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Abstract. Private Set Intersection (PSI) is a specified protocol of secure Multi-Party Com-
putation (MPC). PSI allows two parties to obtain the intersection of their private sets while
nothing else is revealed. In contrast to the great demand for PSI in real-world applications,
there is still no evaluation results of different general practical PSI framework. Most existing
PSI implmentations are based on C/C++, which also makes them hard to compute in parallel.
In this paper, we propose a generic Java-based PSI framework and implement all up-to-date
OT-based PSI protocols within the framework until now. We evaluate these OT-based PSI
protocols and the dependent cryptographic primitives and provide the best combination of
primitives for constructing a best-performed OT-based PSI from the ground up. Additional
optimizations are also applied to the protocols in our framework, including both generic and
custom-tailored ones. We adopt filters to significantly reduce the communication of OT-based
PSI protocols. The implementations in our framework support concurrence by using the
natural feature of Java, which avoids to manurally allocate threads when using C/C++. We
believe that our framework benefits a lot for future MPC and PSI researches and helps the
promotion of PSI-based applications.

1 Introduction

1.1 Background

Secure multi-party computation (MPC) allows a group of data owners to jointly compute discrete
functions on their private data, where the security of MPC requires the protocols to reveal nothing
about the underlying data but the expected output. An ideal MPC protocol can be viewed as a
trusted third party, who accepts private inputs, computes a function, and returns the result to the
data owners. There are many general-purpose MPC frameworks [22,15,31,36,12,49,24] proposed in
recent years.

Private Set Intersection (PSI) is a specific protocol of MPC which allows two parties to compute
the intersection of their private sets. PSI is useful for applications where the parties need to apply
a JOIN operation to private datasets, and there are many potential applications, such as mobile
contact discovery, advertising conversion, and so on. However, general-purpose MPC frameworks
cannot deal well with PSI. A generic PSI needs O(n2) comparisons, as each element of one party
needs to be compared with each element of the other party. The performance of generic MPC
becomes inefficient when the parties’ sets become significantly large, and thus custom-tailored PSI
protocols are in demand for practice.

Recent custom-tailored PSI protocols can be roughly divided into three categories: public key-
based PSI [18,19,33,9,10], circuit-based PSI [17,45,26,21,43], and OT-based PSI [7,13,28,40,41,44,46,47,16].
Public key-based PSI has fewer communication costs but runs slowly because of the expensive
public-key cryptographic operations. Circuit-based PSI runs fast but requires more communication.
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OT-based PSI achieves a good balance between latency and communication costs. In contrast to that
many cryptographers are trying to propose better PSI protocols with fewer costs, there is still no
general-purpose PSI framework in terms of comparison and evaluation in practice. The experimental
results in these works may be greatly varied because of the different execution environments, code
qualities, and the choices of their dependent primitives. The choices of base primitives, such as
hashes, PRFs, PRGs, and OTs, greatly influence the performance of the entire PSI protocols besides
their upper-level designs. It is a great concern that how to construct a best-performed PSI protocol
as well as its dependent primitives from the ground up. However, it is difficult to impartially compare
the protocols unless there is a generic framework implementing and evaluating them under the
same conditions. Another concern is that PSI development is not friendly to engineers, like other
custom-tailored MPC protocols. It may take experienced cryptographers and engineers several
months to design and implement PSI protocols. The research cost can be greatly reduced if the
required dependent primitives are already packed in a framework. The researchers only need to
focus on the upper-level design and invoke existing interfaces for its primitives. We are therefore
motivated to propose a generic PSI framework for the sake of future PSI researches, and provide a
general evaluation of all the OT-based PSI protocols.

1.2 Contribution

We propose a generic Java-based framework for all up-to-date PSI protocols, and until now,
corresponding primitives and sub-protocols are implemented and packed as independent interfaces
so that a protocol can be naturally constructed by combining these interfaces correctly. Afterward,
we implement these PSI protocols in our framework. It takes a graduate student around two days
to independently implement an existing PSI protocol based on our framework. To the best of our
knowledge, our framework is the first one that is generally implemented and evaluates all these PSI
protocols.

We provide an impartial evaluation of all the primitives and protocols, which consists of their
latency and communication. The optimal choosing strategies for each interface are presented based
on the experimental results, and we construct the PSI protocols with better performance using the
optimal primitives.

Another contribution is that we apply multiple optimizations on these PSI protocols in our
framework, including both generic and custom-tailored ones. We find the commons of most OT-based
PSI protocols, and utilize filters to reduce the communication cost of these protocols. Parallelization
is also considered in our framework. Some custom-tailored optimizations are presented to make up
the shortfalls existing in some PSI protocols.

In brief, our main contributions lie as follows:

– We propose the first Java-based general-propose PSI protocols and implement up-to-date
OT-based PSI in our framework until now.

– We evaluate the PSI protocols and compare their performance. We also provide the best
combinations of primitives and protocols with the least costs based on the experimental results.

– Several strategies are applied to the PSI protocols to achieve better performance, including both
general and custom-tailored optimizations.

1.3 Roadmap

The rest of this paper consists of the following sections. Required cryptographic and MPC primitives
are presented in Section 2. We describe all up-to-date OT-based PSI protocols in our framework
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in Section 3. We introduce our framework in Section 4 and provide corresponding details. Our
optimizations are described in Section 5. We evaluate primitives and PSI protocols in our frameworks,
and the results are presented in Section 6. Based on the results, we provide the optimal combinations
of the primitives and protocols in terms of the best performance in Section 7. Related works of our
paper lie in Section 8. Finally, our conclusion is given in Section 9.

2 Primitives and Building Blocks

In this section, we provide a brief introduction to cryptographic primitives common to many PSI
protocols, including oblivious transfer (OT), polynomial primitives, and filters.

2.1 Security

The primitives and protocols of MPC are proved to be secure in the presence of semi-honest or
malicious adversaries. In the semi-honest model, the adversary behaves curiously. It controls one of
the parties and still follows the protocol specification honestly. However, it may try to learn more
input information about the other honest party. A malicious adversary is not required to follow the
protocol exactly and may try to get private information with all possible approaches.

2.2 Oblivious Transfer

OT is one of the most fundamental protocols of MPC. The most common form of OT is 1-out-of-2
OT. In the beginning, the sender holds a pair of message (m0,m1), and the receiver holds a choose
bit b ∈ {0, 1}. The final goal of OT is to allow the receiver to learn mb, whilst the sender learns
nothing and the receiver learns no information about m1−b. 1-out-of-2 OT can be easily built based
on public-key cryptography [4,37,8,32]. A simple case in [4] requires that the receiver generates a
key pair (skb, pkb) and a single public key pk1−b without learning the corresponding private key.
Then the sender encrypt mi(i ∈ {0, 1}) with pki, and obviously the receiver can only decrypt mb.
To guarantee that the receiver learns nothing about sk1−b, the parties can constrain pkb and pk1−b
to satisfy a specific relationship to prevent the receiver to generate (pk1−b, sk1−b).

Public key cryptography is expensive, however, most MPC protocols use a large amount of OTs,
and that is the major motivation of the researches of OT Extensions (OTE). There are two species
of OTE. One is 1-out-of-2 OTE [20,1,2,23,3], which tries to generate the amount of 1-out-of-2 OT
instances by using a few base OTs and cheap symmetric cryptographic primitives. The main idea
of Ishai et al. [20] is based on matrix transposition. The sender and the receiver first operate a
few reversed OT instances, where the receiver generates two random matrices T0 and T1, and the
sender chooses the columns of matrices based on each bit of a secret random string s. Note that
each column of T0 + T1 equals the choose bit string of the receiver, and the sender receives a matrix
Q whose columns are the same as Tsi . Thus each row of the matrices constructs an OT instance
because the ith row of T0 equals either the ith row of Q or this row XORed with s, based on its
choice bit. The possibility of cheap OTs made a significant difference for MPC protocols with large
inputs such as PSI.

Another kind of OTE is 1-out-of-n OTE [27,28,38]. Kolesnikov and Kumaresan [27] first pointed
out that the protocol [20] can be explained from the perspective of encoding. Every row of Q can
be regarded as qi = ti ⊕ C(bi)� s. They naturally expanded 1-out-of-2 OT in [20] to a 1-out-of-n
case by replacing the replicated code with the Walsh-Hadamard code with sublinear communication.
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However, the above OT schemes only guarantee semi-honest security. A malicious receiver gets
access to the secret string s with customized incorrect coding strings, and the honest sender cannot
distinguish the incorrect coding during the entire scheme. A straightforward solution is applying
a consistency check on the semi-honest OTE schemes to prove that the receiver is honest. Orru
et al. [38] proposed a malicious secure OTE scheme leveraging binary linear code, such as BCH
code. The sender and the receiver generate some additional OT instances. After receiving Q, the
sender generates some random strings and requires the receiver to apply linear operations with
some OT instances randomly determined by the sender. If the receiver is honest, the sender gets
the same results from applying the operations on Q’s elements, otherwise, the receiver only has
a negligible probability to pass the check. There are other malicious secure OTE schemes such
as [2,23]. A malicious OT-based PSI scheme is required to adopt malicious OTE schemes for security
considerations.

2.3 Polynomial Evaluation and Interpolation

Polynomial evaluation and interpolation play an important role in some PSI protocols [30,40].
Evaluation refers to compute the values on a specific point set {xi} given the coefficients of a
polynomial, and interpolation refers to reconstruct the coefficients given a point set {(xi, P (xi))}.
There are two main advantages to utilize polynomials in PSI. The point representation of polynomials
has good homomorphic properties, which can be used in homomorphic encryption-based MPC
protocols like Shamir’s secret sharing. Another property of polynomial is that interpolating the
unique polynomial needs at least n+ 1 points where n is the degree of the polynomial, which can be
used to verify the cardinality of the intersection.

In most scenarios, the degree of the polynomials could be significantly high. Moenck et al. [34]
proposed an efficient algorithm for quick evaluation and interpolation. The main idea is the con-
struction of the sub-product trees. A sub-product tree is a full binary tree. The values of the leaves
are one-degree polynomials (x− xi) where {xi} is the point set in both evaluation and interpolation
cases. The value of parent nodes is the product of the corresponding child nodes. When multi-point
evaluation, the evaluation polynomial traverses from the root node to the leaves. Every time the
polynomial passes a node, the tree divides the polynomial by the value of the node and sends the
remainder to child nodes. Note that the remainder always has a lower degree than the divisor, thus
the leaves get constant results. For the i-th leaf node, all values of the nodes on the routine from the
root have the same factor (x− xi), and the high-degree part thrown away is equal to 0 when x = xi,
thus the final constant result of each leaf is the corresponding evaluation result P (xi).

