our program in the discrete log setting, starting
from Pedersen commitments and their basic Σ-protocols. Besides some minor
details in the compressed pivot, we show that the above discussion holds verba-
tim for a commitment scheme derived from the Strong-RSA assumption. More
precisely, we show how the polynomial commitment scheme from a recent un-
published work [BFS19] can be adapted to open arbitrary linear forms. Our
adaptations of the linearization techniques from [CDP12] are directly applicable
to the Strong-RSA derived pivot.

The details can be found in Section 7 and Appendix D.
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1.3 Comparison with Earlier Work

Traditional solutions for circuit ZK in the discrete logarithm setting have a com-
munication complexity that is linear in the circuit size. Building on the work of
Groth [Gro09], an ingenious recursive approach achieved logarithmic commu-
nication complexity [BCC+16]. At its heart lies an earlier version of the BP
protocol discussed earlier. Further improvements were introduced in [BBB+18].
Recently, in an unpublished work [BFS19], Bünz, Fisch and Szepieniec show
that similar results can be derived from the Strong-RSA assumption. The main
merit of the Strong-RSA derived solutions is a significant reduction in the num-
ber of public parameters. In addition, the authors deploy proofs of exponentia-
tion [Wes19] to reduce the computational complexity.

A common denominator in the aforementioned works is the use of a quadratic
constraint as a main pivot. In [Gro09] a specific inner-product relation is intro-
duced, and it is shown how basic Σ-protocols for this relation can be enhanced to
achieve sub-linear communication complexity. A similar inner-production rela-
tion lies at the foundation of the logarithmic size protocols of [BCC+16], except
that it also uses an earlier version of the BP idea. In [BBB+18], it is subsequently
shown that a modification of the quadratic relation leads to better constants.

Furthermore, it is worth mentioning that in [BCC+16], as an intermediate
stepping stone, a polynomial commitment scheme is constructed. A polynomial
commitment is a commitment to the coefficient vector together with the func-
tionality of opening the evaluation at any given point. The solution derived
from the Strong-RSA assumption [BFS19] bases itself entirely on this polyno-
mial functionality. For general relations it uses recent, but complicated, reduc-
tions [GWC19, MBKM19, XZZ+19].

Constructing protocols from quadratic constraints, either directly or via a
polynomial commitment scheme, leads to a complex theory in which plug-and-
play secure algorithmics appears hard. Significant effort is required to realize
higher level applications such as circuit ZK or range proofs.

As for zero-knowledge, the work of [BBB+18] establishes this property at a
higher level, and not, as do the other works, at the level of their main pivot,
which leads to additional difficulties in designing ZK protocols.

The most significant difference between our approach and that of the afore-
mentioned works is our simple and direct construction of a compressed pivot to
open arbitrary linear forms and to combine this with the simple (MPC inspired)
linearization techniques from [CDP12]. The compression is achieved by a suitable
adaptation of the BP ideas [BBB+18], and the linearization techniques discard
the need for a direct provision to handle nonlinearity. Despite the conceptual
simplicity, the communication complexities of our approach are, even including
the constants, equal to that of Bulletproofs [BBB+18].

Note that polynomial evaluation, as used in some of the other works, of
course also comes down to the evaluation of a linear form, albeit a specific one.
Therefore these approaches are not amenable to the linearization techniques we
use.
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2 Notation and Conventions

In this section, we introduce the basic notation used in the remainder of the
paper. To this end let us consider dummy Protocol 1 for relation R, denoted by
Π.

Let (x;w) ∈ R, then x is called a statement and w is is called a witness for
x. An interactive protocol Π for relation R is a protocol that allows a prover to
convince a verifier it knows a witness w for statement x. The protocol Π takes as
public input x and as prover’s private input w, which we write as either Π(x;w)
or, in the graphical protocol description, as Input(x;w).

The verifier always implicitly outputs reject or accept. Optionally, the proto-
col can output a public string y to both verifier and prover, and a private string
w′ only to the prover. In this case, we write Output(y;w′).

In addition to the input and output of the protocol, the prover’s claim (i.e,
(x;w) ∈ R) is made explicit in the graphical protocol description.

Protocol 1 Dummy Protocol Π for Relation R

Input(x;w)
Output(y;w′)

(x;w) ∈ R
Prover Verifier
. . . −−−−−−→

←−−−−−− . . .
...

. . . −−−−−−→ . . .

3 The Pivotal Σ-Protocol

This section formally describes the Pedersen vector commitment scheme and our
pivotal Σ-protocol, as discussed in Section 1.2 (A).

Definition 1 (Pedersen Vector Commitment [Ped91]). Let G be an Abe-
lian group of prime order q, then Pedersen vector commitments are defined by
the following setup and commitment phase.

– Setup: g = (g1, . . . , gn)←R Gn, h←R G.
– Commit: Com : Znq × Zq → G, (x, γ) 7→ hγgx := hγ

∏n
i=1 g

xi
i .

We define gx :=
∏n
i=1 g

xi
i and gc := (gc1, g

c
2, . . . , g

c
n) for any g ∈ Gn, x ∈ Znq and

c ∈ Zq. Moreover, the component-wise product between two vectors g,h ∈ Gn
is written as g ∗ h = (g1h1, g2h2, . . . , gnhn).
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Pedersen vector commitments are perfectly hiding and computationally bind-
ing under the assumption that the prover does not know a non-trivial discrete
log relation between the generators g1, . . . , gn, h.

To partially open a commitment to a linear form

L : Znq → Zq, x 7→ L(x), (1)

means that the prover wishes to reveal L(x) together with a proof of validity
without revealing any additional information on x. Achieving this functionality
amounts for the prover to send the opening L(x) along with a ZKPoK for the
relation

R =
{(

g ∈ Gn, h, P ∈ G, L, y ∈ Zq; x ∈ Znq , γ ∈ Zq
)

:

P = gxhγ , y = L(x)} .
(2)

Protocol 2, denoted by Πs, shows a basic Σ-protocol for relation R. Πs was
informally described in Section 1.2 (A). Theorem 1 shows that Πs is indeed a
special honest-verifier zero-knowledge (SHVZK) PoK. Both the communication
costs from the prover P to the verifier V and vice versa are given. Note that
in the non-interactive Fiat-Shamir [FS86] mode the communication costs from
verifier to prover might be irrelevant.

Theorem 1. Πs is a 3-move protocol for relation R. It is perfectly complete,
special honest-verifier zero-knowledge and unconditionally knowledge sound with
knowledge error 1/q. Moreover, the communication costs are

– P → V: 1 element of G and n+ 2 elements of Zq.
– V → P: 1 element of Zq.

4 Compressing the Pivot

This section shows how Bulletproof techniques can be applied to compress our
pivotal Σ-protocol Πs, as mentioned in Section 1.2 (B). The key observation is
that sending the final message z′ = (z, φ) ∈ Zn+1

q is actually a (trivial) proof of
knowledge for the relation

R1 =
{

(g′, P ′, L′, y′; z′) : (g′)z
′

= P ′ ∧ y′ = L′(z′)
}
, (3)

where g′ = (g1, . . . , gn, h) ∈ Gn+1, P ′ = AP c, y′ = cy + t and L′(z, φ) := L(z)
for all (z, φ). Hence, another PoK would also suffice, in particular a PoK with a
smaller communication complexity. Moreover, it is immaterial that the PoK is
zero-knowledge as the original PoK clearly is not. In [BCC+16] this observation
was applied to Groth’s Σ-protocol [Gro09]. The main difference is that we start
with linear form relation R, whereas Groth’sΣ-protocol is for a specific quadratic
relation.

