
PsiBench: Pragmatic Benchmark of Two-party Private Set
Intersection

Ziyuan Liang

Zhejiang University

liangziyuan@zju.edu.cn

Weiran Liu

Alibaba Group

weiran.lwr@alibaba-inc.com

Hanwen Feng

The University of Sydney

hanwen.feng@sydney.edu.au

Feng Han

Alibaba Group

fengdi.hf@alibaba-inc.com

Liqiang Peng

Alibaba Group

plq270998@alibaba-inc.com

Li Peng

Alibaba Group

jerry.pl@alibaba-inc.com

Chao Li

Zhejiang University

lichao42@zju.edu.cn

Guorui Xu

Zhejiang University

xugr@zju.edu.cn

Lei Zhang

Alibaba Group

zongchao.zl@taobao.com

Fan Zhang

Zhejiang University

fanzhang@zju.edu.cn

ABSTRACT

Private Set Intersection (PSI) allows two parties to obtain the in-

tersection of their data sets while revealing nothing else. PSI is

attractive in many scenarios and has wide applications in academia

and industry. Over the last three decades, a large number of PSI

protocols have been proposed using different cryptographic tech-

niques, under different assumptions, for different scenarios. The

inherent complexity, heterogeneous constructions, and rapid evolu-

tion of PSI protocols make it difficult to have a unified perspective

and further promote the field.

We make the following three contributions to present a prag-

matic benchmark of two-party PSI. First, we propose the Map-
and-Compare framework, which generalizes almost all efficient PSI

constructions to date, and intuitively explains the idea and chal-

lenge of PSI constructions. Based on the framework, we divide

existing proposals into several categories and perform a systematic

analysis of the features and use cases of different PSI variants. Sec-

ond, we present a Java-based benchmark library that implements

almost all two-party PSI protocols (which are considered to define

the state-of-the-art in terms of concrete performance) and supports

rapid prototyping of new PSI protocols. Third, by using our library

as a common ground, we provide a comprehensive and impartial

comparison of all our PSI implementations in detail. We discuss the

performance of different proposals in various settings.

PVLDB Reference Format:

Ziyuan Liang, Weiran Liu, Hanwen Feng, Feng Han, Liqiang Peng, Li Peng,

Chao Li, Guorui Xu, Lei Zhang, and Fan Zhang. PsiBench: Pragmatic

Benchmark of Two-party Private Set Intersection. PVLDB, 14(1):

XXX-XXX, 2020.

doi:XX.XX/XXX.XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/alibaba-edu/mpc4j.

1 INTRODUCTION

Private Set Intersection (PSI) is a cryptographic application that

allows two parties to identify the intersection of their data sets

without revealing any additional information. This functionality

is particularly important in scenarios where two parties need to

perform JOIN operations on private databases. PSI has been used

in many real-world applications, including compromised credential

checking in Chrome[94], AirDrop authentication [44], advertising

conversion rate measurement [48], private contact tracing [95]

for infectious diseases such as COVID-19, private mobile contact

discovery [51], etc.

Given the strong demand for applications, PSI has been an active

research area for more than 30 years, and there have been many

proposals aiming at practical constructions. First, note that PSI

is a specific instance of secure multiparty computation (MPC), so

it can be constructed using MPC frameworks for general circuits

[28, 42, 52, 54, 62, 99]. A naive unoptimized circuit implementing PSI

functionality will involve at least 𝑂 (𝑛2) comparison gates (if each

data set has about 𝑛 elements). Although the circuit size can be re-

duced into𝑂 (𝑛 log𝑛) [45] with sorting, this approach also becomes

very inefficient as the data set size grows. On the other hand, in

order to have better scalability, existing proposals have developed

many tailor-made approaches for PSI by using different crypto-

graphic tools, such as public-key encryption (PKE) [46], garbled

circuit [60, 98], oblivious transfer (OT) [53, 63], fully homomorphic

encryption (FHE) [38], etc., or/and using specific data structures

such as bin hashes [74], filters [33, 47], polynomial encryption, etc.

Meanwhile, some proposals have further extended the standard

PSI functionality to support advanced features, making PSI ap-

plicable in more scenarios, such as private set union[26, 56], PSI

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX
https://github.com/alibaba-edu/mpc4j


cardinality[48, 65], delegated PSI [1, 2], etc. However, given the

heterogeneous constructions and definitions, it has been a com-

plicated task for both researchers and practitioners to follow and

promote this field. In particular, we consider the following three

main problems.

First, it is unclear whether an optimization or new technique

that has often been presented in a specific PSI protocol is applicable

to PSI protocols that may have additional advanced features. Re-

searchers may have to do some repetitive work to improve a specific

protocol. Although several works have tried to summarize some

primitives in PSI [17, 37], we still lack a unified view of existing PSI

proposals to appropriately categorize them, clarify the relationship

between techniques and advanced features, and thus enable global

optimizations.

Second, most of the existing proposals only provide research-

use-only implementations that hardly satisfy the modularity and

readability requirements. Future researchers often have to start their

implementations from scratch, even if they essentially use tech-

niques introduced or implemented in previous work. Meanwhile,

practitioners still lack detailed guidance on how to build efficient

and secure PSI applications. It can take experienced cryptographers

and practitioners several months to design and implement PSI pro-

tocols. Such a cost is very discouraging because every week spent
reimplementing previous techniques is one less week to develop new
solutions [92].

Third, as a consequence of the second problem, it is not triv-

ial to make an impartial and comprehensive comparison between

existing proposals. Ideally, by comparison, we hope to find out,

given available optimizations, which algorithmic design could lead

to better performance w.r.t. different merits. For researchers, such a

comparison is essential to understand and improve the state of the

art; for practitioners, it could provide guidance on which protocol

is best to use for their particular purposes. However, the overall

performance of a PSI protocol is sensitive to the execution envi-

ronment, specific optimizations, code quality, underlying libraries,

etc.

In this work, we are motivated to present a systemization survey

of this field and mitigate all the above issues. To this end, we make

the following contributions.

Map-and-Compare Framework.

We present a unified framework of PSI protocols to generalize

almost all efficient constructions to date. We roughly divide PSI

into two phases based on the directions of their information flows,

bidirectional Map and unidirectional Compare. We describe the

security requirements of Map to enable secure instantiations and

illustrate the difficulty of secure PSI protocols.

Next, we survey and categorize existing PSI protocols accord-

ing to the format of intermediates between Map and Compare

that show how their Map is realized. We divide them into 3 cate-

gories, commutative weak pseudorandom function (cwPRF), oblivi-

ous pseudorandom function (OPRF), and sharing, respectively. The

methodology of different Map is important: (1) Some advanced fea-

tures, such as full parallelism, specialization for unbalanced cases,

and further PSI computation, are especially supported by certain

Map methods; (2) The Map methods determine the security and

efficiency of PSI protocols to a certain extent. The Compare meth-

ods are determined by the corresponding Map methods, and we

observe that the methodology of using the cuckoo filter to reduce

communication overhead, introduced by Keller et al. [53], can be

further generalized to improve the Compare phase of OPRF-based

PSI using more efficient filters; thus, we can optimize a large class

of PSI protocols.

Java-based PSI Library.

We propose a Java-based library that contains software imple-

mentations of most existing PSI protocols (with their cryptographic

dependencies) and supports rapid prototyping of PSI applications.

Furthermore, our library allows convenient implementation of new

PSI protocols since it is modular and provides many optimized

building blocks, including cryptographic primitives (such as PRG,

PRF, OT, OT extension (OTE), etc.), subprotocols, and communica-

tion interfaces. The source codes are available for public request.

While we chose Java for its compatibility with big data analytics en-

gines, we have applied many optimizations to make our Java-based

implementations suitable for efficiency-sensitive applications.

Comprehensive Comparison.

Our library naturally contributes to a common basis for com-

paring existing PSI protocols. We provide an impartial evaluation

of the protocols in our library, which includes state-of-the-art PSI

protocols in various Map styles, taking into account network la-

tency, bandwidth, and parallelized computation. We also evaluate

different PSI performances in unbalanced cases. Furthermore, we

discuss the performance of optimizing old PSI proposals with some

newly proposed primitive constructions.

To the best of our knowledge, we are the first to formally im-

plement and evaluate so many PSI protocols on the same ground.

Previous comprehensive comparisons were done in [68, 81]. Al-

though many valuable conclusions have been discussed in their

survey, the absence of a PSI benchmark library makes the perfor-

mance evaluation less integrated. Our implementation currently

includes two-party PSI protocols in different constructions, and we

are extending our libraries to support all types of PSI protocols.

We hope that our implementations and evaluations will help PSI

research and applications in the future.

2 DEFINITIONS

2.1 Functionality

The starting point of Private Set Intersection (PSI) is the Private

Equality Test (PEQT) in Fig. 1. The receiver calls PEQT to check

if its element is identical to the sender’s, while the sender learns

nothing. PSI can be thought of as a multi-query Private Membership

Test (mqPMT), which allows the participants to secretly obtain

the intersection of their private sets without revealing anything

unexpected. The functionality of two-party PSI is shown in Fig. 2.

The result of two-party PSI is usually only known to the receiver.

A naive approach to converting PEQT to PSI is to call 𝑛1𝑛2 PEQT

instances, since every element in one set must be compared to

every element in the other set. However, this is obviously far from

efficient, as the complexity explodes as the set sizes grow. Moreover,

it is insecure to directly invoke a sorting circuit with O(𝑛 log𝑛)
complexity before applying PEQT to reduce the PEQT scale to

2



Parameter: A Receiver R with an element 𝑥 , and a Sender S
with an element 𝑦.

Functionality: Output true to R if 𝑥 = 𝑦, otherwise output

false.

Figure 1: PEQT ideal functionality. F𝑃𝐸𝑄𝑇

Parameter: A Receiver R with set size 𝑛1, and a Sender S with

set size 𝑛2.

Functionality:

- Wait for input set 𝑋 = {𝑥1, · · · , 𝑥𝑛1
} from R.

- Wait for input set 𝑌 = {𝑦1, · · · , 𝑦𝑛2
} from S.

- Give output 𝑋 ∩ 𝑌 and 𝑛2 to R.
- Give output 𝑛1 to S.

Figure 2: PSI ideal functionality. F𝑃𝑆𝐼

O(𝑛1 + 𝑛2), since an ordered PEQT serial leaks the information of

non-intersection elements[45].

Thus, there are two main concerns in PSI design. The first con-

cern is how to build secure and efficient PEQT schemes, and the

second is how to reduce the number of PEQTs required while re-

maining private. Since the elements in the receiver’s set are assumed

to be independent, the theoretical lower bound of PSI communica-

tion complexity is O(𝑛1) [78].
Most existing PSI protocols are proposed for a balanced setting,

where𝑛 = 𝑛1 = 𝑛2, and wewill mainly focus on the balanced setting

in the following section. However, there are still some unbalanced

PSI scenarios [7, 51, 55, 84]. For example, private contact discovery

assumes that the set sizes as 𝑛1 ≪ 𝑛2, and the overhead is expected

to be only related to the smaller size.

2.2 Security

The computational and statistical security parameters are usually

denoted by 𝜅 and 𝜆, respectively. The security of PSI protocols is

usually guaranteed by a simulation-based proof. The simulation-

based proof defines security with respect to two interactions, the

real interaction and the ideal interaction. The real adversary manip-

ulates the corrupted party and interacts with a simulator using PSI

protocols, while the simulator interacts with the other honest party

using PSI ideal functionality. The simulator attempts to simulate

the adversary’s views using the ideal functionality messages. The

proof is validated if the adversary has a negligible advantage in

distinguishing between the simulated views and the real protocol

views.

The adversary’s capability is defined in either the semi-honest

model or the malicious model. In the semi-honest model, the ad-

versary controls one of the parties and tries to learn more input

information about the other honest party, while he still follows the

protocol specification honestly. In contrast, a malicious adversary

is not required to follow the protocol exactly and may try to ob-

tain private information using all possible approaches. A malicious

adversary is allowed to optionally adapt the messages during the

real interaction, which makes it more difficult for the simulator to

generate indistinguishable messages. Note that when considering

Parameter: A Receiver R with a choice bit 𝑏.

Functionality:

- Sample random (𝑚0,𝑚1).
- Output𝑚𝑏 to R. Output (𝑚0,𝑚1) to S.

Figure 3: Random OT ideal functionality. F𝑅𝑂𝑇

malicious adversaries, the PSI functionality in Fig. 2 can be modified

with abortion when the size of inputs exceeds an upper bound.

2.3 Cryptographic Primitives

2.3.1 PRG and PRF. Pseudorandom Generator (PRG) randomly

generates pseudorandom strings of fixed length, and Pseudorandom

Function (PRF) is a pseudorandom mapping to map the input to

an element of a finite field. Compared to PRG, PRF requires an

additional key as input and still outputs a pseudorandom string.

A PRF instance is guaranteed to output identical strings given the

same input message and the same key.

The simplified interfaces of the basic cryptographic primitives

(PRG/PRF) are shown below. The similarity of their functionality

makes them portable in practice. A PRF instance with a fixed key

can be considered a PRG instance.

- PRG 𝐺 (𝑠) → 𝑅: Input a random seed 𝑠 ∈ 𝐷 , and output a

pseudorandom element in 𝑅.

- PRF 𝐹𝑘 (𝑚) → 𝑅: Input a PRF key 𝑘 ∈ 𝐾 , a message𝑚 ∈ 𝐷 ,
and output a pseudorandom element in 𝑅.

PSI protocols require a large number of PRG and PRF instances,

and the efficiency of PRG and PRF is one of the factors that signifi-

cantly affect protocol performance. In addition, a construction may

perform differently when the expected output length changes. For-

tunately, several efficient cryptographic libraries helpwith optimiza-

tion, and we use several hash block ciphers (e.g., AES, lowMC [3]) to

fit into PRG / PRF implementations of different lengths. Moreover,

the way these primitives are modeled also divides PSI proposals into

the Random Oracle Model (ROM) and the Standard Model (SM). In

ROM, a cryptographic hash function is modeled as a truly random

function that produces a unique output for each input. In SM, the

hash function is modeled as a deterministic algorithm that takes

an input and produces an output. Since ROM accepts the stronger

assumption, most existing two-party PSI schemes are designed in

ROM to pursue more efficiency.

2.3.2 Oblivious Transfer. Oblivious Transfer (OT), introduced by

[83], is a central cryptographic primitive in the area of secure com-

putation. 1-out-of-2 OT is the simplest case of OT, which refers to

the setting where a sender has two input strings (𝑚0,𝑚1) and a

receiver has an input choice bit 𝑏. As the result of the OT proto-

col, the receiver learns𝑚𝑏 without learning anything about𝑚
1−𝑏

while the sender learns nothing about 𝑏. In random OT, the sender’s

messages are randomly generated by the functionality, allowing

OT protocols to produce these random values. The functionality

only takes the choice bit as input from the receiver, and both of the

messages will be output to the sender. Random OT usually requires

much less communication than message OT.

