
A Tutorial on the

Implementation of Block Ciphers:

Software and Hardware Applications

Howard M. Heys

Memorial University of Newfoundland, St. John’s, Canada
email: hheys@mun.ca

Dec. 10, 2020

2

Abstract

In this article, we discuss basic strategies that can be used to implement block ciphers in
both software and hardware environments. As models for discussion, we use substitution-
permutation networks which form the basis for many practical block cipher structures. For
software implementation, we discuss approaches such as table lookups and bit-slicing, while
for hardware implementation, we examine a broad range of architectures from high speed
structures like pipelining, to compact structures based on serialization. To illustrate different
implementation concepts, we present example data associated with specific methods and
discuss sample designs that can be employed to realize different implementation strategies.
We expect that the article will be of particular interest to researchers, scientists, and
engineers that are new to the field of cryptographic implementation.

3

4

Terminology and Notation

Abbreviation Definition
SPN substitution-permutation network
IoT Internet of Things
AES Advanced Encryption Standard
ECB electronic codebook mode
CBC cipher block chaining mode
CTR counter mode

CMOS complementary metal-oxide semiconductor
ASIC application-specific integrated circuit
FPGA field-programmable gate array

Table 1: Abbreviations Used in Article

5

6

Variable Definition
B plaintext/ciphertext block size

(also, size of cipher state)
κ number of cipher key bits

(also, size of key state)
R number of rounds
n S-box size (number of input/output bits)

P = [pB−1...p1p0] plaintext block of B bits
C = [cB−1...c1c0] ciphertext block of B bits
K = [kκ−1...k1k0] κ-bit cipher key
D = [dB−1...d1d0] B-bit cipher state
D∗ = [d∗B−1...d

∗
1d
∗
0] B-bit next cipher state

X = [xB−1...x1x0] B-bit cipher state at input to substitution layer
and output of key mixing layer

Y = [yB−1...y1y0] B-bit cipher state at output of substitution layer
and input to permutation layer

Z = [zB−1...z1z0] B-bit cipher state at output of permutation layer
and input to key mixing layer

RKr = [rkr,B−1...rkr,1rkr,0] B-bit round key of round r
K ′ = [k′κ−1...k

′
1k
′
0] κ-bit key state

P † = [P †B−1...P
†
1P
†
0]T bit-slice plaintext structure:

B ×B matrix of bits consisting of B rows of

B-bit plaintext blocks, P †i , i ∈ {0, 1, ..., B − 1}
p†i,j element at row i, column j of P †, i, j ∈ {0, 1, ..., B − 1}

C† = [C†B−1...C
†
1C
†
0]T bit-slice ciphertext structure:

B ×B matrix of bits consisting of B rows of

B-bit ciphertext blocks, C†i , i ∈ {0, 1, ..., B − 1}
D† = [D†B−1...D

†
1D
†
0]T bit-slice cipher state:

B ×B matrix of bits consisting of B columns of

B-bit cipher states, D†i , i ∈ {0, 1, ..., B − 1}
d†i,j element at row i, column j of D†, i, j ∈ {0, 1, ..., B − 1}

