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Abstract. Statistical Multi-Party Computation (MPC) protocols based
on two-party Oblivious Transfer (OT) have one severe drawback: the ad-
versary can abort the protocol without repercussions. [IOZ14] introduced
the notion of Identifiable Abort (IA). We extend the work of [FGM+01]
and investigate, under which conditions n-party MPC can be constructed
from smaller functionalities in the setting of IA. Previous work already
contains an impossibility result for two-party functionalities [IOS12] and
a universal n-party setup [IOZ14].
We thus investigate setup functionalities of size between 3 and (n− 1).
In this paper we give novel upper bounds for the sizes of functionalities
needed for IA. In particular, we find out, that it is possible to construct
n-party MPC with IA from an (n− 1)-party setup and a broadcast,
if at least 3 parties are honest. We achieve our result by using a new
and innovative technique called conflict graph and its complementary
association graph, which uses a broadcast channel to model the knowledge
of honest parties regarding the identity of malicious parties.

Keywords: Multi-Party Computation · Simulation-Based Security ·
Identifiable Abort · Conflict Graph

1 Introduction
Minimal Cardinality. [Kil88; IPS08] proved that two-party primitives like OT can
be used to construct general n-party MPC secure against arbitrary adversaries,
but only in the setting of Anonymous Abort, also known as security with abort.
Surprisingly, this result does not carry over to the setting of Identifiable Abort
[IOS12]. This raises the question, how strong the setup has to be in order to
construct n-party MPC with IA. The construction of [IOZ14] requires Correlated
Randomness, which can be modeled as an n-party functionality and as such
poses a relatively strong assumption. We say that the Correlated Randomness-
functionality is of size n. In general, we would like to compose general n-party
MPC solely from functionalities of smaller size and a global broadcast. Following
[FGM+01], we call the minimal size of a functionality that enables n-party MPC
the minimal complete cardinality k∗ of a primitive.



Identifiable Abort. Ishai, Prabhakaran, and Sahai [IPS08] classify protocols for
secure Multi-Party Computation (MPC) into two categories: (1) Protocols which
are only secure with an honest majority of parties, and (2) Protocols which are
secure against arbitrarily many malicious parties. The former implies some level
of trust in the other parties, which can be used for techniques such as majority
votes. For the latter, it was stated by the authors, that certain security guarantees
cannot be made. In particular, an adversary can always abort the computation,
without revealing information which allows to identify corrupted parties. We call
this property Anonymous Abort (AA). Since this is an undesirable property for
the real world, Ishai, Ostrovsky, and Zikas [IOZ14] introduced a compromise
between what we would want for real-world protocols and what is technically
feasible, which they called Identifiable Abort (IA). It still allows the adversary to
abort any protocol at will, but in doing so, the identity of at least one malicious
party is revealed to all participants. In our work, we try to find bounds on the
minimal complete cardinality in the setting of IA. We refer to ideal functionalities
F with IA as I .

Adversarial Restrictions. In order to circumvent impossibility results or raise
the efficiency, security statements often consider only a certain sub-class of
adversaries. One common limitation is the computational power of the adversary.
Most protocols are only secure against adversaries with polynomial runtime,
where security can be based on the computational complexity of well-investigated
problems. Another common limitation is on the number of parties that an
adversary can corrupt. Ben-Or, Goldwasser, and Wigderson [BGW88] showed
that if we only consider adversaries who corrupt less than one third of all parties,
k∗ = 2 is the minimal complete cardinality. This result already indicates some
relation between the number of corrupted parties and the minimal complete
cardinality. Our investigation is focused on this particular relation.

Summary. In this work, we investigate upper and lower bounds of the minimal
complete cardinality k∗ in the style of [FGM+01], but with Identifiable Abort.
As a helpful tool, we formalize the novel concept of the conflict graph, which
contains information on all conflicts between parties that have occurred during a
protocol execution. This tool requires the existence of a global broadcast channel,
which is of size n, but still a relatively weak assumption. The conflict graph
aids the honest parties in identifying a set of malicious parties, when too many
conflicts arise.

We use the conflict graph to present a construction that uses (n− 1)-party
Secure Function Evaluation and n-party broadcast to construct n-party SFE,
without losing the properties of Identifiable Abort.

1.1 Related Work

The question regarding requirements and cardinalities for hybrid functionalities to
achieve general n-party MPC has been investigated for several different scenarios.
Such research is motivated by the fact, that hybrid functionalities of smaller
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cardinality can be realized more easily using physical assumptions (see e.g.
[GIS+10; CK88; Cré97]).

One of the earliest insights in that area comes from the seminal work of
Kilian [Kil88] (which was later improved by Ishai, Prabhakaran, and Sahai
[IPS08]), which works in the setting of Anonymous Abort (AA). In this setting,
the adversary can abort the protocol anonymously – that is, without revealing
information regarding corrupted parties – if the state is considered unfavorable.
They proved that in this setting, actively secure n-party MPC is possible using
only Oblivious Transfer (OT), which is of cardinality 2.

In the setting of Universal Composability by Canetti [Can01], it was shown
by Canetti and Fischlin [CF01], that without an additional n-party set-up (like
a trusted third party, who creates a common reference string from a given
distribution), general MPC cannot be achieved. They even proved that not even
(MPC-incomplete) commitments can be securely realized in this setting.

Our work focuses on the setting of Identifiable Abort. This setting was first
investigated (under the name Cheater Identification) by Ishai, Ostrovsky, and
Seyalioglu [IOS12], although only in the honest majority setting. It turned out
that even under such seemingly loose restrictions, no composition of functionalities
with cardinality 2 (such as OT) exists that leads to n-party MPC with cheater
identification and therefore there is no canonical extension of the protocol by
Kilian [Kil88], which adds identifiable abort using only OT hybrid functionalities.

The information-theoretic setting of IA was first investigated by Ishai, Os-
trovsky, and Zikas [IOZ14]. There, the authors proved that the results of Ishai,
Ostrovsky, and Seyalioglu [IOS12] do not hold if there is a correlated randomness
setup; which doesn’t contradict the statement, since correlated randomness is
considered a n-party functionality.

Combining these two results, we know that hybrid functionalities of cardinality
n suffice for n-party MPC with IA, whereas functionalities of cardinality 2 do not.
Inspired by the work of Fitzi, Garay, Maurer, and Ostrovsky [FGM+01], where
the question was investigated without abort, this raises the question whether we
can achieve n-party MPC with IA using only hybrid functionalities of cardinality
k with 2 < k < n and, more importantly, what the minimal cardinality k∗ for
hybrid functionalities is, from which n-party MPC with IA can be build from. To
the best of our knowledge, there is no previous work investigating this question
in the setting of IA.

In contrast, most research in the area of Identifiable Abort has been directed
towards the efficiency of concrete MPC protocols (such as [DPS+12; SF16;
BOS16]). However, we focus on the theoretical minimal setup for general n-party
MPC.

1.2 Contribution

Our main contributions are:

New Oblivious Transfer variant. In Section 3, we introduce a multi-party
extension of OT called Fully Committed Oblivious Transfer (FCOT) which fits
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well into the setting of Identifiable Abort. We extend OT to the multi-party case,
such that all parties obtain a receipt if the OT has shown to be successful. The
parties consist of one sender and one receiver, both of which have secret inputs
as in the classical OT, and (n− 2) witnesses without any input. After the OT,
both the sender and the receiver are committed to their inputs independently.
They can unveil their inputs later on. More specifically, if the sender unveils its
input m0 (resp. m1), then all parties obtain m0 (resp. m1) simultaneously. Note
that the sender can unveil m0 and m1 independently of each other. If the receiver
unveils its input, all parties obtain its choice bit c. Note that the unveiling-step
for both parties is purely optional.

In the appendix, we prove equivalence of Secure Function Evaluation and
Fully Committed Oblivious Transfer in the setting of Identifiable Abort. That is,
we show how to instantiate n-party SFE in the FCOT-hybrid-model and how to
realize n-party FCOT using only a SFE hybrid functionality.

Conflict Graph. As a tool for our analysis, we introduce the conflict graph in
Section 4. Although we only use it as a tool to prove security of our construction,
we believe it to be of independent interest, like the improvement of efficient
MPC-protocols with IA.

Formally, a conflict graph is an undirected graph G = (P,E), where P is the
set of parties. An edge e =

{
P,P′

}
∈ E for P,P′ ∈ P and P 6= P′ corresponds to

a conflict, that is, an accusation of misconduct between the two parties P and
P′; an honest party P accuses a malicious party P′, if either P′ notably deviated
from the protocol, or if P′ aborted a hybrid functionality with IA in which P
participated. In that case, we call P′ a disruptor. Note that malicious parties
can accuse any party of being a disruptor. Furthermore, we call the complement
graph of the conflict graph association graph A = (P,E ′). Its edges

{
P,P′

}
∈ E ′

indicate that parties P and P′ are not (yet) in conflict with each other.
The conflict graph helps to identify disruptors. It models every parties knowl-

edge on misbehavior of other parties. Using the conflict graph, protocols that
realize ideal functionalities with IA can reduce complex properties of the protocol
to easily verifiable graph conditions. Under certain conditions, the graph allows
to extract an explanation of the conflicts. That is a subset of parties P ′ ( P
such that all conflicts can be explained assuming that these parties are corrupted.
Technically, an explanation is a Vertex Cover of the conflict graph.

We can use ambiguous explanations to obtain information regarding disruptors.
For example, if we know that the adversary can only corrupt up to t parties and
a party P is part of every explanation P ′ of size |P ′| ≤ t, then P is guaranteed to
be a disruptor. We generally differentiate explanations as internal and external
explanations. The main difference is that for internal explanations, a party takes
into account that it knows it behaved according to the protocol, meaning that
the party itself is honest. For external explanations, the conflict graph allows
even parties who do not participate in the protocol to identify a corrupted party
as a disruptor.

An example conflict graph can be found in Fig. 1: It showcases a 4-party
MPC protocol with an adversary capable of corrupting at most t = 2 parties.
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Fig. 1: Three possible corruption sets with n = 4 and t = 2. Corrupted parties are
double-lined.

The conflict graph has three different explanations (Fig. 1a, 1b and 1c). The
graph does not provide external explanation: For each party Pi, there is at least
one possible explanation where Pi is honest.

Assuming that P3 is honest, we can deduce that only the explanation from
Fig. 1a can apply, implying that P2 is honest, whereas P1 and P4 are disruptors.
However, P3 has no way of convincing P2 of that fact, as for P2, the explanations
from Fig. 1b and Fig. 1c are equally possible; the latter explanation would imply
P3 to be a disruptor. Hence, the honest parties are unable to agree on a common
disruptor in this scenario.

Both internal and external explanations of the conflict graph can be transferred
into graph properties. We thus point out the necessary and sufficient conditions
of a conflict graph to unambiguously identify a misbehaving party. We therefore
introduce two terms: First, we define what it means for a graph to be t-settled,
which is required for G to provide an external explanation. A conflict graph G is
t-settled, iff (1) the minimal explanations have a size of at most t and (2) the
same party P exists in every minimal explanation. If this property is fulfilled,
even external parties can be convinced that the party P is a disruptor.

For a formal treatment of internal explanations, we define the property of a
biseparated conflict graph G. The property states that there is a subset of edges
E ′ ⊆ E such that G′ =

(
P,E ′

)
is a complete bipartite graph. This means that

we can partition the graph in two subsets P1 and P2, such that (1) P = P1 ·∪P2
and (2) all parties in P ∈ P1 have an edge

{
P,P′

}
∈ E for every P′ ∈ P2 and

vice versa. This property implies that any party can safely assume that all parties
in the other partition are disruptors. However, external parties don’t necessarily
know which partition belongs to the honest parties.

The conflict graph of an n-party computation is maintained and created by
a functionality InCG. The functionality accepts as inputs messages of the type
(conflict,P′) from any party P. We call the chronologically ordered list of
accusations the conflict graph transcript.

Based on this transcript, InCG infers the conflict graph G. For each message
(conflict,P′) from any party P, InCG adds a new edge

{
P,P′

}
to G. After having

created such an intermediate graph, InCG performs a deduction step using an
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Fig. 2: Bounds of the minimal complete cardinality k∗(t) with IA vs. maximal number
of malicious parties t. The grey area represents the possible region of k∗(t). The dashed
lines indicate our bounds. (∗) [IOS12] only gives a lower bound when no broadcast is
available, so it does not apply directly in our case.

algorithm called DeduceCG (see Algorithm 1). This algorithm adds new edges{
P,P′

}
to G, if the only logical conclusion that P can draw from G is that P′ is

corrupted, but no conflict between P and P′ has been announced. A more formal
description of DeduceCG can be found in Section 4.