3



Although it requires expensive public-key operations to generate

original OT instances [10, 23, 63, 69], OT Extensions (OTE)[4, 50, 53]

can generate a large number of random OT instances at the cost of

computing a small number of public-key operations. The proposal

in [57] further extends 1-out-of-2 OTE to 1-out-of-n OTE, since

the 1-out-of-2 OTE in [50] generates a replicated code matrix in

the protocol, and can be replaced with linear coder to implement a

1-out-of-2
8
OTE. The strategy is later adopted to design 1-out-of-∞

OTE [58] and malicious 1-out-of-n OTE [72].

2.4 Hash to Bins

A commonly used operation in existing PSI schemes is to hash 𝑛

elements into𝑚 bins, which reduces the PEQT number for PSI. The

simplest hashing scheme maps input elements into 𝑚 = 𝑛 bins

using one hash function. Hence an element is always added to the

mapped bin regardless of whether other elements are already stored

in that bin. However, privacy requires that the parties hide from

each other how many of their inputs were mapped to each bin.

Each bin is padded to the maximum number of elements mapped

to a bin (O(𝑙𝑜𝑔𝑛)) with dummy elements.

Cuckoo hashing [74] uses two hash functions to map the ele-

ments into𝑚 = 2(1 + 𝜖)𝑛 bins. Each element is possibly mapped

to one of the two bins. The scheme avoids collisions by relocating

elements when a collision is found. The element randomly chooses

a bin for insertion, and the original inserted element will be evicted

to the other bin. The “insert + evict” process continues until the

evicted element finds an empty bin, or until a threshold number

of relocations has been performed. In the latter case, the element

will be inserted into a special stash. A lookup in cuckoo hashing

is efficient as it only seeks the two possible bins and the stash. In

exchange, the hash table size increases. Cuckoo hashing is later

optimized by increasing the hash number [77, 79] and removing

the stash [79].

Other hashing schemes used in specific PSI schemes include

2-choice hashing [90] and phasing hashing [77].

3 MAP-AND-COMPARE FRAMEWORK

Many different PSI protocols have been proposed since the incep-

tion of PSI, and they differ greatly in assumptions, dependencies,

and execution procedures. The fragmented PSI constructions make

it difficult for researchers to understand the common approach to

constructing PSI. We focus on two-party PSI and propose a general

PSI framework that generalizes almost all state-of-the-art two-party

PSI protocols. The framework is named “Map-and-Compare” and

clearly describes how to construct a secure PSI protocol that satis-

fies the ideal functionality.

Given two participants, a receiver with input 𝑋 = {𝑥1, · · · , 𝑥𝑛1
}

and a sender with input 𝑌 = {𝑦1, · · · , 𝑦𝑛1
}, the model consists of

the following two phases.

- Map: The participants agree on a function 𝑓𝑚 : {(𝑋,𝑌 ) →
(𝑀𝑋 , 𝑀𝑌 )} (hereafter referred to as agreed function), and
the private sets are mapped to (𝑀𝑋 , 𝑀𝑌 ) and returned to

the participants.

- Compare: The receiver and the sender invoke 𝑓𝑐 : {(𝑀𝑋 , 𝑀𝑌 )
→ (O,⊥)}. The receiver obtains the intersection O, and
the sender obtains nothing.

We divide PSI protocols into two phases based on the direction

of sensitive information flow. In the Map phase with bidirectional

information flow, the parties’ sets are securely mapped into a pair

of objects (𝑀𝑥 , 𝑀𝑦). Both sides of security should be considered in

the Map phase. In contrast, the Compare phase has a unidirectional

flow of information from the sender to the receiver. All messages

received by the sender in the Compare phase can be regarded

as randomness and naturally, protect the privacy of the receiver.

Therefore, only the privacy protection of the sender needs to be

considered. Note that 𝑓𝑐 is highly simplified in most proposals, and

we will focus more on the 𝑓𝑚 designs of existing proposals.

Obviously, our framework achieves the functionality of PSI in

Fig. 2. The difference among different PSI proposals is how to agree

on the qualified function (𝑓𝑚, 𝑓𝑐 ). The first requirement for 𝑓𝑚 is

that it cannot leak unexpected information about the private sets

from (𝑀𝑥 , 𝑀𝑦) or corresponding processes. So 𝑓𝑚 is required to be

pseudorandom.

Moreover, there is an additional requirement for 𝑓𝑚 . Consider a

naive solution of two-party PSI. Both the sender and the receiver

map their private sets using a hash function (modeled as a random

oracle), and the sender sends its mapping values to the receiver;

the receiver later compares the two sets of mapping values and

obtains the intersection. This naive protocol is the simplest case of

our Map-and-Compare framework, but it is insecure. The receiver

can locally perform this hash function on a specific element and

identify whether it belongs to the sender’s set. Also, the receiver

can conduct a brute-force attack to recover the sender’s elements

by performing the hash function on all possible elements, which is

more threatening when the input elements are from low-entropy

distributions. Thus, the number of elements on which the receiver

can perform 𝑓𝑚 should be restricted, and the receiver can not ac-

quire full knowledge of 𝑓𝑚 to avoid the brute force attack.

We summarize the above requirements for the Map phase.

- Reqirement I: 𝑓𝑚 is required to be a pseudorandom func-

tion to avoid leaking unexpected information about the

private sets. The procedure for agreeing on such a function

will not leak any information about the elements to each

other.

- Reqirement II: The receiver can only obtain the mapping

values on its own points and thus cannot guess the sender’s

elements by brute force attack.

A secure Map can be safely constructed using general MPC

protocols, and existing two-party PSI protocols aim to implement

Map with lower overhead.

4 HOW TO MAP

In this section, we survey the methods adopted by existing PSI

protocols to implement a qualified Map. There have been several

interesting Map proposals in recent years. We divide them into sev-

eral paradigms according to the output format of the Map function,

and name them by their iconic primitives, including commutative

weak PRF (cwPRF), oblivious pseudorandom function (OPRF), secret

sharing (SS), etc.

4



Table 1: Overview of Different Map Styles in PSI.

Map Style CwPRF

OPRF

Sharing

Fixed-key Single-point Multi-point

𝑀𝑋 /𝑀𝑌 𝐹𝑠 (𝐹𝑟 (𝑋 ) ) / 𝐹𝑟 (𝐹𝑠 (𝑌 ) ) 𝐹𝑘 (𝑋 ) / 𝐹𝑘 (𝑌 ) shareR / shareS

Primitives CwPRF PRF + Masking Operator OTE + Bin-hash PCG + OKVS Circuits / mqRPMT

Semi-honest Model [46, 64] [7, 25, 27, 35, 51, 55, 84] [58, 72, 80] [21, 30, 75, 76] [20, 45, 77–79, 88, 93] / [22, 37]

Malicious Model [89] [13, 76, 85, 86, 88]

Merits

- Full Parallel Support - Unbalance Compatibility - Good LAN Performance - Good WAN Performance - Functionality Flexibility

- Linear Communication - Offline Precomputation - Lightweight Computation - Balanced Overheads

Demerits

- Heavy Computation - Heavy Offline Overheads - Heavy Communication - Uncompetitive Performance

- Semi-honest Security Only

Best-performed cases

- Small Sets - Unbalance Sets - Large Sets - Large Sets - Private Set Operations

- Lightweight Client - High Network Bandwidth - Real-world Network

Input: 𝑋 = {𝑥1, · · · , 𝑥𝑛} ⊆ 𝑅 from Receiver R, 𝑌 =

{𝑦1, · · · , 𝑦𝑛} ⊆ 𝑅 from Sender S. A cwPRF instance 𝐹 : (𝐾, 𝑅) →
𝑅.

Protocol:

- R and S randomly generate cwPRF keys 𝑘𝑟 and 𝑘𝑠 re-

spectively.

- R locally computes the list 𝐹𝑘𝑟 (𝑋 ), and sends it to S.
- S receives 𝐹𝑘𝑟 (𝑋 ), and computes the list 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )).
At the same time, S also computes 𝐹𝑘𝑠 (𝑌 ), and sends

𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )) and 𝐹𝑘𝑠 (𝑌 ) back to R.
- R receives 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )) and 𝐹𝑘𝑠 (𝑌 ), then computes

𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 )).

Figure 4: CwPRF-based Map.

4.1 Overview

In fact, the development of PSI protocols is inseparable from the

development of basic primitives. Different varieties of Map func-

tions have different output formats, and the differences determine

their different core building primitives and features.

We discuss different features of various Map in existing PSI

schemes, as shown in Table 1. Existing two-party PSI schemes are

divided into three categories in the table, including cwPRF-based,

OPRF-based, and sharing-based ones. And the OPRF-based PSI

can be further divided into three types (fixed-key, single-point &

multi-point). We list the core primitive of each category and collect

the corresponding schemes in the table. Their construction and

general trends of merits, demerits, and best-performed cases will be

discussed in detail later in this section. Note that the performance

features in the table represent the generalized trends of different

Map styles. For example, multi-point OPRF usually requires less

communication than single-point OPRF, but not every multi-point

OPRF scheme has less communication.

4.2 CwPRF-based Map

Commutative weak PRF [22] requires a weaker assumption

than full PRF, but includes an additional commutative property. In

short, cwPRF guarantees that 𝐹𝑘1 (𝐹𝑘2 (𝑥)) = 𝐹𝑘2 (𝐹𝑘1 (𝑥)), where

𝐹 : (𝐾, 𝑅) → 𝑅. For example, the PRF with decisional Diffie-

Hellman (DDH)-like assumptions [70] is a typical cwPRF construc-

tion, as 𝐹𝑘 (𝑥) = 𝑔𝑘𝑥 . The correctness holds as 𝐹𝑘1 (𝐹𝑘2 (𝑥))) =

𝑔𝑘1𝑘2𝑥 = 𝐹𝑘2 (𝐹𝑘1 (𝑥))).
The core idea of cwPRF-based Map is straightforward from the

above insecure hash-based PSI mentioned in Section 3. Since it is

insecure to map once with a public hash function, cwPRF-based

PSI maps twice with two PRFs using different private keys. The

structure of cwPRF-based Map is shown in Fig. 4, where the input

elements are mapped to 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )) and 𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 )) respectively.
Note that the input elements usually need to be hashed into𝑅 before

the protocol begins. The commutative feature of cwPRF guarantees

that the PRF values of the intersection are identical after the dual

mapping, and thus the correctness of PEQT holds. The comparisons

between PRF values are cheap plaintext comparisons, so the PEQT

number problem also disappears. The assumption of cwPRF ensures

that it outputs pseudorandom values. Since the receiver does not

get access to 𝑘𝑠 , it cannot invoke cwPRF-based Map limitlessly

without informing the sender.

The theoretical output {𝑀𝑋 , 𝑀𝑌 } of a cwPRF-based Map in-

stance is {𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )), 𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 ))}. In fact, there is no such mo-

ment in practice when the receiver and the sender have 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 ))
and 𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 )), respectively, because the sender never received
𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 )). The Map and Compare phases in cwPRF-based PSI

have a blurred boundary, so the Map output can be defined as

{(𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )), 𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 ))),⊥} or {𝑘𝑟 , (𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )), 𝐹𝑘𝑠 (𝑌 ))} in
practice.

The structure for converting cwPRF to cwPRF-based Map is

roughly fixed, and different proposals differ mainly in their cwPRF

constructions. Since cwPRF-based Map operates on each element

of cwPRF independently, it supports full parallelism and has

competitive efficiency when executed in parallel. Each round of

communication in the Fig. 4 naturally has O(𝑛) complexity, pro-

viding cwPRF-based Map competitive communication overhead.
However, the computational overhead is strongly related to the

efficiency of cwPRF, and unfortunately, most cwPRF constructions

use expensive cryptographic operators to achieve the commuta-

tive property. This makes cwPRF-based Map more advantageous
when dealing with small sets.

An interesting fact is that cwPRF-based Map has a much longer

history than the cwPRF definition. The first cwPRF-based Map was

5



Parameter: A Receiver R, a Sender S, and a PRF 𝐹 .

Functionality:

- Wait for input 𝑥 ∈ {0, 1}∗ from R.
- Wait for input 𝑘 from S. / Randomly generate a PRF key

𝑘 , and give output 𝑘 to S.
- Give output 𝐹 (𝑘, 𝑥) to R.

Figure 5: Fixed-key / Random OPRF ideal functionality.

Input: 𝑋 = {𝑥1, · · · , 𝑥𝑛} ⊆ 𝑅 from Receiver R, 𝑌 =

{𝑦1, · · · , 𝑦𝑛} ⊆ 𝑅 from Sender S.
Protocol:

- R and S invoke OPRF functionality 𝐹 . R acts as the re-

ceiver with input 𝑥𝑖 , and S acts as the sender. R receives

and outputs {𝐹𝑘 (𝑥𝑖 )}, and S owns 𝑘 .

- S locally computes and outputs {𝐹𝑘 (𝑦𝑖 )}.

Figure 6: OPRF-based Map.

proposed in [64] and was later optimized in [46]. Their proposal

adopts DH key exchange as cwPRF and is further extended to other

existing cwPRF instances, such as point multiplication over different

elliptic curves. A modified version of cwPRF named key agreement

is abstracted in [89]. The key agreement allows only 2 hoppings

instead of unlimited hopping in DDH or ellipse curve. Two hop-

pings have different interfaces but still guarantee the commutative

property. Its key agreement instances are implemented using the

elligator encoding [12] on Curve25519Montgomery curve.

Besides designing efficient cwPRF instances, another research

spot is extending cwPRF-based Map to post-PSI applications. For

example, PSI-sum in [48, 49] use the DDH-based cwPRF to construct

their PSI parts. It also benefits from the independent operation

of each element, since each label is naturally associated with the

corresponding payload during the PSI process.

4.3 OPRF-based Map

The Oblivious Pseudorandom Function [35] is an important cryp-

tographic primitive in PSI. OPRF allows the receiver to obtain PRF

values over its input elements but does not allow access to the

secret PRF key. The ideal functionality of OPRF is demonstrated in

Fig. 5. Based on the sender’s input, OPRF can be divided into two

categories: Fixed-key OPRF and Random OPRF. The difference

is whether the sender provides or obtains the PRF key. In addition,

random OPRF can also be divided into Single-point OPRF and

Multi-point OPRF. A single-point OPRF instance can only map

one element of the receiver’s set, while a multi-point instance maps

multiple elements.

The functionality of OPRF guarantees pseudorandom output and

limits the receiver’s queries to the PRF. Thus, a qualified Map can

be easily instantiated by combining OPRF with the corresponding

PRF, as shown in Fig. 6. Note that for single-point OPRF, 𝐹 refers to

a bunch of OPRF instances instead of one. As the most commonly

used method for constructing PSIs, several OPRF constructions

have been presented in recent work.