12



Protocol 2 Σ-protocol Πs for relation R
Σ-protocol to prove correctness of a linear form evaluation.

Input(g, h, P, L, y;x, γ)

P = gxhγ ∈ G
y = L(x) ∈ Zq

Prover Verifier

r←R Znq , ρ←R Zq
t = L(r)
A = grhρ

t,A−−−−−−→
c←R Zq

c←−−−−−−
z = cx + r
φ = cγ + ρ

z,φ−−−−−−→

gzhφ
?
= AP c

L(z)
?
= cy + t

Let Π be a PoK for relation R1. We call the new protocol obtained by
replacing the final move of protocol Πs by protocol Π the composition, and
write Π �Πs. Since Πs is SHVZK it immediately follows that the composition
is also SHVZK.

The essence of Bulletproofs is a PoK, denoted by BP, with logarithmic com-
munication complexity for the following inner product relation,

Rbullet =
{(

g,h ∈ Gn, u, P ∈ G; a,b ∈ Znp
)

: P = gahb ∧ c = 〈a,b〉
}
. (4)

The quadratic relation Rbullet is quite similar to the relation R1 and it turns
out that minor adaptations of BP give a logarithmic size PoK for relation R1.
We will now describe the components of the BP protocol, while simultaneously
adapting these to our relation R1.

4.1 Reduction from Relation R1 to R2

The first step of the BP PoK is to incorporate the linear form into the Pedersen
vector commitment. For this step an additional generator k ∈ G is required such
that the prover does not know a discrete log relation between the generators
g1, . . . , gn, h, k. More precisely, the problem of finding a proof for relation R1 is
reduced to the problem of finding a proof for relation

R2 =
{(

g ∈ Gn, k ∈ G, P ∈ G, L; x ∈ Znq
)

: P = gxkL(x)
}
. (5)
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The reduction is described in Protocol 3 and denoted by Π1. As a stand-alone
protocol, Π1 only increases the communication complexity. However, as the au-
thors of [BBB+18] observed, there is a more efficient PoK for relation R2 showing
the usefulness of this reduction.

Theorem 2 shows that Π1 is an argument of knowledge for relation R1.
We include the proof of this theorem, because the authors of [BBB+18] do not
consider their version of protocol Π1 as a stand-alone protocol.

Theorem 2. Π1 is a 2-move protocol for relation R1. It is perfectly complete
and computationally knowledge sound with knowledge error 1/(q − 1) under the
discrete logarithm assumption. Moreover, the communication costs are:

– P → V: n+ 1 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Knowledge soundness: We show that there exist an efficient algorithm χ

that, given two accepting transcripts, either extracts a witness for R1, or finds
a non-trivial discrete log relation. So let (c,x, z) and (c′,x′, z′) be two accepting
transcripts with c 6= c′, then

gx−x′kz−z
′

= k(c−c′)y. (6)

Hence, either we have found a non-trivial discrete log relation, or x = x′ and
z − z′ = (c− c′)y. In the latter case, it follows by the linearity of L that L(x) =
(z − z′)/(c − c′) = y. Hence, we have found a witness x for relation R1. From
basic Σ-protocol theory the existence of an extractor now follows, which proves
the theorem.

Protocol 3 Argument of Knowledge Π1 for R1

Reduction from relation R1 to relation R2.

Input(g, P, L, y;x)

P = gx ∈ G
y = L(x) ∈ Zq

Prover Verifier

c←R Z∗q
c←−−−−−

z = cy
x,z−−−−−→

gxkz
?
= Pkcy

z
?
= cL(x)
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4.2 Logarithmic Size PoK for Linear Relation R2

Next we deploy the main technique of the Bulletproof protocol to construct an
efficient PoK for relation R2. For simplicity let us assume that n is a power
of 2. If this is not the case the vector can be padded with zeros. The protocol
is recursive and in each iteration the dimension of the witness is halved until
its dimension equals 2. We could add one additional step to the recursion and
only send the response when the dimension equals 1. This would reduce the
communication costs by one field element, but it would increase the number of
group elements sent by the prover by 2.

For each vector g ∈ Gn, we define gL = (g1, . . . , gn/2) as its left halve and
gR = (gn/2+1, . . . , gn) as its right halve. The same notation is used for vectors
in Znq . For a linear form L : Znq → Zq, we define

LL : Zn/2q → Zq, x 7→ L(x, 0),

LR : Zn/2q → Zq, x 7→ L(0,x),
(7)

where (x, 0), (0,x) ∈ Znq are the vectors x padded with n/2 zeros on the right and
left, respectively. Recall that the component-wise product between two vectors
is denoted by ∗.

Theorem 3 shows that protocol Π2 is an argument of knowledge for relation
R2.

Theorem 3. Π2 is a (2µ + 1)-move protocol for relation R2. It is perfectly
complete and computationally knowledge sound, under the discrete logarithm as-
sumption, with knowledge error

κ =

∑µ
i=1 6(q − 1)µ−i(q − 7)i−1

(q − 1)µ
≤ 6µ

q − 1
, (8)

where µ = dlog2(n)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(n)e − 2 elements of G and 2 elements of Zq.
– V → P: dlog2(n)e − 1 elements of Zq.

Proof. Completeness follows directly.
Knowledge soundness: In the proof of Theorem 1 of [BBB+18] it was

shown that there exists an efficient algorithm χ that, on input a special type
of depth µ (4, . . . , 4)-tree of accepting transcripts (see Appendix A.2), either
computes a non-trivial discrete log-relation, or a witness for relation R2. If χ were
to succeed on any (4, . . . , 4)-tree, the theorem, with a slightly different knowledge
error, would immediately follow from Lemma 2 (Appendix A.2). However, χ
only succeeds if at every level of the tree, every node has four distinct children
c1, . . . , c4, which satisfy the additional constraint that c2i 6= c2j for all i 6= j. This
additional condition only requires a minor adaptation of Lemma 2 after which
the theorem follows. We omit the details.
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Protocol 4 Compressed Argument of knowledge Π2 for R2

Input(g, k, P, L;x)

P = gxkL(x)

Prover Verifier

A = gxL
R kLR(xL)

B = gxR
L kLL(xR)

A,B−−−−−−→
c←R Z∗q

c←−−−−−−
g′ := gL

c−1

∗ gR
c ∈ Gn/2

P ′ := Ac
2

PBc
−2

L′ := c−1LL + cLR
z = cxL + c−1xR

if
(
z ∈ Z2

q

)
:

z−−−−−−→ (g′)
z
kL
′(z) ?

= P ′

else : Run Π2 on
(g′, k, P ′, L′; z)

4.3 Composing the Building Blocks

The compressed Σ-protocol Πc is the composition of all previously mentioned
protocols, i.e., Πc = Π2 �Π1 �Πs. Theorem 4 shows that Πc is indeed a SHVZK
argument of knowledge for relation R with a logarithmic communication com-
plexity.

Theorem 4. Πc is a (2µ + 3)-move protocol for relation R. It is perfectly
complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ =
2(q − 1)µ+1 + (q − 2)

∑µ
i=1 6(q − 1)µ+1−i(q − 7)i−1

q(q − 1)µ+1
,

≤ 6µ+ 2

q − 1
,

(9)

where µ = dlog2(n+ 1)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 1)e − 1 elements of G and 3 elements of Zq.
– V → P: dlog2(n+ 1)e+ 1 elements of Zq.