One approach of interpolation utilizes the “divide and conquer” representation of Lagrange
interpolation formula Eq. 1, where ai = 1∏

j∈{n}&j 6=i(xi−xj)
. MR(x) and ML(x) refer to the values of

the right and left nodes of the root, and this recursive relationship can be promoted from root to
the leaves. If we get the smallest sub-equations on the leaves, we can compute from leaves to root to
get the final interpolation result. The sub-equation on each leaf equals to yiai. Note that 1

ai
is the

value of p′(xi) where p′(x) refers to the derivation of p(x) =
∏
i∈{n}(x− xi). Obviously {ai} could

be computed by the fast multi-point described above, and can reuse the sub-product tree of the
interpolation.
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P (x) =
∑
i∈{n}

yi · Li(x)

=
∑
i∈{n}

yi · ai
∏
j 6=i

(x− xj)

=

n/2∑
i=1

yi · ai
∏
j 6=i

(x− xj) +
n∑

i=n/2+1

yi · ai
∏
j 6=i

(x− xj)

= PL(x) ·
n∏

i=n/2+1

(x− xi) + PR(x) ·
n/2∏
i=1

(x− xi)

= PL(x) ·MR(x) + PR(x) ·ML(x)

(1)

The evaluation and interpolation algorithms are concise and beautiful, but there are other detailed
problems in implementation. There are amounts of polynomial multiplication and division operations
in the algorithms, which greatly affects the complexity. Approaches such as FFT and NTT are
recommended for their O(NlogN) complexity. Another practical problem is that the evaluation
and interpolation point sets are not always equal to 2n to fill balanced sub-product trees. The
padding strategies are different for evaluation and interpolation. For evaluation, the points can be
separated into several smaller sub-product trees, because the evaluation is independent for each
point. Irrelevant points can also be padded to the sub-product trees. Note that the padded points
cannot be 0. The strategy of polynomial division involves obtaining the inverse of the divisor, and
the zero points that lead to divisors cannot be inverted. Moreover, the leaves of a single tree are
required to be no more than the degree of the evaluation polynomial to guarantee the degree of the
root value to be no more than that of the polynomial, or the first division fails. As for interpolation,
there is only a single tree, and 1s can be padded to empty leaves.

2.4 Filters

Filters are a kind of approximate set membership data structure, which helps to check the existence
of elements in a set without providing all set members. The canonical one is the Bloom filter [5],
which maps an element to several bit entries with multiple hash functions. Bloom filter is a table of
buckets with a fixed bucket size of 1. There are k different hash functions. When x is inserted, it
flips all bits on positions {hi(x)} to 1. To check whether x is contained in the filter or not, it checks
the positions {hi(x)}. If all {hi(x)} equal to 1, x is considered to be contained, and vice versa. Note
that the Bloom filter guarantees “absolutely no” but only “possibly yes”. Even a value is not inserted,
its hashing positions might be occupied by other inserted values, and maybe further regarded as
inserted. The false-positive rate is controllable with appropriate parameter settings. For the same
reason, the Bloom filter does not support deleting an inserted value.

Cuckoo filter [14] is a data structure similar to Bloom filter [5], which allows for fast membership
testing. The cuckoo filter uses cuckoo hashing to avoid the shortcomings of the Bloom filter. Cuckoo
hashing[39] is a different hashing strategy compared with common hash tables. Cuckoo hashing uses
an m-entry array with k different hash functions {hi} : {0, 1}∗ → [m]. When a value x is inserted, it
randomly picks i, and inserts x into the entry hi(x). If the entry has been occupied, insert the value
evicted with the same strategy, until the insertion does not lead to eviction, or the times of eviction
reaches a threshold. In principle, it can also check whether other entries hj(x)(j 6=i) are empty or
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not before performing an eviction, and inserts the value into other empty entries. If the times of
eviction reaches the upper bound, the latest evicted value is placed into small-size storage called
stash [25]. If the stash is full, it leads to a failure and leads to rehashing.

Different from the Bloom filter, the inserted entry size of the cuckoo filter is fixed to the length of
a tag, and the empty entries are padded with a one-byte placeholder. There are two hash functions
in the cuckoo filter. We use one to calculate the tag Ht(x), and use the other to calculate the first
entry H1(x). The second possible entry is calculated with Ht(x)⊕H1(x). The insertion and eviction
strategies are the same as those of cuckoo hashing. The reason why the second possible entry is not
calculated by another hash function is that, when an eviction occurs, the cuckoo filter might not
get access to the original x. In this way, the other possible entry can be easily computed by the
current entry and the tag. Compared to the Bloom filter, the cuckoo filter supports deletion and
performs better for lookup because fewer hash functions are computed. There are other filters such
as Morton filter [6] and Vacuum filter [48], which further considered data’s local dependencies to
reduce memory loading from disks. Morton Filters use fixed-size block stores to further compress the
empty blocks in the cuckoo filter, and provides a fingerprint counter array to record the positions of
fingerprints in the storage array, which achieves a better compression rate than the cuckoo filter.
Vacuum Filter uses a “divide-into-chucks” strategy to reduce the wasted space in the cuckoo filter.
Note that the entries are required to equal the exponents of 2. The load factor of the cuckoo filter
is only around 50% when it switches from the original entry number to the next large exponent.
Vacuum filters divide the entry space into several chucks with fixed sizes, and the two candidate
entries of one element lie in the same chunk, and thus vacuum filters steady the compression rate
of the cuckoo filters. Vacuum filters additionally adopt different sizes of chucks to further improve
the memory access by the local dependencies of the candidate entry pairs. However, the parameter
settings of the vacuum filter mentioned in [48] cause high insertion fault rate. We fix this problem
by adjusting the parameters later in Section 5.

3 Protocols

We briefly introduce the OT-based PSI implemented in our framework, which is divided into two
categories based on their security assumptions.

3.1 Semi-honest Secure PSI

Hazay-Lindell (HL) 08 Hazay and Lindell [16] proposed one of the earliest OT-based PSI
protocols. It uses OT in PSI protocols in a direct way. The precondition of a PSI protocol is to
construct an Oblivious Pseudo-Random Function (OPRF). It inputs x from P1 and nothing from
P2, and outputs k to P2 and PRFk(x) to P1, during which P1 learns nothing about k, and P2 learns
nothing about x. P1 obtains PRF results of all its inputs. P2 locally computes PRF results of its
inputs with {k}, and sends them to P1. P1 compares the PRF results and obtains the corresponding
intersection. OPRF in HL08 is constructed with public-key cryptography. The main idea is that
each bit of an element matches a pair of subkeys. The OT receiver gets one of each pair by regarding
its element bits as choose bits. Each element corresponds to a specific key multiplied by every bit’s
subkey, and thus the OPRF is constructed.

Dong-Chen-Wen (DCW) 13 Dong et al. [13] utilized a garbled Bloom filter and a Bloom filter
to construct efficient semi-honest PSI protocols. Garbled Bloom Filter is a new data structure first
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proposed in [13], which replaces the bits in hash entries with random strings, and guarantees that the
xor result of the k entries equals a specific map value of the inserted element. The receiver generates
a Bloom Filter and the sender generates a garbled Bloom filter based on their own sets. The receiver
inputs bits of the Bloom filter as choose bits in OT, in which the sender delivers the string of garbled
Bloom filter or random string when the choice bit equals 1 or 0. Note that replacing the garbled
Bloom filter strings of non-intersection entries has no effect on the entries of the intersection, and
thus the receiver checks the intersection garbled Bloom filter to obtain the final results. They also
proposed a malicious PSI protocol, however, Mikkel [29] proved that the malicious protocol in [13]
is insecure against a malicious receiver. Rindal and Rosulek improved this idea to malicious security
in [46]

Pinkas-Schneider-Zohner (PSZ) 14 Pinkas et al. [44] proposed two PSI protocols. One is the
optimization of DCW13. Note that DCW13 requires 1-out-of-2 message OT to deliver the intersection
garbled Bloom filter, and PSZ14 pointed out that it can be replaced with random OT for delivering
a random garbled Bloom filter, which can reduce a round of communication in OT, and save the
amount of communication cost. Another PSI protocol in PSZ14 is based on hashing, which utilizes
cuckoo hashing to split elements into entries. On the one hand, an element is only possibly inserted
into two specific entries, which simplifies the comparison of masked results. On the other hand, if
one party inserts elements into cuckoo hashing, and the other inserts into simple hashing of the hash
functions, and thus the original PSI is divided into smaller scales.

After cuckoo hashing insertion, the elements are split into bytes, and each byte corresponds to a
1-out-of-256 OT instance of [27]. The OPRF result of the element is constructed by XORing random
OT keys of each byte, and then two parties obtain the intersection by comparing each hash bin’s
OPRF results.

Kolesnikov-Kumaresan-Rosulek-Trieu (KKRT) 16 Kolesnikov et al. [28] proposed an efficient
semi-honest PSI scheme. KKRT16 benefits a lot from its efficient OPRF, which is naturally extended
from 1-out-of-n OT [27]. In the sender’s OTE matrix Q, every row equals to qi = t0i ⊕ C(ri)� s,
where ri is the choose string. When C denotes a pseudorandom code, qi⊕C(rj)� s can be regarded
as PRFs,qi(rj). Because qi⊕C(rj)� s = t0i⊕ (C(ri)⊕C(rj))� s, it equals to t0i only when rj = ri.
The sender learns s and qi, and can evaluate PRFs,qi on any rj , while learning nothing about ri.
The receiver obtains t0i = PRFs,qi(ri), while learns nothing about s and qi. Thus every row of Q
represents a PRF instance of key (s, qi). All instances shares the same s but have different qi. The
construction is named as Batched Related Key OPRF (BaRK-OPRF).

Note that BaRK-OPRF is a single-point OPRF instance, which indicates that the OT receiver
can only evaluate once at a specific point. Thus KKRT16 also adopts the strategy of cuckoo hashing
and simple hashing. Two parties insert their elements into cuckoo hashing and simple hashing
respectively, then apply OPRF to each hash bin. If there are identical PRF results in the same entry,
the corresponding elements belong to the intersection. Unfortunately, KKRT16 becomes insecure
dealing with malicious adversaries like [27]. A corrupted receiver can steal secrets from the sender
with illegal coding.

Pinkas-Rosulek-Trieu-Yanai (PRTY) 19 Pinkas et al. [40], proposed a PSI protocol, named
SpOT-Light. The OPRF protocol in PRTY19 is a multi-point one, different from the single-point
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one in KKRT16. Therefore, the sender and receiver do not need cuckoo hashing and corresponding
dummy block paddings, which may save communication costs.

The multi-point OPRF is constructed from 1-out-of-2 OT in [20]. Under semi-honest assumptions,
the first messages of ith rows of the OTE matrix, mi,0 where i ∈ [N ], construct an OPRF as
F (i) = mi,0. When i ∈ X, the receiver sets the corresponding choose bit as 0, otherwise 1. Thus he
only gets access to F (X), while the sender gets F (i) for all i ∈ [N ]. Then the sender computes F (Y ),
and the receiver obtains the intersection by comparing F (X) and F (Y ). However in real-world
PSI, N might be exponentially large, making this approach extremely inefficient. To reduce the
communication cost, PRTY19 points out that because n1, n2 << N , the receiver can interpolate
a polynomial to focus the useful point set (X,F (X)), and sends the polynomial to the sender,
instead of sending the N -row matrix. The OPRF results of the intersection stay identical, but
communication costs become less.

The biggest challenge of this approach is evaluating and interpolating an extremely high-degree
polynomial, which slows down the performance. Thus the authors presented a fast version of PRTY19,
different from the above low-communication one. They proposed 2-choice hashing which is similar
to cuckoo hashing, but multiple elements can be inserted into the same entry. 2-choice hashing has
two hash functions identical to cuckoo hashing, and an element is always inserted into the entry
with fewer elements between the two candidates. The receiver interpolates low-degree polynomials
for all the entries and the sender computes F (y) with 2 candidate polynomials for each y. This
approach improves performance but increases the communication cost. The authors recommended
that users can choose the low-communication or the low-computation version of PRTY19 based on
their application scenarios.