4.3.1 Fixed-key OPRF. Fixed-key OPRF is a general method for

achieving fixed-key OPRF instances. A typical fixed-key OPRF in-

cludes a secure PRF and a private masking operator and roughly

consists of the following 3 steps.

- The receiver blinds its PRF inputs with the masking opera-

tor and sends them to the sender.

- The sender applies the PRF to these masked items and re-

turns masked PRF values.

- The receiver unmasks the masked values to obtain the PRF

outputs.

The receiver’s masking operator must be secure, reversible, and
homomorphic. Security protects the original inputs from being

leaked to the sender. Reversibility allows the receiver to unmask

the PRF values. Homomorphism guarantees the correctness of the

PRF when operating on masked inputs.

The masking operator depends on the specific construction of

the PRF, and commonly used masking operators include DH key

exchange, Paillier, and other partially or fully homomorphic en-

cryption schemes[34, 38]. If the PRF is constructed using a public

key cryptosystem based on discrete logarithms, such as DH key

exchange and RSA, then the corresponding masking operator re-

quires multiplicative homomorphism. OPRF in [25, 27] masks the

RSA signature with DH key exchange, and OPRF in [7, 84] also

masks DH with another DH mask. In short, their masking operator

is discrete exponentiation with a secret exponent 𝛼 , and the PRF

values can be unmasked by exponentiation with 1/𝛼 .
OT is an optional choice for constructing masking operators and

has been adopted in [35, 51, 55]. A straightforward construction

in [35] is to divide the PRF key into 𝑛 subkeys, where 𝑛 is the

element bit length. The receiver enters its element bits as OT choices

and gets the correct key only if it has the same element as the

sender’s set. However, this OPRF is a disposable instance, which

lacks efficiency. In contrast, the OPRF in [51, 55] uses precomputed

OT [8] as a masking operator to blindly compute PRF circuits (AES

/ LowMC) and NR-PRF [71]. The receiver masks each element bit

with pre-computed OT choices, and the PRF values are computed

and unmasked with random OT outputs. Because the OT outputs

are used only for masking, the receiver does not have access to the

PRF key, which can be reused multiple times.

An important advantage of fixed-key OPRF-based Map is its nat-

ural adaption for unbalanced cases [51, 84]. Note that the PRF key
has been fixed before OPRF begins, and is independently generated

by the sender. Hence the fixed-key OPRF-based PSI can be divided

into offline and online phases. In the offline phase, the sender locally

precomputes PRF values on its elements and helps the receiver to

compute PRF values using OPRF in the online phase. The offline

phase overheads are related to the sender’s size and the online

phase overheads are related to the receiver’s size. Even when the

sender’s set is significantly larger than the receiver’s, the Map and

corresponding PSI still have lightweight online phases. Given this,

it is better to adopt fixed-OPRF constructions supporting precom-
putation, like [51] to further reduce the online overheads. These

features make fixed-key OPRF friendly to applications requiring

lightweight clients.
The powerful sender of fixed-key OPRF brings security concerns.

Some schemes have been proven to keep secure against a malicious

6



receiver [51, 55], but as mentioned in [51], it is still hard for fixed-

key OPRF-based PSI to resist a malicious sender.

4.3.2 Single-point OPRF. Unlike fixed-key OPRF, random OPRF

generates the PRF key and returns it to the sender after the protocol

has finished. However, this small difference in functionality makes

their designs completely different.

A simple random OPRF construction can be implemented with

random OT. A random OT instance can be regarded as mapping

a secret bit to a pseudorandom value. If the parties run multiple

random OT instances where the receiver uses each bit of a specific

element as input, the XOR result of these OT results becomes a

one-time random OPRF instance and the PEQT functionality can be

realized, which constructs the simplest case of single-point OPRF.

The strategy also works for 1-out-of-n OT. Using the 1-out-of-2
8

OTE in [57], OPRF constructions in [77, 80] input each byte of an

element as the choice byte of a 1-out-of-2
8
random OT instance.

The OPRF value is still constructed with the XOR result of the OT

values of each byte. BaRK-OPRF in [58] replaces Walsh-Hadamard

coder (a linear coder with 8-bit input) with a pseudorandom coder

(with any-bit input) and implements 1-out-of-∞ OTE. Hence each

element of the receiver needs only one OT instance to generate the

OPRF value.

Single-point OPRF constructions rely heavily on efficient bin-
hash strategies. As mentioned above, a single-point OPRF instance

can only be invoked on one element. Single-point OPRF-based Map

should guarantee that the sender computes the PRF of an element

in the intersection with the same OPRF key as the receiver. It is

obviously inefficient for the sender to use any OPRF key to map all

its elements.

In the OPRF instances [58, 77, 80] adopting cuckoo hashing [74],

the receiver is required to insert its elements into a cuckoo hash

table, while the sender inserts into a simple hash table of the same

size with each hash function used in cuckoo hashing. Each bin

consumes a single point OPRF instance since cuckoo hashing guar-

antees that each bin contains at most one element. This reduces the

required PEQT number from 𝑛2 to 𝑘𝑚, where 𝑘 is the hash number

and𝑚 is the hash table size. The “cuckoo + simple hash” strategy is

a general trick for single-point OPRF-based PSI or circuit-PSI with

similar constructions

A bottleneck of using cuckoo hashing in single-point OPRF-

based Map is the overhead of dealing with stash. Since each element

is possibly inserted into the stash, it needs to be additionally com-

pared with 𝑠 elements in the stash. And that leads to 𝑠𝑛 comparison

in total. The extra executions to deal with the stash cause a great

waste of computation and communication. The results in [58, 78]

demonstrate that adopting stashless cuckoo hashing [79] efficiently

reduces the computational and communication overheads. Stashless

cuckoo hashing is recommended for all single-point OPRF-based

PSI or similar circuit-PSI.

Single-point OPRF typically has light computation and heavy
communication. Until now, PSI in [58] is still one of the most

efficient PSI proposals with unlimited network bandwidth. How-

ever, although cheap random OTs can be generated by OTE in a

batched manner, each element of the receiver still requires multiple

PEQTs even when using bin-hash strategies, increasing the overall

communication.

It is also notable that for single-point OPRF-based Map, it is

difficult to achieve malicious security due to cuckoo hashing.

As mentioned in [76, 87], a malicious party can learn the location

to which an honest party’s input element is mapped. The location

choice leaks information about other inputs, including elements that

are not in the intersection. However, it does not mean that single-

point OPRF cannot be used to build malicious-secure PSI. A general

malicious-secure PSI construction using single-point OPRF was

proposed in [87]. It discards the cuckoo hashing but adopts phasing

hashing [77] to guarantee each element only has one possible bin.

The OTE used to construct single-point OPRF is also required to

be maliciously secure, such as [72]. The construction requires dual

execution or commitment, making the functionality no longer fit

in Fig. 6. Hence it is not listed in Table 1.

4.3.3 Multi-point OPRF. A multi-point OPRF instance allows the

receiver to compute OPRF values on multiple elements at one time.

The elements of the receiver can be mapped using a single instance,

instead of O(𝑛) single-point OPRF instances.
Oblivious Key-Value Store (OKVS) and Pseudorandom Cor-

relation Generator (PCG) are two critical primitives to implement

multi-point OPRF. A key-value store (KVS) consists of two inter-

faces, encoding and decoding. Encoding takes a set of key-value

pairs as input and outputs an object. Decoding takes the object and

a key as input and returns a value. A correct KVS guarantees that

the decoded value is equal to the corresponding encoded value if

the key has been encoded. OKVS [37] additionally requires that the

encoded objects are computationally indistinguishable from those

encoded using the same keys with random values.

The decoding interface of linear OKVS computes the inner prod-

uct of a key vector and the encoded vector. For example, the polyno-

mial is one of the typical linear OKVS instances, where the encoded

vector is the coefficients and the key vector is [1, 𝑥, 𝑥2, · · · ]. A bi-

nary OKVS [37] is a special case of linear OKVS. Its key vector is

a binary vector, and the decoding interface simply computes the

sum of some positions in the vector.

Commonly used binary OKVS constructions include the Gar-

bled Bloom Filter (GBF) [30] and the Garbled Cuckoo Table

(GCT) [37, 76, 85, 88]. GBF is a binary OKVS in the Bloom filter

style, and GCT is a binary OKVS in the cuckoo hashing style. Since

cuckoo hashing has fewer entries than the Bloom filter, GCT natu-

rally has a smaller vector length compared to GBF. OKVS is useful

for multi-point OPRF designs since a programmable object vector

is commonly shared by different keys. And the additional linearity

of linear and binary OKVS provides more design space.

PCG [15, 17] allows two parties to securely generate long corre-

lated pseudorandomness from a pair of correlated keys. OT Cor-

relation (or correlated OT, COT) [16, 24, 43, 53, 97] is one of the

examples for standard and useful PCG. In a COT instance, the re-

ceiver inputs a random bit 𝑏, while the sender inputs a correlation

valueΔ. When the functionality finishes, the sender and receiver

obtain 𝑟0 and 𝑟𝑏 respectively. The correlation holds as 𝑟𝑏 = 𝑟0 +𝑏 ·Δ.
The earliest multi-point OPRF proposals use COT as PCG, such

as [30, 80, 86]. Specifically, these schemes replace the linear coder

matrix in OTE protocols with the encoded bit matrix of binary

OKVS. For example, OPRF in [30, 80, 86] takes GBF [30] and OTE

in [50] as OKVS and PCG. The receiver’s set is encodedwith a Bloom

7



Input: 𝑋 = {𝑥1, · · · , 𝑥𝑛} ⊆ 𝑅 from Receiver R, 𝑌 =

{𝑦1, · · · , 𝑦𝑛} ⊆ 𝑅 from Sender S.
Protocol:

- R and S input their sets to a share functionality 𝐹𝑠ℎ .

- 𝐹𝑠ℎ computes the intersection and generates its shares

shareR and shareS.
- 𝐹𝑠ℎ respectively returns shareR and shareS to the par-

ties.

Figure 7: Sharing-based Map.

filter [14] at the beginning, and then the participants call OTE [50]

with the Bloom filter vector as input, and get two correlated GBF

vectors as output. Then the receiver obtains the OPRF values by

decoding with its GBF-encoded vector, while the sender computes

the PRF values at arbitrary points by decoding with its vector. COT

correlation guarantees that the receiver gets the correct OPRF value

if the element was originally encoded by the receiver. multi-point

OPRF in [76] takes 1-out-of-n OTE [72] as PCG. Although the

encoding matrix is different in [72], the sender can still obtain the

PRF values by decoding the correlated OKVS.

Besides, some multi-point OPRF proposals [21, 75] do not use the

OTE structure but only use the COT array. OPRF in [21] presented

a special KVS that encodes the elements into a bit matrix in a Bloom

filter style, where the elements become keys and their values are

fixed as a zero vector “00 · · · 0”. However, the correlated matrices

output by PCG only support the decoding interface, and thus are not

integrated OKVS instances. SpOT-light OPRF [75] replaces the PRG

in [50] with PRF to extend the reverse base OT correlation into a

multi-point OPRF. The proposal uses OKVS to save communication,

which relies only on the programmable feature of OKVS. Hence

binary OKVS is not necessary, and it uses polynomials. However,

polynomials are far from being computationally efficient OKVS

instances, as the encoding overhead increases significantly with the

number of key-value pairs. A compromise version using 2-choice

hashing [90] to split a large multi-point OPRF instance into several

smaller instances has been provided as an option.

Vector Oblivious Linear Evaluation (VOLE) [15, 24, 91] is

another efficient PCG construction for implementing multi-point

OPRF. The functionality of VOLE generates a linear equation ®𝐶 =

®𝐴Δ + ®𝐵. The receiver gets ®𝐴 and ®𝐶 , while the sender gets ®𝐵 and Δ.
VOLE is a generalized notion of COT, with sublinear communication

based on the Learning Parity with Noise (LPN) assumption. VOLE

functionality requires no input, and therefore VOLE-based multi-

point OPRF [13, 85, 88] usually takes VOLE outputs as correlated

masks to construct OPRF with the object vector of binary OKVS.

Benefiting from the low communication of VOLE proposals, VOLE-

based OPRF usually performs much better than COT-based OPRF

over certain network bandwidths.

Multi-point OPRF has become the most potential PSI direction

in recent years, especially the combination of GBF and VOLE. It

has advantages in both security and performance. On the one hand,

multi-point OPRF is free from the bin-hash problem of single-point

OPRF, and most recent schemes achieve malicious security. The
consistency check is a commonly used approach for malicious

security and is adopted in [85, 88]. Increasing the output bit length

also works on schemes such as [76]. On the other hand, multi-point

OPRF has a more balanced overhead between computation and

communication, compared to single-point OPRF. Hence it has a

significant performance advantage in practical networks with
limited bandwidth. Moreover, both OKVS and PRG are newly

proposed primitives with predictable optimization space. All above

makes multi-point OPRF a hot spot in recent PSI research.

4.4 Sharing-based Map

Sharing-based Map represents Circuit-PSI and other similar PSI

proposals, which returns a pair of shares containing enough infor-

mation to recover the intersection, as shown in Fig. 7.

Generic MPC techniques, such as secret sharing [9, 11, 40],

garbled circuits [98], and recent hybrid frameworks [29, 66], can

compute any MPC problem if the problem can be transformed

into circuits, including PSI. And this is the beginning of circuit-

PSI [45, 79, 88, 93]. The first circuit-PSI was proposed in [45], con-

sisting of three parts, sorting, comparing, and shuffling. The sort-

compare-shuffle circuit successfully reduces the complexity of the

PSI circuit from 𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛) comparisons. Bin-hash strate-

gies in single-point random OPRF can also be used to reduce the

number of PEQT circuits, as suggested in [77–79, 81].

Multi-query Reverse Private Membership Test (mqRPMT)

is a new construction of sharing-based Map [100]. In mqPMT (aka.

PSI), the receiver receives a binary vector where each bit represents

whether one of the receiver’s elements belongs to the intersection

or not, and the sender receives nothing. In the mqRPMT function-

ality, the binary vector becomes the sender’s output. The sender

cannot obtain the intersection from the vector because it learns

nothing about the receiver’s set. With this little tweak, the binary

vector and the receiver’s set become the sender’s and receiver’s

shares, respectively. The intersection can be recovered from the

shares using OT. Note that the sender obtains the intersection after

applying OT to the mqRPMT results, so a reverse mqRPMT can be

used to implement the PSI functionality. Although mqRPMT can

be transformed to mqPMT using OT, it is impossible to transform

mqPMT to mqRPMT[59] because the intersection can be recovered

locally by the receiver after mqPMT has finished. Since mqRPMT

has similar functionality to mqPMT, mqRPMT can also be imple-

mented with cwPRF[22] or OPRF [36]. For example, mqRPMT is

implemented in [36] using OPRF in [78] and Oblivious Switching

Networks (OSN) in [67].