Table 2: Notation Used in Article

Contents

1 Introduction to Block Ciphers 9

1.1 Target Implementation Environments . 9

1.2 Basic Cipher Principles . 11

1.3 Substitution Permutation Networks . 12

1.3.1 16-bit SPN . 12

1.3.2 64-bit SPN . 17

1.4 Modes of Operation . 18

1.4.1 Electronic CodeBook Mode . 19

1.4.2 Cipher Block Chaining Mode . 20

1.4.3 Counter Mode . 20

1.5 General Implementation Structures . 21

1.6 Summary . 23

2 Software Implementation 25

2.1 Structure of Encryption . 25

2.2 Structure of Decryption . 26

2.3 Direct Implementation of an SPN . 27

2.3.1 Key Mixing Layer Implementation . 28

2.3.2 Substitution Layer Implementation . 28

2.3.3 Permutation Layer Implementation . 28

2.4 Table Lookup Implementations . 29

2.4.1 Permutation in a Table . 29

2.4.2 Combined Substitution/Permutation Table 30

2.5 Time/Memory Tradeoffs of Lookup Tables . 33

2.6 Bit-slice Implementations . 35

2.6.1 Bit-slicing the S-box . 36

2.6.2 Restructuring the Data for Bit-Slicing 39

2.6.3 Bit-slicing the Permutation and Key Mixing 41

2.6.4 Example of Bit-Slicing . 42

2.6.5 Other Structures for Bit-slicing . 45

2.7 Software Implementation of Cipher Modes . 46

2.8 Summary . 47

7

8 CONTENTS

3 Hardware Implementation 49
3.1 Iterative Design . 50

3.1.1 Basic Iterative Architecture . 50
3.1.2 Round Function Hardware . 52
3.1.3 Loop Unrolling . 53

3.2 Parallelization - A High Speed Implementation 55
3.3 Pipelining - A High Speed Implementation . 56

3.3.1 Description of Pipeline Architecture 56
3.3.2 Selecting Hardware for a Pipeline Stage 58
3.3.3 Timing Issues for Pipeline Designs . 58
3.3.4 Example of Pipelining . 59

3.4 Serial Design - A Compact Implementation 60
3.4.1 The Concept of Serialization . 61
3.4.2 A Sample Design . 61
3.4.3 Selectable Register . 63

3.5 Hardware Implementation of Decryption . 65
3.6 Hardware Implementation of Cipher Modes 66
3.7 Tradeoffs Between Architectures . 66
3.8 Summary . 69

4 Conclusion 71

References 73

Appendix: Key Scheduling 77

Chapter 1

Introduction to Block Ciphers

Block ciphers are the workhorse of security applications. Using a symmetric key approach,
block cipher algorithms encrypt a block of plaintext bits (typically, 64 or 128 bits) to produce
an equally-sized block of ciphertext bits. These algorithms can be found in a broad range of
application environments and it is almost certainly true that the best known block cipher,
the Advanced Encryption Standard (AES) [1][2], is the most applied cipher in the world
today.

1.1 Target Implementation Environments

Implementations of block ciphers can be divided into two broad categories: software and
hardware. Software implementations make use of the instructions available on general
purpose processors, while hardware implementations focus on designs at the level of logic
gates and registers. Of course, within these two categories, there are many sub-categories
dependent on the processor characteristics for software (eg. instruction set, word size,
memory availability, etc.) and the technology for hardware (eg. CMOS application-specific
integrated circuits (ASICs) and field-programmable gate arrays (FPGAs)). Implementation
choices are invariably influenced by the objectives of the application and the features of the
targeted environment. This results in the consideration of factors such as speed and resource
constraints including chip area, system memory, and device power or energy limitations.

As examples of the diversity of target environments, consider that block ciphers could
be implemented for the following 3 sample scenarios:

1. a general purpose computer using a processor with a word size of 64-bits (that is,
instructions use 64-bit operands and data is stored as 64-bit words),

2. a device targeted to an application for the Internet of Things (IoT), making use of
either (a) a small processor (eg. a microcontroller) or (b) custom dedicated hardware
of limited area, and

3. a high speed communications gateway targeted to service many high speed data
connections.

9

10 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

Now, consider briefly for these different environments, the resources needed and the influences
of those resource requirements on the implementation of the block cipher. For the 64-
bit general purpose computer, there is likely to be lots of memory and a comprehensive
instruction set with a large word size for operands and in such implementations probably
speed of encryption (or throughput) is of most interest. In contrast, the implementation
targeted to the IoT device would be fundamentally concerned with the constrained resources
such as memory and word size for a small processor or circuit area and power/energy
limitations for a hardware implementation. Hence, for the IoT device, it is necessary to
consider lightweight cryptography [3] and, for the applications to which such a device is
targeted, speed of the encryption process is usually not an important consideration. Lastly,
for the high speed communications gateway, speed of encryption is so important that it is
often desirable to utilize custom designed hardware implementations that give the ability to
process many different connections at high speeds.