Chase-Miao (CM) 20 Chase and Miao [7] proposed a PSI protocol for networks with moderate
bandwidth. They constructed a multi-point OPRF to obtain the intersection. At a high level, the
sender constructs two matrices A and B of special form from its input elements. The bits in the
matrices corresponding to the elements are set to be identical, where the others are set to be different.
Then the columns of the matrices are inputted to OT as the sender’s inputs. That means, if a
receiver’s element is in the intersection, then its input to the subsequent hash function will be the
same as one of the sender’s inputs to the hash function, and vice versa.

3.2 Malicious Secure PSI

Rindal-Rosulek (RR) 16 Rindal and Rosulek [46] further improved the idea of DCW13 [13] to
malicious security in an efficient approach. The main idea is a cut-and-choose challenge. Two parties
generate more OT instances than those the Bloom filter actually needs. The sender randomly chooses
some OT instances and requires the receiver to open the selected OTs, which authenticates whether
the receiver operates honestly or not. The sender aborts when receiving an incorrect authentication
result. As the sender chooses the set randomly, the entries in the Bloom filter and the unopened
OT instances do not match naturally. Thus the receiver generates a permutation that permutes OT
instances into the order of Bloom filter according to the choose bit string. Then the sender and
receiver operate the semi-honest protocol like [13].

Rindal-Rosulek (RR) 17 Rindal and Rosulek further proposed RR17 [47], which is much more
efficient than RR16. The idea of RR17 comes from the PSZ14 protocol [44], and mainly adopts
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OT extensions and phasing hash from [42]. RR17 is extended to malicious security using a dual
execution strategy. The parties first hash their elements into multiple bins. For each bin, the sender
and receiver apply µ OT-based OPRF instances. The sender gets {Fi}, where i ∈ [µ] and the receiver
gets Fi(xi). Then they apply reversed OPPF, which performs identically as the first round except
for the direction. The sender gets Finvj (yj) and the receiver gets {Finvj }, where j ∈ [µ]. The final
OPRF is constructed as follows. The sender independently computes FYi (yj) = Fi(yj)+Finvj (yj) for
any (i, j), and the receiver independently computes FXj (xi) = Fi(xi) + Finvj (xi). FYi (yj) equals to
FXj (xi) only when xi = yj . The authors also provided an Encode-Commit version of their protocol
to offer communication/computation trade-offs.

Pinkas-Rosulek-Trieu-Yanai (PRTY) 20 Pinkas et al. [41] constructed a multi-point OPRF
protocol with 1-out-of-N OTE [38]. The authors proposed a new data structure named probe-and-
XOR of strings (PaXoS). PaXoS can be regarded as a generic garbled Bloom filter [13]. The key-value
pairs are encoded as a string vector D = Enc({(x, y)}), and every key corresponds to a Boolean
vector v(x). The value y is decoded as y = Dec(D,x) = v(x) ·D, where y is usually implemented
as the hash value H(x). PaXoS has a good linear property. There are two approaches to encode
D. One is generating random Boolean v, which has poor efficiency. The encoding requires solving
a random linear system of equations on an extremely large scale, and decoding requires to XOR
half of the strings in D on average. The other is the garbled Bloom filter, which has good efficiency
but requires more space. The authors proposed a new PaXoS named garbled cuckoo table, which
combines the idea of garbled Bloom filter with a small-scale random matrix, and v(x) = l(x)||r(x).
l(x) indicates the long vector with only two non-zero entries corresponding to the two hash function
results, and r(x) indicates the random part. The garbled cuckoo table requires less storage but
obtains a good efficiency meanwhile.

The authors pointed out that if D is inputted as the choose bit matrix in [38], it can be easily
inferred that qi = ti ⊕ C(di)� s as discussed in Section 2. Then, we have

F (x) = Dec(T, x) = Dec(Q⊕ C(D)� s, x)
= Dec(Q, x)⊕ Dec(C(D), x)� s
= Dec(Q, x)⊕ C(Dec(D,x))� s
= Dec(Q, x)⊕ C(H(x))� s

(2)

where x is an element and C is a linear coding scheme. The left part Dec(T, x) can be executed
by the receiver independently, and the right part Dec(Q, x)⊕ C(H(x))� s can be executed by the
sender. Thus a multi-point OPRF is constructed to be used in PRTY20 PSI protocol. Another
advantage of PRTY20 is that it can be extended from semi-honest cases to malicious cases naturally
by enlarging the scale of the OTE matrix instead of changing the phases of protocols.

4 Our Framework

4.1 Overview

We implement a generic mixed-protocol PSI framework, which includes state-of-the-art OT-based
PSI protocols. It is designed in a user-friendly modular and extensive way, intended for future PSI
research and practice. We implement our framework in Java, which includes around 30,000 valid
code lines as well as around 13,000 comments.



10 Ziyuan Liang, Weiran Liu, Fan Zhang, Bingsheng Zhang, Jian Liu, Lei Zhang, and Kui Ren

Figure. 1 shows an overview of our framework. It consists of three main modules from the bottom
layer to the top: Common Tools, OTE, and PSI. Common Tools includes multiple sub-modules
which implement the basic tools and cryptographic primitives invoked by other high-level modules.
OTE module is constructed based on the common tools, which include up-to-date OT and OTE
protocols. Thus the OT-based PSI protocols can be constructed in the PSI module based on OTE
and other primitives.

PSI ServerData PSI Server DataRPC

OT / OTE

Common Tools

Crypto Primitives
Data Structures

Filters / Parallel

Intersection

Fig. 1: Overview of our Framework.

We propose generic abstract interfaces for all possible MPC protocols, and the participants in the
protocols are extracted as abstract classes. We divide MPC protocols into 2PC and MPC. In 2PC
protocols, each party defines the protocol specifications (ProtocolSpec), the parties’ specifications
(PartySpec), and the Remote Procedure Call (RPC) instance used for communication.

4.2 Common Tools

Pseudo-Random Generator (PRG) and Pseudo-Random Function (PRF) are two basic cryptographic
primitives. A PRG G holds a fixed random seed and an input data block. The output of G is a
random element in the output space. A PRF is a deterministic algorithm with two inputs, the input
block, and a key. The output is a deterministic element in the output space but seems random.
We implement PRG and PRF with hashes and block ciphers in our framework. We provide three
constructions to build a PRG, respectively based on CTR-mode block cipher, stream cipher, and
hashes. Furthermore, we provide two constructions of PRF under different assumptions. In the
random oracle model (ROM), we construct PRF by hashing the concatenation of the input and key,
as the collision-resistant hash function is regarded as a random oracle. FROM (k, x) = Hl(k||x). In
the standard model, our PRF is constructed with PRG and block ciphers such as AES. We refer to
the PRF instantiation in [7]. We use the CBC-mode block cipher to fix the input length of PRF, and
then use a PRG to extend the output to an arbitrary length. FSM (k, x) = PRGl(EncCBC(k, x)).
Thus we obtain a PRF with arbitrary input and output length. We define our main interfaces in
PRG and PRF classes as below. The dependent hashes and ciphers come from JDK or Bouncy
Castle (BC) libraries, and a detailed evaluation is presented in Section 6.
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1 Prg . extend ( byte [ ] key , i n t randomBitLength ) ;
Prf . setKey ( byte [ ] key ) ;

3 Prf . g e tB ig In t ege r ( byte [ ] message , i n t bitLength ) ;

Another optimization is that we implement factories that automatically choose the basic primitives
and building blocks with the best performance based on the expected input and output length,
including hashes, ciphers, PRFs, and PRGs. For example, an optimal PRF can be initialized by
invoking the factory interface, based on the most frequent bit length of the intended output.

1 PrfFactory . g e t In s tance ( i n t mostFreqBitLength ) ;

Then some building blocks are constructed based on the basic primitives, including binhashes,
filters, and other data structures. The implementation of binhashes includes [42,39,40]. We extract
binhashes as an abstract class, and different species of binhashes extend different insertion strategies.
The optimal parameters are hardcoded in its implementation, and thus it automatically completes
initialization based on the expected insertion number.

We also implement an abstract filter class as well as some species such as BigInteger set filter,
Bloom filter [5], sparse Bloom filter [46], and cuckoo filter [14]. The BigInteger set filter is a simple
list containing all inserted elements in the format of BigInteger and can be regarded as a filter
with a compression rate of 1. We provide a filter factory that automatically sets the parameters
based on the filter species and expected insertion number. On the one hand, several OT-based PSI
protocols invoke specific filters [13,46]. On the other hand, we prove that filters help reduce the
communication costs for most OT-based PSI protocols. The raw idea is to replace the final step
of sending and comparing the OPRF results. We require the sender to construct and send a filter
instead, and then the receiver receives the filter and checks if each of his OPRF results is contained
in the filter. Thus the final round communication is compressed. We also provide a formal security
analysis in Appendix A, to demonstrate that under certain conditions the strategy guarantees an
identical security level to the original protocols.

PaXoS is another data structure we implement in our framework, which acts as a filter but aims
at encoding and decoding instead of compression. The details have been mentioned in Section 3.
Our framework includes three different PaXoS species, including random matrix PaXoS, garbled
bloom filter [13], and garbled cuckoo table [41].

4.3 RPC

Another optimization of our framework is that our remote procedure call (RPC) interfaces are
separated independently from other cryptographic operations. An RPC class records the participants
and provides interfaces such as connecting, disconnecting, sending, receiving, which dealing with data
packages in MPC protocols. A data packet consists of a data packet spec containing the metadata
for configuration, and a BigInteger list containing the data expressed in the format of BigInteger.

We implement three RPC species in our framework. Network RPC is implemented by TLS
handshake protocols. Memory RPC is a cross-thread RPC designed for local tests, whose data sender
and receiver stay in the same machine, and they read and write on the same piece of the memory
region. A memory RPC instance preserves a specific memory buffer. The sender puts the data packet
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in the buffer as a key-value pair, where the metadata and data act as the key and value respectively.
The receiver receives the data packet by reading the corresponding value in the hashmap according
to the metadata. As memory RPC needs no initialization, the connect / disconnect interfaces are set
to be empty. Another RPC is file RPC. As its name suggests, the sender packs the data packets into
files with names concatenated by their configure information, and the receiver reads the data packets
by reading the files. Note that the sender is required to write an additional status file, to prevent
the conflict that the receiver reads before the sender finishes writing. The status file contains a short
string and is written after the data file is finished. When the receiver queries to receive the data
packet, it first checks the existence of the corresponding status file. If exists, it deletes the status file
and reads the data packet correctly. If not, it sleeps to wait for the sender to finish writing. Similar
to memory RPC, file RPC has no initialization and empty connect/disconnect interfaces. File RPC
is convenient to be extended into remote mode when the sender and receiver get access to the same
cloud database.

4.4 OT

The OT implementations in our framework can be divided into three abstract classes, base OT,
1-out-of-2 OTE, and 1-out-of-n OTE. Each protocol in our framework preserves a spec class, which
defines the communication steps and security model. The steps help divide a protocol into several
pieces based on its communication rounds. Thus the original protocol can be regarded as the two
(maybe more) parties sending and receiving rounds of data packets as well as locally generating and
handling them. This model helps us to extract the similarities of various protocols into abstract
classes. The security model is also labeled in the class. A complex protocol is constructed by
multiple simpler building blocks, which are further constructed by basic primitives. Note that the
building blocks and primitives have different security models, and the security model of a high-level
complex protocol is determined by the most insecure building block it adopts. For example, if a
malicious-secure PSI protocol instance invokes a semi-honest secure OTE, the PSI instance will be
regarded to be semi-honest secure.