In fact, most sharing-based Map proposals are designed for Pri-

vate Set Operations (PSO) rather than PSI. The output is dis-

tributed as shares, and thus the parties can apply further computa-

tion to the shares, such as PSI-sum, PSI-cardinality (PSI-CA) [31,

102], private set union [36, 100], threshold PSI [39, 101, 102], etc.

However, share-based Map usually has an uncompetitive efficiency

compared with other constructions, when only applied for PSI.

5 HOW TO COMPARE

Unlike Map phase, Compare has a unidirectional flow of informa-

tion. Only the receiver receives the intersection after it has been

calculated from the Map outputs.

8



Table 2: Different Map-Compare Pairs.

Map Style CwPRF OPRF

Sharing

Circuits MqRPMT

Compare Style List Set(s) Share Recovery OT

5.1 Compare in existing PSI

How to Compare depends on its inputs (𝑀𝑋 , 𝑀𝑌 ) (the outputs of
Map). We list corresponding Compare approaches of different Map

styles in Table 2.

CwPRF-based PSI has a blurred boundary between Map and

Compare, as discussed in Section 4.2. The sender should send

(𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )), 𝐹𝑘𝑠 (𝑌 )) to the receiver. Since there is dual mapping

in CwPRF-based Map, 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )) has to be packed as an ordered

list before sending it to the receiver. Otherwise, the receiver cannot

match the elements in 𝑋 and 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )), if the latter has been
randomly shuffled. The receiver locally compares 𝐹𝑘𝑠 (𝐹𝑘𝑟 (𝑋 )) with
𝐹𝑘𝑟 (𝐹𝑘𝑠 (𝑌 )), and collects the corresponding elements in 𝑋 of the

matching pairs as the intersection.

In contrast, Compare for OPRF-based Map does not need to

take this into account. Thus, an unordered set is sufficient to pack

𝐹𝑘 (𝑌 ) before sending it to the receiver, who can compare 𝐹𝑘 (𝑋 )
with 𝐹𝑘 (𝑌 ), and collect the intersection. Note that some OPRF

constructions use bin-hash strategies and each element of the server

has to be computed using multiple PRF keys [58, 75]. In this case,

the sender needs multiple sets to pack OPRF values using different

hash functions.

Compare for sharing-based Map is expected to recover the final

intersection from the shares. For Circuit-PSI, Compare refers to

secret share recovery or PEQT circuit evaluation. Moreover, as

pointed out in [20], 1-out-of-n OT can be used to reduce the number

of required PEQT circuits. For Map based on reverse mqRPMT,

Compare refers to a bundle of OT, where the sender inputs its

element and randomness, and the receiver inputs the binary vector

as choice bits. In addition, some sharing-based PSI proposals (e.g.

[61]) consider involving an untrusted third party for the Compare

phase. This strategy can be efficient, but requires more security

concerns, as the additional party usually brings more complex

security proofs.

5.2 Filter Optimization

The Compare phase for OPRF-based Map can be optimized with

filters. The filters [14, 18, 33, 96] are proposed as approximate set

membership data structures that help to check the existence of

elements in a set. In other words, the filter can be regarded as a

special case of KVS, where the values of the encoded key-value

pairs are fixed to be binary ”1”s. Existing filters include Bloom fil-

ters [14], cuckoo filters [33], Morton filters [18] and vacuum filters

[96]. In specific, the optimization allows the sender to insert the

OPRF values 𝐹𝑘 (𝑌 ) into a filter and sends the filter to the receiver,

instead of the original set. The receiver checks whether each OPRF

value 𝐹𝑘 (𝑥𝑖 ) is contained in the filter or not to determine the out-

put intersection, instead of comparing with each element in the

original set. Since the size of the filters are smaller than the sets,

the communication the sender sends can be reduced, at a small

28 212 216 220

Input size

10 2

10 1

100

101

102

103

Co
m

m
. c

os
t (

M
B) RR17

RS21
KKRT16
CM20

With filter OriginWith filter OriginWith filter Origin

Figure 8: Comparison of the communications the sender

sends with and without vacuum filters.

computational cost of filter insertion. The filter contains no more

information than the original mapping value set. Hence there are

no extra security threats.

The filter optimization can be applied to other OPRF-based PSI.

Four typical schemes are chosen as the benchmarks in Fig. 8 to

evaluate the communication reduction brought by the filter. The

benchmarks include KKRT16 [58] (single-point, semi-honest), RR17
[87] (single-point, malicious), CM20 [21] (multi-point, semi-honest),

and RS21 [88] (multi-point, malicious). The vacuum filter is adopted

in the experiments since it has the best compression efficiency

compared to others. Fig. 8 shows the amount of communication

the sender sends with and without adopting the vacuum filters.

It can be observed that the filter optimization performs better

in malicious-secure schemes (RR17, RS21) than semi-honest ones

(KKRT16, CM20). Note that the filter size only depends on the inser-

tion number rather than the size of each element. The filters save

more communication costs since malicious security requires the

OPRF to output longer results. Moreover, the optimization saves

more communication for single-point OPRF-based PSI (KKRT16,
RR17 ) than multi-point ones (CM20, RS21). Because of the hashing
strategy used for single-point OPRF, each element has multiple

OPRF values, while only one OPRF value is enough for multi-point

OPRF. The compression rate declines as the insertion number grows,

which leads to more communication saved by the filters. For the

same reason, the filter optimization performs better when the PSI

schemes are dealing with larger input sizes, as demonstrated in

Fig. 8.

6 BENCHMARK IMPLEMENTATIONS

Existing PSI protocols are mostly implemented with different frame-

works and evaluated in inconsistent experimental settings, making

it difficult for researchers to make fair and fast comparisons be-

tween existing protocols. Inspired by existing open-source MPC

libraries, we re-implement state-of-the-art PSI protocols with dif-

ferent styles in a unified way, along with their building blocks. We

expect to provide a common ground for a comprehensive and im-

partial comparison of existing PSI protocols and make it convenient

for researchers to study and develop PSI.

9



6.1 Java Library

Our implementations are written in Java, and the source codes are

available on Github
1
. We chose Java as our programming language

mainly for practical reasons. To integrate PSI protocols into practi-

cal applications, it is necessary to introduce big data frameworks

into traditional MPC[6]. To our knowledge, the current widely used

big data analytics engines (e.g. Hadoop and Spark) are based on

Java or JVM-based programming languages. A Java-based frame-

work is more convenient to deploy in a scalable manner. While it is

generally agreed that Java is slower than C/C++, the performance

gap is not that great when dealing with most basic operators. For

primitives with a large gap between Java and C/C++, our library

uses Java Native Interface (JNI) to invoke C/C++ libraries to speed

up performance.

6.2 JNI Support

There are some performance gaps in several operations due to the

language features. For example, type transformations in C/C++ are

easily done by changing the pointer types. If we expect to convert a

long byte array into an integer array (such as OPRF in [21]), C/C++

directly changes the pointer type from uint8_t* to uint32_t*,
which is almost free. In contrast, Java has to allocate a new array due

to its memory protection mechanism, which introduces additional

overhead. The overhead of invoking JNI to transform in C/C++ is

even greater.

After trading off the efficiency and scalability, we implemented

several primitives with JNI since they benefit a lot from JNI, in-

cluding matrix transposition, polynomials, hashes, basic ciphers,

etc.

(1) Matrix Transpose. The performance of OTE [4, 50] and OTE-style

OPRF [21, 58] depends on efficient large matrix transposition. We

find that Eklundh’s algorithm [32] does not work well in parallel

environments. And we follow the full SSE bit matrix transpose
2

and modify the implementation in EMP-toolkit3. The bit matrix

is represented in big-endian byte order for Java compatibility.

(2) Polynomial Operations. Polynomial is a useful linear OKVS used

inOPRF[37, 59, 75]. The pure-Java implementation using Rings [82]
is inefficient, and we implement the fast polynomial interpolation

implementations in [59, 75] using the NTL4, GMP, and GF2X5 libraries.
The polynomial representation is adjusted to make the returned

results compatible with Rings. We also fix a minor typo in the

interpolation of [75] under boundary conditions.

(3) Hashes and Ciphers. Hashes and ciphers are essential cryp-

tographic operators used in all PSI protocols. We introduce the

C/C++ implementations of fast cryptographic hash functions (e.g.
blake2[5], blake3[73], Highway[41]). We adopt various block ci-

phers to implement encryption, PRG and PRF, including AES using

EMP-toolkit, SM4 using Bouncy Castle6, etc. And we introduce

the parameters in [51] to implement LowMC.

1
https://github.com/alibaba-edu/mpc4j

2
https://github.com/mischasan/sse2

3
https://github.com/emp-toolkit/emp-tool/blob

4
https://libntl.org/

5
https://gitlab.inria.fr/gf2x/gf2x

6
https://www.bouncycastle.org/java.html

(4) ECC Operations. ECC operations are widely used in different vari-

ants of PSI[22, 46, 84]. We implement different curves (SECP256K1,
SM2P256, Ed25519, X25519, FourQ, etc) using libraries such as Bouncy
Castle, Relic7, MCL8, libSodium9, and compare their performance.

The results demonstrate that MCL performs best, and Bouncy Castle
runs faster when dealing with point additions. We adjust the repre-

sentation for their compatibility for Java.

(5) Oblivious switching network. We used the code opensourced

by Garimella et al. [36] as a starting point, and changed the type

of switching node representation from uint32_t to uint8_t for

memory cost reduction.

6.3 OT Benchmarks and Factories

As one of the most important primitives of PSI, various OT/OTE

benchmarks are implemented in our library, mainly including the

base OT in [19, 23, 63, 69], OTE in [4, 50, 53, 57, 72]. Since silent OT

is used in state-of-the-art circuit-PSI [20, 88], we implement silent

OT in [24, 97] in the benchmark library.

Our benchmark library has implemented factory classes to sup-

port the switching between different instances. This allows the

researchers to easily find the effects of different OT instances on

the final PSI performance. Similar factory classes are also used for

other primitives, such as filters, ciphers, and hashes.

6.4 Parallelization and Communication

Our PSI benchmarks support parallel execution using the parallel

stream class in Java. We maintain a common thread pool with

JVM, containing a limited number of threads, and submit parallel

executions to the pool. This avoids the additional cost of manually

creating and destroying subthreads each time.

In addition, netty10 is used to maintain the communication

channel in our implementations. We design a unified data packet

format, containing a header of 288-bit length and the payload bytes.

To serialize the message to be sent, we use Google’s Protocol
Buffers, which introduce the additional communication cost to

store the lengths of each byte array in Payload Bytes. To eliminate

the impact of implementation on analysis, the experimental results

reported in our evaluation only reflect the size of payload bytes.

Hence it is the theoretical communication cost.

7 PERFORMANCE EVALUATION

We evaluate the performance of typical PSI implementations of

different styles as benchmarks and provide an impartial evaluation

to compare their efficiency.

7.1 Experimental Environment

We run our experiments on a single physical machine with Intel
®

Core
TM

i9-9900K 3.60GHz CPU and 128GB RAM. We simulate the

real-world network connection using the Linux tc command, which

supports manual adjustment of bandwidth and RTT latency.

7
https://github.com/relic-toolkit/relic

8
https://github.com/herumi/mcl

9
https://github.com/jedisct1/libsodium

10
https://netty.io/

10

https://github.com/alibaba-edu/mpc4j
https://github.com/mischasan/sse2
https://github.com/emp-toolkit/emp-tool/blob
https://libntl.org/
https://gitlab.inria.fr/gf2x/gf2x
https://www.bouncycastle.org/java.html
https://github.com/relic-toolkit/relic
https://github.com/herumi/mcl
https://github.com/jedisct1/libsodium
https://netty.io/


7.2 Experimental Results

In each batch of experiments, we test typical PSI of different Map

styles and different security models. Semi-honest PSI schemes

in the benchmarks include HFH99[46] (cwPRF), RA17[84] (fixed-
key OPRF), PSZ14[80], KKRT16[58], OOS17 (single-point OPRF),

DCW13[30], PRTY19-L[75], PRTY19-F, PRTY20[76],CM20[21] (multi-

point OPRF), PSTY19[78], RS21-C[88],CGS22[20] (circuit),GMR21[36],
CZZ22[22] (mqRPMT). Malicious-secure PSI schemes in the bench-

marks include RT21[89] (cwPRF), RR17DE[86], RR17EC (built with

single-point OPRF), RR16 [86], PRTY20[76], RS21[88], RR22[85]
(multi-point OPRF).

Two variants of HFH99 are implemented using SECP256K1 (-S)
and X25519 (-X ) curves respectively. Two variants of circuit-PSI

(RS21C, CGS22) are implemented, and the difference is whether to

adopt silent OT (-S) or not (-N ).

The integrated experimental result tables are listed in the appen-

dix. Table 3 and 4 list the performance of semi-honest and malicious

PSI schemes in a balanced setting, respectively. We choose 2
12
, 2

16
,

2
20

as three baseline input set sizes. The experimental network

settings include typical LAN (10Gbps bandwidth and 0.02ms RTT

latency) and WAN (including 1Gbps with 40ms latency, 100Mbps

and 10Mbps bandwidth with 80ms latency). Both single-thread

(𝑇 = 1) and multi-thread (𝑇 = 15) cases are considered. The ele-

ments in the input sets are 128-bit long. The protocols in the tables

are divided into two phases: the setup phase and the online phase.

Note that the setup and online phases in our benchmarks are dif-

ferent from the offline and online phases in fixed-key OPRF. The

one-time setup phase performs initializations before inputting both

sets, including key generation, base OT execution, etc. The online

phase performs subsequent protocol executions based on the sets.

To Fairly evaluate the pre-computation feature of fixed-key OPRF-

based PSI, the pre-computation overhead of the server is manually

moved to the setup phase in the tables.

Besides two basic balanced tables, we tested several special cases

for better evaluation. Table 5 lists the performance of unbalanced

cases where the two set sizes are 2
20

and 2
10

respectively. Table 6

lists the performance of OPRF-based PSI whose Compare phase is

optimized by filters. Table 7 lists the performance of multi-point

OPRF-based PSI using different types of OKVS instances.

7.3 Performance Evaluation

We now discuss how different settings influence the performance

of different PSI schemes in detail.

Network Bandwidth. Since fixed-key OPRF and sharing-based

Map are designed for special cases, we mainly discuss the perfor-

mance of cwPRF and random OPRF-based schemes in the balanced

setting. To make it more intuitive, Fig. 9 shows how the online

latencies of different schemes decline as the network bandwidth

grows. The benchmarks are executed with 2
20

input sizes in the

multi-thread setting (T = 15). Only several typical benchmarks are

drawn in the figure, otherwise, too many lines make the figure a

great mess. As shown in Fig. 9, the performance of single-point

OPRF-based schemes (KKRT16, OOS17 ) is more sensitive to the

bandwidth than others. Their heavier communication significantly

steepens the latency lines. In addition, when the bandwidth exceeds

1Gbps, the lines of multi-point OPRF (PRTY19-F, CM20) and cwPRF-
based PSI (HFH99-X ) become flat. The computation latency becomes

the bottleneck of the overall performance at this bandwidth, so the

reduction of communication latency hardly contributes to the ef-

ficiency. In contrast, the communication latency of KKRT16 and

OOS17 is still the bottleneck, and the overall latency continues to

decline as the bandwidth grows.