Constructing n-party SFE from SFE of lesser cardinality. The main
focus of our work is in Section 5, where we investigate the minimal cardinality of
hybrid functionalities to realize n-party MPC with IA.

We investigate security against adversaries A who can corrupt all but three
parties, that is, we set t ≤ (n− 3). There, we use the conflict graph to show
that it is theoretically impossible for the adversary to abort arbitrarily often,
without causing disruptors to be identified by all honest parties. We then provide
a construction, which expands (n− 1)-party SFE to n-party SFE with IA. In our
setting, we show in the supplementary material (Appendix B), that n-party SFE
is as powerful as n-party FCOT. Hence, our problem of instantiating n-party
SFE from SFE-hybrids of cardinality (n− 1) comes down to instantiating n-party
FCOT using only hybrid functionalities of (n− 1)-party FCOT.

In the first step, we show how a global commitment InCOM can be expanded,
such that n-party commitments InCOM can be constructed from (n− 1)-party
commitments In−1

COM and InBC. Essentially, the protocol lets the sender commit the
same bit to each hybrid functionality (for each excluded party), and each recipient
awaits the receipt from all hybrid functionalities it participates in, and then
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broadcasts the receipt. After the opening phase, the parties accept, if the opening
information received from the subfunctionalities are sufficiently consistent.

As a second step, we use the n-party commitment constructed in the first
step to construct the actual expansion of FCOT from In−1

FCOT and InBC to InFCOT.
In conclusion, we show that for any number of parties n, we can build n-

party SFE from (n− 1)-party SFE with IA. This expansion counts as our main
contribution, which extends the graphic in Fig. 2 for all dishonest majority
settings.

2 Setting

When constructing MPC-protocols, it is crucial to give a precise specification
what its security guarantees are and under which circumstances they apply. In
the following we give the relevant properties of the adversary and the composition
model.

We consider statistical security, where the adversary is computationally
unbounded. Moreover, our only assumption is the existence of hybrid functionali-
ties. This leaves the means of the realization of these hybrid functionalities up to
the user, e.g. via physical means such as trusted hardware [GIS+10; SSW10] or
noisy channels [CK88; Cré97], or again from computational assumptions with
better efficiency [Bon98; Reg05].

We focus on static adversaries that maliciously corrupt an arbitrary number
of parties, as the honest majority case is historically well researched [BGW88].

We don’t explicitly assume additional secure channels between each pair of
parties. The only means of communication between the protocol parties are via
hybrid functionalities. Though, pairwise private secure channels can be realized
by hybrid functionalities of cardinality ≥ 2.

We focus our investigation in a synchronous network model, as our conflict
graph requires that any conflict sent by a party P will eventually be received
by all other parties. In an asynchronous model, the adversary could drop all
messages [CM89; BCG93], thus getting something similar to Anonymous Abort.
This would render Identifiable Abort essentially useless. In the synchronous
model, however, the adversary can only either let the functionality terminate, or
abort at the cost of unveiling the identity of at least one malicious party.

We further assume that the adversary can neither send a message to a
functionality in the name of an honest party, nor alter or even read such a
message. That is, communication between parties and ideal functionalities are
authenticated.

In our setting, all parties have access to an n-party broadcast, which we model
as ideal functionality InBC. This broadcast is mainly used to announce conflicts.
for more details see Section 3.2.

2.1 Security Framework
For our analysis we consider simulation-based security [GMW87]. The central
idea behind simulation-based security is that a real execution of a protocol is
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compared to an idealized execution in which a trusted party exists which performs
the computation. The behavior of this party is specified by a functionality F . In
the real world, a set of mutually distrustful parties execute a protocol π , which is
said to realize the functionality F , if it can be shown to be indistinguishable from
the ideal world, in which the whole transcript is generated by a simulator who
works agnostically from the parties inputs and the computation is performed by
the honest party according to F . More precisely, the transcripts of both worlds
must be indistinguishable. The transcript includes the output of all parties and
the respective adversary. Indistinguishability implies that the real adversary
cannot learn anything from the real protocol execution that the simulator cannot
contrive without knowing the private inputs. We require statistical indistuigability,
i.e. the transcripts are indistinguishable even for computationally unbounded
distinguishers.

We adapt the view that the direct party-party communication can also be
modeled as a two-party hybrid functionality. Therefore, in our hybrid protocol,
honest parties only ever communicate with hybrid functionalities in an authenti-
cated manner; the adversary cannot manipulate messages from honest parties
to hybrid functionalities. We work in a synchronous model, where we obtain
Denial-of-Service (DoS)-protection for free.

We generally assume that the simulator gets notified whenever any party passes
input to any functionality. The simulator doesn’t learn anything regarding the
parties secret inputs. It only learns, that a party passed input to the functionality.

For the composition of functionalities we use a short notation.

Notation 1 (Functionalities) We call the number of interacting parties of a
functionality the cardinality [FGM+01] and denote it superscript, e.g. Fn.

Definition 1 ((SFE-)Complete functionalities). For n,m ∈ N+, we call a
functionality Fm of cardinality m (SFE-)complete, iff there exists a {Fm}-hybrid
protocol that securely realizes FnSFE with the same abort property.

Definition 2 (Minimal functionality). We call a functionality Fm with car-
dinality m minimal, iff no functionality of lesser cardinality is complete.

2.2 Identifiable Abort

When constructing any protocol, an abort property must be specified. Intuitively,
the most desirable property is guaranteed output, where an abort is impossible.
Unfortunately, guaranteed output requires a setup of full cardinality [FGM+01]
when the number of corrupted parties and the computational power of the adver-
sary is not limited. On the other extreme, the weaker notion of Anonymous Abort
leaves the adversary capable of stopping any computation without repercussions
and thus is an undesirable property for many real-world scenarios.

A protocol with IA enables all honest parties to eventually expel all malicious
parties, if the protocol is aborted too often. Thereby it suffices that, during an
unsuccessful protocol run, all honest parties agree on at least one disruptor. Then
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the adversary can abort the protocol at most (n− 1) times, before all malicious
parties are excluded.

To clarify the abort property of a given functionality, we use the following
notation:
Notation 2 (Functionalities with IA) A functionality In is a functionality
with Identifiable Abort and n participants.
Note that the original work [IOZ14] uses the notation F ID

⊥ .
Definition 3 (Identifiable Abort). Let In be an ideal n-party functionality
with parties P and malicious subset C ⊆ P. In has Uni-Identifiable Abort, iff
all (honest) parties yield output (abort,D) when the adversary sends (abort,D)
to In. If D 6∈ C, the message from the adversary is ignored. In has Multi-
Identifiable Abort, iff all (honest) parties yield output

(
abort,C ′

)
when the

adversary sends
(
abort,C ′

)
to In. If C ′ 6⊆ C, the message is ignored.

Additional care has to be taken into the protocol design, if the protocol
does not have fairness; the adversary may learn sensitive information in the first
protocol run, which it can leverage in the next run. The honest parties neither
learn their output, nor have a precise estimate, how sensitive the data of the
adversary is. By design, our functionality is implicitly fair. Therefore, we can
compose and repeat functionalities without excluded parties.

3 Functionalities
In this section, we introduce the ideal functionalities we use. We note that all
following functionalities have the output property of Identifiable Abort.

3.1 Secure Function Evaluation
First we give a formal variant of a Secure Function Evaluation (SFE)-functionality.

Functionality InSFE

InSFE proceeds as follows, running with security parameter λ, parties P =
{P1, ...,Pn}, input set I ⊆ {1, ..., n}, malicious parties C ⊆ P, adversary S
and function f :

(
(xi)i∈I

)
7→
(

(yj)j∈{1,...,n}, ∆
)
with private input xi and

output yj for Pj and common output ∆. Messages not covered here are
simply ignored.
• When receiving (input, xi) from Pi with xi ∈ {0, 1}λ and i ∈ I, store

(i, xi). Ignore further messages from Pi.
• When there are (i, xi) in store for all i ∈ I, then send (output, yj , ∆) to

each party Pj and (output) to S, then terminate.
When receiving

(
abort,C ′

)
from S with C ′ ⊆ C , then InSFE outputs(

abort,C ′
)
to all parties, and then terminates.
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Each party receives a private output yi and a common output ∆. We addition-
ally use an input set I to model the fact, that not all parties have to provide input.
Otherwise, certain functionalities such as broadcast cannot be realized because
receiving parties, that do not provide input, may stall the protocol execution.
This can be used to realize certain functionalities such as commitments using a
function in SFE, where only the committer C has to provide input, whereas the
receiver R only obtains output.

Although InSFE is not well-formed, it only requires knowledge about the
corrupted parties upon abort. In particular, functionalities with IA need to know
the set of malicious parties C ⊆ P, since it must check whether the set C ′ in the
abort is indeed a subset of C . In this sense, our functionalities are as well-formed
as possible in the setting of IA.

3.2 Global Commitment and Broadcast
Global Commitment is the natural extension of two-party commitment, in which
a party C is committed towards (n− 1) other parties.

Functionality InCOM

InCOM proceeds as follows, running with security parameter λ, parties P =
{C,R1, . . . ,Rn−1}, malicious parties C ⊆ P and adversary S. Messages not
covered here are ignored.
• When receiving (commit,m) with m ∈ {0, 1} from party C, store m and

send (receipt commit) to all parties and to S. Ignore further messages
of the type (commit, ·) from C.

• When receiving (unveil) from party C and ifm is stored, send (unveil,m)
to all parties and to S, then terminate.

When receiving
(
abort,C ′

)
from S with C ′ ⊆ C , then InCOM outputs(

abort,C ′
)
to all parties, and then terminates.

We also make use of an ideal broadcast functionality, which is a relatively
weak building block:

Functionality InBC

InBC proceeds as follows, running with security parameter λ and parties
P = {S,R1, . . . ,Rn−1}, malicious parties C ⊆ P and adversary S. Messages
not covered here are simply ignored.
• When receiving a message (input,m) with m ∈ {0, 1}∗ from party S, send

(output,m) to all parties and to S. Then terminate.
When receiving

(
abort,C ′

)
from S with C ′ ⊆ C , then InBC outputs(

abort,C ′
)
to all parties, and then terminates.
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Although InBC is a relatively weak functionality, it suffices as sole setup
to realize the confict graph functionality InCG from Section 4. We provide an
instantiation of InCG using InBC in our supplementary material (Appendix D), thus
proving that InCG too is a relatively weak setup.

Note that a broadcast InBC can be constructed from a global commitment
InCOM, by letting the sender S commit to his message and then directly unveil it.

3.3 Fully Committed Oblivious Transfer
Next, we introduce our novel primitive called Fully Committed Oblivious Transfer
(FCOT), which we use for our construction in Section 5:

Functionality InFCOT

InFCOT proceeds as follows, running with security parameter λ and parties P =
{S,R,W1, ...,Wn−2}, malicious parties C ⊆ P and adversary S. Messages
not covered here are simply ignored.
• When receiving (messages,m0,m1) from S with m0,m1 ∈ {0, 1}, store

m0,m1. Ignore further messages of the type (messages, ·, ·) from S.
• When receiving (choice, c) from R with c ∈ {0, 1}, store c. Ignore further

messages of the type (choice, ·) from R.
• When both messages from S and R have been received, send

(receipt transfer,⊥) to S and to all parties except R, and send
(receipt transfer,mc) to R.

• When receiving (unveil message, b) from S with b ∈ {0, 1} and m0,m1
are stored, send (unveil message, b,mb) to S and to all parties. Ignore
further messages (unveil message, b) from S.

• When receiving (unveil choice) from R and c is stored, send
(unveil choice, c) to S and to all parties. Ignore further messages from
R.

When receiving
(
abort,C ′

)
from S with C ′ ⊆ C , then InFCOT outputs(

abort,C ′
)
to all parties, and then terminates.

The idea is not completely new; Crépeau [Cré90] introduced a committed
variant of OT under the name of Verifiable OT, which was later renamed to
Committed Oblivious Transfer (COT) [CvT95]. There, the sender inputs two
committed messages (m0,m1), and the receiver inputs the choice bit c. The
receiver obtains the committed mc and can use this for zero-knowledge proofs,
without knowing m1−c and without revealing c in the process.