Clearly, there are a breadth of potential applications and, as a result, there are many
different considerations when implementing ciphers. In many scenarios, different types of
implementations could be employed within the same application. For example, an IoT
device might interact with a software application on a general purpose computer. In some
circumstances, specially-targeted ciphers are proposed that are intended specifically for one
or more these environments. For example, many recently proposed block cipher algorithms
are considered lightweight, targeted specifically to implementation on constrained devices.
In such cipher proposals, implementation approaches are often discussed by the cipher
proponents. In practice, however, it is often desirable to have a cipher be applied to many
different environments, which may vary dramatically in the nature of their requirements.
This is case, for example, for AES, which can be found in all manner of targeted environments
from high speed software to compact hardware architectures. The near-ubiquity of AES has
lead to processors with special instructions to facilitate encryption speedup [4] and the
development of specialized hardware structures suitable for the specific components defined
for AES (for example, see [5]).

In this article, we choose to focus our discussions on the general principles that can be
applied to the implementations of ciphers on many different platforms. We do not get into
details which are targeted to one particular cipher and, instead, describe approaches that
can generally be applied to the majority of proposed block ciphers. The main objective
of the article then is not to provide a detailed description of the implementation for a
particular cipher or ciphers, but instead present the principles that form the foundation for
understanding how ciphers can be implemented. This is accomplished by using illustrative
examples and sample designs of cipher implementations. This article is a starting point for
the cryptographic engineer wanting to have an understanding of the general structures and
methods found in implementations before the engineer delves more deeply into the possible
architectures suitable to their cipher of interest. To this end, we present a basic form of
block cipher, referred to as the substitution-permutation network (SPN), which we then use
as the basis of our discussion of implementation approaches.

1.2. BASIC CIPHER PRINCIPLES 11

1.2 Basic Cipher Principles

We first discuss some of the fundamental principles with which all block ciphers are designed.1

Block ciphers encrypt a block of plaintext, P , of size B bits by applying a key-dependent
transformation to produce an B-bit block of ciphertext, C. The key, K, is defined to be κ
bits in size, giving a key space with a total of 2κ possible keys. Block ciphers fall into the
category of symmetric key cryptography. Such ciphers have the same key applied for both
encryption and decryption.

Typically, B ≥ 64. Compact, lightweight ciphers, such as the PRESENT block cipher [6],
targeted to constrained systems environments (such as some devices for IoT), which require
implementation efficiency but which can typically accommodate lower security levels, have
smaller block sizes of 64 bits, while ciphers like AES used for a broad range of applications,
are usually expected to have higher security levels and large block sizes (eg. 128 bits). Block
ciphers with very small block sizes (such as 32 bits) would not acceptable for any context,
because a small block size may make a dictionary attack practical, where the attacker is
able to acquire some known plaintext and corresponding ciphertext and build a table of
plaintext-ciphertext mappings for a system with a given secret key.

The key size, κ, must be large enough to ensure that a brute force or exhaustive key search
attack is not possible. In such an attack, knowledge of a small number of plaintext blocks
and corresponding ciphertext blocks could be utilized by the attacker who can encrypt the
plaintext with all possible keys to determine which key results in the corresponding known
ciphertext. Using only a modest number of plaintext/ciphertext pairs, the key found can be
confirmed to be the correct one. To prevent this, generally, κ ≥ 80, with the lower bound
being suitable for low security lightweight applications, while values like κ = 128 or 256
would be used for higher security general applications. For example, the PRESENT cipher
is defined to operate with 80 or 128 bits of key and AES allows keys of 128, 192, and 256
bits in size.

Cryptography has been around for millenia, but in the 1940s, Claude Shannon was
the first to propose practical structures for the modern ciphers in use today. In [7], he
describes the concept of a product cipher, where a cipher can be constructed as a composition
of functions, with the functions consisting of simple cryptographic operations. Hence, he
proposed constructing a block cipher by iterating over a number of rounds of operations,
which, while not in themselves secure, have properties which provide security after many
repetitions of the operations. Specifically, he proposed the concepts of confusion and diffusion
as necessary properties of a block cipher which should be realized by the cipher’s operations.
Confusion is defined as the property creating a complex mathematical relationship between
input bits and output bits; diffusion reflects that any grouping of a small number of input
bits has an influence across all output bits.