Proof. Completeness follows directly from the completeness of Πs, Π1 and Π2.
SHVZK follows directly from SHVZK of Πs. The simulator for Πc namely

runs the simulator for Πs and continues with honest executions of Π1 and Π2.
Knowledge soundness again follows from a minor adaptation of Lemma 2

(Appendix A.2).
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4.4 A Remark on Sublinear Communication Complexity

For his protocols Groth [Gro09] made the observation that there is a trade-off
between the communication complexity and the number of rounds. A similar
trade-off applies to our situation. Protocol Π2 achieves a logarithmic communi-
cation complexity at the cost of a logarithmic number of rounds. The protocol
recursively divides the witness into two parts, left and right. This idea is easily
generalized to the situation in which the witness x ∈ Znq is divided into k parts.

For simplicity we assume n to be a power of k. A quick inspection of this
generalization shows that instead of the two group elements A and B in the first
round of Π2, the prover has to sent 2k−2 group elements. Recursing the protocol
logk(n) − 1 times results in a total communication of (2k − 2) logk(n) − 2k + 2
elements of G and k elements of Zq from prover to verifier. It is easily seen
that these communication costs are minimized for k = 2, justifying the choices
of [BCC+16, BBB+18].

In contrast, k =
√
n/2 results in a constant round protocol with sublinear

communication costs of
√

2n− 2 elements of G and
√

2n elements of Zq from P
to V. Of course, in the non-interactive Fiat-Shamir mode the logarithmic variant
might be preferable.

5 The Compressed Pivot as a Blackbox

From this point on, the only facts about the pivot that we need is that we have
access to a compact vector commitment scheme that allows a prover to open
arbitrary linear forms. Hence, we assume blackbox access to such a pivot. First,
we treat the utility enhancements mentioned in Section 1.2 (A). Second, we
describe the compactification techniques as discussed in Section 1.2 (C).

We use the following notation. We write [x] for a compact commitment to
a vector x ∈ Znq , and for a (public) linear form L we write ΠOpen ([x], L; x) for
the interactive protocol that reveals L(x) and nothing else to the verifier. Recall
that our notation ΠOpen ([x], L; x) means that interactive protocol ΠOpen takes
as public input [x] and L and as prover’s private input x. The communication
costs of ΠOpen are equal to the cost of the underlying interactive protocol (Πc)
plus 1 field element from P to V (the output of L), unless of course the output
is known in advance.

At this point, the implementation details of the compact commitment scheme
do not matter anymore. However, when we give concrete knowledge errors and
communication costs it is implicitly assumed that [·] is instantiated with Peder-
sen vector commitments and compressed Σ-protocol Πc.

5.1 Amortized Nullity-Checks

A “polynomial amortization trick” (known, e.g., from MPC) allows us to do
many nullity-checks on the committed vector x without a substantial increase
in complexity. Consider linear forms L1, . . . , Ls and suppose the prover claims
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that Li(x) = 0 for i = 1 . . . , s. The verifier then samples ρ ∈ Zq uniformly at
random and asks the prover to open the linear form L(x) =

∑s
i=1 Li(x)ρi−1.

The opening of L(x) equals the evaluation of some polynomial of degree at most
s− 1. If this polynomial is non-zero, it has at most s− 1 zero’s. Hence, L(x) = 0
implies that Li(x) = 0 for all i with probability at least 1 − (s − 1)/q. When q
is exponential and s is polynomial in the security parameter this probability is
exponentially close to 1.

We write ΠNullity([x], L1, . . . , Ls; ,x) for this interactive protocol. The com-
munication costs are equal to the costs of a single nullity check (i.e., s = 1) plus
one additional Zq element from V to P (the challenge ρ).

The above discussion holds verbatim when we replace the linear forms by
affine forms Φ1, . . . , Φs, for which we also write ΠNullity([x], Φ1, . . . , Φs; x).

5.2 Opening Affine Maps

Building on the above “polynomial trick” the functionality of the commitment
scheme can be enhanced to accommodate the opening of arbitrary affine maps

Φ : Znq → Zsq, x 7→ Ax+ b, (10)

at the cost of increasing the communication by exactly s − 1 values in Zq
in comparison to opening one linear form (i.e., the evaluations of s − 1 ad-
ditional outputs). The protocol goes as follows. The prover reveals the eval-
uation y = Φ(x) followed by an amortized nullity check on the affine forms
Φ1(x)−y1, . . . , Φs(x)−ys. For the interactive protocol that opens an affine map
Φ we write ΠOpen ([x], Φ; x).

5.3 Compactifying a Vector of Commitments

In Section 6 we will see that to prove nonlinear statements about a committed
vector x, additional auxiliary information aux ∈ Ztq is required. This auxiliary
information will in some sense linearize the nonlinearities such that, to prove
the statement, only one affine map on the committed vector (x, aux) has to be
opened. From this circuit satisfiability proofs immediately follow; a prover simply
commits to the vector x together with the required auxiliary information aux
and opens the associated affine map on [(x, aux)] to prove that C(x) = 0.

However, in many scenarios one wishes to prove a statement about one or
many existing commitments. In general we aim to find ZK protocols for relations
of the form

{([x1], . . . , [xs], C; x1, . . . ,xs) : C(x1, . . . , xs) = 0} , (11)

where xi ∈ Zni
q for 1 ≤ i ≤ s, and C is an arithmetic circuit. We show how to

reduce these scenarios to the situation where there is a single compact commit-
ment to all relevant data (input and auxiliary data). We consider two extreme
cases:
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1. The prover has a single compact commitment to the input vector x, i.e.,
s = 1 and n ∈ Z>0.

2. The prover has individual commitments to the coordinates of the input vec-
tor x, i.e., s ∈ Z>0 and ni = 1 for all i.

From a theoretical perspective scenario (1) appears most natural. However, re-
cent works mainly consider the second scenario. A running example for this
second scenario is that of range proofs in which a prover wishes to show that
many commitments to elements of Zq are all in the range [0, 2n−1].

We treat these two scenarios separately and present different solutions. We
note that both solutions are applicable to the general scenario and in particular
to the two extreme cases. However, our solution for (1) has a communication
complexity that is linear in the number of commitments s. In contrast, the
solution for scenario (2) has a communication complexity that is linear in the
dimension n. Hence, we accommodate various modes of use that are subject to
specific trade-offs.

Case 1. The solution we present here makes use of the homomorphic properties
of the Pedersen vector commitment scheme. It is therefore not enough to invoke
[·] as a blackbox.

Let P be a Pedersen vector commitment to x ∈ Znq under generators
h, g1, . . . , gn ∈ G. To append this commitment with auxiliary information
aux ∈ Ztq of the prover’s choice, the prover and verifier append the set of gen-
erators with gn+1, . . . , gn+s ∈ G. The generators must be chosen such that the
prover does not know a non-trivial discrete log relation. The prover then sends a
Pedersen vector commitment Q, to (0, aux) ∈ Zn+s

q , to the verifier. The product
PQ is then a commitment to the vector (x, aux) ∈ Zn+t

q under the appended set
of generators.