In Fully Committed Oblivious Transfer (FCOT), the sender S is committed
to both messages m0 and m1, and the receiver R is committed to c. Our ideal
functionality InFCOT is a novel extension of conventional OT, which has proven to
be very useful in the setting of Identifiable Abort.

This n-party extension of OT is motivated by the insight that the results of
[Kil88; IPS08] do not work with IA. In our supplementary material (Appendix B),
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we show that FCOT is SFE-complete with IA. The proof is based on the construc-
tion from [IPS08], but replaces (2-party) OT-calls with (n-party) FCOT-calls.
When a party notices any misbehavior, it can demand other parties to open their
inputs, thus enabling all parties to retrace the disruptor’s misbehavior without
leaking any information on the parties inputs due to their secret sharing.

4 Conflict Graph

Our goal is to construct protocols, which either output the correct value, or
identify at least one malicious party. As an innovative and useful tool to help us
in that regard, we introduce the conflict graph. It administrates observed misbe-
havior during the execution and helps honest parties to agree on a misbehaving
party. Honest parties behave according to the protocol specification, hence the
correctness property states that only corrupted parties can be identified. We
call actively deviating parties disruptors. If a functionality I is aborted with
output (abort,Pi), the corrupted party Pi is a disruptor. It is then a known fact
to all other participants of I , that Pi is malicious. We also refer to disruptors
as parties who notably deviate from the protocol description; this, however, is
protocol-dependent. Consider, for example, a protocol that specifies that each
party initially sends the message OK via F2

AUTH to all other parties. If party Pj
receives ⊥ from Pi via F2

AUTH, it is clear to Pj that Pi must be malicious.
In the statistical setting, a party Pi can interact with the conflict graph

only by publicly announcing that it witnessed a misbehavior of party Pj . We
call such an announcement a declaration of a conflict between Pi and Pj . Note
that malicious parties can declare a conflict with anybody. If a conflict is based
on an Identifiable Abort, conflicts between two honest parties can never occur
by definition of IA. However, conflicts based on deviations of the protocol can
have many different reasons; it is vital to ensure during protocol design, that no
conflicts between two honest parties can occur due to protocol deviations.

A visual example of a conflict graph is given in Fig. 1. It showcases the
uncertainty that arises in such scenarios. The view of P1 can only be explained,
if P3 is corrupted. Yet P1 cannot expect P2 to agree on that, since the view of
P2 could also be explained if P1 and P4 are corrupted. The precise condition of a
conflict declaration based on protocol deviations is highly protocol-dependent;
we defer the specifics of our constructions to Section 5.

We now provide an informal description of the conflict graph and introduce
graph-based properties that enable identification of a disruptor. We then introduce
an ideal functionality InCG to manage the conflict graph; this functionality can be
realized using only the broadcast functionality InBC, which is a relatively weak
assumption. With InCG, protocols only have to take care of conflict declarations;
all logic associated with the formal deduction of the conflict graph is part of the
ideal functionality.

For a set of parties P = {P1, . . . ,Pn}, we model each conflict between two
parties Pi and Pj as undirected edge {Pi,Pj} ∈ E ; a conflict between Pi and Pj
trivially also causes a conflict between Pj and Pi, hence directed edges would
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(c) Graph is neither 3-settled nor biseparated
but 3-subsettled.

P1
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P3

P4

(d) 1-settled counterexample

P1

P2

P3

P4

P5

(e) Biseparated counterexample

P1 P6

P2P3

P5

P4

(f) From P1’s view P4 must be corrupted.

Fig. 3: Several (counter-)examples for the introduced conflict graph conditions. Thick
lines are relevant for the respective property.

contain a lot of redundancy. We define the graph G := (P,E) for parties P ∈ P
and conflicts {Pi,Pj} ∈ E as the conflict graph. We also denote the set of all
possible edges by Ẽ :=

{{
P,P′

} ∣∣ P,P′ ∈ P ∧ P 6= P′
}
. Honest parties can use

this conflict graph to identify disruptors, once sufficiently may conflicts have been
declared. To formalize this idea, we introduce the term explanation of a conflict
graph. Intuitively, an explanation is a vertex cover of G; that is, a subset P ′ ⊆ P
of parties which explains all declared conflicts, if we assume that all P ∈ P ′ are
corrupted.

Let t be the maximum number of corrupted parties. If a party P exists,
which is in all explanations P ′ with |P ′| ≤ t, P is identified as disruptor.5 More
formally, even non-participants can identify disruptors in a conflict graph G, if
G is t-settled.

Definition 4 (t-settled conflict graph). Let t for 0 ≤ t ≤ n be the maximum
number of corrupted parties. Let G = (P,E) be the conflict graph of a protocol π.
Let

M (G, t) :=
{

P ′
∣∣ P ′ ⊆ P is a MVC of G :

∣∣P ′∣∣ ≤ t}
5 Note that the same condition also holds for a set of parties P∗ ⊆ P.
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be the set of all Minimal Vertex Covers (MVCs) of G with size t or less.

G is t-settled ⇐⇒ M (G, t) 6= ∅ ∧X(G, t) 6= ∅ . (1)

That is, G is t-settled, if all MVCs of M (G, t) contain the same party P. We
need the additional condition M (G, t) 6= ∅, as the intersection of zero sets⋂

P′∈∅ P ′ = P is the universe by definition. Furthermore, we call X(G, t) the
settled set of G with up to t malicious parties.

In Fig. 3a, we provide a graph which is 1-settled; the only explanation for
t = 1 implies {P1} to be corrupted. In Fig. 3d, the smallest possible explanation
is of size 2. However, even if we assume t = 2, it is impossible for external
observers to determine which parties are malicious. Yet, any participant has
only one explanation of size 2, since it knows it is honest. This motivates a new
condition on G, which allows participants to detect disruptors:

Definition 5 (Biseparated conflict graph). A conflict graph G = (P,E) is
called biseparated, iff a subset of edges forms a complete bipartite graph (biclique)
on P

∃E ′ ⊆ E : G′ =
(
P,E ′

)
is a complete bipartite graph . (2)

Figure 3b shows an example conflict graph which is biseparated; the edges
that form the bipartite graph are thickened. It partitions P into {P1,P2} and
{P3,P4,P5}. Figure 3e does not contain any bipartite graph over all parties, as
P2 is not in conflict with P5 and hence would not be in the same partition as P1.

Finally, we provide a definition for a requirement on G to detect disruptors:
Definition 6 (t-semisettled conflict graph). Let 0 ≤ t ≤ n be the maximum
number of corrupted parties. Let G be a conflict graph. G is called t-semisettled,
iff G is t-settled or G is biseparated.

None of the t-settled-property and biseparated-property automatically imply
each other. However, we now show under which conditions t-settled graphs imply
biseparated graphs:
Lemma 1. Let t ≥ (n− 2). If G is a t-settled graph, G is biseparated.

Proof. If G is t-settled, then there can only be either one or two honest parties.
We first consider the case where one honest party P ∈ P is in conflict with
all P′ ∈ P \ P, that is, X(G, (n− 2)) = {P}. The conflict graph is trivially
biseparated on X(G, (n− 2)) and P \X(G, (n− 2)).

Next, we consider the case where two or more parties are honest: P0,P1 ∈
X(G, (n− 2)). Assume for the sake of contradiction, that G = (P,E) is not
biseparated. This implies that there is at least one pair of parties

{
P,P′

}
, such

that party P ∈ {P0,P1} and party P′ ∈ P \ {P0,P1} have no conflict. Therefore,
the vertex cover given by P ′ := (X(G, (n− 2)) \ P)∪

(
(P \X(G, (n− 2))) \ P′

)
=

P \
{

P,P′
}
serves as a viable explanation of cardinality ≤ (n− 2) for the conflict

graph. In particular, we have P /∈ P ′, and, as a contradiction, we get P 6∈
X(G, (n− 2)).

Thus, for t ≥ (n− 2), the t-semisettled condition is equivalent to the bisepa-
ration of the graph. ut
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Now that we have established the conditions on G relevant for IA, we need
a mechanism to manage the conflict graph. We define a functionality for this
purpose:

Functionality InCG

InCG proceeds as follows, running with security parameter λ and parties
P = {R1, . . . ,Rn}, malicious parties C ⊆ P and adversary S. Messages not
covered here are ignored.
• Upon first activation, initiate the set of conflict edges E := ∅ ⊆ Ẽ .
• When receiving a message (conflict,Pi) from Pj , append the new conflict

edge {Pi,Pj} to the set of conflict edges E and send (conflict,Pj ,Pi)
to the adversary.

• When receiving a message (query) from Pi, deduce the current conflict
graph G∗ := DeduceCG(P,E , t) and output G∗ to Pi.

When receiving
(
abort,C ′

)
from S with C ′ ⊆ C , then InCG outputs(

abort,C ′
)
to all parties, and then terminates.

As stated in Section 3.2, we emphasize that this functionality can be realized using
only one instance of an n-party broadcast functionality. The detailed construction
can be found in our supplementary material (Appendix D).

We call G∗ the deduced conflict graph. It remains to provide the algorithm
DeduceCG, which we first motivate:

Consider Fig. 3c with t = 3 and take the position of P1. This graph is neither
3-settled nor biseparated. Using the inference rule of DeduceCG, a biseparated
graph can be deduced. In this stage P1 has already identified its neighbors
N(P1) = {P5,P6} as malicious. Thus the rest of the graph must be explicable
with only t− |N(P1)| = 1 malicious party. Hence, from P1’s viewpoint, P4 must
also be malicious, since this is the only explanation for the remaining conflict
graph, resulting in the graph from Fig. 3f.

The algorithm DeduceCG from Algorithm 1 applies a special inference rule
for each party. DeduceCG takes the position of each party P ∈ P and removes P
and all neighbors P′ with

{
P,P′

}
∈ E from the graph. If the remaining graph

is (t−N(P))-settled, then all conflicts between P and the settled set of the
remaining graph are appended to the conflict edges. This rule mirrors what party
P can infer from its own knowledge about the corruption of its neighbors.

Next, we present the main result regarding our concept of the conflict graph,
stating that for any protocol π that implements a functionality with IA, a deduced
t-semisettled conflict graph G∗ is necessary and sufficient upon abort.

Lemma 2 (t-semisettled Identifiable Abort). Let n ≥ 3 and m ∈ N. Let t
with 0 ≤ t ≤ n be the maximum number of corrupted parties. Let π be a protocol
that securely realizes a functionality In with Identifiable Abort in a {Im, InCG}-
hybrid model. Upon abort, the abort outputs of all honest parties must be equal; if
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Algorithm 1 DeduceCG(P,E , t)
1: changed := 1
2: while changed = 1 do
3: changed := 0 . no change in this iteration yet
4: for all P ∈ P do
5: P̃ := P \ ({P} ∪N(P)) . reduced party set
6: if P̃ is (t− |N(P)|)-settled then
7: P× := X((P̃,E ∩ 2P̃), t− |N(P)|) . settled set from Definition 4
8: for P′ ∈ P× do
9: E := E ∪ {P,P′} . append inferred conflicts
10: changed := 1 . mark change
11: end for
12: end if
13: end for
14: end while
15: return G∗ := (P,E) . deduced conflict graph

the conflict graph G of π is not t-semisettled upon abort, then π cannot securely
realize In.

Proof. We carry out our proof for Uni-Identifiable Abort, however, the same
reasoning applies for Muli-Identifiable Abort. We prove that a conflict graph
that is not t-semisettled must lead to incorrect abort outputs against some
environment Z. Together with the fact that no simulator can abort either Im or
In with an honest party, this directly contradicts the presupposition that the
protocol π securely realizes In.

Let π be a protocol that realizes some functionality In with parties P =
{P1, . . . ,Pn}. Also, let the conflict graph G of π be not t-semisettled upon abort;
that is, G is neither t-settled nor biseparated. For the sake of contradiction,
assume that there is a selector function with which honest parties can still
agree on a common disruptor P∗. We show that this agreement cannot exist by
constructing a different environment creating the same conflict graph transcript,
but where P∗ is honest.

Let Sπ : P × τ → P with (P, τ) 7→ P ′ for P ′ ⊆ P be the selector function that
specifies the identified disruptor for each (honest) party P, given the ordered set
of inputs to InCG as τ . For the sake of simplicity, we focus here on the special case
|P ′| = 1, that is, Sπ outputs a single party P′ (Uni-Identifiable Abort). However,
the proof still holds if Sπ outputs P ′ with |P ′| > 1. The selector Sπ must only
depend on the transcript of all conflicts and the identity of the given party itself.
Otherwise, the environment Z could induce two different abort-parties for two
honest parties.