Parallelism. Different PSI proposals have different sensitivity to

parallelism. Fig. 10 shows the performance of the benchmarks in

the single-thread setting, and Fig. 9 shows the performance in the

multi-thread setting. As mentioned above, the latencies of single-

point OPRF-based instances (KKRT16 and OOS17 ) are mostly con-

tributed by the communication. Hence improving computation

ability with multiple threads brings negligible efficiency improve-

ment. The multi-thread setting brings significant improvement to

multi-point OPRF-based instances (PRTY19-F, CM20), and cwPRF-

based instances (HFH99-X ), but the improvement cannot reach 15×,
because of the cost of multi-thread scheduling. Note that the full

parallel support cannot be demonstrated in the figure. Our bench-

marks support 15 threads at most, which is not large enough, and

we think the advantage of cwPRF-based PSI will become more

obvious as the number of threads grows.

Small Input Sizes. To evaluate the advantage of cwPRF-based

PSI when dealing with small input sizes, we additionally test the

performance with input sizes in a range from 2
6
to 2

14
. Fig. 11

shows the performance of small sets in the multi-thread LAN set-

ting. Besides the cwPRF-based HFH99-X, state-of-the-art schemes

include CM20, semi-honest version of RS21 and RR22 are tested

for comparison. HFH99-X performs at a disadvantage when the

input sizes are larger than 2
10
. When the sizes become smaller, the

latencies of other schemes remain unchanged, while the latency of

HFH99-X continues to decline linearly. CwPRF-based PSI handles

each input element independently and has no constant overhead.

However, the constant overheads in other schemes dominate the

performance when dealing with smaller sets.

Circuit-PSI. Fig. 12 shows the performance of state-of-the-art cir-

cuit PSI (RS21, CGS22) under different bandwidths. The experiments

run in the LAN setting with input sizes of 2
20
. RS21 and CGS22 per-

form better in the LAN and WAN settings respectively without

using silent OT, since RS21 has heavier communication overhead.

However, RS21 benefits more from silent OT and always performs

better than CGS22-S in the experiments.

OKVSDiscussion. “OKVS + PCG” is the hot spot in recent research

to design multi-point OPRF, and we test different combinations of

state-of-the-art OKVS constructions. PRTY20 and RS21 provide the
general multi-point OPRF constructions using COT and VOLE as

PCG respectively, and are chosen as the basic benchmarks. Three

kinds of OKVS are evaluated in the experiments, including H2-GCT

[76], H3-GCT [37], and BLAZE-GCT [85]. We evaluate the perfor-

mance of these six variants of multi-point OPRF with different input

sizes and bandwidths. Fig. 13 shows the performance of different

set sizes in the multi-thread LAN setting, and Fig. 14 shows the

performance of different bandwidths with 2
20

input sizes. In gen-

eral, RS21 performs better than PRTY20 when using identical OKVS.

BLAZE-GCT performs the best, and H3-GCT performs better than

11



101 102 103 104

Bandwidth(Mbps)

101

102

On
lin

e 
Ti

m
e(

s)

KKRT16
OOS17
CM20
PRTY19-F
HFH99-X

Figure 9: 𝑛 = 2
20
, multi-thread.

101 102 103 104

Bandwidth(Mbps)

101

102

On
lin

e 
Ti

m
e(

s)

KKRT16
OOS17
CM20
PRTY19-F
HFH99-X

Figure 10: 𝑛 = 2
20
, single-thread.

26 28 210 212 214 216

Input size

100

101

102

103

On
lin

e 
Ti

m
e(

m
s)

RS21
RR22
HFH99-X
CM20

Figure 11: Small sets, LAN, multi-thread.

101 102 103 104

Bandwidth(Mbps)

103

On
lin

e 
Ti

m
e(

s)

RS21-C-N
RS21-C-S
CGS22-N
CGS22-S

Figure 12: Circuit-Psi, 𝑛 = 2
20
, multi-thread.

214 216 218 220

Input size

0
2
4
6
8

10
12
14

On
lin

e 
Ti

m
e(

s)
H2-GCT H3-GCT BLAZE-GCT
PRTY20 RS21PRTY20 RS21

Figure 13: MP-OPRF, LAN, multi-thread.

101 102 103 104

BandWidth(Mbps)

101

102

On
lin

e 
Ti

m
e(

s)

H2-GCT H3-GCT BLAZE-GCT
PRTY20 RS21PRTY20 RS21

Figure 14: MP-OPRF, 𝑛 = 2
20
, multi-thread.

28 210 212 214 216 218 220

Size of receiver's input

0

20

40

60

80

100

On
lin

e 
tim

e 
(s

)

HFH99-X
RA17

KKRT16
CM20

(a) single-thread

28 210 212 214 216 218 220

Size of receiver's input

0

5

10

15

20

On
lin

e 
tim

e 
(s

)

HFH99-X
RA17

KKRT16
CM20

(b) multi-thread

Figure 15: Latencies of unbalanced cases in LAN setting, where

𝑛2 = 2
20
.

H2-GCT when using identical PCG. In the LAN setting, the OKVS

type has a greater impact on efficiency. However, as the bandwidth

narrows down, the PCG type turns out to be the more impactful one.

This difference demonstrates that in multi-point OPRF schemes,

the OKVS is more related to the computational overhead, while the

PCG is more related to the communication overhead.

Unbalanced Cases. To evaluate the advantage of fixed-key OPRF

in the case of unbalanced input sizes, we test the performance

of different PSI schemes with unbalanced input sizes in the LAN

setting. Fig. 15(a) and 15(b) refer to single-thread and multi-thread

cases respectively. The server’s set size 𝑛2 is fixed to 2
20
, and the

client’s set size𝑛1 varies from 2
8
to 2

20
. As𝑛1 declines, the fixed-key

OPRF-based RA17 has the most significant efficiency improvement

than others. Besides RA17, the performance ofCM20 is also sensitive
to 𝑛1 because the number of OT instances required by CM20 only
depends on 𝑛1. Also, since the usage of multi-thread significantly

accelerates the computation of ECC in RA17, the advantage of RA17
dealing with small client size is more obvious in the multi-thread

setting.

The latency of HFH99-X in Fig. 15(a) remains unchanged com-

pared with the balanced case. In our implementations, the client and

the server compute the first cwPRF values at the same time, since

their computation latencies overlap each other in the balanced case.

Because of the large 𝑛2, the client still has to wait for the server to

finish the computation, and so does the second cwPRF mapping.

Hence, the latencies remain to be identical to the balanced case.

The difference in the multi-thread setting (Fig. 15(b)) is caused by

the single-PC test environment, as the participants actually share

the same thread pool, and the resources accelerate the server’s

computation after being released from the client’s computation.

8 CONCLUSION

PSI is a potential cryptographic primitive for many scenarios and

has wide applications in academia and industry. In this paper, we

do an integrated research of existing two-party PSI protocols and

have proposed the Map-and-Compare framework to abstract the

general approach to construct secure and efficient PSI protocols.

We divide these protocols into several categories based on their

Map styles and discuss their constructions, features, and develop-

ment. We also propose a Java-based benchmark library containing

implementations of state-of-the-art PSI schemes. The benchmark

codes have good readability and reproducibility. Our benchmark

can benefit future research about PSI. Moreover, we have provided

an impartial evaluation of the protocol using our benchmark library

in different settings.

In future work, we aim to continue improving the PSI bench-

marks for the benefit of the community. On the one hand, we

will provide more PSI benchmarks in different scenarios, such as

multi-party PSI, threshold PSI, etc. On the other hand, since it is

noticed that there are still some performance gaps between Java

and C/C++ implementations, we will use more Java techniques to

further optimize the efficiency.

12



REFERENCES

[1] Aydin Abadi, Sotirios Terzis, and Changyu Dong. 2016. VD-PSI: verifiable

delegated private set intersection on outsourced private datasets. In International
Conference on Financial Cryptography and Data Security. Springer, 149–168.

[2] Aydin Abadi, Sotirios Terzis, Roberto Metere, and Changyu Dong. 2017. Effi-

cient delegated private set intersection on outsourced private datasets. IEEE
Transactions on Dependable and Secure Computing 16, 4 (2017), 608–624.

[3] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In Advances in Cryptology–
EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part I 34. Springer, 430–454.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. 535–548. https://doi.org/10.1145/

2508859.2516738

[5] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian

Winnerlein. 2013. BLAKE2: simpler, smaller, fast as MD5. In Applied Cryptogra-
phy and Network Security: 11th International Conference, ACNS 2013, Banff, AB,
Canada, June 25-28, 2013. Proceedings 11. Springer, 119–135.

[6] Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai Christodorescu, Vinjith

Nagaraja, Karan Patel, Srinivasan Raghuraman, Peter Rindal, Wei Sun, and

Minghua Xu. 2022. A Plug-n-Play Framework for Scaling Private Set Intersec-

tion to Billion-sized Sets. Cryptology ePrint Archive (2022).
[7] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene

Tsudik. 2011. Countering gattaca: efficient and secure testing of fully-sequenced

human genomes. In Proceedings of the 18th ACM conference on Computer and
communications security. 691–702.

[8] Donald Beaver. 1995. Precomputing Oblivious Transfer. In Advances in Cryptol-
ogy - CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 27-31, 1995, Proceedings (Lecture Notes in Computer
Science), Vol. 963. Springer, 97–109. https://doi.org/10.1007/3-540-44750-4_8

[9] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity

of secure protocols. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing. 503–513.

[10] M Bellare. 1989. Non-Interactive Oblivious Transfer and Applications. In Inter-
national Cryptology Conference on Advances in Cryptology.

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA, Janos Simon (Ed.). ACM,

1–10. https://doi.org/10.1145/62212.62213

[12] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. 2013. El-

ligator: elliptic-curve points indistinguishable from uniform random strings. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 967–980.

[13] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Near-

Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding

Multi-Maps. Cryptology ePrint Archive (2023).
[14] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Communications of The ACM 13, 7 (1970), 422–426.

[15] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing

vector OLE. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 896–912.

[16] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient two-round OT extension and silent non-

interactive secure computation. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. 291–308.

[17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter

Scholl. 2019. Efficient pseudorandom correlation generators: Silent OT extension

and more. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39. Springer, 489–518.

[18] Alex D Breslow and Nuwan S Jayasena. 2020. Morton filters: fast, compressed

sparse cuckoo filters. The VLDB Journal 29, 2-3 (2020), 731–754.
[19] Ran Canetti, Pratik Sarkar, and Xiao Wang. 2020. Blazing fast OT for three-

round UC OT extension. In Public-Key Cryptography–PKC 2020: 23rd IACR
International Conference on Practice and Theory of Public-Key Cryptography,
Edinburgh, UK, May 4–7, 2020, Proceedings, Part II 23. Springer, 299–327.

[20] Nishanth Chandran, Divya Gupta, and Akash Shah. 2021. Circuit-PSI with

linear complexity via relaxed batch OPPRF. Cryptology ePrint Archive (2021).
[21] Melissa Chase and Peihan Miao. 2020. Private set intersection in the internet

setting from lightweight oblivious PRF. In Annual International Cryptology
Conference. Springer, 34–63.

[22] Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, and Weiran Liu. 2022.

Private Set Operations from Multi-Query Reverse Private Membership Test.

Cryptology ePrint Archive, Paper 2022/652. https://eprint.iacr.org/2022/652

https://eprint.iacr.org/2022/652.

[23] Tung Chou and Claudio Orlandi. 2015. The Simplest Protocol for Oblivious

Transfer. In International Conference on Cryptology and Information Security in
Latin America.

[24] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. 2021. Silver: silent

VOLE and oblivious transfer from hardness of decoding structured LDPC codes.

In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference. Springer, 502–534.

[25] Emiliano De Cristofaro and Gene Tsudik. 2010. Practical Private Set Intersection

Protocols with Linear Complexity. In Financial Cryptography & Data Security,
International Conference, Fc, Tenerife, Canary Islands, January, Revised Selected
Papers.

[26] Alex Davidson and Carlos Cid. 2017. An efficient toolkit for computing private

set operations. In Information Security and Privacy: 22nd Australasian Conference,
ACISP 2017, Auckland, New Zealand, July 3–5, 2017, Proceedings, Part II 22.
Springer, 261–278.

[27] Emiliano De Cristofaro and Gene Tsudik. 2012. Experimenting with fast private

set intersection. In Trust and Trustworthy Computing: 5th International Con-
ference, TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceedings 5. Springer,
55–73.

[28] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY -

A Framework for Efficient Mixed-Protocol Secure Two-Party Computation.

In 22nd Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2015. The Internet Soci-

ety. https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-

mixed-protocol-secure-two-party-computation

[29] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In NDSS.
[30] Changyu Dong, Liqun Chen, and ZikaiWen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. 789–800.

[31] Thai Duong, Duong Hieu Phan, and Ni Trieu. 2020. Catalic: Delegated psi

cardinality with applications to contact tracing. In International Conference on
the Theory and Application of Cryptology and Information Security. Springer,
870–899.

[32] Jan-Olof Eklundh. 1972. A fast computer method for matrix transposing. IEEE
transactions on computers 100, 7 (1972), 801–803.

[33] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments and
Technologies. 75–88.

[34] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-

morphic encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144.
[35] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word search and oblivious pseudorandom functions. In Theory of Cryptography
Conference. Springer, 303–324.

[36] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and

Jaspal Singh. 2021. Private Set Operations from Oblivious Switching.. In Public
Key Cryptography (2). 591–617.

[37] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious key-value stores and amplification for private set intersection.

In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II
41. Springer, 395–425.

[38] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In

Proceedings of the forty-first annual ACM symposium on Theory of computing.
169–178.

[39] Satrajit Ghosh and Mark Simkin. 2019. The communication complexity of

threshold private set intersection. InAnnual International Cryptology Conference.
Springer, 3–29.

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, Alfred V. Aho (Ed.). ACM, 218–229. https:

//doi.org/10.1145/28395.28420

[41] Google. [n.d.]. Fast strong hash function: SipHash/HighwayHash -GitHub.

https://github.com/google/highwayhash.

[42] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. 2019. SoK: General Pur-

pose Compilers for Secure Multi-Party Computation. In 2019 IEEE Symposium
on Security and Privacy (SP). 1220–1237.

[43] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2020. Low cost constant

round MPC combining BMR and oblivious transfer. Journal of Cryptology 33, 4

(2020), 1732–1786.