We implement both random OT and message OT of each OT/OTE protocol, and we discover
that almost all OT/OTE protocols implement random OTs to determine the random key arrays.
The real messages are encrypted and decrypted using these keys. Thus we implement the conversion
from random OT/OTE to message OT/OTE in the outside abstract OT/OTE classes and require
each protocol to implement random OT/OTE respectively based on their design. Several efficient
1-out-of-2 base OT protocols [37,8,32] are implemented in our framework, and the interfaces are
packed as follows.

1 % AbstractBaseOtSender
void sendMessagePair ( Cipher c ipher , i n t messageBitLength , B ig Intege r [ ]

messagePair ) ;
3 Big Intege r [ ] sendKeyPair ( ) ;
% AbstractBaseOtReceiver

5 Big Intege r rece iveMessage ( Cipher c ipher , i n t messagBitLength , boolean cho i c e )
;

B ig Intege r rece iveKey ( boolean key ) ;

The OTE protocols in our framework are classified as 1-out-of-2 OTE [1,3,20,23], and 1-out-of-n
OTE [27,28,38]. The corresponding interfaces are abstracted as follows.
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% AbstractToOteSender
2 void sendMessagePairArray ( Cipher c ipher , i n t messageBitLength , B ig Intege r [ ] [ ]

messagePairArray ) ;
B ig Intege r [ ] [ ] sendKeyPairArray ( i n t arrayLength ) ;

4 % AbstractToOteReceiver
B ig Intege r [ ] rece iveMessageArray ( Cipher c ipher , i n t messagBitLength , boolean

[ ] choiceArray ) ;
6 Big Intege r [ ] rece iveKeyArray ( boolean [ ] cho iceArray ) ;

% AbstractNoOteSender
2 void sendMessageTupleArray ( Cipher c ipher , Hash hash , i n t messageBitLength ,

i n t tup l eS i z e , B ig Intege r [ ] [ ] messageTupleArray ) ;
B ig Intege r [ ] [ ] sendKeyTupleArray (Hash hash , i n t arrayLength , i n t t up l eS i z e ) ;

4 % AbstractNoOteReceiver
B ig Intege r [ ] rece iveMessageArray ( Cipher c ipher , Hash hash , i n t

messagBitLength , i n t tup l eS i z e , i n t [ ] choiceTupleArray ) ;
6 Big Intege r [ ] rece iveKeyArray (Hash hash , i n t [ ] cho iceArray ) ;

Cipher refers to the encryption scheme to encrypt messages with random OT keys. Hash is the
hash function used in 1-out-of-n OTE.

Note that the choices in 1-out-of-n OTE are encoded by coders as mentioned in Section 2, and
thus we additionally implement coders as primitives in our common tools, including the reputation
coder in [20], Walsh-Hadamard coders in [27], linear BCH coders in [38,41], and pseudo-random
coder in [28]. Matrix transposition is the major performance bottleneck of OTE. We implement
and test several different types of bit matrix to achieve the best performance. We implement bit
matrices in the format of binary, BigInteger, and byte array, and find out that the byte array format
using the interaction transposition strategy in [1] performs best. An interesting point is that the
efficient interaction transposition does not work well in parallel because of the data dependency,
and achieves similar performance compared with naive transposition.

4.5 PSI

With all these primitives completed, we are fully prepared to implement any up-to-date OT-based PSI
protocols, including [7,13,28,40,41,44,46,47,16]. The PSI participants can directly invoke OT/OTE
instances without defining the communication outside OT/OTE. We also implement the naive PSI
and DH-based PSI [18] as benchmarks for performance comparison.

Another of our biggest advantages is that new PSI protocols can be easily developed and
extended by adding the required primitives, which provides a user-friendly platform for comparing
and developing PSI protocols. For example, if we further equip our framework with a circuit
submodule, then up-to-date circuit-based PSI protocols can be implemented in our framework, which
is planned to be our future work.
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5 Optimizations

We apply multiple optimization strategies in our framework to reduce the latency or communications
of the protocols, including both general strategies and custom-tailored modifications.

Table 1: Communication Costs of Filters.

Filter Name Entry Num Entry Size Filter Size

BigInteger Set n l nl

Bloom Filter nλ/ln2 1 nλ/ln2

Cuckoo Filter 2dlog(0.26n+1)e 48 48n+ 8 ∗ 2dlog(0.26n+1)e

5.1 Saving Communication Using Filters

The final step of most OT-based PSI protocols is that the sender sends his OPRF results to the
receiver, who will later compare the OPRF results to obtain the intersection. Note that the OPRF
result intersection of the parties can be regarded as multiple public set inclusion operations, and a
set inclusion can be naturally implemented by checking the element in the filters.

In our optimized protocols, the sender sends a filter in which his OPRF results are inserted, and
the receiver successively checks whether each of his OPRF results is contained in the filter or not to
determine the output intersection. The advantage is that the communication cost can be reduced
according to the compression rate of the filter.

We compute the storage occupation of the Bloom filter and cuckoo filter and compare them
with the plaintext set filter as a baseline. The theoretical occupation of the filters is presented
in Table 1. Vacuum Filter is not listed because of its complex structure, which makes it hard to
evaluate its compression rate theoretically. The empty entries in the cuckoo filters are padded with
single-byte placeholders rather than 48-bit fingerprints. Then we fix the false positive rate of the
filters to 2−40 and test the compression rates of the filters in practice. The results are presented
in Figure. 2, which demonstrates that filters can efficiently reduce communication when there are
a large number of insertions, and the cuckoo filter always performs better than the Bloom filter
when n is larger than 25. The compression rate of the set filter depends on the element length
l, and l depends on the protocol security, which is always not smaller than λ + log(n1n2). Thus
we recommend using filters. Another concern is that the fixed entry number leads to the strange
jaggies of cuckoo filter, which is required to be padded to 2i, where i ∈ N+. Thus the peaks and
valleys appear at the threshold points, which only depend on the load factor of the cuckoo filter.
The vacuum filter performs identically to the cuckoo filter when there are less than 216 elements
expected for insertion. As the insertion scale grows even larger, the compression rate of the vacuum
filter becomes smooth and steady and keeps at the valleys of the cuckoo filter. Thus we recommend
using vacuum filters when the expected insertion is larger than 216.

The original parameter settings in Vacuum filters bring an non-negligible probability of insertion
faults. The 4-layer chucks lead the inserted items to gather in smaller chucks, and many items
expected to be in larger chucks will hold two entries in the same smaller chucks by accident when
the size of two different chucks are similar. Thus the items appearing in smaller chucks can be much
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more than expected. We adjust the parameters of the chuck sizes to fix these problems by adding the
expected load factors of smaller chucks from (0.75, 0.5, 0.25) to (0.9, 0.7, 0.4), which significantly
reduces the insertion faults, and keeping the compression rate of the original design.

Fig. 2: The compression rates of filters under different expected insertion. The filters have identical
false positive rate as 2−40.
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Another concern is its security effects on the original protocol. We provide a detailed security
analysis in the random-oracle model in the Appendix based on simulation security proofs. We
conclude that the filters do not break the security when its false-positive rate is small enough. In the
original protocol, the length of OPRF results is required to be long enough based on the set size for
security. Similarly, when using filters, the parties are required to choose an optimal filter based on
the number of OPRF instances and expected insertions. The false-positive rate of a filter depends
on its structure and parameters, and our framework automatically chooses the best parameters.

In addition, we have considered whether this filter optimization can be applied to other PSI
protocols, including DH-based PSI. A classic DH-based PSI works as follows. The client determines
a subkey, who later encrypts his set elements and sends the intermediates to the server. The server
determines the other subkey, who encrypts both the server and client’s intermediates and sends
back the server’s intermediates as well as the client’s final encrypted results concatenated with the
client’s intermediates. The client encrypts the server’s intermediates and compares two sets of final
results to obtain the intersection. DH-based PSI has some similarities compared with OT-based PSI,
as they both map the private sets to a pseudo-random message space to obtain the intersection.
Unfortunately, our filter optimization does not work for DH-based PSI. The reason is that DH-based
PSI maps the elements twice, while OT-based PSI maps only once. Thus the client cannot match
the elements with corresponding final results when there are more than one mappings.

5.2 Parallelization

Parallelization is an efficient approach for reducing latency, which has been adopted by many existing
SMPC protocols. We also apply parallelization in our framework.
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Most original implementations of PSI protocols use C++, and the developers are required
to manually set threads for parallelization, which is inconvenient and may not obtain the best
performance in different scenarios. Our framework is implemented in Java, which provides the
parallel stream class, and can automatically execute in parallel according to the computational
power. A parallel parameter is set to determine whether a protocol is implemented in parallel or not.
Note that parallelization does not always get better performance, as it needs additional initialization
for distributing threads. Three conditions are considered to determine whether a piece of code
needs to be parallel. The codes contain cryptographic computations including hashing, symmetric
or asymmetric cryptography, and thus are required to be executed for O(n) or more times. Another
requirement is that there is no data dependency among different loops. We manually pick up these
codes and apply parallelization.

5.3 Big-endian Format and Common Conversions

We fix the byte arrays in our framework in a big-endian format. Our main consideration is that
BigIntegers in Java are represented in big-endian, and most of the cryptographic operations are
applied to BigIntegers. It is faster to convert BigIntegers to big-endian byte arrays rather than
small-endian. Moreover, most byte arrays in our framework are required to represent in fixed
lengths by padding enough “0”s. We prefer the “0”s to appear at the beginning of the arrays, and
thus the paddings are less probable for misreading. These conversion interfaces are packed in the
CommonConversion module in our framework. We additionally pack other conversion and padding
interfaces among common data types besides byte arrays, including BigIntegers, bools, and boolean
arrays, etc.

5.4 Custom-tailored Optimizations and Corrections

There are some custom-tailored optimizations and corrections for some of these OT-based PSI
protocols, which we found during implementation.

In Step 5 of the malicious-secure PSI protocol in [46], a random permutation π is generated to
map each OT instance to the Bloom filter according to its choice bits. However, the original protocol
description is not precise enough. The protocol only guarantees there are sufficient OT instances to
choose bits equaling 1, and the instances choosing 0 cannot satisfy the demand of the Bloom filter.
A more precise description of π is to first map the “0” OT instances to “0” positions in the Bloom
filter, and then pad “1” OT instances to remaining positions.

PSI protocols in [40] use Lagrange Polynomials for interpolation. We replace Lagrange Polynomial
with Newton Interpolation and find that the latter performs better. Moreover, there is a minor
problem in the polynomial evaluation algorithm of [40]. The authors recommended that the subset
size n of evaluated points and the degree d of the evaluated polynomial satisfy n, d ∈ (2l−1, 2l], where
l indicates an integer. However, the evaluation fails when n = d = 2l, because the polynomial of root
node may have a degree bigger than d and thus we modify it to n, d ∈ [2l−1, 2l). Pinkas et al. [41]
proposed two methods to construct a garbled cuckoo table, based on 2-core and DFS respectively.
We expected the DFS approach to perform better before evaluation, but our experimental results
show that they may have similar computational performance. We think it is because we adopted
Java instead of C/C++.