We now show that for a special Environment Z0 there exists a different
environment Z1 where the same transcript would lead to an accusation of an
honest party. Let the first environment Z0 corrupt up to t parties C 0 ∈ M (G, t).
Denote the complement set of honest parties by H 0 := P \ C 0. Environment Z0

produces a transcript τ0 until the protocol aborts with output (abort,P∗), where
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Fig. 4: Visualization of an exemplary set of corrupted parties and an assumed honest
parties agreement on P∗ for an environment Z0 on the left. The right side shows another,
specifically constructed set of corrupted parties by an environment Z1 which leads to
honest-honest-accusations despite having the same conflict graph transcript.

P∗ ∈ Sπ
(
P, τ0) for each P ∈ H 0. The environment Z0 only lets corrupted parties

broadcast conflicts as a retaliation, that is, it broadcasts conflicts (conflict,P)
against an honest party P in the name of P′ only after P has publicly declared a
conflict

(
conflict,P′

)
.

We now show that if there exists another corrupted MVC C 1 = P \ H 1 ∈
M (G, t) with C 0 ∪ C 1 6= P, or equivalently H 0 ∩H 1 6= ∅, and P∗ ∈ Sπ

(
P, τ0) ⊆

C 0 ∩ H 1 for all P ∈ H 0, then π cannot securely realize In. Here the corrupted
MVC C 1 is chosen such that the identified party against Z0 is explicitly excluded.
Because there exists a party P in H 0 ∩ H 1, it will select P∗ ∈ Sπ

(
P, τ0) =

Sπ
(
P, τ1) against both environments, though P∗ is honest when playing with Z1.

Specifically, there exists an honest party P ∈ H 0 ∩ H 1 which selects Sπ
(
P, τ0)

against Z0 but selects Sπ
(
P, τ1) ⊂ H 1 against Z1. Since both transcripts τ0

and τ1 are equal, the two selected parties must also be equal. Fig. 4 depicts an
exemplary visualization of the corruption sets.

This leads to the contradiction that against the environment Z1 an honest
party is identified by at least one honest party. Thus, we know that if the
above conditions hold, that is, there exists a MVC C 1 with H 0 ∩ H 1 6= ∅ and
P∗ ∈ C 0 ∩H 1, then π cannot securely realize In.

Next, we show that such an MVC actually exists. It only does not exists if for
all feasible explanations C 1 ∈ M (G, t), it holds that C 0 ∪ C 1 = P, or if for all
P ∈ H 0, it holds that Sπ

(
P, τ0) ⊆ H 0∪C 1. The former is equivalent to C 1 ⊇ H 0.

This, however, contradicts the initial assumption that G is not t-semisettled.
If C 1 = H 0 = P \ C 0 are both MVCs, this would imply a biseparated conflict
graph with partitions C 0 and C 1. If C 1 ) H 0, it would follow that H 0 is a valid
explanation, that is, H 0 ∈ M (G, t). Hence, we get that C 1 is not minimal and
thus is not contained in M (G, t). Both cases lead to a contradiction with the
initial assumption.
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Now that we have shown that there exists C 1 ∈ M (G, t) that fulfills C 0∪C 1 6=
P and Sπ

(
P, τ1) ⊆ C 0 ∩ H 1 for all P ∈ H 0, we can define an environment Z1

that corrupts C 1 and acts such that it produces τ1 before the abort.
We conclude our proof by showing that Z1 really can create an equivalent

transcript to τ0. The transcript τ0 of the conflict graph G = (P,E) is essentially
an ordered list of (directed) edges (ej)j=1...m. To keep the information which
party broadcasts the conflict, the edges in the transcript are directed, while the
edges in the conflict graph are undirected. This mirrors the fact that the process
of the conflict graph creation yields more information than the final conflict
graph. Regardless of the environment, each edge of the transcript ej = (uj , vj)
contains at least one corrupted party. When a conflict ej arises in the protocol
execution with Z0, the environment Z1 behaves as follows:
If uj ∈ C 0 and uj ∈ C 1, Z0 and Z1 behave identically.
If uj ∈ C 0 and uj ∈ H 1, then by assumption, Z0 will only declare conflict ej

as a retaliation, that is, after (vj , uj) has been issued, to match the behavior
of an honest party. Therefore Z1 lets vj broadcast (conflict, uj) such that
the retaliation ej follows subsequently from the honest party uj .

If uj ∈ H 0 and uj ∈ C 1, Z1 lets uj broadcast (conflict, vj). If vj is honest, it
will retaliate; if it is not, Z1 lets vj broadcast the retaliation (conflict, uj).

If uj ∈ H 0 and uj ∈ H 1, Z0 and Z1 behave identically.
The transcript produced by Z1 is therefore identical to τ0, which concludes our
contradiction. ut

We use this result in our later proofs, where it now suffices to show that a
certain type of protocol never establishes a t-semisettled graph and does not
produce the correct output on termination. No simulator can then abort the
functionality such that two honest parties yield different identified parties. Again,
we remark that our result finds application in any simulation-based framework,
e.g. standalone or universally composable.

For a InCG-hybrid protocol, we require all honest parties to declare conflict
with the disruptor of any hybrid functionality when it is aborted. Thus, any
aborted hybrid functionality Ik running with the subset P ′ ⊆ P with |P ′| = k,
the subgraph on P ′ becomes t-semisettled. Intuitively, each abort of a hybrid
functionality (new subset of parties) adds new conflicts until at least one disruptor
can be identified.

We call the complement graph of the conflict graph the Association Graph
A = (P,E ′). The edges E ′ are defined as follows:{

P,P′
}
∈ E ′ ⇐⇒

{
P,P′

}
∈ Ẽ ∧

{
P,P′

}
/∈ E (3)

That is, E ′ contains all possible edges between any two parties P and P′, which
do not have an edge in the conflict graph G.

Remark 1. A conflict graph G = (P,E) is biseparated, iff its association graph
is disconnected.

This directly follows from the fact that the complement of a biclique contains no
path from one partition to the other.
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5 SFE Expansion

In this chapter, we present the main result of our work: we show how n-party MPC
with IA can be based on (n− 1)-party MPC with IA and an n-party broadcast,
if at least three parties are honest. To that end, we utilize our novel tool, the
conflict graph (see Section 4), which enables honest parties to share information
about malicious parties. These requirements are relatively mild, since broadcast
is easily physically realizable. Previous results [GMW87; BGW88] already fail
against a constant fraction of malicious parties. Our result can tolerate almost
all parties being malicious. Still, it is an interesting question whether our results
can be extended to the case where all parties might be corrupted (0 ≤ t ≤ n).

More formally, we construct InFCOT from In−1
FCOT and InBC. Since FCOT is

MPC-complete, this corresponds to an expansion of general MPC.
Our proof is structured in three lemmata. Each provides a limit on the

maximum number of hybrid subfunctionalities that can be aborted. This implies
a guarantee that some subfunctionalities cannot be aborted. Using this guarantee,
we provide a protocol that uses n-party broadcast to expand (n− 1)-party global
commitments In−1

COM to n-party global commitments InCOM. We then use this
n-party commitment as a tool in the expansion of FCOT from (n− 1) parties to
n parties.

We note that our result holds for any simulation-based framework that offers
at least parallel composition, and hence has applicability even in the Universal
Composability Framework [Can01]. Intuitively, if the smaller functionalities can
be composed parallel, then the constructed n-party functionality can be composed
in the same fashion.

Lemma 3 (General subfunctionality abort). Let t for 0 ≤ t < n be the
maximum number of parties the adversary can corrupt. Let π be an

{
In−1}-

hybrid protocol that uses the conflict graph technique (InCG). If the adversary
A aborts more than t subfunctionality instances of cardinality (n− 1), then the
conflict graph from InCG is biseparated.

Proof. Denote the set of n parties by P = {P1, . . . ,Pn}. Let t′ ≤ t be the
actual number of parties corrupted by the adversary A. W.l.o.g., let H =
{P1,P2, . . . ,Pn−t′} be the set of honest parties and let C = {Pn−t′+1, . . . ,Pn}
be the set of corrupted parties.

We now show that, if A aborts too many subfunctionalities, a set of parties
must be separated from all others in the association graph, thus leaving the
corresponding conflict graph biseparated. Note that the association graph is
initially a complete graph and loses edges, when subfunctionalities are aborted. 6

Since honest parties are never in conflict, their mutual edges are never removed.
We only consider subfunctionalities of cardinality (n− 1); thus, we have one
subfunctionality instance for each excluded party P ∈ P.
6 For simplicity, neglect the fact that edges could also be removed, if a party obviously
deviates from the protocol.
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Fig. 5: Association graph for the abort strategy with three honest Partyes. Left: Result
of aborting In−1
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. Middle: Association graph after additionally aborting
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and In−1
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. Right: The P3 branch can never be terminated.

We call the set of corrupted parties that aborts a subfunctionality instance
the disruptor set D. By Di we denote the disruptor set for the subfunctionality
instance that excludes Pi, and by Z the set of corrupted parties that disrupted
no subfunctionality so far. The disruptor sets corresponding to honest parties
D1, . . . ,Dn−t′ alongside with Z partitions C , meaning that D1 ·∪· · · ·∪Dn−t′ ·∪Z =
C . Z is disjoint with any Di. If there was a nonempty intersection between two
different disruptor sets Di and Dj , then this intersection Iij := Di ∩Dj would
be in conflict with all parties who participated in In−1

Pi
and with the ones who

participated in In−1
Pj

, which is all parties. Thus, Iij would be completely separated
in the association graph. Consequently, the association graph loses all edges except
the ones between Z and H and for each i ∈ [n− t′], the ones between Pi and Di.
The respective sets internally form a complete graph. See the left side of Fig. 5
for the case t′ = (n− 3). Until now, only functionalities that omitted honest
parties were aborted.

Recall that the association graph must be connected in order for its comple-
ment graph not to be biseparated (Remark 1). Therefore, any subfunctionality
In−1

P for any omitted party P ∈ Di ∪ Z can only be aborted by other parties
within the same set. Otherwise, it would be disconnected from its own set Di or
Z , respectively. Since it already is disconnected from H , Z and all other Dj , it
would be completely isolated in the association graph.

Consider, for example, the case where D′ ( D1\{P} disrupts In−1
P for P ∈ D1.

This causes all remaining parties P′ ∈ D1 \
(
{P} ∪D′

)
to declare a conflict with

D′. Thus, those parties would be separated from D′. Since P was excluded from
this subfunctionality, it remains connected to both D1 and D′. This turns the
association graph into a tree containing subsets of parties as nodes, where H is
the root node containing all honest parties. The tree has one leaf that contains all
non-disruptors Z and (n− t′) branches, one for each honest party. Again, both
H and Z internally form a complete graph. The abort of any In−1

P for P ∈ Di

for an arbitrary i thus leads to an extension of the respective branch. However,
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the adversary cannot abort the subfunctionality corresponding to the leaf node
of each branch; there would have to be some party left that could abort the
subfunctionality, which would then cause a conflict, thus separating a subset of
the branch from the rest. As a consequence, at least (n− t′) subfunctionalities
must succeed. The adversary can thus abort at most t′ subfunctionalities, before
the conflict graph becomes biseparated. ut

We consider two special cases: one where we have at least three honest parties
((t ≤ (n− 3))) and one where the adversary can corrupt all but one parties
((t ≤ (n− 1))).

In the former case, where (t ≤ (n− 3)), only strictly less than t subfunc-
tionalities of cardinality (n− 1) can be aborted when using the conflict graph
technique. For this case, Lemma 3 tightens to:

Lemma 4 (Strong subfunctionality abort). Let t ≤ (n− 3). If t or more
subfunctionalities of cardinality (n− 1) are aborted, then the conflict graph is
biseparated.

Proof. It suffices to consider the case for t aborted subfunctionalities. Assume
that t subfunctionalities are aborted. Each of the t disruptors D′ can have at most
two associates, namely the party P who was omitted in the functionality In−1

P
that D′ aborted and the party P? that disrupted In−1

D′ . However, honest parties
P can still have up to three associates, namely two actual honest parties and one
disruptor who aborted In−1

P . Honest parties can use this fact to determine its
malicious associate: at least (n− t− 1) of its associates form a clique, while the
malicious associate has only two associates of its own. Thus, the honest parties
can declare a conflict with the party outside of their clique. This leaves the
conflict graph such that all parties who are part of the clique in the association
graph form one partition, whereas all disruptors form the second partition. Thus,
the conflict graph is biseparated. ut

Next, we consider the second case, namely (t ≤ (n− 1)). Here, Lemma 3
yields:

Lemma 5 (Weak subfunctionality abort). Let 0 ≤ t < n. Either (n− 2)
or less subfunctionalities of cardinality (n− 1) are aborted, or the conflict graph
is biseparated.