[44] Alexander Heinrich, Matthias Hollick, Thomas Schneider, Milan Stute, and

Christian Weinert. 2021. PrivateDrop: Practical Privacy-Preserving Authentica-

tion for Apple AirDrop. IACR Cryptol. ePrint Arch. 2021 (2021), 481.

13

https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1145/62212.62213
https://eprint.iacr.org/2022/652
https://eprint.iacr.org/2022/652
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://github.com/google/highwayhash


[45] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set intersection: Are

garbled circuits better than custom protocols?. In NDSS.
[46] Bernardo A Huberman, Matt Franklin, and Tad Hogg. 1999. Enhancing privacy

and trust in electronic communities. In Proceedings of the 1st ACM conference
on Electronic commerce. 78–86.

[47] Roi Inbar, Eran Omri, and Benny Pinkas. 2018. Efficient scalable multiparty

private set-intersection via garbled bloom filters. In International Conference on
Security and Cryptography for Networks. Springer, 235–252.

[48] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,

Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On de-

ploying secure computing: Private intersection-sum-with-cardinality. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 370–389.

[49] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, David Shanahan, and Moti Yung. 2017. Private intersection-sum protocol

with applications to attributing aggregate ad conversions. Cryptology ePrint
Archive (2017).

[50] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivi-

ous Transfers Efficiently.. In Crypto, Vol. 2729. Springer, 145–161.
[51] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and

Christian Weinert. 2019. Mobile Private Contact Discovery at Scale.. In USENIX
Security Symposium. 1447–1464.

[52] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-

putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1575–1590.

[53] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT

extension with optimal overhead. In Advances in Cryptology–CRYPTO 2015,
Proceedings, Part I. Springer, 724–741.

[54] Marcel Keller, Peter Scholl, andNigel P. Smart. 2013. An architecture for practical

actively secure MPC with dishonest majority. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, 2013, Ahmad-Reza Sadeghi, Virgil D.

Gligor, and Moti Yung (Eds.). ACM, 549–560. https://doi.org/10.1145/2508859.

2516744

[55] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. 2017. Pri-

vate set intersection for unequal set sizes with mobile applications. Cryptology
ePrint Archive (2017).

[56] Lea Kissner and Dawn Song. 2005. Privacy-preserving set operations. In Annual
International Cryptology Conference. Springer, 241–257.

[57] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for

transferring short secrets. In Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II. Springer, 54–70.

[58] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient batched oblivious PRF with applications to private set intersection. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. 818–829.

[59] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. 2019. Scalable

private set union from symmetric-key techniques. In Advances in Cryptology–
ASIACRYPT 2019, Proceedings, Part II. Springer, 636–666.

[60] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit:

Free XOR gates and applications. In Automata, Languages and Programming:
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part II 35. Springer, 486–498.

[61] Phi Hung Le, Samuel Ranellucci, and S Dov Gordon. 2019. Two-party private

set intersection with an untrusted third party. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2403–2420.

[62] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. 2015. ObliVM: A Program-

ming Framework for Secure Computation. In 2015 IEEE Symposium on Security
and Privacy. 359–376.

[63] Daniel Mansy and Peter Rindal. 2019. Endemic Oblivious Transfer. In the 2019
ACM SIGSAC Conference. 309–326.

[64] Catherine Meadows. 1986. A more efficient cryptographic matchmaking proto-

col for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy. IEEE, 134–134.

[65] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. 2020.

Two-sided malicious security for private intersection-sum with cardinality. In

Annual International Cryptology Conference. Springer, 3–33.
[66] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework

for machine learning. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 35–52.

[67] Payman Mohassel and Saeed Sadeghian. 2013. How to hide circuits in MPC

an efficient framework for private function evaluation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
557–574.

[68] Daniel Morales, Isaac Agudo, and Javier Lopez. 2023. Private set intersection:

A systematic literature review. Computer Science Review 49 (2023), 100567.

[69] Moni Naor and Benny Pinkas. 2001. Efficient Oblivious Transfer Protocols.

In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (Washington, D.C., USA) (SODA ’01). Society for Industrial and Applied

Mathematics, USA, 448–457.

[70] Moni Naor, Benny Pinkas, andOmer Reingold. 1999. Distributed pseudo-random

functions and KDCs. In International conference on the theory and applications
of cryptographic techniques. Springer, 327–346.

[71] Moni Naor and Omer Reingold. 1997. Number-theoretic constructions of ef-

ficient pseudo-random functions. In Proceedings 38th Annual Symposium on
Foundations of Computer Science. IEEE, 458–467.

[72] Michele Orrù, Emmanuela Orsini, and Peter Scholl. 2017. Actively secure 1-

out-of-N OT extension with application to private set intersection. In Topics in
Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA Conference 2017,
San Francisco, CA, USA, February 14–17, 2017, Proceedings. Springer, 381–396.

[73] Jack O’Connor, J Aumasson, Samuel Neves, and Zooko Wilcox-O’Hearn. 2020.

BLAKE3 one function, fast everywhere. https://github.com/BLAKE3-team/
BLAKE3-specs/blob/master/blake3.pdf. (2020).

[74] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[75] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. Spot-light:

Lightweight private set intersection from sparse ot extension. In Annual Inter-
national Cryptology Conference. Springer, 401–431.

[76] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

fast, malicious private set intersection. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 739–767.

[77] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private set intersection using permutation-based hashing. In 24th {USENIX}
Security Symposium ({USENIX} Security 15). 515–530.

[78] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.

2019. Efficient circuit-based PSI with linear communication. In Advances in
Cryptology–EUROCRYPT 2019, Proceedings, Part III 38. Springer, 122–153.

[79] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018. Ef-

ficient circuit-based PSI via cuckoo hashing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 125–157.

[80] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster private set

intersection based on {OT} extension. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 797–812.

[81] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2016. Scalable Private

Set Intersection Based on OT Extension. IACR Cryptology ePrint Archive 2016
(2016), 930.

[82] Stanislav Poslavsky. 2019. Rings: an efficient Java/Scala library for polynomial

rings. Computer Physics Communications 235 (2019), 400–413.
[83] Michael O Rabin. 2005. How to exchange secrets with oblivious transfer. Cryp-

tology ePrint Archive (2005).
[84] Amanda C Davi Resende and Diego F Aranha. 2018. Faster unbalanced private

set intersection. In International Conference on Financial Cryptography and Data
Security. Springer, 203–221.

[85] Peter Rindal and Srinivasan Raghuraman. 2022. Blazing Fast PSI from Improved

OKVS and Subfield VOLE. IACR Cryptol. ePrint Arch. 2022 (2022), 320.
[86] Peter Rindal and Mike Rosulek. 2017. Improved private set intersection against

malicious adversaries. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 235–259.

[87] Peter Rindal and Mike Rosulek. 2017. Malicious-secure private set intersec-

tion via dual execution. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 1229–1242.

[88] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-

PSI from Vector-OLE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 901–930.

[89] Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Inter-

section for Small Sets. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 1166–1181.

[90] Sanders, Egner, and Korst. 2003. Fast concurrent access to parallel disks. Algo-
rithmica 35 (2003), 21–55.

[91] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova.

2019. Distributed vector-OLE: improved constructions and implementation. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1055–1072.

[92] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario

Polino, AndrewDutcher, JohnGrosen, Siji Feng, ChristopheHauser, Christopher

Krügel, and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive

Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 138–157.

[93] Yongha Son and Jinhyuck Jeong. 2023. PSI with computation or Circuit-PSI

for Unbalanced Sets from Homomorphic Encryption. In Proceedings of the 2023
ACM Asia Conference on Computer and Communications Security. 342–356.

[94] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage

Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan

Boneh, and Elie Bursztein. 2019. Protecting accounts from credential stuff-

ing with password breach alerting. In USENIX Security Symposium. USENIX

Association, 1556–1571.

14

https://doi.org/10.1145/2508859.2516744
https://doi.org/10.1145/2508859.2516744
https://github. com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf.
https://github. com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf.


[95] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.

Epione: Lightweight Contact Tracing with Strong Privacy. IEEE Data Eng. Bull.
43, 2 (2020), 95–107.

[96] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. 2019. Vacuum

Filters: More Space-Efficient and Faster Replacement for Bloom and Cuckoo

Filters. Proc. VLDB Endow. 13, 2 (Oct. 2019), 197–210. https://doi.org/10.14778/

3364324.3364333

[97] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:

Fast extension for correlated OT with small communication. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1607–1626.

[98] Andrew C Yao. 1982. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 160–164.

[99] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible

Data-Oblivious Computation. Cryptology ePrint Archive, Report 2015/1153.

https://eprint.iacr.org/2015/1153.

[100] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. 2022. Optimal

Private Set Union from Multi-Query Reverse Private Membership Test. IACR
Cryptol. ePrint Arch. 2022 (2022), 358.

[101] Yongjun Zhao and Sherman SM Chow. 2017. Are you the one to share? Secret

transfer with access structure. Proceedings on Privacy Enhancing Technologies
2017, 1 (2017), 149–169.

[102] Yongjun Zhao and Sherman SM Chow. 2018. Can you find the one for me?. In

Proceedings of the 2018 Workshop on Privacy in the Electronic Society. 54–65.

A PERFORMANCE TABLES

In our evaluation, we replace the OKVS of PRTY19-L with BLAZE-

GCT since the polynomial interpolation is too slow when dealing

with large input size. Same as [87], we set the number of hash

bins to 𝑛/10 and 𝑛/4 for RR17DE and RR17EC, respectively. The
evaluation results are shown in Table 3, 4, 5, 6, 7.

15

https://doi.org/10.14778/3364324.3364333
https://doi.org/10.14778/3364324.3364333
https://eprint.iacr.org/2015/1153


Table 3: Running time and communication for semi-honest PSI implementations in balanced cases. (𝑛 = 𝑛1 = 𝑛2) “R” and
“S” denote communications the receiver and sender send respectively. (The parameters of RS21 and RR22 are switched to

semi-honest settings.)

𝑛 Protocol

Comm. (MB) Running Time (s)

R S
total

10Gbps 1Gbps 100Mbps 10Mbps

setup online setup online

single-thread multi-thread single-thread multi-thread single-thread multi-thread single-thread multi-thread

setup online setup online setup online setup online setup online setup online setup online setup online