Many protocols in our framework use elliptic curves, including some base OT [37,32,8] and PSI
protocols [18,16,9,10]. We adopt secp256k1, which has a co-factor equaling 1, in terms of reducing
costs of point multiplications.
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6 Performance Evaluation

6.1 Experiment Design

Our goal is to find the combinations from the ground up for the best performance. A greedy strategy is
rationally based on the architecture of our framework. The modules in our framework can be roughly
divided into three levels based on their dependencies. Cryptographic primitives such as hashes,
ciphers, PRF, and PRG are generated independently. The primitives are combined to construct base
OTs and OTEs, and the OT-based PSI protocols consist of all the above modules. Thus we test the
modules in our framework from the ground up and look for the optimal combinations achieving the
best performances.

For primitives including hashes, ciphers, PRFs, and PRGs, we have tested their running times
when required to the output value of specific lengths from 20 to 220, and thus we get an optimal
strategy for choosing these primitives when outputs of different bit lengths are required. Then we
test the running time and communication of building blocks including OT and OTE protocols under
different network conditions, and finally provide a complete evaluation of different OT-based PSI
protocols.

6.2 Benchmark Environment

Our benchmarks are implemented on a physical machine with 8-core Intel(R) Core(TM) i9-9900K
3.60GHz CPU and 32GB RAM. We simulate four network connection cases, including a LAN and
three WAN networks. In the LAN setting, the bandwidth is set to be 4 Gbps, and the average
RTT is set to be 0.1 ms. In the WAN settings, we fix RTT as 80 ms and test on various network
bandwidths. WAN 1, WAN 2, WAN 3 networks have bandwidths equaling 100 Mbps, 10 Mbps, 1
Mbps, respectively. Our experiments use multiple threads for the sake of parallelization. Detailed
benchmarks for primitives and protocols are presented in Appendix B.

6.3 Evaluation

We aim to look for optimal primitives based on the results in Table 2, 3, 4, and 5. The inputs of
primitives are fixed to 128-bit long. The best-performed cases are annotated in the tables. In the
hash tests, we have found that the 160-bit hash function BLAKE2s in Bouncy Castle performs better
when hashing into short messages. SHA-512 of SHA-2 and SHA-3 performs better when hashing into
long messages. In the cipher test, the CTR-mode AES-Light in Bouncy Castle encrypts fastest when
the expected output length is within 210, and the CTR-mode AES implemented in JDK library
performs faster as the output length grows. Different PRG implementations based on CTR-mode
AES, SM4, and stream cipher ISSAC, ZUC-256 all perform well when generating a bit string shorter
than 214, but the PRG based on CTR-mode AES in JDK library performs significantly better when
longer output bit strings are expected. As for PRF, the implementation based on the Highway hash
function performs better when the expected output length is shorter than 28, and the one based on
AES in Bouncy Castle performs better in a range from 212 to 216. The one based on the SipHash
hash function performs better when expecting even longer outputs.

We have applied the strategies of choosing primitives in our base OT implementations, and the
results are presented in Table 6, which demonstrates that there are two base OT protocols performing
better considering both communication and latency, CO15 [8] and NP01 [37] based on ECC. They
have similar performances and can be regarded as a minor trade-off of communication and latency.
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CO15 has slightly less communication, and NP01 has slightly less latency. We have further adopted
CO15 as base OT to implement OTE protocols. The results are presented in Table 7 and 8. Different
OTE protocols have different security assumptions, and thus they need to be discussed separately
based on the upper-layer PSI protocols. The results of 1-out-of-2 OTE in Table 7 demonstrate that
ALSZ13 [1] achieves a significant performance improvement compared with IKNP03 [20], and thus
we recommend to use ALSZ13 for 1-out-of-2 OTE under semi-honest assumptions. Also, KOS15 [23]
costs more in both communication and latency, but it achieves malicious security. Note that PSI
protocols using 1-out-of-n OTE are mostly assigned to adopt a specified protocol, such as [28,47,41],
which is different from 1-out-of-2 OTE. Only PSZ14 [44] protocol does not assign the OTE protocol
and only requires 1-out-of-256 OTE instances. Thus we evaluate our 1-out-of-n OTE implementations
when n is fixed to be 256. The results are presented in Table 8, which demonstrates that KK13 [27]
runs fastest, and OOS17 requires less communication as well as achieving malicious security at the
same time.

We provide a detailed evaluation of PSI protocols in our framework based on the optimal choosing
strategies as above, and the results are proposed in Table 9. The results demonstrate that CM20 [7]
performs best considering both communication and latency among semi-honest secure PSI protocols.
KKRT16 [28] and PRTY19-Fast [40] also achieve good performance. PRTY20 [41] performs the best
among malicious-secure PSI protocols, especially when the scale of input sets grows larger. Note
that when the scale of PSI is too small, e.g. 28, public-key cryptographic PSI [18] is still the best
choice. The reason is that the number of required base OT instances is similar to the private set size,
and thus OT-based PSI cannot effectively optimize the performance with the advantages of OTE.

7 Which Protocol to Choose

A guideline for constructing efficient PSI protocols is presented in this section. To construct an
optimal PSI in a semi-honest case, we recommend ALSZ13 [1] to be as 1-out-of-2 OTE and adopt
CO15 [8] or ECC-based NP01 [37] as its dependent base OT instances according to the scenarios. In
malicious settings, we recommend KOS15 [23] to be a 1-out-of-2 OTE with the same dependencies
as the semi-honest case. 1-out-of-n OTE is always determined by specified protocols, and thus there
is no need to provide recommendation strategies. As for bottom-layer primitives, we recommend
BLAKE2s-160 and CTR-mode AESLight in Bouncy Castle to be as hashes and ciphers when
expecting a short output. The PRG instances are constructed using CTR-mode SM4 in Bouncy
Castle, and the PRF instances are constructed using the Highway hash function. When the primitives
are expected to output long bit strings, for example, the PRG used by OTE for matrix extension, we
recommend SHA-512 and CTR-mode AES in the JDK library to be as optimal hashes and ciphers.
Then the PRG instances are constructed using this CTR-mode AES, and the PRF instances are
constructed using SipHash or AES in the Bouncy Castle library. For practical PSI instances, we
recommend CM20 [47] and PRTY20 [41] for semi-honest and malicious cases respectively, considering
both communication and latency.

8 Related Works

PSI is an open MPC problem and has lots of other custom-tailored protocols besides the OT-based
ones, and these PSI protocols of other species are considered as our future work of extending our
work into a generic PSI framework. We provide a brief description of these protocols.
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Another big branch of PSI is circuit-based PSI. Garbled circuit (GC) is a natural choice to
compute functions on the intersection like other generic MPC problems. Any problems that can be
converted into a circuit can use GC for secure computation, and circuit-based PSI can be easily
extended to a private set analysis by connecting with certain analysis circuits, which is one of the
biggest advantages of circuit-based PSI protocols. Huang et al. [17] proposed a direct solution of
circuit-based PSI. The parties construct a sort-compare-shuffle circuit and then input their elements
to the circuit. which later sorts and compares to obtain the intersection, and the sorting information is
hidden by shuffling. The SCS circuit can directly concatenate with subsequent computing circuits to
evaluate specific functions. However, handling PSI entirely based on the circuit is inefficient, because
of the complexity. In [45], Pinkas et al. attempted to adopt cuckoo hashing to aid circuit-based
PSI. Similar with the hashing strategies in KKRT16 [28], the elements are inserted into simple and
cuckoo hash tables respectively, and the element in cuckoo hashing entry only needs to compare the
element inserted in two candidate entries of the simple hashing, and thus the comparisons of the
circuit can be greatly reduced. OPRF can also be constructed based on circuits. A garbled PRF
circuit is an natural instance of OPRF when the garbler inputs key k, and the evaluator inputs x.
Note that circuit-based PSI in [26,21] adopts this OPRF construction. In detail, [26] adopts garbled
AES circuit, and [21] adopts garbled LowMC circuit.

Pinkas et al. [43] proposed another circuit-based PSI with linear communication. Their optimiza-
tion mainly lies in their novel OPRF construction. Note that it [45], every entry of cuckoo hash
table is required to compare with all elements lying in its entry in the simple hash table. In [43], the
comparison is reduced to once for each hash entry. They presented a new primitive named Oblivious
Programmable Pseudo Random Function (OPPRF). OPPRF is kind like a correlated OPRF. If
one party inputs specific points {x}n, the PRF results is set to specific values {t}n respectively,
determined by the other party. While the outputs on the other input points acts like a random string.
OPPRF in [43] is constructed with BaRK-OPRF [28] and polynomials. The brief description lies as
follows. Alice holds a cuckoo hash table, and Bob holds a simple hash table. They apply an OPRF
instance for each entry. Alice inputs the element in the entry xA and gets PRFk(xA), while Bob gets
the key k. Then Bob applies a polynomial interpolation to the point set {(xB,i, ti ⊕ PRF (xB,i))},
where i ∈ [|{xB}|]. The polynomial p is sent to Alice, who computes PRFk(xA)⊕ p(xA) locally as
the OPPRF result yA. It is interesting that if all ti equal to the same t, obviously we have yA = t
when xA ∈ {xB}. If xA /∈ {xB}, yA seems to be a random string. Thus with the help of OPPRF,
Alice and Bob determine whether xA ∈ {xB} by only comparing yA and t, and the subsequent
comparison circuit can be reduced to only one. Note that although an independent OPRF instance is
required for each entry, multiple entries can share a common polynomial by interpolating the point
sets of different entries into the single polynomial. The entries sharing a common polynomial consist
of a mega-bin. They set the optimal number of mega-bin as (N/logN) to get optimal communication
cost, where N is the number of the parties’ elements. Note that their PSI still achieves a superlinear
communication when handling stash, because the elements in Alice’s cuckoo stash still need to
compare with all elements of Bob. The authors proposed two methods to efficiently handle stash [43].
One is dual execution, which requires Bob to reinsert his elements in cuckoo hashing, and Alice
inserts her stash elements in simple hashing. They then apply a reverse OPPRF and input PRF
results into comparison circuits, and finally compare the elements in Bob’s stash with Alice’s stash
one by one. The other is the adoption of stashless cuckoo hashing, by adjusting the parameters to
guarantee that the stash is not empty in a negligible probability, like [11]. Both two methods achieve
linear communication, but stashless cuckoo hashing performs better according to their proposed
evaluation results. Another advantage of their PSI is that it is extendable to compute on the payloads
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of the intersection, by applying another OPPRF instance for each entry, whose results will be input
to the circuit together with yA and t.

PSI in [21] also adopts circuits, and it aims at an unbalanced case of PSI. It improves two
protocols in [26]. The idea of [21] follow the naive approach. In their circuit-based PSI, the server
builds and garbles a PRF circuit, and sends it to the client, who obtains its input labels with OT,
and locally evaluates the circuit to output PRF results. Then the server computes plaintext PRF
with its set and inserts PRF results into a cuckoo filter. The client checks the existence of each
set element in the cuckoo filter and obtains the intersection. Their NR-PSI is similar to GC-PSI,
except that the PRF circuit is replaced by NR-PRF. Their protocols’ efficiency comes from their
pre-computation because the computationally expensive tasks are performed in the pre-computation
phase. OT operations are placed into the precomputing phase, where the server and client apply
OT extension [20] on pairs of correlated random masks, and the masks will be used to compute the
circuit wire labels. Thus the online phase-only consists of efficient symmetric primitives. The cuckoo
filter is managed by the server and can be inserted or deleted conveniently. Another optimization
itekales2019mobile is the adoption of the LowMC circuit. The cost of the online phase lies in label
transferring and circuit evaluation, and a simpler circuit achieves better performance.