1Note that we use the word “design” in two contexts in this article. We sometimes refer to cipher design
when referring to the functionality and security of the cipher algorithm, and, in this case, the design is often
described using mathematical and algorithmic notation. Alternatively, we shall also refer to design when
discussing of the implementation of the cipher and, in this case, we are implying the software functions or
hardware structures that are used to realize the cipher.

12 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

1.3 Substitution Permutation Networks

A substitution-permutation network (referred as an SP network, or simply an SPN) is a well-
known structure for realizing the characteristics of Shannon’s product cipher. Numerous
cipher proposals over the years have used the concepts found in SPNs. For example, the
PRESENT cipher is an SPN and, most notably, AES has a structure that is very similar to
an SPN.

1.3.1 16-bit SPN

Let’s consider a simple realization of an SPN in the form of the trivial, toy cipher structure
shown in Figure 1.1. This cipher is impractically small with only a 16-bit block size, but is
useful in understanding the concepts of an SPN and forms a good foundation for discussing
many of the implementation methods that we present in this article. The SPN illustrated in
Figure 1.1 consists of 4 rounds. Each round (with the exception of the last round) consists
of 3 cryptographic operations or layers: (1) round key mixing (or round key addition), (2)
substitution, and (3) permutation. The last round has the permutation layer replaced by
another key mixing layer. The block size is 16 bits and the plaintext input at the top of
the diagram is labelled P = [p15p14...p0]. At the output of the 4th round, the ciphertext is
presented as C = [c15c14...c0], at the bottom of the diagram.2 Data blocks flow through the
cipher and are acted upon by each layer. We shall refer to the 16-bit data block within the
cipher as the cipher state. In this article, we shall generally use D to represent the state.3

To decrypt, the process is reversed. Essentially, at the bottom of the diagram, the
ciphertext is provided as input to the decryption process, data flows up the structure
(backwards through all the layers) and comes out as plaintext output, at the top of the
diagram. We discuss decryption in more detail, later in this section.

Encryption Process

The structure illustrated presents the path that data follows during the encryption process.
To produce the bits mixed with the state bits during the key mixing operation, a key
scheduling algorithm generates round keys. (The key scheduling process is not illustrated
in the figure.) For round r, the 16-bit round key is labelled as RKr. Usually, these bits
are produced by simple operations on the original cipher key bits, parameterized by some
unique information related to the round number. We discuss the key schedule in detail
in the Appendix. During the key mixing operation, the round key, which is 16 bits in
size, is XORed on a bit-by-bit basis with the cipher state. The key mixing operations in
PRESENT and AES are similar, except in those cases, the round keys sizes are the same
as the corresponding block sizes and the XOR is across the block of 64 bits or 128 bits,
respectively.

Following the key mixing, the state is conceptually broken up into 4 sub-blocks, each of
4 bits (that is, one nibble). In the substitution layer, each 4-bit sub-block is processed with

2We present the discussion of our ciphers using language that presumes the cipher is used in electronic
codebook mode, one of several modes discussed in Section 1.4. For other cipher modes, it is perhaps more
appropriate to refer to the forward (reverse) process, rather than the encryption (decryption) process.

3Note that, in subsequent sections, we shall also use notation in some contexts where X, Y , and Z
represent the state.

1.3. SUBSTITUTION PERMUTATION NETWORKS 13

round	key	RK1	mixing	

round	key	RK2	mixing	

round	key	RK3	mixing	

round	key	RK4	mixing	

round	key	RK5	mixing	

	
	
	
	
	
	

key	mixing	

permutation	

substitution	

plaintext	

.	.	.				c0	

.	.	.				p0	p15				.	.	.		