Proof. We only proof the case of a single honest party P. If more parties are
honest, less subfunctionalities can be aborted.

Denote the set of parties by P = {P1, . . . ,Pn}; w.l.o.g., assume P = P1.
Furthermore, denote the corrupted parties as C .

Assume InP1
is aborted. Then the subgraph on P \ {P1} must be t-semisettled.

Otherwise, P1 can directly identify all other parties as malicious. If the subgraph
is t-settled, the excluded party P1 also identifies the settled set and the entire
graph is biseparated on the settled set and its complement. If the subgraph
on P \ {P1} biseparated, then there are two partitions, P0 and P1, which are
completely disconnected from each other in the association graph. However, P1

21



is still connected to both partitions. Each party in P0 can only be aborted by
a subset of P0, since otherwise, a set of disruptors in P0 of a functionality in
P1 would be in conflict with all other parties; the same argument holds for P1.
Every time a functionality omitting a party in any partition is aborted, that
party is removed from the respective set, thereby shrinking the set. Hence, each
set must have at least one party P, whose hybrid functionality InP cannot be
aborted, without creating a biseparated conflict graph. ut

We now have two limits on the maximal number of hybrid functionalities that
the adversary can abort before causing a biseparated conflict graph. Using them,
we are able to expand the (SFE-incomplete) functionality Global Commitment
(GCOM) from In−1

COM to InCOM.

Lemma 6 (COM expansion). There exists a protocol π in the
{
In−1

COM, InBC
}
-

hybrid model that securely realizes InCOM for 0 ≤ t ≤ (n− 2) static malicious
corruptions:

∃π : πI
n−1
COM ,I

n
BC ≥ InCOM (4)

Proof. We only consider bit-commitments, which can be canonically extended
to string-commitment. Let the set of parties be P = {C,R1, ...,Rn−1} and let
b be the bit that the committer C commits to. We present a protocol that
uses (n− 1) COM-subfunctionality instances In−1

Rl
for each excluded receiver

Rl. Additionally, it uses the conflict graph InCG which can be realized using InBC.
Denote C’s input to In−1

Rl
by bl and the abort set for In−1

Rl
by Dl. Let I0 be

the set of subfunctionalities where bl = 0, let I1 be the set of subfunctionalities
where bl = 1, and let I× be the set of subfunctionalities that have previously
been aborted. Note that ICG ensures that I× is public knowledge; the abort
of a subfunctionality In−1

Rl
results in a t-semisettled subgraph on P \ {Rl} and

if a subgraph is t-semisettled, the corresponding subfunctionality is considered
aborted. It holds that |I0|+ |I1|+ |I×| = (n− 1), since there are (n− 1) instances
of In−1

P .
In the following we give a description of the protocol. The appropriate

simulator can be found in our supplementary material (Appendix C.1).
Let b be the bit C wants to commit to. For runtime restrictions, we assume

that the unary security parameter 1λ is also input.
Protocol:

1. On input (commit, b) with b ∈ {0, 1} from Z to C, C sends (commit, b) to
In−1

Rl
for all l ∈ {1, . . . , n− 1}.

2. Once Rl has received output from any In−1
Rj

for j 6= l, the receiver Rl checks
|I×|:
If t ≤ n− 3 and |I×| ≥ t, then the conflict graph is biseparated due to

Lemma 4. Rl aborts with the identified set of parties.
If |I×| ≥ n− 1, then the conflict graph is biseparated due to Lemma 5. Rl

aborts with the identified set of parties.
Otherwise, Rl outputs (receipt commit).

3. On input (unveil) from Z to C, C sends (unveil) to In−1
Rl

for all l ∈
{1, . . . , n− 1}.
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4. Once Rl has received output from all In−1
Rj

for j 6= l, Rl sends (receipt,Rl)
to InBC.

5. Once Rl has received (receipt,Rj) from all Rj for j 6= l via InBC, Rl checks
|I×|.
If |I×| ≥ n− 1, then the conflict graph is biseparated due to Lemma 5. Rl

aborts with the identified set of parties.
If |I×| = n− 2, excluded receiver Rl, i.e. In−1

Rl
has been aborted, concurs

with the output of their (only) associate P. Rl does so by broadcasting
(help) whereupon associate P broadcasts its output. If the associate is
the committer, the committer broadcasts its bit b, otherwise the associate
is a receiver who checks all of its unveiled bits for consistency. If all but
one bit are equal, then this bit b is the output (unveil, b). The associate
receiver broadcasts (unveil, b) to signal to Rl to output the same. If
inconsistent bits have been received, then P broadcasts (abort,C) and
outputs the same.

If |I×| = n− 3, essentially the same strategy as in the previous case applies.
Only, here are up to three honest parties possible, therefore excluded
receivers only concur with associates which have at least three associates
themselves. These associates are naturally included in all subfunctionali-
ties that have not been aborted.

If |I×| ≤ n− 4, Rl checks the unveil messages:
Since |I×| ≤ n− 4 each receiver gets at least three messages; there is also
In−1

C which is not used. If all but one unveilings are consistent with bRl
,

Rl outputs
(
unveil, b′Rl

)
.

Otherwise, Rl outputs (⊥) and sends {conflict,C} to InCG.

The intuition behind the protocol is the following: The committer C commits
its bit b to all subfunctionalities, which gives honest receivers consistent opening
information. The adversary has two levers to disturb the protocol: One is to abort
subfunctionalities, thus increasing |I×|; we have shown in Lemma 4, that this is
only possible for up to t aborts, before the conflict graph becomes biseparated.
The other option the adversary has is to let a corrupted committer use different
bits in different subfunctionalities. If at least four subfunctionalities are not
aborted, then the second adversarial strategy no longer works, since all receivers
will notice a sufficient inconsistency in the subfunctionalities. Therefore the
adversary has to abort many subfunctionalities. This increases the honest parties
knowledge about the identity of malicious parties sufficiently for honest parties to
identify each other. Finally, if too many subfunctionality are aborted, such that
only one is left, the conflict graph has sufficiently many edges that a identification
is possible. If a receiver does not accept, one of two cases must have happened:
Both in Item 2 and Item 5, R rejects if |I×| ≥ t. In that case, it follows from
Lemma 4 and Lemma 5 that the resulting conflict graph is biseparated, hence
identification for an abort is possible. If t ≤ (n− 3) Lemma 4 applies directly,
whereas if t ≥ (n− 2) and |I×| > t Lemma 5 applies.
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We note that our strategy does not work directly for t ≤ (n− 1) because the
honest party has no other honest party to rely on, if too many subfunctionalities
are aborted.

Proving security of this protocol is straightforward; we provide a simulator
and a proof in our supplementary material (Appendix C.1). ut

Further on, we concentrate on FCOT. Denote the parties as sender S, receiver
R and witnesses W1 through Wn−2. We call type-1 subfunctionalities In−1

Wi
for

all i ∈ {1, . . . , n− 2} and type-2 subfunctionalities both In−1
S and In−1

R .

Corollary 1. Let π be a protocol that securely realizes InFCOT. At least two type-1
functionalities cannot be aborted, otherwise the conflict graph is t-semisettled.

This follows from Lemma 4 with t = (n− 3), which states that only strictly
less than (n− 3) subfunctionalities of cardinality (n− 1) can be aborted without
producing a biseparated conflict graph. Conversely, at least four subfunctionalities
of cardinality (n− 1) must succeed, two of which may be In−1

S and In−1
R . Hence

the remaining two must be of type-1.
Now, we use Corollary 1 to construct a protocol that securely realizes InFCOT

from In−1
FCOT and InCOM.

Theorem 3 (FCOT expansion). There is a protocol πnFCOT that statistically
realizes InFCOT in the

{
In−1

FCOT, InBC
}
-hybrid model against any adversary that

statically corrupts at most t ≤ (n− 3) parties: ∃π : πI
n−1
FCOT,I

n
BC ≥ InFCOT for t ≤

(n− 3).

Proof. We describe the protocol πnFCOT. Denote the parties as sender S, receiver
R and witnesses W1 through Wn−2.
The protocol is iteration-based. Let I× be the set of type-1 subfunctionalities that
have been aborted. There are T := (n− 2− |I×|) type-1 subfunctionalities that
have not yet been aborted. In each iteration of the protocol enumerate these as(
In−1

1 , ..., In−1
T

)
. The protocol uses r sessions of each remaining subfunctionality

In−1
l 6∈ I×. We implicitly use the string variant of the commitment functionality,

which can be constructed from the aforementioned bit commitment. We consider
a subfunctionality to be aborted, if the conflict graph of its participants is t-
semisettled. Note that InBC follows trivially from a InCOM by immediately unveiling
the commitment. Furthermore, we showed in Lemma 6, that InCOM follows from
In−1

COM. In our supplementary material, we show in Appendix E that In−1
COM follows

from In−1
FCOT. Hence, our construction works in the

{
In−1

COT, InBC
}
-hybrid model; we

still use the terms In−1
COM and InCG in our proofs.

The central idea of the protocol is to use secret sharings of the sender’s
messages to perform multiple FCOTs of cardinality (n− 1) and to globally
commit to these shares. We use a cut-and-choose trick, where some shares
are unveiled to ensure that the FCOTs and Commitments are equal. After the
Oblivious Transfer, the receiver commits to the received shares. The secret sharing
implies that he cannot unveil a different choice bit afterwards. We assume inputs
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S(m0,m1), R(c) and Wl(ε) together with the implicit unary security parameter
1λ.

Protocol iteration:
1. If the conflict graph becomes t-semisettled, all honest parties output the

appropriate corrupted set.
2. On input (messages,m0,m1) with m0,m1 ∈ {0, 1} from Z to S, S creates an

additive T -sharing ofm0 andm1 called (µ0
j )j=1..T and (µ1

j )j=1..T , respectively.
S then creates an r-sharing (αbj,i)i=1..r for each share µbj with a (2r/3)-
threshold secret sharing scheme. S inputs (messages, α0

j,i, α
1
j,i) into the i-th

session of In−1
j for all i ∈ [r] and j ∈ [T ] and commits globally to each share

by sending α0
j,i resp. α0

j,i into InCOM for each i ∈ [r] and j ∈ [T ].
3. On input (choice, c) with c ∈ {0, 1} from Z to R, R sends (choice, c) to all

remaining subfunctionalities In−1
l for all l ∈ [T ]. Additionally, R sends c to

InCOM.
4. If subfunctionality In−1

l 6∈ I× is aborted, the current iteration ends and In−1
l

is added to I×.
5. When a party P has received (receipt messages) resp. (receipt choice)

from all r sessions of all type-1 FCOT-subfunctionalities that include P, P
outputs (receipt messages) resp. (receipt choice).

6. When no subfunctionality has been aborted in this iteration and all T subfunc-
tionalities have concluded their OT-phase with output (receipt transfer,⊥)
to S, R learns mc: it obtains all r shares αcj,i of all T additive shares µcj of mc.
Each Wi and R verify the integrity of the sender’s commitments, by verifying
that the sender’s global commitments indeed contain the correct input used
for the FCOT-subfunctionalities. Each party P ∈ P \ {S} broadcasts the
set of r/10n indices i ∈ [r] per subfunctionality l ∈ [T ]. For each index
(i, l), the sender has to unveil the corresponding global commitment and the
FCOT-subfunctionality.

7. Upon receiving (unveil message, b) from Z to S, S sends (unveil) to all
InCOM. Upon receiving their shares, the parties output (unveil message, b,mb).

8. Upon receiving (unveil choice) from Z to R, R inputs (unveil choice)
into all FCOT-functionalities and (unveil) into InCOM to unveil c. The other
parties first check consistency of all unveiled choice bits. If not consistent,
all honest parties immediately abort with (abort,R). If the choice bits are
consistent c′, then the other parties check consistency between the unveiled
choice bits of the FCOT-sessions and the global commitment. If internally
inconsistent or inconsistent with the global commitment, the affected FCOT
is considered aborted, since all participating party are able to identify the
receiver as malicious.