Demmler et al. [11] also proposed an interesting PSI protocol aimed at unbalanced cases. Their
protocol can be regarded as a scale reducing the extension of PSI. It first reduces the scale of the
original unbalanced PSI into a two-party PSI with a smaller scale, and then it can be handled with
efficient protocols such as [28].

Another interesting direction of PSI is to utilize a third party. A naive approach of a third
party-aided PSI is that Alice and Bob locally apply PRF to their input sets, and send the outputs
to the third party. The third-party compares these PRF outputs that seem random to himself
because he learns nothing about the PRF. The comparison results will be returned to Alice and Bob,
who later obtains the intersection from the intersection’s PRF results. However, this naive scheme
requires the third party to be semi-honest. A malicious third party may manipulate the intersection
by modifying the PRF results’ intersection, even though he gets no access to the original set elements
of the participants. Le et al. [30] proposed a PSI protocol aided by an untrusted third party. Their
protocol applies an additional cardinality verification to the naive solution. The untrusted third-party
is required to prove that the intersection cardinality equals to a certain τ he commits, to convince
the participants that he applies no manipulation on the expected intersection. The cardinality
verification is based on polynomial interpolation. Note that at least n points can interpolate a
certain (n− 1)-degree polynomial. In [30], Alice and Bob first apply PRFk1 to their private sets X
and Y . The third party, named Carlos, compares X̂ = PRFk1(X) and Ŷ = PRFk1(Y ) to obtain
the PRF results’ intersection, and returns the cardinality τ to Alice and Bob afterwards. Alice and
Bob generate two random polynomials, where p1 has a degree of (τ − 1), and p2 has a degree of
(|X|+ |Y | − τ − 1). They evaluate p1 and p2 on X̂ and Ŷ , and choose another PRF PRFk2 to map
X̂ and Ŷ . Then Alice computes V1 ← {(x̂, PRFk2(x̂))|x̂ ∈ X̂}, and W1 ← {(x̂, p2(x̂))|x̂ ∈ X̂}. Bob
computes V2 ← {((̂y), p1(ŷ) ⊕ PRFk2(ŷ))|ŷ ∈ Ŷ }, and W2 ← {(ŷ, p2(ŷ))|ŷ ∈ Ŷ }. (V1, V2,W1,W2)
are sent to Carlos, who is required to interpolate p1 and p2 using (V1, V2,W1,W2). If Carlos acts
honestly, he can interpolate p1 with point set {(a, b⊕ c)|(a, b) ∈ V1&(a, c) ∈ V2}, and interpolate
p2 with point set W1

⋃
W2. If Carlos lied about the cardinality before, he cannot interpolate both

p1 and p2 correctly. The polynomial-based cardinality verification requires low communication but
more latency. Thus another circuit-based PSI was presented in [30]. PRF result sets X̂ and Ŷ are
distributed as secret shares among three participants. Note that [30] adopts replicated sharing in [35].
After Carlos compares X̂ and Ŷ to obtain the intersection, he is required to generate a permutation
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π which switches elements belonging to the intersection to front and switches the sorted leftovers
to end. Then the participants shuffle the shares of X̂||Ŷ using π. Then a 3PC circuit is applied to
compare the first 2τ elements of shuffled X̂||Ŷ , to check whether there are τ equaling pairs. For
the leftovers behind, another 3PC circuit is applied to check whether they are arranged in sorted
order. The protocol adopts if any verification fails. Another advantage of their PSI protocol is its
extendibility to secure computation of the intersection payloads.

9 Conclusion

In this paper, we make integrated research of up-to-date OT-based PSI protocols and have introduced
a Java-based PSI framework, in which we implement these PSI protocols together with their dependent
building blocks and primitives. Our framework is modular and extendable and thus enables us to
analyze, compare, and optimize these protocols. We present several optimizations in our framework,
including filters and paralization, which significantly reduce the latency and communication costs.
We present a detailed performance analysis of these protocols and provide a guideline as to which
primitives and building blocks to choose to construct an optimal OT-based PSI protocol. We believe
that our framework benefits a lot for future PSI researches.
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A Security Proofs for Filters

As mentioned in the filter optimization section, most OT-based PSI protocols require the sender to
send the PRF result set to the receiver for comparison. We replace this step with filter insertions
and checks, and this optimization achieves a great communication reduction. However, the security
of using filters is also worth consideration. In this section, we provide a formal security analysis to
prove that the protocols optimized by filters still maintain identical security.

We define an ideal filter functionality Ffilter with two oracles. One is the inserting oracle Oins,
and the other is the checking oracle Ochk. The functionalities of Oins and Ochk lie as follows:
Oins : (S, (M, {H}))→ V
Ochk : (x, (M, {H}), V )→ b
Oins performs like a PRF. It maps an input set S (S ∈ Z) to a pseudo-random vector V with a

public mapping strategyM and a set of random oracles {H}, where V = {vi}. {vi} is pseudo-random
bits in Bloom filters and is pseudo-random strings in cuckoo filters. Ochk inputs (x, (M, {H}), V )
where x ∈ Z is a element in the field of S. It returns a bit of true if inS. If x /∈ S, it returns true
with a negligible probability of ε, or returns false with the probability of (1 − ε). ε is the false
positive rate of the filter which is determined by (M, {H}).

Simulator overview The simulator utilizes the oracles of original non-filter protocols to simulate
other messages during execution. In the sender’s view, the simulator invokes Ochk to recover the
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corrupted sender’s elements based on the filter vector V , and the recovered elements are injected
into the ideal PSI function to obtain the intersection. In the receiver’s view, the simulator first
simulates a list of OPRF results using the oracles from the original non-filter protocols, and then
invokes Oins to insert the results into a filter, which will be later sent to the corrupted receiver.

Theorem 1. Assume that P is an OT-based PSI protocol with the final step of comparing OPRF
results in plaintext, and P ′ is our new protocol using filters. If P is secure against a semi-
honest/malicious adversary, and Nε < 2−λ, then P ′ is also secure against a semi-honest/malicious
adversary. λ indicates the statistic security parameter of P, and N indicates the upper bound of the
insertion number of the filter.

Proof. As P is proven to be secure against the adversary, there exists a set of oracles {OP } to
simulate all possible messages of P . If {OP } is secure, then the simulators for the sender and receiver
of P must exist, and we can use them as subroutines when constructing simulators for P ′.

Sender’s view We start from a corrupted sender. The simulator for a corrupted sender observes
the sender’s inputs and outputs, and also observes all of the sender’s queries to random oracles in
{H} as well as other observations of the non-filter simulator SimPS . The simulator collects an OPRF
result set Ỹ = {y|y was queried to {H}}. The front phases of P ′ are identical to those of P, thus
SimP

′

S is also identical to SimPS in these phases. The difference lies in the final phase of P and P ′.
After SimP

′

S receives V ′ from the corrupted sender, it applies Ochk on every OPRF result in Ỹ , and
obtains Y ′ = {y ∈ Ỹ |Ochk(y, (M, {H}), V ′) = true}. The simulator then sends Y ′ to SimPS to finish
subsequent simulations.

We then prove the indistinguishability of this simulator. The only difference in the front phases
is to record the queries and has nothing to do with the outputs and the intermediate messages.
Thus the messages in the front phases are directly simulated by SimPS , which has been proven to
be indistinguishable. When Ochk is involved, the simulator SimP

′

S aborts in two cases. One is that
the honest receiver holds x ∈ XR\XS , but FOPRF (x) ∈ FOPRF (XS), and however, this case can be
handled by SimPS , which is not taken into our consideration. The other case is that the honest receiver
holds x ∈ XR, whose OPRF result satisfies FOPRF (x) /∈ Ỹ , but Ochk(FOPRF (x), (M, {H}), V ′) =
true. In that case, x appears in the intersection output of P ′ by mistake. This case happens with
the probability of ε for every individual x based on the above definitions, and thus the existence
probability of this kind of x is less than nε, where n indicates the honest receiver’s set size. If the
probability is bounded by nε < 2−λ, it is indistinguishable from the ideal functionality.

Receiver’s view We also construct another simulator for a corrupted receiver SimP
′

R . SimP
′

R

observes the receiver’s inputs and outputs, and also observes all of the receiver’s queries to random
oracles in {H}, as well as other observations of SimPR. The front phases of P ′ are identical to those
of P, thus SimP′R is identical to SimPR in these phases. Then we focus on the final phase. The task
for SimP

′

R is to simulate an indistinguishable filter V ′ without obtaining the input of the honest
sender, and we define SimP

′

R to behave as follows. SimP
′

R invokes SimP
′

R to generate a simulated
OPRF results’ set Ỹ , and inputs (Ỹ , (M, {H})) to Oins to construct the filter vector V ′, which will
be later sent to the corrupted receiver.

We then prove the indistinguishability of this simulator. The sender’s message in the real world
is V = Oins(HOPRF (XS), (M, {H})). SimP′R aborts in two cases. One case is that the corrupted
receiver holds an element x ∈ X̃\XS , but FOPRF (x) ∈ FOPRF (XS), and this case can be handled by
SimPR. The other case is that the corrupted receiver holds x ∈ X̃, where FOPRF (x) /∈ FOPRF (XS),
but Ochk(HOPRF (x), (M, {H}), V ′) = true. Then x appears in the output intersection by mistake.
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This case happens with the probability of ε for every individual x ∈ X̃ based on the oracle definition,
and thus the probability is less than Nε, where N ′ is the upper bound of the size of X̃, which
indicates the maximum of the filter the corrupted receiver is allowed to check. Obviously, the check
times are less than the upper bound of the filter’s insertion number N . Thus if the probability is
bounded by Nε < 2−λ, it is indistinguishable from the ideal functionality.

Overall, as an OT-based PSI protocol, P always has n < N , and thus the condition of the
two views can be rewritten as, nε < Nε < 2−λ. Then we conclude that the simulators of P is
indistinguishable under the condition of Nε < 2−λ.