This approach clearly allows for a prover to cheat, by simply including gen-
erators g1, . . . , gn into the commitment Q. To this end, the prover and verifier
run the interactive nullity check on the first n coordinates of the commitment Q
to (0, aux). The interactive protocol that takes as public input a vector commit-
ment [x], as prover’s private input the vector aux, and outputs a commitment
[(x, aux)] is written as ΠJoin([x]; x, aux).

In comparison to the circuit satisfiability example, this approach increases
the communication complexity by (approximately) a factor 2. The overall proto-
col namely has to open affine maps on two commitments [(0, aux)] and [(x, aux)].
More involved techniques that do not incur this factor 2 loss can be constructed.
First, one can amortize the costs of opening a linear form L on multiple vec-
tor commitments. Note that this means that we open the same linear form on
all vector commitments. This technique does not suffice for our purposes since
evaluating the above nullity check on commitment [(x, aux)] would reveal secret
information about x. To this end an additional masking term can be deployed.
For details we refer to the full version of this paper. For the remainder of the
paper, we will only consider the naive solution.
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Case 2. Let us now consider the case where the prover has s individual Ped-
ersen commitments Pi to vi ∈ Zq and wishes to prove that they satisfy some
(nonlinear) relation. For simplicity, we will restrict ourselves to one Pedersen
commitment P to v ∈ Zq. In Appendix B we show how this approach is gener-
alized to an arbitrary number of Pedersen commitments for essentially the same
communication costs.

The goal is to device an interactive protocol that takes as public input P , as
prover’s private input v and aux ∈ Ztq and outputs a compact commitment to
[(v, aux)]. In fact, our solution will output a commitment [v, r, aux] where r ∈ Zq
is a random element.

The approach is as follows. From the basic Σ-protocol for proving knowledge
of an opening of the Pedersen commitment P , we construct a new protocol
ΠP . The first message of the basic Σ-protocol is appended with a compact
commitment [y] = [v, r, aux], where r is the random element to which the prover
committed in the first round of the Σ-protocol. After the final round of the
Σ-protocol, the prover and verifier run the interactive nullity check on compact
commitment [y] and affine form Lc(x) := cx1 + x2 − z, where c is the verifier’s
challenge and z is the prover’s response.

The protocol is formally described in Protocol 5. It outputs a vector com-
mitment [y] and is a ZK protocol for the following relation

RP = {(P, [y]; v, γ,y = (y1, . . . , yt+2)) : P = gvhγ , v = y1} . (12)

The discussion is summarized in Theorem 5.

Theorem 5. ΠP is a (2µ + 5)-move protocol for relation RP . It is perfectly
complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ 3

q − 1
, (13)

where µ = dlog2(t+ 3)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(t+ 3)e+ 1 elements of G and 5 elements of Zq.
– V → P: dlog2(t+ 3)e+ 2 elements of Zq.

Proof (Sketch). Completeness and SHVZK follow from the associated prop-
erties of the Σ-protocol and ΠOpen.

Knowledge soundness: From the fact for any two distinct challenges we
can define the linear form

L(x) :=
L′c − Lc′
c− c′

(x) = x1, (14)

it follows that the witness computed by the extractors of the Σ-protocol
and ΠNullity satisfies the desired relation. The knowledge error follows from
Lemma 3.
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Note that this solution only requires blackbox access to the vector commit-
ment scheme [·] and that it is immaterial that P is a Pedersen commitment.
Any other commitment scheme with a Σ-protocol that satisfies some linearity
constraints will suffice. In particular, the response z should be computed as the
evaluation of a public linear form parameterized by the challenge c.

Protocol 5 Extended Σ-protocol ΠP for Pedersen commitments
Compactify a Pedersen commitment with auxiliary information of the prover’s
choice.

Input(P ∈ G; v ∈ Zq, γ ∈ Zq, aux ∈ Ztq)
Output([v, r, aux]; v, r, aux)

P = gvhγ

La(x) := x1 + ax2
Prover Verifier

r ←R Zq, ρ←R Zq
A = grhρ

aux ∈ Ztq
y = (v, r, aux)

A,[y]−−−−−−→
c←R Zq

c←−−−−−−
z = cv + r
φ = ρ+ cγ

z,φ−−−−−−→
gzhφ

?
= AP c

ΠNullity ([y], Lc − z;y)

6 Proving Nonlinear Relations via Arithmetic Circuits

Using our commitment scheme as a blackbox, we will show how to obtain zero-
knowledge arguments for arbitrary arithmetic circuits C : Znq → Zsq. An overview
of the approach has been given in Section 1.2 (D). More precisely, we will con-
struct a ZK protocol for the following circuit satisfiability relation:

RC = {(C; x) : C(x) = 0}. (15)

By the compactification techniques of Section 5.3 it is sufficient to consider
this basic circuit satisfiability scenario. We first describe our approach for the
basic scenario, and subsequently summarize the protocols that are obtained from
applying the compactification techniques.
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6.1 Basic Circuit Satisfiability

If C is an affine map, the protocol follows directly from the blackbox functional-
ity. That is, the prover commits to x and runs ΠOpen([x], C; x). To accommodate
for nonlinear circuits, containing multiplication gates, additional techniques are
required. The main idea is that the prover not only commits to x, but also to
some additional auxiliary information, such that every wire of the circuit can be
accessed as an affine combination of the values committed to. The resulting com-
mitment is therefore an implicit commitment to all wires of the circuit. What
remains is to prove consistency of the nonlinear relations between the values
committed to. In particular, for every multiplication gate with input wires a, b
and output wire c, it must hold that a·b = c. To this end, we use techniques from
secure multi-party computation to “linearize nonlinear relations”. In particular,
we make appropriate adaptions to the approach of [CDP12].

Let C be a circuit with m multiplication gates and let a,b, c ∈ Zmq be the
vectors of left inputs, right inputs, and outputs of all the multiplications gates
of C evaluated in x. Then any wire can be accessed as an affine function on x
and c. The commitment [x, c] can thus be considered as a commitment to all
wires of C. However, at this point there is no guarantee that a ∗ b = c.

The key idea of [CDP12] is the use of a strongly-multiplicative packed-secret
sharing scheme, e.g., Shamir’s scheme over Zq [Sha79] with privacy parameter
t = 1 and secret dimension m. A secret sharing of a (b) uses a random poly-
nomial f(X) ∈ Zq[X] (g(X)) of degree ≤ m, such that the evaluations at the
points 1, . . . ,m correspond to the vector a (b). By Lagrange interpolation the
polynomials are uniquely determined by its evaluations at 0, . . . ,m, and any
other evaluation can be computed as a linear combination of these evaluations.

In the circuit satisfiability protocol, the prover samples random polynomials
f(X), g(X) ∈ Zq[X]≤m that define packed secret sharings of a and b, respec-
tively. Moreover, the prover defines the product polynomial h(X) := f(X)g(X).
Note that the evaluations of h at 1, . . . ,m correspond to the vector c. Sub-
sequently, the prover commits to the vector (x, f(0), g(0), h(0), . . . , h(m)) ∈
Zn+2m+3
q . As before all wires can be accessed as affine combinations of the values

committed to, but in addition all evaluations of the polynomials f(X), g(X) and
h(X) can now be accessed in a similar manner.

The verifier then asks the prover to open C(x), f(c), g(c) and h(c) for c ∈
Zq \ {1, . . . ,m} chosen uniformly at random, and verifies that h(c) = f(c)g(c).
This verification implies that h(X) = f(X)g(X), and therefore a ∗ b = c, with
probability at least 1−2m/(q−m). When m is polynomial and q exponential in
the security parameter k, this probability is exponentially close to 1. The entire
protocol is formally described in Protocol 6 and denoted by Πcs.