2
12

HFH99-S 0 0.14 0 0.17 0.31 0 0.64 0 0.27 0 0.72 0 0.52 0 0.75 0 0.72 0 0.95 0 0.97

HFH99-X 0 0.13 0 0.17 0.30 0 0.30 0 0.08 0 0.40 0 0.12 0 0.49 0 0.26 0 0.64 0 0.41

DCW13 0 3.78 0 0.04 3.82 0 0.15 0 0.09 0.14 0.37 0.09 0.37 0.18 0.86 0.17 0.70 0.19 3.54 0.18 3.39

PSZ14 0 1.42 0 0.33 1.75 0.02 0.14 0 0.05 0.23 0.28 0.17 0.25 0.35 0.43 0.34 0.46 0.36 1.70 0.35 1.69

RA17 0 0.13 0.02 0.13 0.29 0.17 0.47 0.05 0.11 0.23 0.55 0.05 0.77 0.22 0.74 0.06 0.93 0.25 0.94 0.10 1.04

KKRT16 0 0.33 0.01 0.11 0.45 0 0.02 0.02 0.02 0.14 0.13 0.09 0.11 0.19 0.27 0.18 0.24 0.23 0.56 0.19 0.56

OOS17 0 0.28 0.01 0.33 0.63 0.02 0.05 0 0.03 0.22 0.16 0.17 0.42 0.35 0.44 0.34 0.26 0.36 0.75 0.35 0.75

PRTY19-L 0 0.29 0 0.04 0.33 0.01 0.25 0 0.08 0.05 0.32 0 0.16 0.02 0.45 0 0.29 0.05 0.68 0.01 0.53

PRTY19-F 0 0.22 0 0.08 0.30 0 0.46 0 0.57 0.05 0.59 0.01 1.14 0.02 1.48 0.01 0.86 0.02 0.86 0.01 0.92

PRTY20 0 0.55 0 0.04 0.59 0.01 0.03 0.01 0.02 0.14 0.15 0.09 0.15 0.18 0.27 0.18 0.25 0.20 0.69 0.19 0.68

CM20 0 0.31 0 0.05 0.37 0.02 0.22 0 0.08 0.01 0.32 0.13 0.50 0.02 0.42 0 0.93 0.01 0.71 0.01 1.11

PSTY19 0.01 1.52 0.02 3.54 5.08 0.06 0.52 0.01 0.49 0.40 2.92 0.30 2.66 0.74 4.61 0.54 5.24 0.71 7.95 0.56 8.51

RS21 1.87 0.27 0.06 0.24 2.44 0.17 0.04 0.22 0.03 0.92 0.29 0.61 0.28 1.62 0.53 1.21 0.47 3.05 0.85 2.63 0.81

RS21-C-N 1.87 4.81 0.06 4.83 11.57 0.24 0.61 0.07 0.52 0.93 1.61 0.72 1.30 1.76 2.88 1.39 2.69 3.09 9.61 3.30 9.32

RS21-C-S 2.17 0.86 0.36 0.88 4.27 0.32 1.03 0.12 0.75 1.82 1.81 1.38 1.47 3.26 2.61 2.65 2.28 4.93 3.85 4.45 3.59

CGS22-N 0.02 1.66 0.02 3.82 5.52 0.08 0.77 0.02 0.80 0.71 2.91 0.47 2.75 1.05 4.95 0.88 5.07 1.14 8.53 0.91 8.79

CGS22-S 0.37 1.41 0.36 0.84 2.99 0.24 1.02 0.09 0.80 1.79 2.85 1.53 2.37 3.00 4.66 2.40 4.60 3.33 6.34 2.79 5.79

GMR21 0.02 1.89 0.02 1.37 3.26 0.06 0.23 0.02 0.13 0.60 0.55 0.49 0.90 1.03 1.76 0.86 0.97 1.12 4.14 0.89 3.59

CZZ22 0 0.20 0 0.23 0.43 0.01 0.31 0 0.09 0.13 0.47 0.09 0.27 0.19 0.66 0.18 0.46 0.19 0.94 0.18 0.72

RR22 1.70 0.16 0.06 0.20 2.11 0.16 0.04 0.04 0.03 0.74 0.33 0.61 0.27 1.38 0.51 1.13 0.43 2.69 0.74 2.50 0.72

2
16

HFH99-S 0 2.16 0 2.75 4.91 0 8.05 0 2.11 0 8.34 0 2.60 0 8.87 0 2.93 0 12.31 0 6.22

HFH99-X 0 2.10 0 2.69 4.79 0 4.78 0 1.25 0 5.06 0 1.50 0 5.55 0 1.86 0 8.98 0 5.23

DCW13 0 60.51 0 0.59 61.1 0 3.75 0 1.75 0.10 5.98 0.09 3.60 0.18 10.32 0.17 8.26 0.19 54.25 0.18 52.30

PSZ14 0 22.65 0 4.13 26.78 0.02 2.25 0 0.73 0.22 2.95 0.17 1.57 0.35 4.74 0.34 3.76 0.36 23.52 0.34 23.14

RA17 0 2.10 0.39 2.10 4.59 2.48 7.08 0.43 1.01 2.72 7.53 0.57 1.75 2.78 8.01 0.65 2.00 3.13 11.14 0.97 4.96

KKRT16 0 5.31 0 1.77 7.09 0 0.41 0.01 0.34 0.14 0.64 0.09 0.57 0.21 1.40 0.18 1.36 0.23 6.69 0.19 6.46

OOS17 0 4.54 0.01 4.13 8.68 0.02 0.79 0 0.37 0.22 1.32 0.18 0.76 0.35 1.64 0.34 1.65 0.36 8.22 0.35 8.18

PRTY19-L 0 4.71 0 0.60 5.31 0.01 3.55 0 0.79 0.05 3.94 0 1.22 0.02 4.56 0 1.78 0.05 7.93 0.01 5.64

PRTY19-F 0 3.63 0 1.19 4.82 0 6.71 0 1.87 0.06 8.10 0 2.50 0.01 8.39 0 2.86 0.05 11.10 0.01 6.17

PRTY20 0 9.09 0 0.59 9.68 0.01 0.69 0.01 0.56 0.13 1.24 0.09 1.13 0.19 2.24 0.18 1.88 0.23 8.96 0.19 8.52

CM20 0 4.99 0 0.60 5.59 0.01 3.48 0 0.73 0.05 4.00 0 1.56 0.05 4.66 0.01 2.06 0.05 8.37 0.01 6.01

PSTY19 0.01 27.45 0.02 65.01 92.49 0.06 9.84 0.01 7.43 0.49 15.00 0.28 11.43 0.73 23.87 0.54 21.36 0.77 88.28 0.56 85.80

RS21 4.68 2.71 0.17 1.00 8.56 0.34 0.73 0.11 0.67 1.00 1.15 0.77 1.08 1.81 1.57 1.57 1.54 5.84 4.55 3.05 4.45

RS21-C-N 4.69 81.06 0.18 80.19 166.1 0.36 13.56 0.14 5.92 1.42 20.61 0.88 11.67 2.07 33.48 1.89 23.92 5.88 145.7 5.53 136.5

RS21-C-S 5.75 5.82 1.23 4.95 17.75 1.44 22.81 0.61 11.78 3.16 24.21 2.15 12.87 4.66 25.71 3.66 14.10 10.15 32.41 8.85 21.48

CGS22-N 0.02 30.26 0.02 69.39 99.69 0.08 10.79 0.02 7.99 0.71 16.44 0.45 13.34 1.05 25.21 0.88 22.78 1.07 95.46 0.90 92.38

CGS22-S 1.05 11.51 1.15 8.71 22.42 0.72 19.18 0.36 10.86 2.25 21.35 1.55 13.80 3.47 25.16 3.03 17.01 4.73 38.55 4.01 30.73

GMR21 0.02 34.90 0.02 27.06 61.96 0.06 4.23 0.02 1.73 0.68 6.19 0.46 3.91 1.00 11.60 0.87 9.51 1.04 57.81 0.89 55.92

CZZ22 0 3.15 0 3.74 6.89 0.01 4.84 0 1.34 0.11 5.39 0.09 2.04 0.19 6.24 0.18 2.48 0.19 11.06 0.18 7.35

RR22 3.52 1.56 0.13 0.96 6.17 0.26 0.61 0.08 0.30 0.87 0.85 0.73 0.62 1.72 1.32 1.32 1.16 4.60 3.34 4.24 3.15

2
20

HFH99-S 0 34.60 0 46.14 80.74 0 131.4 0 35.04 0 134.7 0 36.57 0 138.7 0 42.74 0 195.2 0 104.5

HFH99-X 0 33.55 0 45.09 78.64 0 75.81 0 21.28 0 77.09 0 22.74 0 83.88 0 29.35 0 144.2 0 87.22

DCW13 0 968.2 0 11.53 979.7 0 93.94 0 61.06 0.11 103.0 0.09 72.24 0.19 162.7 0.17 130.9 0.19 846.5 0.18 825.9

PSZ14 0 442.9 0 69.21 512.1 0.02 50.81 0 24.27 0.22 67.30 0.17 34.10 0.37 92.79 0.34 66.16 0.36 452.4 0.34 432.0

RA17 0 33.55 6.29 33.55 73.40 39.74 112.5 6.82 17.22 40.28 114.9 7.08 19.07 40.84 120.7 7.97 24.68 48.31 170.2 15.48 74.17

KKRT16 0.01 86.51 0.01 40.89 127.4 0.01 8.72 0 5.62 0.14 11.57 0.09 8.63 0.22 20.18 0.18 17.88 0.23 108.7 0.19 108.5

OOS17 0 77.86 0.01 69.21 147.1 0.02 13.60 0.02 8.00 0.22 17.92 0.17 10.50 0.35 24.11 0.34 21.30 0.36 134.9 0.35 132.3

PRTY19-L 0 77.55 0 11.54 89.09 0 44.02 0 12.61 0.05 51.28 0 16.82 0.05 58.09 0 22.47 0.05 119.4 0.01 87.72

PRTY19-F 0 59.11 0 23.08 82.19 0 109.8 0 22.82 0.05 111.4 0 24.27 0.05 118.9 0 32.89 0.05 193.0 0.01 124.6

PRTY20 0 155.7 0 11.53 167.2 0.01 18.38 0.01 10.98 0.13 21.05 0.08 15.96 0.22 33.36 0.17 27.85 0.25 151.7 0.18 146.2

CM20 0 81.40 0 11.54 92.94 0.01 82.24 0 14.95 0.05 85.35 0 15.57 0.04 91.51 0.01 22.36 0.05 155.6 0.01 88.66

PSTY19 0.01 657.7 0.02 1257 1915 0.06 223.8 0.01 143.4 0.47 269.7 0.29 200.9 0.77 414.8 0.54 339.2 0.70 1767 0.55 1683

RS21 26.14 40.56 0.43 12.15 79.28 2.15 14.83 0.81 10.78 3.35 16.61 2.04 12.98 6.43 21.41 4.85 17.88 27.34 63.07 25.65 60.13

RS21-C-N 26.14 1424 0.43 1407 2857 2.17 255.1 0.76 126.5 3.75 322.7 2.17 198.7 6.50 519.4 5.09 394.2 27.97 2497 25.88 2375

RS21-C-S 27.62 85.14 1.90 68.26 182.9 3.54 286.7 2.24 137.6 5.96 295.0 4.33 148.3 9.59 308.2 7.69 159.0 33.24 423.3 30.88 278.1

CGS22-N 0.02 700.8 0.02 1329 2030 0.08 244.2 0.02 163.2 0.71 295.76 0.48 220.5 1.08 443.4 0.88 363.3 1.08 1875 0.90 1791

CGS22-S 2.01 171.0 2.43 133.0 308.4 2.58 424.7 1.57 233.1 4.16 435.7 3.15 243.2 6.06 455.2 4.39 265.3 8.76 679.9 6.87 485.7

GMR21 0.02 633.2 0.02 515.9 1149 0.06 94.51 0.02 43.97 0.67 116.8 0.45 69.87 1.03 201.1 0.86 157.6 1.10 1056 0.89 1016

CZZ22 0 50.33 0 61.87 112.2 0.01 78.26 0 22.47 0.15 80.95 0.09 25.12 0.19 90.45 0.17 34.35 0.19 174.9 0.18 114.4

RR22 15.07 22.79 0.38 12.10 50.34 1.08 10.89 0.32 4.91 2.16 12.57 1.45 6.40 3.93 15.93 3.19 9.68 16.10 43.74 15.62 37.65

16



Table 4: Running time and communication for malicious PSI implementations in balanced cases. (𝑛 = 𝑛1 = 𝑛2) “R” and “S”
denote communications the receiver and sender send respectively.

𝑛 Protocol

Comm. (MB) Running Time (s)

R S
total

10Gbps 1Gbps 100Mbps 10Mbps

setup online setup online

single-thread multi-thread single-thread multi-thread single-thread multi-thread single-thread multi-thread

setup online setup online setup online setup online setup online setup online setup online setup online

2
12

RR16 1.92 4.49 0.40 0.06 6.87 1.51 0.43 1.00 0.33 2.46 0.75 1.90 0.66 4.38 1.33 3.82 1.32 18.07 6.18 17.61 6.11

RR17DE 0.02 1.59 0.02 3.76 5.38 0.04 0.50 0.01 0.28 0.53 0.77 0.43 0.59 0.90 2.11 0.85 1.02 0.93 5.11 0.87 4.93

RR17EC 0 2.47 0.01 4.46 6.94 0.02 0.24 0.01 0.08 0.28 0.66 0.26 1.37 0.52 1.41 0.51 1.24 0.53 6.12 0.52 5.85

PRTY20 0 0.91 0.01 0.04 0.95 0.02 0.07 0 0.07 0.24 0.28 0.18 0.27 0.36 0.46 0.35 0.42 0.37 1.02 0.36 1.07

RT21 0 0.17 0 0.13 0.30 0 0.80 0 0.19 0 0.96 0 0.23 0 1.00 0 0.52 0 1.24 0 0.70

RS21 1.88 0.25 0.06 0.27 2.45 0.18 0.06 0.05 0.01 1.04 0.62 0.85 0.48 1.91 1.01 1.62 0.94 3.40 1.43 3.15 1.35

RR22 1.70 0.16 0.06 0.22 2.15 0.16 0.05 0.05 0.04 1.01 0.49 0.86 0.62 1.88 0.95 1.60 0.92 3.29 1.24 3.01 1.23

2
16

RR16 272.9 66.32 3.76 0.98 344.0 32.35 9.70 19.64 8.07 39.48 14.35 26.47 12.71 57.38 20.61 46.14 20.11 254.2 90.16 239.7 88.71

RR17DE 0.02 25.79 0.02 64.72 90.54 0.04 9.44 0.01 4.97 0.57 11.91 0.44 8.44 0.93 17.61 0.85 12.77 0.93 83.59 0.88 80.53

RR17EC 0 40.60 0.01 73.33 113.9 0.02 4.04 0.01 2.00 0.31 7.31 0.27 4.85 0.52 16.01 0.51 12.68 0.53 95.80 0.52 93.29

PRTY20 0 14.41 0.01 0.59 15.01 0.02 1.21 0 0.69 0.22 1.71 0.18 1.36 0.36 3.04 0.35 2.66 0.40 13.47 0.36 13.42

RT21 0 2.79 0 2.10 4.89 0 12.96 0 2.83 0 13.35 0 3.21 0 13.94 0 3.32 0 17.58 0 6.68

RS21 4.69 2.72 0.17 1.40 8.98 0.35 0.81 0.11 0.57 1.25 1.48 1.04 1.27 2.39 2.18 2.08 2.18 6.42 5.50 5.87 5.32

RR22 3.53 1.58 0.13 1.35 6.59 0.31 0.68 0.09 0.34 1.00 1.18 0.84 0.84 1.96 1.90 1.81 1.48 4.81 4.16 4.75 3.83

2
20

RR16 - - - - - - - - - - - - - - - - - - - - -

RR17DE 0.02 427.9 0.02 1133 1561 0.06 218.3 0.31 131.1 0.44 233.8 0.46 155.2 0.87 319.5 0.87 235.7 0.90 1433 0.90 1376

RR17EC 0 668.6 0.02 1241 1910 0.04 143.3 0.02 92.74 0.36 166.1 0.31 116.0 0.57 276.2 0.56 225.0 0.54 1611 0.57 1561

PRTY20 0 230.3 0.01 11.53 241.8 0.02 23.29 0 14.27 0.19 29.14 0.18 20.90 0.39 47.36 0.34 38.35 0.40 217.8 0.36 208.6

RT21 0 45.12 0 33.55 78.67 0 208.0 0 46.67 0 211.2 0 48.34 0 217.5 0 50.66 0 276.5 0 101.7

RS21 26.15 40.56 0.43 17.19 84.33 2.10 15.40 0.63 10.95 4.07 18.75 2.73 13.75 6.77 24.69 5.69 19.35 27.85 69.71 26.80 64.55

RR22 15.08 22.79 0.38 17.34 55.60 1.09 11.87 0.41 5.50 2.46 14.50 1.64 7.14 4.41 18.47 3.67 11.05 16.70 50.05 15.99 43.33

Table 5: Running time and communication for PSI implementations in unbalanced cases. (𝑛1 ≪ 𝑛2 or 𝑛1 ≫ 𝑛2)

𝑛1 𝑛2 Protocol

Comm. (MB) Running Time (s)

R S
total

10Gbps 1Gbps 100Mbps 10Mbps

setup online setup online

single-thread multi-thread single-thread multi-thread single-thread multi-thread single-thread multi-thread

setup online setup online setup online setup online setup online setup online setup online setup online

2
10

2
20

HFH99-X 0 0.03 0 33.56 33.59 0 74.73 0 10.58 0 75.87 0 11.21 0 80.15 0 15.46 0 103.5 0 38.84

DCW13 0 968.2 0 10.49 978.67 0.01 91.13 0 56.27 0.11 101.7 0.09 67.29 0.19 159.0 0.17 127.2 0.19 843.5 0.18 811.0

PSZ14 0 0.40 0 94.37 94.78 0.02 29.53 0 9.84 0.21 29.56 0.17 9.83 0.35 31.36 0.33 13.73 0.36 96.03 0.35 93.06

RA17 0 0.03 6.29 0.03 6.36 39.81 0.11 6.60 0.02 40.03 0.24 6.75 0.15 40.80 0.38 7.64 0.24 48.35 0.47 14.89 0.29

KKRT16 0 0.08 0.01 31.46 31.55 0.02 3.56 0 2.24 0.14 3.86 0.09 2.61 0.22 5.42 0.17 5.06 0.23 32.64 0.18 31.36

OOS17 0 0.77 0.01 94.37 94.46 0.02 12.69 0 6.80 0.22 13.45 0.17 7.00 0.35 15.01 0.33 13.15 0.36 93.54 0.34 93.07

PRTY19-L 0 0.08 0 10.49 10.58 0.01 22.80 0 3.48 0.05 20.53 0 4.22 0.05 22.44 0 4.96 0.05 31.03 0 14.00

PRTY19-F 0 0.06 0 20.98 21.04 0.01 68.71 0 12.05 0.05 72.58 0 11.88 0.05 71.78 0 12.63 0.05 82.70 0 28.70

PRTY20 0 0.16 0.01 10.49 10.65 0.02 2.14 0 1.05 0.17 2.87 0.09 1.66 0.22 3.76 0.17 2.60 0.23 12.75 0.18 11.43

CM20 0 0.08 0 10.50 10.58 0.01 13.55 0 2.42 0.05 13.27 0.01 3.12 0.05 15.66 0 3.99 0.05 23.92 0 12.87

PSTY19 0.01 0.38 0.02 34.80 35.21 0.07 20.33 0.01 7.15 0.42 23.00 0.27 10.10 0.72 27.53 0.52 14.07 0.72 58.22 1.00 44.83

RS21 1.61 0.11 0.06 10.65 12.43 0.15 1.84 0.23 1.07 0.82 2.39 0.67 1.79 1.38 3.75 1.21 2.85 2.74 12.59 2.41 11.71

RS21-C-N 1.61 0.41 0.06 34.97 37.06 0.52 22.58 0.05 7.17 1.16 26.01 0.72 9.71 1.99 31.58 1.42 15.35 3.11 61.67 2.75 45.59