B Experimental Results
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Table 2: Running time for different hash implementations to output an l-bit value. (µs) The input
length is fixed to be 128-bit.

log2l 0 2 4 6 8 10 12 14 16 18 20

JDK-SHA-256 4.02 1.47 1.33 1.38 1.52 3.55 12.1 33.6 99.3 369 1407

BC-BLAKE2b-160 1.44 1.12 1.05 1.07 4.37 6.41 18.5 54.2 197 765 3079

BC-BLAKE2b-256 0.591 0.639 0.542 0.546 0.596 2.04 7.84 31.2 127 504 2015

BC-BLAKE2b-384 0.592 0.618 0.531 0.535 0.643 1.63 5.81 22.6 90.6 361 1449

BC-BLAKE2b-512 0.680 0.689 0.632 0.641 0.701 1.28 4.74 18.2 74.6 294 1173

BC-BLAKE2s-128 1.07 1.04 0.889 1.01 1.59 5.75 19.0 50.9 198 787 3139

BC-BLAKE2s-160 0.503 0.479 0.436 0.444 0.847 2.81 10.3 40.4 163 648 2585

BC-BLAKE2s-224 0.511 0.491 0.534 0.460 0.871 2.13 7.84 30.4 123 484 1937

BC-BLAKE2s-256 0.831 0.735 0.716 0.753 0.638 2.16 7.56 29.9 113 443 1766

BC-SHA2-SHA256 2.01 1.66 1.58 1.59 1.70 5.15 9.00 32.1 102 378 1510

BC-SHA2-SHA384 1.94 1.77 1.52 0.746 0.722 1.79 6.64 22.3 89.7 350 1407

BC-SHA2-SHA512 5.69 0.608 0.555 0.672 0.593 1.21 4.72 17.9 71.2 279 1116
BC-SHA2-SHA512/224 0.688 0.601 0.589 0.626 1.08 2.69 10.0 40.3 153 606 2424

BC-SHA2-SHA512/256 0.614 0.594 0.664 0.558 0.558 2.30 8.43 33.6 136 540 2173

BC-SHA3-224 1.50 0.902 0.763 0.832 1.36 3.01 10.3 39.2 158 623 2479

BC-SHA3-256 0.616 0.594 0.568 0.559 0.603 2.19 8.51 34.0 137 546 2188

BC-SHA3-384 0.606 0.619 0.557 0.565 0.637 1.69 6.03 23.5 93.2 380 1513

BC-SHA3-512 0.640 0.591 0.548 0.555 0.587 1.19 4.56 18.4 73.4 291 1161

Table 3: Running time for different cipher implementations to output an l-bit value. (µs) The input
length is fixed to be 128-bit.

log2l 0 2 4 6 8 10 12 14 16 18 20

JDK-CTR-AES 3.40 2.92 2.82 2.96 3.05 3.53 4.88 11.9 32.7 54.0 223
BC-Stream-ISAAC 6.67 5.79 6.08 6.69 10.1 7.88 6.86 10.0 40.9 163 653

BC-CTR-AESLight 1.52 1.20 1.01 1.16 1.43 2.77 6.23 23.0 84.1 324 1291
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Table 4: Running time for different PRG implementations to output an l-bit value. (µs) The input
length is fixed to be 128-bit.

log2l 0 2 4 6 8 10 12 14 16 18 20

JDK-CTR-AES 3.35 2.93 2.76 2.79 2.73 3.09 4.76 10.9 18.6 61.3 401
BC-CTR-AESLight 1.67 1.30 0.968 1.02 1.46 2.56 5.83 21.0 82.5 316 1225

BC-CTR-AES 1.46 1.17 0.876 0.974 1.22 2.95 5.47 16.7 66.4 273 1100

BC-CTR-SM4 1.43 1.04 0.812 1.14 1.19 2.48 6.93 29.8 115 416 1668

BC-Stream-CHACHA 1.55 1.84 1.92 1.71 1.37 3.41 5.36 11.4 40.2 156 633

BC-Stream-ISAAC 8.74 6.41 6.52 6.71 4.10 2.55 3.65 8.87 31.4 122 513

BC-Stream-ZUC128 1.91 1.73 1.77 2.66 2.54 2.40 5.13 16.6 64.0 272 940

BC-Stream-ZUC256 3.01 2.78 2.71 1.71 1.41 1.92 4.50 16.1 60.4 236 919

JDK-Digest-SHA1 1.99 1.50 1.89 1.29 1.94 3.10 7.59 26.9 101 392 1573

BC-Digest-BLAKE2b160 3.40 2.59 2.49 2.76 2.81 4.83 11.5 35.2 135 521 2086

BC-Digest-SHA2SHA256 6.74 2.39 1.35 1.59 2.24 5.74 15.3 45.4 181 712 2873

Table 5: Running time for different PRF implementations to output an l-bit value. (µs) The input
length is fixed to be 128-bit.

log2l 0 2 4 6 8 10 12 14 16 18 20

SipHashPRF 1.27 0.864 0.765 0.772 1.67 3.66 13.0 31.6 76.2 218 926
HighwayHashPRF 1.57 0.517 0.399 0.493 1.92 3.88 13.1 46.6 190 832 2915

NaiveHashPRF-JDKSHA1 1.19 0.566 0.588 0.577 1.15 3.13 11.2 37.6 132 507 2036

NaiveHashPRF-JDKSHA256 4.06 2.75 2.67 1.60 1.20 2.08 11.1 38.4 141 403 1602

NaiveHashPRF-BCSM3 1.92 1.69 3.30 3.14 3.17 7.47 13.7 36.7 138 403 1481

BCBlockCipherPRF-AESLight 5.12 3.92 3.31 1.89 2.82 2.90 6.53 21.7 83.7 304 1205

BCBlockCipherPRF-AES 5.68 1.86 1.74 1.64 1.80 2.50 5.23 16.6 62.1 279 1125

BCBlockCipherPRF-SM4 2.32 1.79 1.51 1.80 2.16 3.79 10.6 39.0 110 421 1690

Table 6: Running time (ms) and communication (KB) of the sender (Snd) and the receiver (Recv)
for base OT implementations. LAN setting has a 4 kGbps bandwidth and a 0.1 ms RTT. WAN1
setting has a 100 Mbps bandwidth and a 80 ms RTT. WAN2 setting has a 10 Mbps bandwidth and
a 80 ms RTT. WAN3 setting has a 1 Mbps bandwidth and a 80 ms RTT.

n Protocol
Comm. Running time (LAN) Running time (WAN1) Running time (WAN2) Running time (WAN3)

Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total

27

NP01(FFG) [37] 0.25 16 16.25 27 17 44 187 96 283 198 96 294 311 97 408
NP01(ECC) [37] 0.064 4.13 4.19 10 6 16 169 85 254 172 85 257 201 85 286

CO15 [8] 0.032 4.13 4.16 13 7 20 173 86 259 175 87 262 207 87 294
MR19(ECC) [32] 4.13 8.25 12.38 18 12 30 97 91 188 102 95 197 160 124 284
MR19(FFG) [32] 16 48 64 38 32 70 118 110 228 147 114 261 485 227 712

28

NP01(FFG) [37] 0.25 32 32.25 52 33 85 213 112 325 235 113 348 460 113 573
NP01(ECC) [37] 0.064 8.25 8.31 20 10 30 178 89 267 184 90 274 243 90 333

CO15 [8] 0.032 8.25 8.28 22 11 33 184 92 276 191 94 285 248 92 340
MR19(ECC) [32] 8.25 16 24.25 34 24 58 115 103 218 125 110 235 241 167 408
MR19(FFG) [32] 32 96 128 74 64 138 155 139 294 215 149 364 890 375 1265

29

NP01(FFG) [37] 0.25 64 64.25 102 66 168 265 145 410 308 144 452 761 146 907
NP01(ECC) [37] 0.064 16.5 16.56 36 20 56 196 100 296 209 101 310 325 101 426

CO15 [8] 0.032 16.5 16.53 37 20 57 199 100 299 211 100 311 327 100 427
MR19(ECC) [32] 16.5 33 49.5 66 45 111 149 125 274 168 138 306 400 253 653
MR19(FFG) [32] 64 192 256 148 116 264 229 198 427 350 219 569 1701 670 2371

210

NP01(FFG) [37] 0.25 128 128.25 201 130 331 366 206 572 457 208 665 1356 207 1563
NP01(ECC) [37] 0.064 33 33.06 68 39 107 232 121 353 254 119 373 487 120 607

CO15 [8] 0.032 33 33.03 72 38 110 236 119 355 257 119 376 492 120 612
MR19(ECC) [32] 33 66 99 136 94 230 218 173 391 254 194 448 720 425 1145
MR19(FFG) [32] 128 384 521 294 216 510 363 366 729 337 368 705 322 1261 1583
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Table 7: Running time (s) and communication (KB) for 1-out-of-2 OTE implementations. “Snd” and
“Recv” denote communications the sender and receiver send respectively, and “SH”, “M” denote the
security level of “Semi-honest”, and “Malicious” respectively. LAN setting has a 4 kGbps bandwidth
and a 0.1 ms RTT. WAN1 setting has a 100 Mbps bandwidth and a 80 ms RTT. WAN2 setting has
a 10 Mbps bandwidth and a 80 ms RTT. WAN3 setting has a 1 Mbps bandwidth and a 80 ms RTT.

n Protocol Security
Comm. Running time (LAN) Running time (WAN1) Running time (WAN2) Running time (WAN3)

Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total

28
IKNP03 [20]

SH
4.13 8.03 12.2 0.02 0.02 0.4 0.26 0.17 0.43 0.27 0.18 0.45 0.35 0.21 0.56

ALSZ13 [1] 4.13 4.03 8.26 0.03 0.02 0.05 0.26 0.18 0.44 0.27 0.18 0.45 0.32 0.21 0.53
KOS15 [23] M 4.13 6.7 10.8 0.05 0.04 0.09 0.44 0.35 0.79 0.46 0.36 0.82 0.53 0.44 0.97

212
IKNP03 [20]

SH
4.13 128 132 0.07 0.04 0.11 0.31 0.20 0.51 0.41 0.20 0.61 1.34 0.23 1.57

ALSZ13 [1] 4.13 64 68 0.07 0.04 0.11 0.31 0.20 0.51 0.36 0.20 0.56 0.84 0.23 1.07
KOS15 [23] M 4.13 66.5 70.5 0.35 0.21 0.56 0.73 0.52 1.25 0.81 0.57 1.38 1.29 1.07 2.36

216
IKNP03 [20]

SH
4.13 2048 2052 1.11 0.55 1.66 1.34 0.70 2.04 1.32 0.68 2.00 1.34 0.72 2.06

ALSZ13 [1] 4.13 1024 1028 1.08 0.51 1.59 1.35 0.71 2.06 1.32 0.68 2.00 1.33 0.71 2.04
KOS15 [23] M 4.13 1027 1031 5.13 3.00 8.13 5.82 3.53 9.35 5.46 3.45 8.91 5.39 3.41 8.80

220
IKNP03 [20]

SH
4.13 32768 32772 17.7 8.83 26.5 17.4 8.78 26.2 17.1 8.22 25.3 18.2 9.32 27.5

ALSZ13 [1] 4.13 16384 16388 18.0 8.64 26.6 17.3 8.28 25.6 18.3 8.71 27.0 18.4 8.4 26.8
KOS15 [23] M 4.13 16387 16391 80.7 49.1 129.8 79.3 49.3 128.6 80.5 51.0 131.5 82.6 50.5 133.1

Table 8: Running time (s) and communication (KB) for 1-out-of-n OTE implementations, where
n = 256. “Snd” and “Recv” denote communications the sender and receiver send respectively, and
“SH”, “M” denote the security level of “Semi-honest”, and “Malicious” respectively. LAN setting has a
4 kGbps bandwidth and a 0.1 ms RTT. WAN1 setting has a 100 Mbps bandwidth and a 80 ms RTT.
WAN2 setting has a 10 Mbps bandwidth and a 80 ms RTT. WAN3 setting has a 1 Mbps bandwidth
and a 80 ms RTT.

n Protocol Security
Comm. Time (LAN) Time (WAN1) Time (WAN2) Time (WAN3)

Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total

28
KK13 [27]

SH
8.25 16.05 24.3 0.04 0.04 0.08 0.30 0.21 0.51 0.32 0.22 0.54 0.50 0.28 0.78

KKRT16 [28] 13.7 26.6 40.3 0.08 0.07 0.15 0.38 0.29 0.67 0.41 0.30 0.71 0.75 0.45 1.20
OOS17 [38] M 8.25 10.6 18.9 0.04 0.04 0.08 0.45 0.37 0.82 0.45 0.37 0.82 0.67 0.58 1.25