The security proof is given in our supplementary material (Appendix C.2). ut

Intuitively, security follows from the fact that each FCOT-subfunctionality unveils
less than r/10 shares, but reconstruction requires 2r/3 shares. A user can learn
at most 11r/10 shares, whereas 4r/3 would be required to learn both messages. If
S tries to unveil a different value than its original input, it would have to deviate
in more than r/3 shares of any one subfunctionality. For each subfunctionality, a
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party can probe r/10n shares. Thus, S has negligible probability of successfully
deviating from the original FCOT-input in the required number r/3 of global
commitments.

The integrity check in the OT-phase ensure that the values must match the
FCOT-inputs with overwhelming probability. From Corollary 1, it follows that
at least for two In−1

l 6∈ I×, all r sessions must be unveiled. Also, R unveils the
commitments to its received shares. If R tries to learn both messages, R to have
input (1− c) into all sessions of at least two FCOT-subfunctionalities; in that
case, R cannot learn mc, since

(
µcj
)
j∈{T} is an additive sharing and thus requires

all shares for reconstruction.
Corollary 2 (SFE expansion). The functionality InSFE can be statistically re-
alized in the

{
In−1

SFE , InBC
}
-hybrid model against any static adversary that corrupts

at most t ≤ (n− 3) parties: t ≤ (n− 3) =⇒ ∃π : πI
n−1
SFE ,In

BC ≥ InSFE.
If we additionally assume a multicast functionality were the recipient set can

be chosen by the sender, then we can tighten our result for any t ≤ n − 3. By
induction we can deduce an upper bound of the minimal complete cardinality for
each number of maximal corruptions; as we have shown In−2

SFE and InBC realize
In−1

SFE for t ≤ n− 3. But this also holds for t ≤ n− 4, then we have that In−3
SFE and

In−1
BC realizes In−2

SFE . By induction we get It+2
SFE and all IiBC for i ∈ {t+ 3, . . . , n}

realize InSFE.
Corollary 3. For up to t corruptions, it holds for the minimal complete cardi-
nality that k∗(t) ≤ t+ 2.

It is an interesting insight that composing functionalities is possible when three
parties are honest. Intuitively, this is the case because in each subfunctionality,
we now have a guarantee that at least two parties are honest such that upon
abort they share the same information about the disruptors.

6 Summary and Outlook
Summary. We brought the work of [FGM+01] into the framework of Identifiable
Abort, and extended Uni-Identifiable Abort [IOZ14] to Multi-Identifiable Abort.
For our analysis, we developed the formal concept of the conflict graph and its
counterpart, the association graph, both of which only require a global broadcast
(InBC). Then we linked identification criteria for disruptors in Identifiable Abort
to easily verifiable properties of the conflict graph. Furthermore, we presented a
new variant of Oblivious Transfer, namely Fully Committed Oblivious Transfer.
Our main result proves a new upper bound for the minimal complete cardinality
k∗ against adversaries who can corrupt at most t ≤ (n− 3) parties. To that end,
we provided a construction for realizing InSFE from In−1

SFE and InBC. In a first step
we expanded global commitments from the (n− 1)-party case to n parties and
then used the result to expand COT from (n− 1) to n parties. Our expansion
results, together with the fact that COT and SFE are equally powerful, and that
InCOM can be instantiated via InCOT, implies the expansion of SFE in the presence
of InBC.
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Outlook. Even the impossibility result of [IOS12] might not hold when a broadcast
is available, that is, functionalities of cardinality 2 might suffice for MPC with
Identifiable Abort. Also, Fig. 2 shows a discontinuity at t = n/2, where the upper
limit jumps from 3 to approximately n/2. This could, however, be explained by
the omission of the majority vote technique.

Our upper bounds require a full multicast
{
It+3

BC , . . . , In−1
BC , InBC

}
. It is inter-

esting to see whether these multicasts of lesser cardinality are indeed necessary,
or if they can be incorporated in the global broadcast InBC in some manner.

Also, our results require n-party broadcast. We did not find out, if a broadcast
expansion is possible in the setting of IA. This would leave us with a pure SFE-
expansion; we have shown, that In−1

FCOT realizes In−1
COM, and that In−1

COM realizes
In−1

BC . Although we conjecture this to be impossible, realizing InFCOT from In−1
FCOT

and InBC alone might still be possible.
We do not know yet whether the minimal complete cardinality increases,

when no global broadcast is used. Specifically the COM-expansion in Lemma 6
strengthens our intuition that an SFE-incomplete functionality like global broad-
cast indeed lowers the minimal complete cardinality.

Also, our construction merely provides a possibility result. We did not engage
in efficiency analysis, although our protocols have polynomial runtime. Hence,
the investigation of tightness of our results provides an open field of research.

Another branch of research is to lower the minimal cardinality by using
quantum functionalities, as quantum states naturally enable for example the
receiver of a message to transmit that message without obtaining any information
about it. This property could be used to send messages via multiple smaller
functionalities to obtain the behavior of a larger one. Specifically, we assume that
given a pairwise authenticated secure quantum channel, InCOM is SFE-complete
with IA. A positive result in this area would imply efficient MPC-protocols,
as the global commitment can be instantiated with a computationally secure
commitment and a broadcast channel.

We only considered a deterministic notion of Identifiable Abort. We did not
investigate an abort property like probabilistic IA, where a disruptor is identified
with a certain probability p, or where a non-disruptor might be identified as
disruptor with a low probability p′.
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Supplementary Material

A Definitions and Notation

In general the following notation is used unless explicitly stated otherwise: For
an overview see Table 1.

Table 1: Notation and Examples
Entity Remark Examples
Set cursive P, H , C
Party sans-serif P, S, R, C, W
Adversary calligraphic A, S, Z
Code words typewriter abort, conflict

Draw uniformly from set v
$← S, b $← {0, 1}

Functionality with cardinality Fn, F2
OT

Functionality with identifiable abort In, I3
BC

Construction of functionalities In
COM  In

BC (see Section 2.1)
Parameter Minimal cardinality k∗

Parameter Security Parameter λ
Parameter Maximal number of corrupted parties t
Parameter Number of Parties n

Furthermore, we use the following conventions; also see the list of abbreviation
and symbols.

Notation 4 For any natural number n ∈ N, we denote by [n] all natural numbers
between 1 and n, that is,

[n] := {1, 2, . . . , (n− 1), n}

Definition 7 (Negligible functions). A function f : N → R is called neg-
ligible, iff f ∈ o(xc) for all c ∈ R. We later use the equivalent condition
lim
x→∞

ln|f(x)|
ln x = −∞. Denote the set of negligible functions with respect to x

by negl(x).

Definition 8 (Overwhelming functions). A function f : N → R is called
overwhelming, iff 1− f is negligible. Denote the set of overwhelming functions
with respect to x by owhl(x).

Notation 5 (Construction) We write InA, InB  InC , iff there is a protocol πnC,
that realizes InC in the {InA, InB}-hybrid-model. More formally:

InA, InB  InC ⇐⇒ ∃πI
n
A,I

n
B

C : πI
n
A,I

n
B

C ≥ InC



Usually the index is the security parameter λ, it is omitted when clear from
the context.

Definition 9 (Minimal complete cardinality). Let n ∈ N be the number of
parties and let t ≤ n be the maximal number of corrupted parties. We denote the
cardinality of a minimal and complete functionality by k∗(n; t). When clear from
the context, we omit the parameters n and t. In other words, a minimal complete
functionality of cardinality m′ is the smallest functionality from which n-party
SFE can be constructed.

Definition 10 (Minimal vertex cover). A Minimal Vertex Cover (MVC) is
a vertex cover such that any strict subset in not a vertex cover.

Note the difference between a vertex cover and a minimal vertex cover. The
minimal vertex cover is the vertex cover with the least number of vertices out of
all possible vertex covers.

We make use of secret sharing in our constructions. Thus, we include a brief
description for consistency.

Notation 6 (Secret sharing (informal)) Let p be a prime integer and k,m ∈
N integers with k ≤ m ≤ p. For a secret s ∈ Zp a secret sharing (σi)i=1..m is a
(k,m)-threshold scheme, iff k or more shares reconstruct the secret s but k − 1
or less shares hide the secret s information-theoretically. A prominent example is
Shamir’s secret sharing [Sha79].

Also, particularly efficient are additive sharings with are always (m,m)-
threshold schemes. Here, shares are simply uniformly distributed numbers from
Zp and such that s =

⊕m
i=1 σi.

Note that (k,m)-threshold schemes can tolerate up to m − k manipulated
shares and still reconstruct the secret correctly.

Notation 7 (Boolean random variable) For a boolean random variable B
which naturally takes values 0 and 1, we denote the probabilities as Pr[B] :=
Pr[B = 1] and Pr[¬B] := Pr[B = 0].

B SFE-Completeness of FCOT

In this section, we prove that Fully Committed Oblivious Transfer (FCOT)
and Secure Function Evaluation (SFE) are equally powerful in the setting of
IA, meaning that they can be constructed from each other. This implies that
constructing n-party SFE from (n− 1)-party SFE and an n-party broadcast
comes down to the more intuitive construction of n-party FCOT from (n− 1)-
party FCOT and a broadcast.

Lemma 7 (SFE  FCOT). There is a protocol πnSFE in the {InFCOT}-hybrid
model that securely realizes InSFE.

30



Proof. Let n be the number of parties. We denote the set of all parties by
P = {S,R,W1, . . . ,Wn−2}. Further on, we use a seamless type conversion from
algebraic numbers to bit strings when necessary, in the form of Z2N

∼= {0, 1}N .
We present a protocol that lets the sender create many secret sharings of

its inputs. The receiver R obtains sufficiently many shares to reconstruct one
message, but not enough to reconstruct both. The witnesses Wi obtain sufficiently
many shares to detect a manipulation of the shares in the unveiling-phase, but
not enough to learn any message just from the OT-phase.

First, we describe the protocol πnFCOT that utilizes four calls to InSFE. The
first instance, InSFE[f ], is used for the OT. The next two instances InSFE

[
g0

S
]
and

InSFE
[
g1

S
]
are used for the unveiling of the sender’s message m0 and m1. The

last instance InSFE[gR] is used for the unveiling of the receiver’s choice bit. The
functions are defined as follows:

f : (xS, xR, x0, ..., xn−3) 7→ (yS, yR, y0, ..., yn−3, ∆)

gbS :
(
ubS
)
7→
(
ε,∆′ = ubS

)
gR : (vR) 7→ (ε,∆′′ = vR)

for both b ∈ {0, 1}. The function f provides private outputs for each party and
public output ∆. The inputs and outputs are defined as follows:

xS :=
((
µ0
j,i, µ

1
j,i

)
j=1..n, ν

i
S

)
i=1..r

yS :=
(
γνi

S

)
i=1..r

xR :=
((
γj,i
)
j=1..n, ν

i
R

)
i=1..r

yR :=
(
mc,

(
µ0,i
νi

R
, µ1,i
νi

R

)
i=1..r

)
xl :=

(
νil
)
i=1..r yl :=

(
µ0,i
νi

l

, µ1,i
νi

l

, γνi
l

)
i=1..r

ubS :=
(
µbj,i
)
j=1..n,i=1..r ∆ := (∆S, ∆R)

vR :=
(
γj,i
)
j=1..n,i=1..r

For i ∈ [r], the sharings
⊕n

j=1 µ
0
j,i =: m0 and

⊕n
j=1 µ

1
j,i =: m1 distribute the two

messages m0 and m1, and the sharing
⊕n

j=1 γj,i := c distributes the choice bit
c. We later chose the number of sharings r such that the detection of a share
alteration by all honest parties becomes overwhelming. The common output
∆S takes the value 1, if the encoded bits of all r sharings of m0 are equal
(m0 =

⊕n
j=1 µ

0
j,i for all i ∈ [r]) and all encoded bits of the sharings of m1 are

equal. Otherwise ∆S is 0. Analogously, ∆R is 1, if the sharings of c are consistent
and 0 otherwise. Formally, the shares are bits µ0

j,i, µ
1
j,i, γj,i ∈ {0, 1} and the share

choices are numbers νi ∈ Zn. Now that we have the definitions of the SFE-
subfunctionalities we proceed to describe the actual protocol. We assume inputs
S(m0,m1), R(c) and Wl(ε) together with the implicit unary security parameter
1λ.

31



Protocol:
On input (local start) from Z to Wl, Wl draws r numbers

{
νil
}
i∈[r]

$← Zrn,
to determine which share of the other parties’ inputs will be obtained by Wl.