round	1	

round	2	

round	3	

round	4	

c15				.	.	.	 ciphertext	

S1	 S2	 S3	 S4	

S1	 S2	 S3	 S4	

S1	 S2	 S3	 S4	

S1	 S2	 S3	 S4	

Figure 1.1: 16-bit SPN (4 Rounds)

a substitution box or S-box. A 4-bit S-box takes a 4-bit input and maps it to a 4-bit output
as shown in Figure 1.2. The 4-bit S-box operation can be thought of as a table lookup (and
can be implemented as such) where the table consists of 24 nibbles. The input is used as an
index into the table and the output is selected from the position pointed to by the index.
An S-box is a fixed mapping (i.e., it is not key dependent) and an example of a 4-bit S-box
is shown in Table 1.1. This is the S-box found in the PRESENT cipher [6]. PRESENT is
an SPN and, as with many lightweight ciphers, it uses a small S-box mapping. In contrast,
AES uses an 8-bit S-box which is represented by a table of 28 8-bit values, indexed by the
8-bit input. In the substitution layer, it is conceivable that all S-boxes are defined to be
different mappings (this was the case, for example, with the Data Encryption Standard [8]),
but it is more typical for ciphers to use only one mapping for all S-boxes. This is the case
for the PRESENT cipher (with one 4-bit S-box defined) and AES (with one 8-bit S-box

14 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

x3 x2 x1 x0

S

y3 y2 y1 y0

Figure 1.2: S-box Notation

input 0 1 2 3 4 5 6 7
output C 5 6 B 9 0 A D

input 8 9 A B C D E F
output 3 E F 8 4 7 1 2

Table 1.1: PRESENT 4-bit S-box Mapping
(All values in hexadecimal.)

defined). In our discussion, we shall implicitly assume that all S-boxes in a cipher use the
same mapping.

The properties of the S-box are critical to the proper operation and security of the cipher.
In order to be able to map, for a given key, a plaintext to a unique ciphertext (and vice
versa), the S-box must be bijective (that is, one-to-one). Bijectivity guarantees that each
output bit of the S-box is balanced, meaning that for half of the input values, the output bit
is “0” and half “1”. Another important property that the mapping must possess is that the
output bits are a nonlinear functions of the inputs. This is necessary to provide Shannon’s
confusion property and prevent successful linear cryptanalysis of the cipher [9]. Many other
properties of the S-box are also desirable to prevent other cryptanalytic attacks, such as
differential cryptanalysis [10]. The study of the construction of S-boxes to ensure certain
cryptographic properties is an extensive field of research and a discussion of this topic is
beyond the scope of this article.

The last operation of a round in the SPN is the permutation. The permutation is simply
a transposition of the bit positions of the state, shown as wirings in Figure 1.1. This can
be easily described in a table as shown by the example in Table 1.2. Let D = [d15d14...d0]
represent the state bits at the input to the permutation and D∗ = [d∗15d

∗
14...d

∗
0] represent the

state bits at the output of the permutation. Hence, the bits from the leftmost S-box, S1,
entering the permutation result in the following assignments to the state bits at the output
of the permutation: d∗15 ← d15, d∗11 ← d14, d∗7 ← d13, and d∗3 ← d12. This means that the
output bits of the leftmost S-box, S1, are connected by the permutation to the inputs of
all 4 S-boxes in the next round. This property of the permutation and the fact that any
one bit input to an S-box has an effect on all S-box output bits ensures that isolated effects
in the leftmost 4 bits will be spread across the block in the next round and can affect all

1.3. SUBSTITUTION PERMUTATION NETWORKS 15

input 15 14 13 12 11 10 9 8
output 15 11 7 3 14 10 6 2

input 7 6 5 4 3 2 1 0
output 13 9 5 1 12 8 4 0

Table 1.2: 16-bit Permutation
(Bit 15 is leftmost bit.)