212
KK13 [27]

SH
8.25 256 263 0.19 0.13 0.32 0.44 0.28 0.72 0.63 0.30 0.93 2.50 0.37 2.87

KKRT16 [28] 14.0 432 446 0.32 0.22 0.54 0.64 0.46 1.10 0.66 0.49 1.15 1.19 0.65 1.84
OOS17 [38] M 8.25 131 139 0.19 0.18 0.37 0.61 0.52 1.13 0.70 0.62 1.32 2.09 1.99 4.08

216
KK13 [27]

SH
8.25 4.10×103 4.11×103 3.06 2.10 5.16 3.21 2.14 5.35 3.28 2.18 4.46 5.63 2.39 8.02

KKRT16 [28] 14.2 7.05×103 7.06×103 5.56 3.64 9.20 5.86 3.99 9.85 5.83 3.87 9.70 10.1 4.27 14.4
OOS17 [38] M 8.25 2.05×103 2.06×103 2.97 2.95 5.92 3.61 3.50 7.11 3.38 3.27 6.65 10.3 10.1 20.4

220
KK13 [27]

SH
8.25 6.55×104 6.55×104 49.3 33.4 82.7 46.7 31.2 77.9 50.5 33.8 84.3 54.3 35.9 90.2

KKRT16 [28] 14.5 1.15×105 1.15×105 93.1 62.5 155.6 93.9 63.0 156.9 91.1 60.4 151.5 98.5 64.8 163.3
OOS17 [38] M 8.25 3.28×104 3.28×104 50.1 49.1 99.2 51.1 50.1 101.2 49.8 49.2 99.0 59.1 58.3 117
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Table 9: Running time (s) and communication (KB) for PSI implementations. “Snd” and “Recv”
denote communications the sender and receiver send respectively, and “N”, “SH”, “M” denote the
security level of “Not Secure”, “Semi-honest”, and “Malicious” respectively. “-” denotes cases with too
much communication or latency. LAN setting has a 4 kGbps bandwidth and a 0.1 ms RTT. WAN1
setting has a 100 Mbps bandwidth and a 80 ms RTT. WAN2 setting has a 10 Mbps bandwidth and
a 80 ms RTT. WAN3 setting has a 1 Mbps bandwidth and a 80 ms RTT.

n Protocol
Comm. Time (LAN) Time (WAN1) Time (WAN2) Time (WAN3)

Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total Snd Recv Total

28

Naive N 8 0 8 0.001 0.003 0.004 0.002 0.08 0.08 0.001 0.09 0.09 0.00 0.15 0.15
FFH99(ECC) [18]

SH

10.0 8.25 36.5 0.08 0.08 0.16 0.15 0.24 0.39 0.19 0.27 0.46 0.25 0.34 0.59
FFH99(FFG) [18] 33.7 32.0 65.7 0.21 0.21 0.42 0.29 0.37 0.66 0.35 0.43 0.78 0.56 0.65 1.21

CT10 [9] 66 64 130 1.68 1.69 3.37 1.96 2.05 4.01 2.04 2.18 4.22 2.25 2.84 5.09
HL08(ECC) [16] 2.06×103 512 2.57×103 0.48 0.58 1.06 0.89 1.14 2.03 0.97 1.22 2.19 1.07 1.33 1.40
HL08(FFG) [16] 2.10×103 512 2.61×103 0.80 0.90 1.70 1.21 1.47 2.68 1.29 1.54 2.83 1.59 1.86 3.45

DCW13 [13] 148 232 380 0.25 0.30 0.55 0.69 0.83 1.52 0.91 1.16 2.07 2.57 3.83 6.40
PSZ14 [44] 29.3 274 303 1.32 1.32 2.64 1.71 1.86 3.57 1.72 1.89 3.61 1.81 2.13 3.94

PSZ14(GBF) [44] 5.66 232 238 0.15 0.16 0.31 0.56 0.65 1.43 0.79 0.88 1.67 2.44 2.55 3.99
KKRT16 [28] 18.7 33.2 51.9 0.20 0.21 0.41 0.69 1.87 2.56 0.77 1.97 2.74 1.05 2.28 3.33

PRTY19(Low) [40] 14.8 13.0 27.8 0.34 0.34 0.68 0.74 0.82 1.56 0.90 0.98 1.88 1.00 1.09 2.09
PRTY19(Fast) [40] 16.3 13.5 29.8 0.27 0.27 0.54 0.69 0.84 1.53 0.82 0.96 1.78 0.91 1.09 2.00

PRTY20 [41] 16.1 41.4 57.5 0.27 0.27 0.54 0.88 0.96 1.84 1.11 1.19 2.30 1.33 1.42 2.75
CM20 [7] 20.4 18.3 38.7 0.40 0.41 0.81 1.02 1.10 2.12 1.22 1.31 2.53 1.21 1.30 2.51
RR16 [46]

M

13.9 881 895 6.84 6.86 13.7 7.22 7.30 14.5 7.20 7.31 14.5 9.38 9.48 18.9
RR17(DE) [47] 87.1 63.8 151 0.68 0.72 1.40 1.45 1.55 3.00 1.92 2.08 4.00 3.61 4.08 7.69
RR17(EC) [47] 63.2 56.7 120 0.25 0.25 0.50 0.80 0.90 1.70 1.05 1.24 2.29 1.91 2.88 4.79
PRTY20 [41] 26.6 72.4 99.0 0.47 0.47 0.94 1.00 1.08 2.08 1.15 1.23 2.38 1.90 2.00 3.90

212

Naive N 128 0 128 0.005 0.01 0.02 0.005 0.10 0.11 0.03 0.22 0.25 0.007 1.09 1.10
FFH99(ECC) [18]

SH

- - - - - - - - - - - - - - -
FFH99(FFG) [18] - - - - - - - - - - - - - - -

CT10 [9] - - - - - - - - - - - - - - -
HL08(ECC) [16] - - - - - - - - - - - - - - -
HL08(FFG) [16] - - - - - - - - - - - - - - -

DCW13 [13] - - - - - - - - - - - - - - -
PSZ14 [44] 200 4.92×103 5.12×103 24.6 24.6 49.2 23.3 23.4 46.7 21.4 21.7 43.1 23.5 25.1 48.6

PSZ14(GBF) [44] 28.1 3.69×103 3.72×103 3.39 5.44 8.83 3.73 5.82 9.55 3.85 6.55 10.4 4.46 7.48 11.9
KKRT16 [28] 86.2 520 606 0.40 0.40 0.80 0.87 1.53 2.40 0.91 1.65 2.56 0.98 2.22 3.20

PRTY19(Low) [40] - - - - - - - - - - - - - - -
PRTY19(Fast) [40] 61.6 218 280 1.00 1.00 2.00 1.43 1.52 2.95 1.66 1.77 3.43 3.27 3.68 6.95

PRTY20 [41] 38.5 546 585 0.61 0.61 1.22 1.14 1.22 2.36 1.35 1.46 2.81 1.48 1.76 3.24
CM20 [7] 43.3 299 342 0.56 0.57 1.13 1.01 1.10 2.11 1.09 1.20 2.29 1.12 1.39 2.51
RR16 [46]

M

- - - - - - - - - - - - - - -
RR17(DE) [47] 1.33×103 934 2.26×103 2.31 2.62 4.93 3.25 3.60 6.85 3.39 3.82 7.21 3.62 4.06 7.68
RR17(EC) [47] 1.09×103 926 2.02×103 1.14 1.16 2.30 1.71 1.81 3.52 1.78 1.98 3.76 1.89 2.60 4.49
PRTY20 [41] 48.8 936 985 0.90 0.90 1.80 1.47 1.55 3.12 1.62 1.73 3.35 1.86 2.14 4.00

216

Naive N 2.05×103 0 2.05×103 0.09 0.18 0.27 0.09 0.26 0.35 0.09 0.25 0.34 0.07 0.25 0.32
FFH99(ECC) [18]

SH

- - - - - - - - - - - - - - -
FFH99(FFG) [18] - - - - - - - - - - - - - - -

CT10 [9] - - - - - - - - - - - - - - -
HL08(ECC) [16] - - - - - - - - - - - - - - -
HL08(FFG) [16] - - - - - - - - - - - - - - -

DCW13 [13] - - - - - - - - - - - - - - -
PSZ14 [44] - - - - - - - - - - - - - - -

PSZ14(GBF) [44] 388 5.91×104 5.92×104 517 1.01×103 1.53×103 511 1.00×103 1.51×103 728 1.43×103 2.16×103 760 1.50×103 2.26×103

KKRT16 [28] 1.17×103 8.45×103 9.62×103 3.15 3.19 6.34 3.62 3.75 7.37 3.48 3.64 7.12 3.93 4.07 8.00
PRTY19(Low) [40] - - - - - - - - - - - - - - -
PRTY19(Fast) [40] 781 3.54×103 4.32×103 12.6 12.7 25.3 12.6 12.8 25.4 12.9 13.0 25.91 12.7 12.8 25.5

PRTY20 [41] 399 8.88×103 9.28×103 5.66 5.71 11.4 6.42 6.53 13.0 6.51 6.65 13.1 6.47 6.61 13.1
CM20 [7] 403 4.87×103 5.27×103 4.00 4.08 8.08 4.68 4.81 9.49 4.54 4.70 9.24 5.61 5.74 11.4
RR16 [46]

M

- - - - - - - - - - - - - - -
RR17(DE) [47] 2.18×104 1.52×104 3.70×103 32.2 38.0 70.2 34.5 40.5 75.0 34.3 39.9 74.2 34.1 40.2 74.3
RR17(EC) [47] 2.02×104 1.52×104 3.54×104 17.8 18.1 35.9 19.2 19.6 38.8 19.4 19.8 39.2 19.2 19.6 38.8
PRTY20 [41] 408 1.43×104 1.47×103 8.56 8.61 17.2 9.05 9.16 18.2 9.30 9.45 18.8 10.3 10.4 20.7

220

Naive N - - - - - - - - - - - - - - -
FFH99(ECC) [18]

SH

- - - - - - - - - - - - - - -
FFH99(FFG) [18] - - - - - - - - - - - - - - -

CT10 [9] - - - - - - - - - - - - - - -
HL08(ECC) [16] - - - - - - - - - - - - - - -
HL08(FFG) [16] - - - - - - - - - - - - - - -

DCW13 [13] - - - - - - - - - - - - - - -
PSZ14 [44] - - - - - - - - - - - - - - -

PSZ14(GBF) [44] - - - - - - - - - - - - - - -
KKRT16 [28] - - - - - - - - - - - - - - -

PRTY19(Low) [40] - - - - - - - - - - - - - - -
PRTY19(Fast) [40] 1.29×104 5.77×104 7.06×104 210 211 421 201 202 403 199 201 400 199 200 399

PRTY20 [41] 6.16×103 1.52×105 1.58×105 107 108 215 102 102 204 105 106 211 97.9 99.2 197
CM20 [7] 6.16×103 7.95×104 8.52×104 90.0 90.9 180.9 92.7 93.7 186 89.1 91.7 181 90.0 91.3 181
RR16 [46]

M

- - - - - - - - - - - - - - -
RR17(DE) [47] - - - - - - - - - - - - - - -
RR17(EC) [47] - - - - - - - - - - - - - - -
PRTY20 [41] 6.16×103 2.25×105 2.31×105 163 164 327 140 141 281 135 137 272 137 138 275
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