On input (messages,m0,m1) from Z to S, S produces r independent, addi-
tive n-sharings of m0 and m1: (µ0

j,i, µ
1
j,i)j∈[n],i∈[r]

$← Z2r·n
n such that for all

i ∈ [r] it holds that
⊕

j∈[n] µ
0
j,i = m0 and

⊕
j∈[n] µ

1
j,i = m1, where j is the

index of the share within a sharing and i is the index of the sharing itself.
Then, S draws r numbers

{
νiS
}
i∈[r]

$← Zrn, which determine the shares of the
receiver’s choice bit S obtains. S inputs xS into InSFE[f ].

On input (choice, c) from Z to R, R produces r independent, additive n-
sharings of c: (γj,i)j=1∈[n],i∈[r]

$← Zr·nn such that for all i ∈ [r] it holds
that

⊕
j=1∈[n] γj,i = c, where j is the index of the share within a sharing and

i is the index of the sharing itself. Then, R draws r numbers
{
νiR
}
i∈[r]

$← Zrn,
which determine the shares of the sender’s input R obtains. R inputs xR into
InSFE[f ].

On output ∆S = 0 or ∆R = 0 from InSFE[f ] to P, where P ∈ P, the party P
aborts with output

(
abort,C ′

)
, where S ∈ C ′ ⇐⇒ ∆S = 0 and R ∈

C ′ ⇐⇒ ∆R = 0.
On output (output, yR, ∆) from InSFE[f ] to R, R outputs (receipt transfer,mc).
On output (output, yP, ∆) from InSFE[f ] to P, where P ∈ P \ R, party P out-

puts (receipt transfer,⊥).
On input (unveil message, b) from Z to S, if (messages,m0,m1) has been

received, S inputs the previously generated ubS into InSFE
[
gbS
]
.

On output ubS from InSFE
[
gbS
]
to P, where P ∈ P \ S, P checks the consis-

tency with all previously obtained shares. If all shares match and are con-
sistent, i.e. across all i ∈ [r] the sharings encode the same bit, P outputs
(unveil message, b,mb). Otherwise, P outputs (abort,S).

On input (unveil choice) from Z to R, if (choice, c) has been received, R
inputs vR into InSFE[gR].

On output vR from InSFE[gR] to P, where P ∈ P \ R, P checks the consistency
with their previously obtained shares. If all shares match and are consistent
across i ∈ [r], P outputs (unveil choice, c). Otherwise, P outputs (abort,R).
We now give a description of the simulator. At the onset of the simulation, the

simulator follows the program of all uncorrupted witnesses on input (local start)
and computes their input xl according to the protocol and inputs it into the
simulated InSFE in the name of Wl.
On input (receipt messages,⊥) from InFCOT, the simulator gives local input

to all uncorrupted simulated parties as follows:
The simulator gives the simulated S local input (messages, 0, 0). Thus, S
computes xS according to the protocol and sends it to InSFE[f ].
The simulator gives the simulated R local input (choice, 0). Thus, R computes
xR according to the protocol and sends it to InSFE[f ].

On output (receipt output) from InSFE[f ], the simulator sends output (receipt output)
to Z.
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If the common output of InSFE[f ] contains ∆S = 0 or ∆R = 0, the simulator
aborts InFCOT with output

(
abort,C ′

)
where S ∈ C ′ or R ∈ C ′.

On output (unveil message, b,mb) from InFCOT, the simulator fabricates in-
put ubS for the uncorrupted simulated S to send as input into InSFE

[
gbS
]
. The

simulator knows the indices of all shares of µ0 and µ1 that have been chosen
by all other parties in the OT-phase. Either S learned the choice indices
from a corrupted party as local input or it generated the choice indices itself
for the uncorrupted simulated parties. Because each sharing has n additive
shares, there is at least one index ν′i ∈ Zn for each i ∈ {1, ..., r} whose share
is known by no party (recall that only (n− 1) shares per sharing have been
distributed). Hence, the simulator flips the bits at the correct index for each
i ∈ [r] if necessary, that is, iff mb = 1; recall that µ0 and µ1 encode 0. Denote
the manipulated sharings by µ′0 and µ′1; they encode m0 resp. m1. Finally,
the simulator lets S input u′S

b (computed from µ′
b) into InSFE

[
gbS
]
.

Because the manipulations of the sharings are chosen specifically such that no
party yields a share that is manipulated, no party will notice the equivocation
and accept the unveiling by outputting (unveil message, b,mb).

On output (unveil choice, c) from InFCOT, the simulator fabricates input uR
for the uncorrupted simulated R to input into InSFE[gR]. Here, the simulator
proceeds completely analogous to the previous case of the unveiling of the
sender’s messages. The same argumentation regarding the acceptance of the
fabricated sharing applies.

On input
(
abort,C ′

)
for InSFE[·], the simulator aborts InSFE[·] as well as InFCOT

with
(
abort,C ′

)
.

Finally, we describe the simulator’s behavior when handling messages from
and to malicious parties. In general, messages between hybrid functionalities and
the environment are forwarded by the simulator. For simplicity, we assume r to
be an uneven number.
On input (input, xS) from corrupted S to InSFE[f ], the simulator lets S in-

put (messages,m0,m1) into InFCOT, where m0 and m1 are the respective
majority of the r encoded bits mb,i =

⊕n
j=1 µ

b
j,i. The input (input, xS) is

naturally passed on to InSFE[f ].
On input (input, xR) from corrupted R to InSFE[f ], the simulator lets R in-

put (choice, c) into InFCOT, where c is the majority of the encoded bits
ci =

⊕n
j=1 γj,i. The input (input, xR) is naturally passed on to InSFE[f ].

On input
(
input, ubS

)
from corrupted S to InSFE

[
gbS
]
, the simulator checks

consistency of the sharings in ubS with the sharings in xS. If they are con-
sistent, then the simulator lets S input (unveil message, b,mb) into InFCOT,
otherwise the simulator aborts InFCOT with output (abort,S).

On input (input, uR) from corrupted R to InSFE[gR], the simulator checks con-
sistency of the sharings in vR with the sharings in xR. If they are consistent,
then the simulator lets R input (unveil choice) into InFCOT, otherwise the
simulator aborts InFCOT with output (abort,R).
It remains to be shown that the simulator does provide an indistinguishable

view for any input of Z. If inconsistent sharings for m0 are fed into InSFE[f ],

33



then, upon termination of InSFE[f ], all honest parties certainly abort with output
(abort,S) due to the common output ∆. Also, if inconsistent sharings for m0
are unveiled in InSFE[gS], then all honest parties certainly abort with output
(abort,S), as all parties can check their consistency themselves. Consequently, a
discrimination between the hybrid and ideal execution can only occur when the
input sharings and the unveiled sharings are (internally) consistent but unequal.
Fortunately, in this case all parties notice (with overwhelming probability) that
the original input m′0 and the unveiled value m0 are not equal. This can be
shown as follows: First note that in each of the r sharings at least one share
must have been altered, otherwise the sharings are inconsistent. We denote this
fact as Z ≥ 1 to indicate at least one alteration in each sharing. Now, let Hi

P
be a boolean random variable and Hi

P = 1 be the event that the i-th share
index of (honest) party P matches the index of the maliciously altered share, else
Hi

P = 0. Using the our Notation 7, we get the probability Pr
[
Hi

P
∣∣ Z ≥ 1

]
≥ 1/n.

let NP :=
∨r
i=1 H

i
P = ¬

∧r
i=1 ¬Hi

P be the boolean random variable that describes
whether P notices an alteration in any (of the r) sharings. We can bound the
probability for NP = 1 by

Pr[NP | Z ≥ 1] = 1− Pr[¬NP | Z ≥ 1]

= 1− Pr
[
r∧
i=1
¬Hi

P

∣∣∣∣∣ Z ≥ 1
]

= 1−
r∏
i=1

Pr
[
¬Hi

P
∣∣ Z ≥ 1

]
≥ 1−

r∏
i=1

(1− 1/n)

= 1− (1− 1/n)r

(5)

because the different Hi
P are independent of each other. Let the number of honest

parties be h. The final probability p that all honest parties notice any fault is then
greater than (1− (1− 1/n)r)h which can be bounded by p > (1− (1− 1/n)r)n.
We apply some transformations to the desired condition p ∈ owhl(λ) and get the
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sufficient condition

1− p ≤ 1− (1− (1− 1/n)r)n

= 1−
n∑
i=0

(
n

i

)
(−1)i(1− 1/n)ri

=
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

≤

∣∣∣∣∣
n∑
i=1

(
n

i

)
(−1)i+1(1− 1/n)ri

∣∣∣∣∣
≤

n∑
i=1

(
n

i

)∣∣∣(−1)i+1(1− 1/n)ri
∣∣∣

=
n∑
i=1

(
n

i

)
(1− 1/n)ri

≤
(
n

n/2

) n∑
i=1

(1− 1/n)ri

=
(
n

n/2

)
(1− 1/n)r · ((1− 1/n)r)n − 1

(1− 1/n)r − 1

≤
(
n

n/2

)
(1− 1/n)r

!
∈ negl(λ)

(6)

where the last equality is the partial geometric sum with q = (1− 1/n)r. Since(
n
n/2
)
∈ Θ(2n/

√
n) the condition

(
n
n/2
)
(1− 1/n)r ∈ negl(λ) is in particular ful-

filled by r ∈ ω
(
n2 + n lnλ

)
. We write r = n(n+ lnλ)w with w ∈ ω(1) with

respect to λ→∞, thus the above claim follows from

2n/
√
n · (1− 1/n)n(n+lnλ)w ≤ 2n · (1− 1/n)n(n+lnλ)w

= 2n · ((1− 1/n)n)(n+lnλ)w

≤ 2n · (1/e)(n+lnλ)w

= 2n · e−nwλ−w

≤ λ−w

∈ negl(λ) .

(7)

Although our bound for r is probably not tight, we already see that the protocol
is at most quadratic in n and logarithmic in λ.

ut

Lemma 8 (FCOT  SFE). There is a protocol πnFCOT in the {InSFE}-hybrid
model that securely realizes InFCOT.
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Proof. Here, we prove that there exists a {InFCOT}- hybrid protocol Φ that securely
UC-realizes InSFE. Again, for arbitrary n, denote the set of parties by P =
{S,R,W1, . . . ,Wn−2}.

We use the IPS-compiler from Ishai, Prabhakaran, and Sahai [IPS08], which
compiles two protocols Π and ρ into an

{
F2

OT
}
-hybrid protocol Φ. There, the

outer protocol Π can be formulated in the client-server model and must be secure
against a constant fraction of malicious parties, say t ≤ n/4. The inner protocol
ρ needs to be secure against arbitrarily many, semi-honest (passive) corruptions;
it may be in the

{
F2

OT
}
-hybrid model. Both protocols depend on the actual

function f that is to be evaluated. The combined protocol Φ then securely realizes
InSFE with Anonymous Abort, iff the outer protocol Π securely realizes InSFE. This
holds both in the computational and the statistical case.

Their result cannot be directly transferred into the setting of IA. However, if
we replace F2

OT-calls with to InFCOT, we claim that their result still holds. When
a party P notices misbehavior in server i, it can publicly demand the unveiling
of all communication corresponding to server i. If any party refuses to unveil, it
must be malicious and all honest parties can abort with said party. If all inputs
into server i have been unveiled, then either all parties can retrace any deviation
from the correct protocol transcript, or no actual misbehavior has occurred, then
the initial party P demanded the unveiling unjustifiedly. Either way, at least one
party can be identified.

Additionally, we must ensure that unveiling all inputs of a single server
does not compromise the privacy to the inputs of the outer protocol Π. In the
following, we formalize this idea: Let n be the number of parties (clients) of the
outer protocol. In the original paper [IPS08] there are m ∈ Θ

(
n2λ

)
servers. Each

party gets to select λ watchlists from each party, such that each party can see
all in- and outcoming communication of λ servers. In total, at most a fraction
of nλ/n2λ = 1/n of all servers state is known by any set of parties. Because
the used secret sharing requires a constant fraction of shares to reconstruct the
original input, no coalition of parties can learn the input of another party. Now, if
misbehavior occurs and the state of an additional server is unveiled any coalition
of parties knows at most nλ+1

n2λ ≤
2
n , which is still less than a constant fraction.