Πcs only requires blackbox access to the commitment scheme [·]. Theorem 3
shows that when [·] is instantiated with Pedersen vector commitments and com-
pressed Σ-protocol Πc, it is a SHVZK argument of knowledge for relation RC .
The theorem also shows that the knowledge error depends on the number of
multiplication gates in the circuit. If the circuit size, and thereby m, is polyno-
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mial in the security parameter and q is exponential, then the knowledge error is
exponentially close to 0.

Theorem 6. Πcs is a (2µ + 5)-move protocol for relation RC . It is perfectly
complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ 2m+ s+ 5

q −m
, (16)

where µ = dlog2(n+ 2m+ 4)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(n+ 2m+ 4)e elements of G and 6 elements of Zq.
– V → P: dlog2(n+ 2m+ 4)e+ 3 elements of Zq.

Proof (Sketch). Completeness follows directly.
Knowledge soundness: By Lagrange interpolation there exists an efficient

algorithm to reconstruct a polynomial of degree t given t+1 evaluations. Hence,
the secret sharing round and the polynomial trick in the nullity-check introduce
rounds that are 2m+1-special sound and 4-special sound, respectively. The proof
now follows from Lemma 3 (Appendix A.2).

SHVZK follows from the 1-privacy of the secret sharing scheme and the fact
that Πc is SHVZK.

6.2 Circuit ZK from Compactification

Thus far we have restricted ourselves to the circuit satisfiability scenario where
the prover commits to all input and auxiliary data at once. However, there is
a great variate of other scenarios, where the circuit takes as input committed
values. As in Section 5.3 we consider two extreme scenarios for circuit ZK:

1. Prove that C(x) = 0 for a vector commitment [x] with x ∈ Znq ,
2. Prove that C(x1, . . . , xn) = 0 for commitments [xi] with xi ∈ Zq for all i.

These scenarios are dealt with by compactifying the commitments into a
single compact commitment to all relevant data. The resulting protocol for sce-

nario (1) is denoted by Π
(1)
cs with corresponding relation R

(1)
C and its properties

are given by Theorem 7. Note that the suboptimal reduction incurs a factor 2
increase of the communication costs that can be avoided by the more involved
techniques mentioned in Section 5.3.

Theorem 7. Π
(1)
cs is a (2µ + 5)-move protocol for relation R

(1)
C . It is perfectly

complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 12µ+ 2m+ n+ s+ 5

q −m
, (17)

where µ = dlog2(n+ 2m+ 4)e − 1. Moreover, the communication costs are
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Protocol 6 Circuit satisfiability argument Πcs for RC

Input(C;x)

C : Znq → Zsq
C(x) = 0

Prover Verifier

f, g ←R Zq[X]≤m
h(X) := f(X)g(X)
z =(x, f(0), g(0),

h(0), . . . , h(2m))
[z]−−−−−−−−−→

c←R Zq \ {1, . . . ,m}
c←−−−−−−−−−

y1 = f(c)
y2 = g(c)
y3 = h(c)

y1,y2,y3−−−−−−−−−→
y3

?
= y1y2

ΠNullity

[z],

C(x)
f(c)− y1
g(c)− y2
h(c)− y3

; z



– P → V: 4 dlog2(n+ 2m+ 4)e − 1 elements of G and 9 elements of Zq.
– V → P: 2 dlog2(n+ 2m+ 4)e+ 5 elements of Zq.

The protocol for scenario (2) is denoted by Π
(2)
cs with corresponding relation

R
(2)
C and its properties are given by Theorem 8. Note that in this scenario we

can restrict ourselves to n ≤ 2m. For if n is larger than the number of inputs
to multiplication gates there must exist linear reductions that can be applied
directly to Pedersen commitments using its homomorphic properties. Hence, the
communication costs from prover to verifier can be upper-bounded by

2 dlog2(4m+ 5)e+ 9 ≤ 2 dlog2(m+ 2)e+ 13 (18)

elements. In comparison, Bulletproofs achieve a communication cost of
2 dlog(m)e + 13 elements. Hence, perhaps surprisingly, our modular plug-and-
play approach almost never increases the communication costs.

Theorem 8. Π
(2)
cs is a (2µ + 5)-move protocol for relation R

(2)
C . It is perfectly

complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ n+ s+ 2m+ 4

q −m
, (19)
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where µ = dlog2(n+ 2m+ 5)e − 1. Moreover, the communication costs are

– P → V: 2 dlog2(n+ 2m+ 5)e+ 1 elements of G and 8 elements of Zq.
– V → P: dlog2(n+ 2m+ 5)e+ 4 elements of Zq.

7 Range Proofs

As mentioned in Section 1.2 (E), range proofs follow as an immediate conse-
quence of the circuit ZK protocols. We first treat the basic scenario in which
the prover commits to all relevant data at one. Second, we consider the scenario
where the prover wishes to convince a verifier that many Pedersen commitments
are all in some range.

7.1 Basic Range Proofs

Let us consider the bit-decomposition b ∈ Znq of an integer in v ∈ {0, . . . , 2n−1}.
Note that v can be computed as linear form evaluated in b, hence a vector
commitment to b is an implicit commitment to v.

Let C : Znq → Znq ,x 7→ x∗(1−x). Prover and verifier run Πcs on input (C; b)
to obtain a ZK protocol for relation

Rr = {(C; b) : C(b) = 0} . (20)

Minor improvements to a direct application of Πcs can be made by observing
that:

1. All multiplications gates have inputs of the form a and 1−a. Hence, instead
of sampling a random polynomial g for the right inputs of multiplication
gates we take g = 1− f .

2. All outputs of multiplications gates are 0, hence h(1) = h(2) = · · · = h(n) =
0 and these values do not have to be included in the compact commitment.

The full protocol, denoted by Πr, is described in Protocol 8 (Appendix C).
Theorem 9 shows that Πr is a SHVZK argument of knowledge for relation Rr.

Theorem 9. Πr is a (2µ + 5)-move protocol for relation Rr. It is perfectly
complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ 3n+ 3

q − n
, (21)

where µ = dlog2(2n+ 3)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(2n+ 3)e elements of G and 5 elements of Zq.
– V → P: dlog2(2n+ 3)e+ 3 elements of Zq.
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7.2 Compactifying Many Pedersen Commitments

For completeness we include the properties of the protocol Π
(s)
r for a prover

who wishes to prove that s Pedersen commitments to v1, . . . , vs ∈ Zq are all in

a range [0, 2n−1]. For the corresponding relation we write R
(s)
r . The protocol is

constructed by deploying the techniques of Section 5.3 to first obtain a single

compact commitment to all relevant data. The properties of Π
(s)
r are given by

the following theorem.

Theorem 10. Π
(s)
r is a (2µ+ 5)-move protocol for relation R

(s)
r . It is perfectly

complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ 3ns+ 2s+ 3

q − ns
, (22)

where µ = dlog2(2ns+ s+ 4)e − 1. Moreover, the communication costs are

– P → V: 2 dlog2(2ns+ s+ 4)e+ 1 elements of G and 7 elements of Zq.
– V → P: dlog2(2ns+ s+ 4)e+ 4 elements of Zq.

8 Our Program from the Strong-RSA Assumption

In this section we describe how our program can be based on assumptions derived
from the Strong-RSA assumption, as mentioned in Section 1.2 (F). We treat the
main differences and refer to Appendix D and [BFS19] for more details.