Operation Input Output Comment

Key Mixing DEBE B0C7 Round 1 with RK1 = 6E79
Substitution B0C7 8C4D
Permutation 8C4D D701
Key Mixing D701 B7DC Round 2 with RK2 = 60DD
Substitution B7DC 8D74
Permutation 8D74 C726
Key Mixing C726 49E5 Round 3 with RK3 = 8EC3
Substitution 49E5 9E10
Permutation 9E10 C44A
Key Mixing C4AA 1354 Round 4 with RK4 = D71E
Substitution 1354 5B09
Key Mixing 5B09 2AA3 Replace permutation with

key mixing using RK5 = 71AA

Table 1.3: 16-bit SPN Encryption Example
(All values in hexadecimal.)

output bits of the next round. This is exactly the diffusion concept of Shannon’s product
cipher. For AES, the diffusion in the cipher is not accomplished by a permutation, but by a
linear transformation which is comprised of the ShiftRows and MixColumns operations [2].
However, a permutation is a very specific form of a linear transformation, so in a sense,
AES belongs to a generalized class of SPNs, which replaces the permutation with the more
general concept of a linear transformation. Many other block ciphers also fall into this class.

Note in Figure 1.1 that the last round of encryption uses a key mixing operation in place
of the permutation. If there was no key mixing after the last layer of S-boxes, there would
be no cryptographic purpose for the last round S-boxes, since it would a trivial matter for
an attacker to go backwards through the S-boxes, knowing their output. Effectively, the last
layer of S-boxes could therefore be stripped off the cipher by an attacker with virtually no
effort. A layer of key mixing after the last layer of S-boxes ensures that the outputs of the
S-boxes are unknown, as they are obscured to an attacker by the unknown round key bits.

In Table 1.3, we present example state values associated with encryption using the 16-
bit SPN with the S-box of Table 1.1 and the permutation of Table 1.2. All data in the
example is in hexadecimal format. The input plaintext, P , is DEBE16, and we use the
round keys presented in the table, which are derived in the example of Table A.1 discussed
in the Appendix. The resulting ciphertext, C, is 2AA316.

16 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

input 0 1 2 3 4 5 6 7
output 5 E F 8 C 1 2 D

input 8 9 A B C D E F
output B 4 6 3 0 7 9 A

Table 1.4: 4-bit Inverse S-box
(All values in hexadecimal.)

Decryption Process

As mentioned, decryption involves going backwards through the network. This has 3
implications:

1. decryption uses the inverse of the components used for encryption,

2. the round keys used in decryption are the same as for encryption but applied in reverse
order, and

3. with the adjustment of round key bit positions, decryption can be viewed as similar in
structure to encryption.

Consider the 3 layers and their inverses. The XOR function of the key mixing is trivially
reversed. Assume input state bit d is XORed with round key bit rk to produce a new state
bit, d∗: d∗ = d ⊕ rk. The inverse of this operation produces output d given input d∗ and
this is trivially possible using the operation d = d∗ ⊕ rk based on the properties of XOR.
The inverse S-box is easily derived by reversing the roles of input and output. Hence, for an
S-box which maps input 00112 (316) to output 10112 (B16), the inverse S-box maps input
10112 (B16) to output 00112 (316). Hence, the S-box defined by Table 1.1 has the inverse
S-box given in Table 1.4. Finally, the permutation is obviously easily invertible by reversing
the wiring associated with the permutation. For example, input bit 4 leads to output bit 1,
implying for the inverse permutation, input bit 1 leads to output bit 4. For the permutation
of Table 1.2, the inverse permutation is identical to the permutation.

It is clear that, since decryption is equivalent to processing from the bottom of Figure 1.1
to the top, the round key RK5 must be applied first and round key RK1 last in decryption.
Hence, it is necessary to run through the complete key schedule to derive the last round
key before decrypting any ciphertext. In suitable environments where the required memory
is available, the round keys can be stored during this process and then used later during
decryption. However, for many environments, particularly for hardware implementations, it
is not possible to store all round keys and instead the key schedule will need to be run in
reverse from the last round key, concurrently with the processing in the decryption datapath.

Lastly, decryption can be restructured to look like encryption, which could be important
to some implementations where similar structures between encryption and decryption might
lead to efficient, easily understood designs. Going backwards through Figure 1.1, we can
see that we process a key mixing of RK5 and (inverse) substitution first, then follow with
a key mixing of RK4 after which the (inverse) permutation is applied. But if we take the
bits of RK4 and reorder them based on the inverse permutation, we can perform the inverse
permutation before the key mixing and follow the inverse permutation with a key mixing

1.3. SUBSTITUTION PERMUTATION NETWORKS 17

!
!
!
!
!