To make this more formal, we consider the function f that presents a boolean
circuit in NC1. Then, using the BGW-protocol [BGW88] for Π and the GMW-
protocol [GMW87] for ρ, we obtain a protocol Φ that securely realizes FnSFE[f ]
against arbitrarily many corruptions with Anonymous Abort. Now, we replace
all calls to F2

OT with calls to InFCOT. OT-calls are made in the distribution phase
of the watchlist mechanism and in the inner protocol, in particular the outer
protocol stays unchanged. Call the new protocols Φ′ and ρ′. We require that all
communication in the new inner protocol is processed via FCOTs. This is not an
additional restriction because a secure-channel can be trivially realized by OT
and thus by FCOT. However, it enables us to unveil all communication of the
inner protocol upon abort.
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If not aborted, the original protocol Φ and the new protocol Φ′ yield exactly
the same results. Note that the original simulator S and the new simulator S ′
learn exactly the same information, if no abort occurs.

In the original protocol, if any party aborts, then the original simulator S
also abort the ideal functionality FnSFE[f ]. The new simulator S ′, however, must
provide a set of corrupted parties to abort the ideal functionality InSFE[f ]. Hence,
all simulated parties in the simulated new protocol Φ′ must provide output(
abort,C ′

)
. The new protocol ensures this in the following way. Whenever a

party P aborts in the original protocol Φ due to a malicious message from the
i-th server, it, instead, broadcasts (challenge, i). Then, all parties unveil the
FCOTs used to distribute their watchlist one-time pads and all FCOTs in the
i-th instance of the inner protocol (i-th server). More precisely, we actually
assume a

(
n2λ
λ

)
-FCOT for each party which can be canonically constructed from(2

1
)
-FCOTs. Then each choice index in the

(
n2λ
λ

)
-FCOT corresponds to multiple

choice bits in the
(2

1
)
-FCOTs in a priori known manner, hence all

(2
1
)
-messages

mc associated with the i-th watchlist can be unveiled.
Consequently, all parties learn the complete in- and outcoming messages of

the i-th server but no additional communication of any other server. Thus each
party can retrace the complete computation of the i-th server and register any
deviation from the protocol. If the aborting party P indeed received a malicious
message on the i-th server, then all party notice this misbehavior and identify the
disruptor party P. They then abort with

(
abort,P′

)
. If the aborting party lied

about receiving a malicious message on the i-th server, then the other parties can
retrace that all message that P received were indeed correct, and they will abort
with (abort,P). Either way, the simulator will abort the ideal functionality InSFE
with the corresponding abort output.

Note that because the abort happens at exactly the same time as in the
original protocol, the new protocol leaks exactly as much information as the
original one which is secure. Also, by unveiling the state of the corrupted server
i, the adversary does not learn anything that it did not know beforehand. ut

C Security proof

In this section, we provide the simulators for our protocols from Section 5.

C.1 COM-Expansion

Because in every case the behavior of honest receivers in unambiguous, we can
formulate a coherent simulator. In particular, the dummy adversary’s and the
corrupted parties’ local in- and output is forwarded from and to the environment.
On output (receipt commit) from InCOM, the simulator gives local input to

all uncorrupted simulated parties as follows: The simulator gives the uncor-
rupted C local input (commit, 0), hence C inputs (commit, 0) into all In−1

Rl
.
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On output (unveil,m) from InCOM, the simulator lets the simulated function-
alities In−1

Rl
output (unveil,m). This is possible because In−1

Rl
is a simulated

functionality and thus fully under the simulator’s control.
Once all broadcasts (receipt,Rl) from InBC have been received, the sim-

ulator lets C input (unveil) into the ideal functionality InCOM.
On input

(
abort,C ′

)
from Z for In−1

Rl
, the simulator sends

(
abort,C ′

)
to

In−1
Rl

.
If the (simulated) conflict graph becomes t-semisettled, the simulator

aborts InCOM with the malicious partition
(
abort,C ′

)
.

Finally, we describe the simulator’s behavior when handling messages from/to
malicious parties.
On input (commit,ml) from corrupted C to In−1

Rl
, the simulator lets C pass

(commit,ml) on to In−1
Rl

. After receiving local input for all (non-aborted)
subfunctionalities, the simulator lets C input (commit,m) into InCOM where
m is the majority of all ml. If there is no majority then C inputs a random
bit m. The inputs (commit,ml) are naturally passed to the simulated In−1

Rl
.

On input (unveil) from corrupted C to In−1
Rl

, the simulator lets C forward
(unveil) to In−1

Rl
.

On input (receipt commit) from corrupted Rl to In−1
Rj

, the simulator for-
wards (receipt commit) in the name of Rl.
The key to a coherent simulation is that the protocol ensures that the outputs

of all (honest) receivers are consistent, this can be leveraged by the simulator to
abort the functionality on invalid inputs of the (corrupted) committer.

C.2 FCOT-Expansion

Now, we give a description of the simulator.
On input (messages, α0

j,i, α
1
j,i) from corrupted S to the i-th session of In−1

j ,
the simulator lets S forward the input to the simulated In−1

j .
On input (messages, α0

j,i, α
1
j,i) from corrupted S to all sessions of all remain-

ing FCOT-functionalities, the simulator computes m0 and m1 from the
obtained shares. Then the simulator lets S input (messages,m0,m1) into
InFCOT.

On input (commit, αbj,i) from corrupted S to InCOM, the simulator lets S in-
put into the simulated (commit, (αbj,i, b, i, j)) to InCOM.

On input (choice, cj,i) from corrupted R for the i-th session of In−1
j , the

simulator lets S forward the input to the simulated In−1
j .

On input (choice, cj,i) from corrupted R to all i-th sessions of all remaining
FCOT-functionalities and (commit, c) for InCOM, the simulator lets R input
(choice, c) into InFCOT.

On output (receipt transfer,⊥) from InFCOT, the simulator gives local in-
put to simulated parties as follows:
If the receiver is malicious, then S learns mc from the ideal InFCOT in the
name of R through (receipt transfer,mc). Otherwise, the simulator gives
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the uncorrupted R local input (choice, 0). If the sender is uncorrupted, the
simulator gives S local input (messages,m0,m1) with m1−c = 0. If the
receiver is uncorrupted, the simulator also uses mc = 0. Then, the sim-
ulator simulates the protocol program with the respective inputs. If any
party is malicious, its inputs are directly forwarded to the simulated hy-
brid functionalities. Consequently, the simulated dummy adversary receives
(receipt transfer,⊥) from each simulated FCOT-subfunctionality which
is forwarded to the environment.

On input (unveil messages, b) from corrupted S to all sessions of all re-
maining FCOT-functionalities, the simulator lets S input (unveil messages, b)
into InFCOT.

On output (unveil message, b,mb) from InFCOT, the simulator unveils all
shares of mb from all FCOT-subfunctionalities and all their commitments.
If the local input (messages,m0,m1) of the simulated sender matches with
the unveiled mb, then the simulation is valid.
However, if the simulated sender’s input is not equal to the ideal uncorrupted
sender’s input, the simulator must equivoke some of the FCOTs and COMs.
Therefore, the simulator fabricates additive shares µbj and sub-shares αbj,i that
encodemb but still are consistent with the shares that the environment learned
so far. The simulator must be able to equivoke more than r/3 (out of r) shares
of a single FCOT-subfunctionality. This is possible because the consistency
check in the OT-phase only leaks less than r/10 per subfunctionality to the
environment, leaving more than 9r/10 for the simulator to equivoke.
If the receiver is malicious, then the environment also learns the shares that
the receiver obtains during the OT-phase. However, if the receiver is malicious,
then the simulator already learned mc prior to giving the simulated sender its
input, hence the simulated sender’s input mc is consistent with mb if b = c.
Otherwise the environment only has less than r/2 shares per FCOT, leaving
r − (r/2 + r/10) > r/3 for the simulator to equivoke.
Furthermore, the simulator knows exactly which shares can be equivoked,
since every share that the environment obtains comes from the simulator.

On input (unveil choice) from corrupted R to all remaining FCOT-functio-
nalities, the simulator lets R input (unveil choice) into InFCOT.

On output (unveil choice, c) from InFCOT, the simulator lets all sessions of
all simulated FCOT-subfunctionalities In−1

Wl
output (unveil choice, c) to

all parties and the dummy adversary.
On input

(
abort,C ′

)
for In−1

Wl
, the simulator aborts In−1

Wl
with

(
abort,C ′

)
.

If the (simulated) conflict graph becomes t-semisettled, the simulator
aborts InCOM with the malicious partition

(
abort,C ′

)
.

D Conflict Graph from Broadcast

In this section, we present a protocol πnCG, that realizes InCG in the {InBC}-hybrid
model, which proves the following lemma:
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Lemma 9. There is a protocol πnCG in the {InBC}-hybrid model that securely
realizes InCG:

InBC  InCG

Proof. We proof our statement by providing a protocol description for πnCG and
prove it secure by providing a simulator. We have n parties P = {P1, . . . ,Pn}.
The protocol is given as follows:
Initialize. All parties start with a graph G = (P,E) with E = ∅.
On input (conflict,Pi) from Z to Pj, Pj inputs (input, (conflict,Pj ,Pi))

to InBC.
On input (output, (conflict,Pj ,Pi)) from InBC, all parties P add {Pj ,Pi} to

E .
On input (query) from Z to Pi, Pi locally computes G∗ := DeduceCG(P,E , t)

and outputs G∗.
A simulator for this protocol is straightforward:

1. If P is corrupted:
On input (input, (conflict,Pj ,Pi)) from P to InBC, if Pj = P, S calls InCG
with input (conflict,Pi) in the name of P and sends (output, (conflict,Pj ,Pi))
to all other parties in the name of InBC.

2. If P is honest:
On input (conflict,P,Pi) from InCG to S, S sends (output, (conflict,P,Pi))
in the name of InBC to all other parties.
The simulator provides an indistinguishable view for Z:
• Inputs (query) do not have to be handled at all. For honest parties, the
parties merely forward the request and obtain the correct conflict graph G.
Corrupted parties neither send messages for (query), nor change the state of
the functionality InCG in any way.

• For corrupted parties, S obtains the input via the simulated InBC. If the
broadcasted message was valid, S inputs this into InCG, thus causing the same
behavior as if an honest party had called InCG.

• For honest parties, S only has to simulate the behavior of InBC.
ut

E Global Commitment from Fully Committed Oblivious
Transfer

We present a protocol, which realizes InCOM in a InFCOT-hybrid model, and thus
prove the following lemma:

Lemma 10. There is a protocol πnCOM that securely realizes InCOM in the {InFCOT}-
hybrid model:

InFCOT  InCOM

Proof. We assume our n parties for InCOM to be P := (C,R1, . . . ,Rn−1), our
n parties for InFCOT are P ′ := (S,R,W1, . . . ,Wn−2). We start by sketching the
protocol:
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On input (commit,m) for m ∈ {0, 1} from Z to C, C acts as R in InFCOT and
inputs (choice,m).

On input (receipt commit) from InCOM to Ri for i ∈ [n− 1], all receiver for
i 6= 1 ignore the message. R1 acts as the sender in InFCOT: it draws one random
message m $← {0, 1} and sends (messages,m,m) to InFCOT.

On input (unveil) from Z to C and (receipt transfer,mc) from InFCOT
to C, C sends (unveil choice) to InFCOT.

On input (unveil choice, c) from InFCOT to any receiver Ri for i ∈ [n− 1],
Ri outputs (output, c).
A simulator for this case is straightforward, since all the secrets are sent to

the hybrid functionality InFCOT:
1. If C is corrupted:

On input (choice, c) from C to InFCOT, S sends (commit, c) to InCOM in the
name of C.

2. If C is honest:
On input (receipt commit) from InCOM, S simulates InFCOT according to the
code of SFCOT with arbitrary input.

3. If Ri for i ∈ [n] is corrupted:
On input (messages,m0,m1), if mc or mc /∈ {0, 1}, S aborts with output R1.
Else, S reports (receipt transfer) to Z.

4. If Ri for i ∈ [n] is honest:
S acts according to the protocol of Ri.

5. If C is corrupted:
On input (unveil choice) from R to InFCOT, S sends c to all Ri for i ∈ [n− 1].

6. If C is honest:
On input (unveil, c) from InCOM, S reports message (unveil choice, c) to
all Ri.
The simulator trivially provides an indistinguishable view:
• Simulation of InFCOT follows from simulation-based security.
• The only secret is the to-be-committed bit m, as the receivers Ri obtain no
secret input, meaning that S can execute their protocol.

• Against an honest committer, S just has to send messages from InFCOT
accordingly and pretend that C used the correct choice bit – which does not
have to be known in advance, as (unveil choice, c) is only required after
InCOM unveiled c.

• Against a corrupted committer, S learns c via simulation of InFCOT.
Thus, the claim follows. ut
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