A disadvantage of the Pedersen vector commitment scheme is the number
of generators required. In fact, to commit to an n-dimensional vector, n + 1
generators of the group G are required. Moreover, the compressed Σ-protocol
Πc has a verification time that is linear in the dimension n.

Alternatively, vector commitment schemes can be constructed via integer
commitment schemes [FO97, DF02]. A commitment to the vector x ∈ Znq is then
a commitment to an integer representation x̂ ∈ Z of x. The integer commitment
schemes of [FO97, DF02] are constructed by using groups G of unknown order.

This is precisely the approach followed in a recent unpublished work of Bünz,
Fisch and Szepieniec [BFS19]. They construct a polynomial commitment scheme
allowing a prover to commit to a polynomial f ∈ Zq[X] of arbitrary degree, via
a unique integer representation of its coefficient vector. A commitment to such
a representation only requires two group elements g, h ∈ G.

The authors show how to open arbitrary evaluations f(a) ∈ Zq of a com-
mited polynomial without revealing any additional information about f . Their
polynomial evaluation protocol uses recursive techniques similar to those used
in Bulletproofs. This approach results in a logarithmic communication complex-
ity. In addition, the authors deploy Proofs of Exponentiation (PoE) [Wes19] to
achieve logarithmic verification time.

The authors refer to generic constructions that can be used to obtain more
general ZK protocols from polynomial commitment schemes. However, we argue
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that these constructions are overly complicated and that a stronger functional-
ity (vector commitment scheme with linear form openings) avoids many diffi-
culties in the design of ZK protocols. Moreover, it turns out that the protocols
of [BFS19] only require minor adaptations to accommodate this stronger func-
tionality. From this, an instantiation of the blackbox functionality of Section 5
is derived, now based on the hardness assumptions related to the Strong-RSA
assumption [BP97]. The techniques of Section 6 and Section 7 directly apply,
and the higher level applications inherit the logarithmic communication and
computation complexity of the vector commitment scheme.
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A Extractor Analysis

This appendix describes the refined extractor analysis for different generaliza-
tions of the notion special-soundness.

A.1 k-Special Soundness

In the theory of Σ-protocols, special soundness means that there exists an effi-
cient algorithm to extract a witness w for statement x from a “collision”, i.e., two
accepting conversations (x, a, c, z) and (x, a, c′, z′) with c 6= c′. It is well known
that special soundness implies knowledge soundness with knowledge error 1/q,
where q is the size of the challenge set. This result can be shown to follow from
the convexity of the function f(X) = X(X−1/q) and an application of Jensen’s
inequality [Cra97].

To show that a special sound protocol is knowledge sound, Cramer defines the
following “collision-game”. This is essentially the game played by the knowledge
extractor and Lemma 1 gives a bound on the success probability when playing
this game. Both the game and the lemma are almost identical to the ones found
in [Cra97].

Consider a 0/1-matrix with n rows and q columns. The rows will correspond
to the prover’s randomness and the columns to the verifier’s randomness. An
entry of the matrix is 1 if the prover is able to supply an accepting response
for the associated first message and challenge and 0 otherwise. Let ε denote the
number of ones in H.

The game goes as follows. Select an entry of H uniformly at random. If this
entry is a 1, select another entry of the same row uniformly at random. If this
entry is again a 1 the game outputs success.

To bound the success probability of the collision-game, Jensen’s inequality
is used. Jensen’s inequality states that if X is a real random variable and f is a
continuous convex function defined on the support of X, it holds that

f (E[X]) ≤ E[f(X)]. (23)

Lemma 1 (Lemma 2.1 of [Cra97]). Let H be a 0/1-matrix with n rows and
q columns, and let ε denote the fraction of 1-entries in H. Suppose ε > 1/q.
Then the success probability of one iteration of the ”collision-game” is greater
than or equal to ε(ε− 1/q).
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Proof. Let ei denote the number of 1-entries in the i-th row, i = 1 . . . n. and let
εi denote the fraction of 1-entries in the i-th row, that is εi = ei/q. Clearly, the
success-probability is equal to9

n∑
i=1

εi

(
qεi − 1

q − 1

)
≤

n∑
i=1

εi

(
εi −

1

q

)
. (24)

Now observe that E[εi] = ε, put f(x) = x(x − 1/q) on the interval [0, 1] and
apply Jensen’s inequality.

Instead of showing how knowledge soundness follows from this lemma, we
immediately consider a generalization that has recently become relevant, k-
special soundness. A 3-move interactive protocol is called k-special sound, if
there exists an efficient algorithm that takes as input k accepting conversations
(x, a, c1, z1), . . . , (x, a, ck, zk) with ci 6= cj , ∀i 6= j, and outputs a witness w for
x.

The proof technique using Jensen’s inequality is no longer directly appli-
cable, since the associated function is no longer convex. For this reason, prior
works [BCC+16, BBB+18] resort to heavy row type arguments without comput-
ing the exact knowledge error. Here, we show that an adaptation of the proof
using Jensen’s inequality does apply. To this end let us consider the following
function.

f : R→ R : x 7→

{∏k−1
j=0

q
q−j

(
x− j

q

)
, if x ≥ k−1

q ,

0, otherwise.
(25)

Recall that q := |C|.
It is easily seen that f is twice-differentiable and f ′′(x) ≥ 0 for all x ∈

R \
{
k−1
q

}
. Moreover, for x0 = k−1

q it holds that

lim
x↑x0

f(x)− f(x0)

x− x0
= 0 ≤ q

q − k + 1

k−2∏
j=0

k − 1− j
q − j

= lim
x↓x0

f(x)− f(x0)

x− x0
. (26)

Hence, f is a convex function.

Theorem 11. Let (P,V) be a k-special sound interactive protocol for relation
R and let x be some statement. Let P∗ be a prover such that (P∗,V) accepts
with probability ε(x) > k−1

q . Then there exists a polynomial time extractor E
with rewindable black-box access to P∗ that on input x outputs a witness w for
x with probability at least

k−1∏
j=0

(
ε(x)− j

q

)
≥
(
ε(x)− k − 1

q

)k
, (27)

in at most k calls to P∗.
9 This is minor correction of the original proof, which incorrectly states that the success

probability is equal to the right hand side of this inequality.
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Proof. E runs (P∗,V) on a random challenge c ∈ C. If V accepts, E rewinds to
move 2 and samples a uniform random challenge from C \ {c}. E continues until
it aborts or has extracted k accepting transcripts. In the latter case, k-special
soundness implies the existence of an efficient algorithm to compute a witness
w. So let us now determine the success probability of E .

Let a be any first message of (P∗,V) on input (x;w) ∈ R. Let εa be the
probability that P∗ succeeds conditioned on the first message being equal to
a. Then E[εa] = ε(x), where the expected value is taken over all possible first
messages a.

Moreover, the success probability of E , conditioned on the first message being
equal to a can easily seen to be equal to f(εa), where f is defined in Equation 25.

Hence, the unconditional success probability of E equals

E[f(X)] ≥ f (E[X]) = f(ε(x)) ≥
k−1∏
j=0

(
ε(x)− j

q

)
, (28)

where the first inequality follows from Jensen’s inequality.