RS21-C-S 1.89 0.77 0.31 34.39 37.35 0.33 23.00 0.10 6.90 2.08 26.51 1.74 9.85 3.74 31.72 3.36 15.14 5.36 62.07 4.94 45.83

CGS22-N 0.02 0.42 0.02 32.89 33.35 0.08 14.28 0.02 11.61 0.71 17.87 0.45 15.09 1.04 22.40 0.89 19.53 1.12 51.82 0.91 48.43

CGS22-S 0.30 0.77 0.26 32.31 33.64 0.20 14.16 0.07 11.79 1.73 17.35 1.70 15.08 2.86 22.93 2.35 19.51 3.20 51.50 2.73 47.83

GMR21 0.02 512.3 0.02 515.9 1028 0.06 91.13 0 56.27 0.63 74.83 0.45 54.86 1.09 149.9 0.87 129.1 1.04 898.1 0.89 888.8

CZZ22 0 16.81 0 50.34 67.16 0.02 76.34 0 11.00 0.15 78.77 0.01 13.93 0.21 84.10 0.17 19.36 0.19 134.4 0.18 68.98

RR22 1.61 0.10 0.06 10.65 12.41 0.15 2.28 0.04 1.23 0.83 3.06 0.64 1.74 1.50 4.27 1.18 2.78 2.69 13.16 2.45 11.84

2
20

2
10

HFH99-X 0 33.55 0 10.52 44.07 0 74.74 0 10.64 0 76.55 0 12.01 0 78.56 0 14.08 0 114.4 0 49.20

DCW13 0 968.2 0 0.01 968.2 0.01 87.37 0 58.10 0.10 99.44 0.10 69.26 0.20 160.0 0.17 127.2 0.19 834.3 0.18 801.7

PSZ14 0 402.7 0 0.06 402.7 0.02 25.14 0 14.73 0.22 34.09 0.17 24.50 0.35 63.70 0.34 51.08 0.36 96.03 0.35 93.06

RA17 0 33.55 0.01 33.55 67.11 0.04 111.9 0.01 16.70 0.08 114.3 0.01 18.53 0.04 120.1 0.01 23.86 0.09 169.7 0.02 73.32

KKRT16 0 86.51 0.01 0.03 86.55 0.02 4.10 0 2.73 0.14 7.21 0.09 5.53 0.22 12.82 0.18 11.92 0.23 73.87 0.19 72.18

OOS17 0 77.86 0.01 0.06 77.93 0.02 4.36 0.01 2.70 0.22 6.06 0.17 5.26 0.35 12.55 0.34 11.26 0.36 66.53 0.35 65.00

PRTY19-L 0 73.32 0 0.02 73.34 0.01 22.80 0 3.48 0.05 45.50 0 9.96 0.05 48.97 0.01 16.13 0.04 106.6 0.01 69.57

PRTY19-F 0 56.97 0 0.03 57.00 0.01 62.62 0 9.38 0.05 68.06 0 11.82 0.05 68.41 0.01 16.55 0.05 110.8 0.01 57.84

PRTY20 0 140.9 0.01 0.01 141.0 0.02 13.06 0 9.09 0.14 18.48 0.09 13.06 0.23 26.42 0.18 23.21 0.23 126.9 0.19 121.6

CM20 0 81.40 0 0.02 81.42 0.01 56.01 0 9.65 0.05 54.50 0 9.63 0.05 55.93 0.01 15.95 0.04 108.8 0.01 72.72

PSTY19 0.01 657.7 0.01 1224 1881 0.06 208.5 0.01 141.6 0.47 258.6 0.30 195.2 0.75 398.5 0.54 333.7 0.75 1706 0.56 1646

RS21 26.14 40.56 0.43 0.62 67.76 2.02 12.73 1.00 9.30 3.61 15.28 2.25 11.45 6.15 18.99 5.27 15.26 27.27 51.31 25.80 47.63

RS21-C-N 15.08 613.4 0.39 1224 1853 1.51 218.8 0.44 146.6 2.61 266.0 1.77 198.8 4.39 399.6 3.50 333.7 16.80 1688 15.98 1619

RS21-C-S 17.08 83.69 2.80 28.35 131.9 3.48 397.3 2.02 224.1 6.24 402.7 4.12 240.2 9.07 416.9 6.71 238.1 24.09 495.2 21.74 316.1

CGS22-N 0.02 700.7 0.02 1297 1998 0.10 230.7 0.04 154.5 0.66 285.4 0.49 212.7 1.08 442.7 0.93 360.0 1.11 1839 0.96 1759

CGS22-S 2.01 171.0 2.43 101.0 276.5 2.77 405.5 2.04 235.1 4.63 419.4 3.32 232.7 5.39 441.5 4.72 258.3 8.67 637.7 7.26 445.2

GMR21 0.02 121.4 0.02 0.30 121.7 0.09 27.21 0.02 10.78 0.64 32.37 0.46 15.16 1.06 44.01 1.25 25.99 1.06 150.6 0.89 133.2

CZZ22 0 33.57 0 10.53 44.11 0.02 76.05 0 11.55 0.16 77.73 0.09 13.09 0.19 81.60 0.18 16.59 0.19 115.8 0.18 50.36

RR22 15.07 22.79 0.38 0.58 38.82 1.15 10.49 0.50 3.58 2.26 11.34 1.54 4.77 3.89 13.18 3.14 7.21 16.19 31.95 15.46 25.05

17



Table 6: Running time and communication for OPRF-based PSI implementations optimized using filters.

𝑛 Protocol

Comm.(MB) Running Time (s)

R S
total

10Gbps 1Gbps 100Mbps 10Mbps

setup online setup online

single-thread multi-thread single-thread multi-thread single-thread multi-thread single-thread multi-thread

setup online setup online setup online setup online setup online setup online setup online setup online

2
16

KKRT16 0 5.31 0.01 1.18 6.50 0.02 0.68 0 0.46 0.16 0.79 0.09 0.69 0.22 1.29 0.18 1.31 0.26 6.39 0.19 6.30

PRTY19 0 3.63 0 0.79 4.43 0.01 6.71 0 2.00 0.05 7.08 0.01 2.38 0.05 7.50 0.01 2.71 0.05 10.98 0.01 5.97

CM20 0 4.99 0 0.40 5.40 0.01 3.61 0 0.82 0.05 3.94 0 1.62 0.05 4.33 0.01 2.33 0.05 8.27 0.01 5.99

PRTY20 0 14.41 0.01 0.39 14.82 0.02 1.21 0 0.70 0.24 1.73 0.18 1.26 0.39 2.95 0.35 2.64 0.40 13.39 0.36 12.95

RR17DE 0.02 25.79 0.02 47.03 72.86 0.03 14.98 0.01 9.34 0.56 17.17 0.43 10.87 0.88 21.68 0.85 14.91 0.94 71.68 0.87 67.26

RS21 4.69 2.72 0.17 0.81 8.39 0.43 1.04 0.15 0.85 1.54 1.50 1.23 1.79 2.43 2.13 2.21 1.98 6.41 5.01 6.13 4.77

RR22 3.53 1.57 0.13 0.76 5.99 0.27 0.78 0.08 0.47 1.21 1.35 1.02 1.37 2.21 2.19 1.87 1.51 5.12 3.99 4.77 3.67

2
20

KKRT16 0 86.51 0.01 18.87 105.4 0.02 14.20 0 10.82 0.14 15.58 0.10 12.09 0.19 22.67 0.18 19.27 0.23 98.79 0.19 95.89

PRTY19 0 59.11 0 12.59 71.71 0.01 116.7 0 25.26 0.05 118.7 0 28.66 0.05 124.9 0.01 32.63 0.05 173.8 0.01 83.25

CM20 0 81.39 0 6.30 87.70 0.01 81.41 0 16.20 0.01 82.08 0 16.70 0.05 89.72 0.01 23.65 0.05 153.8 0.01 86.59

PRTY20 0 230.3 0.01 6.29 236.6 0.02 26.58 0.01 16.34 0.22 31.55 0.18 22.53 0.39 49.10 0.35 38.67 0.40 216.9 0.36 206.2

RR17DE 0.02 427.9 0.02 780.2 1208.2 0.05 342.1 0.02 214.0 0.46 361.6 0.44 234.0 0.90 432.7 0.87 294.1 2.02 1217 0.90 1108

RS21 26.15 40.56 0.43 6.91 74.05 1.88 17.41 0.73 12.91 3.79 19.08 2.54 14.85 6.64 24.78 5.40 20.34 27.74 63.04 27.06 57.74

RR22 15.08 22.79 0.38 6.86 45.11 1.15 13.95 0.36 6.35 2.56 15.08 1.84 8.36 4.54 18.07 3.92 11.71 16.60 42.59 16.15 35.80

Table 7: Running time and communication for Multi-point OPRF-based PSI implementations using different OKVS types.

𝑛 Protocol OKVS

Comm.(MB) Running Time (s)

R S
total

10Gbps 1Gbps 100Mbps 10Mbps

setup online setup online

single-thread multi-thread single-thread multi-thread single-thread multi-thread single-thread multi-thread

setup online setup online setup online setup online setup online setup online setup online setup online

2
12

PRTY20
H2-GCT 0 0.9 0.01 0.04 0.97 0.02 0.06 0.01 0.04 0.18 0.21 0.17 0.20 0.34 0.40 0.33 0.38 0.35 1.01 0.34 0.99

H3-GCT 0 0.50 0.01 0.37 0.56 0.02 0.04 0 0.02 0.18 0.12 0.17 0.11 0.34 0.24 0.33 0.23 0.35 0.63 0.34 0.62

BLAZE-GCT 0 0.51 0.01 0.04 0.56 0.03 0.06 0.01 0.03 0.18 0.13 0.17 0.11 0.34 0.25 0.33 0.23 0.35 0.65 0.34 0.63

RS21
H2-GCT 1.88 0.25 0.06 0.27 2.45 0.17 0.05 0.05 0.04 0.83 0.46 0.79 0.44 1.62 0.90 1.62 0.88 3.18 1.31 3.19 1.30

H3-GCT 1.71 0.16 0.06 0.22 2.15 0.16 0.04 0.05 0.03 0.81 0.44 0.78 0.44 1.59 0.87 1.60 0.86 3.01 1.18 3.00 1.17

BLAZE-GCT 1.70 0.16 0.06 0.22 2.15 0.16 0.05 0.05 0.04 0.82 0.45 0.78 0.45 1.59 0.88 1.60 0.88 3.01 1.19 2.92 1.18

2
16

PRTY20
H2-GCT 0 14.41 0.01 0.59 15.01 0.02 1.12 0.01 0.67 0.18 1.70 0.17 1.30 0.34 3.04 0.33 2.50 0.35 13.70 0.34 13.37

H3-GCT 0 7.81 0.01 0.59 8.42 0.02 0.92 0.01 0.52 0.18 1.20 0.17 0.97 0.34 2.00 0.33 1.84 0.35 8.08 0.34 7.72

BLAZE-GCT 0 8.00 0.01 0.59 8.61 0.02 0.88 0.01 0.37 0.18 1.16 0.17 0.83 0.35 2.20 0.33 1.68 0.35 8.23 0.34 7.70

RS21
H2-GCT 4.69 2.72 0.17 1.40 8.98 0.37 0.83 0.22 0.63 1.03 1.43 0.80 1.20 2.14 2.15 2.02 1.81 6.05 5.33 5.76 5.27

H3-GCT 3.53 1.54 0.13 1.35 6.55 0.28 0.63 0.09 0.48 0.95 1.12 0.76 1.15 1.96 1.78 1.70 1.80 4.80 4.11 4.66 4.02

BLAZE-GCT 3.53 1.58 0.13 1.35 6.59 0.31 0.68 0.09 0.34 1.00 1.18 0.84 0.84 1.96 1.90 1.81 1.48 4.81 4.16 4.75 3.83

2
20

PRTY20
H2-GCT 0 230.3 0.01 11.53 241.8 0.02 25.46 0.01 14.99 0.18 32.25 0.17 20.44 0.34 51.5 0.33 38.40 0.35 226.0 0.34 213.0

H3-GCT 0 124.7 0 11.53 136.29 0.02 18.14 0.01 12.48 0.18 21.37 0.17 15.29 0.34 31.78 0.33 25.93 0.35 131.3 0.34 125.0

BLAZE-GCT 0 129.0 0.01 11.53 140.6 0.02 16.60 0.01 7.12 0.18 20.58 0.17 10.49 0.34 30.80 0.33 21.55 0.35 133.3 0.34 122.7

RS21
H2-GCT 26.15 40.56 0.43 17.19 84.33 2.11 16.35 0.77 13.14 3.79 20.39 2.24 15.54 6.64 24.38 5.18 19.74 27.80 70.38 26.56 65.57

H3-GCT 15.08 22.08 0.38 17.34 54.89 1.08 12.98 0.37 11.59 2.37 14.65 1.56 13.02 4.27 18.30 3.52 15.82 16.48 49.71 15.95 47.44

BLAZE-GCT 15.08 22.79 0.38 17.34 55.60 1.09 11.87 0.41 5.50 2.46 14.50 1.64 7.14 4.41 18.47 3.67 11.05 16.70 50.05 15.99 43.33

18


	Abstract
	1 Introduction
	2 Definitions
	2.1 Functionality
	2.2 Security
	2.3 Cryptographic Primitives
	2.4 Hash to Bins

	3 Map-and-Compare Framework
	4 How to Map
	4.1 Overview
	4.2 CwPRF-based Map
	4.3 OPRF-based Map
	4.4 Sharing-based Map

	5 How to Compare
	5.1 Compare in existing PSI
	5.2 Filter Optimization

	6 Benchmark Implementations
	6.1 Java Library
	6.2 JNI Support
	6.3 OT Benchmarks and Factories
	6.4 Parallelization and Communication

	7 Performance Evaluation
	7.1 Experimental Environment
	7.2 Experimental Results
	7.3 Performance Evaluation

	8 Conclusion
	References
	A Performance Tables