A.2 Forking Lemma

A (2µ + 1)-move protocol is called (k1, . . . , kµ)-special sound, if there exists
an efficient algorithm that computes a witness from any set of K :=

∏µ
i=1 ki

accepting transcripts (x, a, c1,j , z1,j , . . . , cµ,j , zµ,j), 1 ≤ j ≤ K, that they are in a
(k1, . . . , kµ)-tree structure. The root of a (k1, . . . , kµ)-tree is the first message a
and every node at depth i has precisely ki distinct children c1, . . . , cki ∈ C. This
way we obtain precisely K paths from the leaves to the root representing the
accepting transcripts. Here, we show that a (k1, . . . , kµ)-special sound protocol
is indeed knowledge sound.

The following lemma is a refinement of the forking lemma of [BCC+16]. We
follow a different extractor analysis and obtain an exact knowledge error. For
notational convenience Lemma 2 assumes that all challenges are sampled from
Zq uniformly at random. Subsequently, Lemma 3 generalizes this to the case
where the verifier samples from different subsets of Zq in the different rounds
of the protocol. In that lemma we only give an upper bound on the soundness
error.

We must note that Bulletproof are not technically (k1, . . . , kµ)-special sound,
as the extractor imposes an additional condition on the (k1, . . . , kµ)-tree of ac-
cepting transcripts. For every node at depth i, it is not enough that its children
c1, . . . , cki ∈ C are distinct, they must also satisfy c2i 6= c2j for all i 6= j. It turns
out that this additional constraint does not introduce any difficulties, and the
proofs are easily adapted to this scenario.

Lemma 2. Let (P,V) be a (k1, . . . , kµ)-special sound (2µ+ 1)-move interactive
protocol for relation R, such that the verifier samples each challenge uniformly at
random from Zq. Let x be some statement. Let P∗ be a prover such that (P∗,V)
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accepts with probability ε(x) > κ, where

κ =

∑µ
i=1(ki − 1)qµ−i

∏i−1
j=1(q − kj + 1)

qµ
≤
∑µ
i=1(ki − 1)

q
. (29)

Then there exists a polynomial time extractor E with rewindable black-box ac-
cess to P∗ that on input x outputs a witness w for x with probability at least
(ε(x)− κ)

K
in at most K calls to P∗, where K =

∏µ
i=1 ki.

Proof. We construct a polynomial time algorithm that generates a (k1, . . . , kµ)-
tree of accepting transcripts with probability at least (ε(x)− κ)K in at most K
calls. The lemma then follows from the definition of (k1, . . . , kµ)-special sound-
ness.

For 0 ≤ m ≤ µ−1 and ci ∈ C let Tree(x, a, c1, . . . , cm) be the algorithm that
tries to find a (km+1, . . . , kµ)-sub-tree after the first 2m + 1 rounds have been
fixed by a, c1, . . . , cm. More precisely, for m = µ it simply runs P∗ on challenges
c1, . . . , cµ and for m < µ it runs Tree(x, a, c1, . . . , cm, y`) for 1 ≤ ` ≤ km+1 and
y` ∈ C sampled uniformly at random such that yi 6= yj for all i 6= j. We say
Tree aborts if at any stage the verifier V rejects and write Tree = ⊥ in this
case.

For notational convenience we define c̄m := (x, a, c1, . . . , cm) ∈ Cm. For such
a vector we define εc̄m

to be the probability that P∗ succeeds conditioned on the
first 2m+ 1 rounds to coincide with c̄m. Moreover, let us define

κm :=

∑µ
i=m+1(ki − 1)qµ−i

∏i−1
j=m+1(q − kj + 1)

qµ−m
. (30)

Finally, we let Km =
∏µ
i=m+1 ki. We will show by induction that the success

probability Pm of Tree(x, a, c1, . . . , cm) is at least max(εc̄m
− κm, 0)Km for all

0 ≤ m ≤ µ.

For m = µ the induction hypothesis immediately follows by the definition of
εc̄m

. So let us assume that the success probability of Tree(x, a, c1, . . . , cm) is at
least max(εc̄m

− κm, 0)Km for all m > M . Then,
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PM := P (Tree(x, a, c1, . . . , cM ) 6= ⊥) ,

=

kM+1∏
`=1

P (Tree(x, a, c1, . . . , cM , y`) 6= ⊥) ,

≥
kM+1∏
`=1

max (εc̄M ,y` − κM+1, 0)
KM+1 ,

(1)

≥
kM+1∏
`=1

max

(
q

q − `+ 1

(
εc̄M
− `− 1

q

)
− κM+1, 0

)KM+1

,

=

kM+1∏
`=1

max

(
q

q − `+ 1

(
εc̄M
− `− 1 + κM+1(q − `+ 1)

q

)
, 0

)KM+1

,

(2)

≥
kM+1∏
`=1

(
εc̄M
− kM+1 − 1 + κM+1(q − kM+1 + 1)

q
, 0

)KM+1

,

= max

(
εc̄M
− kM+1 − 1 + κM+1(q − kM+1 + 1)

q
, 0

)KM

,

(3)
= max (εc̄M

− κM , 0)
KM .

(31)

For inequality (1) we use that y` is sampled uniformly at random from C \
{y1, . . . , y`−1}, hence

εc̄M ,y` =
q

q − `+ 1

εc̄M
− 1

q

`−1∑
j=1

εc̄M ,yj

 ,

≥ q

q − `+ 1

(
εc̄M
− `− 1

q

)
.

(32)

For inequality (2) we use that ` ≤ kM+1 and that 0 ≤ κm ≤ 1 for all m. For
equality (3) we use that

kM+1 − 1 + κM+1(q − kM+1 + 1)

q
= κM . (33)

Hence, by induction the hypothesis is true for all 0 ≤ m ≤ µ. In particular, we
find that P (Tree(x, a)) ≥ max(εa − κ, 0)K . Now define the convex function,

f : R→ R : x 7→

{
(x− κ)

K
, if x ≥ κ,

0, otherwise.
(34)

Then the success probability of the extractor is at least

E[f(εa)] ≥ f (E[εa]) = f(ε(x)) = (ε(x)− κ)K , (35)

where the first inequality follows by Jensen’s inequality. This proves the theorem.
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Lemma 3. Let (P,V) be a (k1, . . . , kµ)-special sound (2µ+ 1)-move interactive
protocol for relation R, such that the verifier samples challenge ci in move 2i
uniformly at random from Ci ⊂ Zq for 1 ≤ i ≤ µ. Let x be some statement.
Let ni := |Ci| and let P∗ be a prover such that (P∗,V) accepts with probability
ε(x) > κ, where

κ ≤
µ∑
i=1

ki − 1

ni
. (36)

Then there exists a polynomial time extractor E with rewindable black-box ac-
cess to P∗ that on input x outputs a witness w for x with probability at least
(ε(x)− κ)

K
in at most K calls to P∗, where K =

∏µ
i=1 ki.

B Compactifying Pedersen Commitments

Protocol 7 allows a prover to convince a verifier in ZK to have knowledge of
the openings of s Pedersen commitments, i.e., it is a ZKPoK for the following
relation,

Rsp = {(P1, . . . , Ps; v1, γ1, . . . vs, γs) : Pj = gvjhγj 1 ≤ j ≤ s} . (37)

The protocol uses a standard generalization of the Σ-protocol for individual
Σ-protocols. As in Protocol 5 we adapt the standard protocol to make use of
our vector commitment scheme as a blackbox. The result is that the protocol
outputs, in addition, a commitment to the vector (v1, . . . , vs, aux) ∈ Zs+tq , where
the prover is free to chose the auxiliary aux ∈ Zq.

Theorem 12. Πs
P is a (2µ + 5)-move protocol for relation RsP . It is perfectly

complete, special honest-verifier zero-knowledge and computationally knowledge
sound, under the discrete logarithm assumption, with knowledge error

κ ≤ 6µ+ s+ 2

q − 1
, (38)

where µ = dlog2(s+ t+ 2)e − 1. Moreover, the communication costs are:

– P → V: 2 dlog2(s+ t+ 2)e+ 1 elements of G and 5 elements of Zq.
– V → P: dlog2(s+ t+ 2)e+ 2 elements of Zq.

C Range Proof

Protocol 8, denoted by Πr, is a SHVZK argument of knowledge for relation Rr
(Theorem 9), where

Rr = {(C; b) : C(b) = 0} , (39)

and C : Znq → Znq ,x 7→ x ∗ (1−x). The polynomial f in this protocol is sampled
uniformly at random from all polynomials of degree n for which the evaluations at
1, . . . , n correspond to b. The protocol is very similar to the circuit satisfiability
protocol of Section 6. Minor improvements are possible due to the specific nature
of the circuit C.
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Protocol 7 Extended Σ-protocol Πs
P for s Pedersen commitments

Input(P1, . . . , Ps; v1, γ1, . . . vs, γs, aux)
Output([v1, . . . , vs, r, aux])

Pj = gvjhγj

La(x) := xs+1 +
∑s
i=1 a

ixi
Prover Verifier

r ←R Zq, ρ←R Zq
A = grhρ

y = (v1, . . . , vs, r, aux)
A,[y]−−−−−−→

c←R Zq
c←−−−−−−

z = r +
∑s
i=1 c

ivi
φ = ρ+

∑s
i=1 c

iγi
z,φ−−−−−−→

gzhφ
?
= A

∏s
i=1 P

ci

ΠNullity ([y], Lc − z;y)

Protocol 8 Range proof Πr

Input(C;b)

C : Znq → Znq ,
x 7→ x ∗ (1− x)

C(b) = 0
Prover Verifier

f ←R Zq[X]≥n
h(X) = f(X)(1− f(X))
z =(b, f(0), h(0),

h(n+ 1) . . . , h(2n))

[z]−−−−−−−→

c←R Zq \ {1, . . . , n}
c←−−−−−−−

y1 = f(c)
y2 = h(c)

y1,y2−−−−−−−→
y2

?
= y1(1− y1)

ΠNullity

[z],
C(b)

f(c)− y1
h(c)− y2

; z


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D Strong-RSA Assumption

In this appendix we informally sketch the approach of [BFS19] along with our
adaptations to allows for the opening of arbitrary linear forms.

D.1 Integer Commitment Scheme

We briefly recall the integer commitment scheme of [DF02]. The commitment
space of this scheme is a group G of unknown order, such as an RSA group or a
class group. Although the exact order of G is unknown, we do assume to know
an upper bound B on the order, i.e., |G| ≤ B.

The setup phase of the commitment scheme generates two random group
elements g, h ∈ G such that they both generate the same subgroup of G. In this
case the distribution of hγ for γ chosen uniformly at random from [0, B · 2k),
where k is the security parameter, will be exponentially close to the uniform
distribution on 〈g〉. Hence for an arbitrary integer x, the element [x] = gxhγ ∈ G
statistically hides x.

Intuitively, the binding property follows from the assumption that the prover
does not know the order of G. Formally, the binding property can be shown to
follow from the root assumption [DF02, BFS19].

D.2 Vector Encoding

The vector encoding scheme of [BFS19] first lifts vectors x ∈ Znq to their unique

representatives in Z
(
q−1

2

)n
=
{
x ∈ Zn : ‖x‖∞ ≤ q−1

2

}
. Subsequently, for any

b ∈ Z and Q > 2b the following encoding is applied:

Encode : Z (b)
n → Z, x 7→

n∑
i=1

xiQ
i−1. (40)

This encoding is injective since Q > 2b. For both x ∈ Znq and x ∈ Z (b)
n
, we will

write x̂ ∈ Z for their integer encodings. A commitment [x] to a vector x ∈ Znq
or in x ∈ Z (b)

n
, is an integer commitment to x̂.

D.3 Σ-Protocol

The above thus generates a compact vector commitment scheme [·] : Znq → G.
For a linear form L : Znq → Zq, this commitment scheme has a basic Σ-protocol
for the relation

RZq
=
{(
g, h, P ∈ G, u ∈ Zq, Q ∈ Z, L; x ∈ Znq , γ ∈ Zq

)
:

P = gx̂hγ , L(x) = u, Q > q
}
.

(41)

The main differences between this Σ-protocol and protocol Πs from Section 3
is that the protocol is statistically hiding and all exponents are sampled from
subsets of Z. For this reason, the verifier has to check that the final response is
of bounded norm. A similar Σ-protocol is described in [BFS19].
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Protocol 9 Compressed Σ-protocol for inner product relation RZq

Input(g, h, P,Q, L;x, γ)

P = gx̂hγ ∈ G
u = L(x) ∈ Zmq

Prover Verifier

r←R Z
(
(q − 1)22k−2

)n
ρ←R

[
0, B · 2k

)
t = L(r) mod q

A = gr̂hρ

t,A−−−−−−→
c←R

[
− q−1

2
, q−1

2

]
c←−−−−−−

z = cx + r ∈ Zn
φ = cγ + ρ ∈ Z

φ,z−−−−−−→
gzhφ

?
= P cA

‖z‖∞
?

≤ q22k−1

L(z)
?
= cu+ t

D.4 Compressed Σ-Protocol

The protocol can be compressed by observing that the response z is, in fact, a
trivial PoK for the relation RZ.

RZ = {(g, P ∈ G, u ∈ Zq, Q, b ∈ Z, L; x ∈ Zn) :

‖x‖∞ ≤ b < q, P = gx̂, L(x) = u mod p
}
.

(42)

Following Bulletproof’s recursive techniques a more efficient PoK for relation RZ
can be constructed. Protocol 10 shows one iteration of the recursion, repeating
this recursion O(log n) times results in a logarithmic complexity. It must be
noted that the bound b grows in each iteration. For this reason the encoding
parameter Q has to be chosen large enough. The polynomial evaluation protocol
of [BFS19] replaces the computationally expensive exponentiation after the first

move (A
n/2
R ) by a PoE, thereby reducing the verification time. For details we

refer to [BFS19].
Another difference between this approach and the compression in the discrete

log setting is that here the linear form evaluation L(x) is not included in the
commitment. For this reason the cross terms AR and AL have to be sent.
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Protocol 10 Argument of Knowledge for relation RZ

Input(g, P, u,Q, b, L;x)

x ∈ Z(b)n

P = gx̂

L(x) = u mod q
Prover Verifier

AL ← gx̂L

AR ← gx̂R

uL = LR(xL)
uR = LL(xR)

AL,ARuL,uR−−−−−−−−−−−→
ALA

n/2
R

?
= P

c←R

[
− p−1

2
, p−1

2

]
c←−−−−−−−−−−−

z = cxL + xR

z−−−−−−−−−−−→ gẑ
?
= AcLAR

(LL + cLR)(z)
?
=

cu+ c2uL + uR

0
?

≤ b
?
< Q

2

‖z‖∞
?
< b q+1

2
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