!

Figure 1.3: 64-bit SPN (3 rounds)

with the reordered RK4. Similarly, we can reorder RK3 and RK2 and apply them after
the inverse permutation in the decryption process. In doing this, we have the same order of
cryptographic layers in the decryption process as in the encryption process.

1.3.2 64-bit SPN

In the previous section, we presented and discussed the components in a toy 16-bit cipher.
While the block size of this cipher is not at all practical, the components described, including
the 4-bit S-box are realistic and ciphers with larger block sizes exist which are similar
in structure. In this section, we present a realistically-sized 64-bit SPN block cipher.
This cipher structure is, in fact, equivalent the structure of the PRESENT cipher [6].
PRESENT is an important, foundational cipher in the area of lightweight cryptography
and is a recommended ISO standard [11].

The architecture of the 64-bit SPN consisting of 3 rounds is given in Figure 1.3. The
figure illustrates the placement of the key mixing layer, but does not show the key scheduling

18 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

input 63 62 61 60 59 58 57 56
output 63 47 31 15 62 46 30 14

input 55 54 53 52 51 50 49 48
output 61 45 29 13 60 44 28 12

input 47 46 45 44 43 42 41 40
output 59 43 27 11 58 42 26 10

input 39 38 37 36 35 34 33 32
output 57 41 25 9 56 40 24 8

input 31 30 29 28 27 26 25 24
output 55 39 23 7 54 38 22 6

input 23 22 21 20 19 18 17 16
output 53 37 21 5 52 36 20 4

input 15 14 13 12 11 10 9 8
output 51 35 19 3 50 34 18 2

input 7 6 5 4 3 2 1 0
output 49 33 17 1 48 32 16 0

Table 1.5: 64-bit Permutation
(Bit 63 is leftmost bit.)

algorithm which generates the round keys to mix. Although the block size and potential key
size for this cipher are practical, such a cipher with only 3 rounds would not be secure and
would be susceptible to many cryptanalytic attacks. Decryption would be accomplished by
effectively going backwards (bottom to top) through the structure shown. The PRESENT
cipher, while similar in structure, consists of 31 rounds, chosen to ensure security for an
80-bit or 128-bit key.

For PRESENT, one mapping is used for all S-boxes and it is given by the mapping
presented in Table 1.1. The permutation illustrated in the figure is summarized in Table 1.5.
The key mixing uses bit-by-bit XOR, which in this case is done across the 64-bit state and
makes use of a 64-bit round key generated using a key schedule applied to the full cipher
key (which is either 80-bits or 128-bits for PRESENT).

1.4 Modes of Operation

In order to efficiently and securely use a block cipher, one must use the cipher in an
appropriate mode of operation. There are many different modes that have been defined with
different objectives in mind. Fundamentally a mode must be secure and must provide the
characteristics of significance for the targeted application. The mode employed can have an
important impact on the implementation selected. Alternatively, the desired implementation
structure (based on the application requirements) can impact the selected mode. We briefly
describe three well-known modes [12], but note that many more are proposed and applied
in practice.

1.4. MODES OF OPERATION 19

cipher key K

ciphertext Ci

enc

plaintext Pi

(a) Encryption

cipher key K

plaintext Pi

dec

ciphertext Ci

(b) Decryption

Figure 1.4: Electronic CodeBook Mode

1.4.1 Electronic CodeBook Mode

Electronic CodeBook (ECB) mode is likely the natural mode one thinks about for block
ciphers. To encrypt the i-th block of plaintext, one applies the block to the input of the
block cipher and, using the cipher key as a parameter, produces the i-th block of ciphertext
at the output. This is illustrated in Figure 1.4. Note that Figures 1.1 and 1.3 have their
inputs and outputs labelled with the presumption that they are used in ECB mode. That
is, the input to the block cipher operation is the plaintext and the output is the ciphertext.
As we shall see, this is not the case for other modes.

In practice, it is not generally advisable to use ECB for the encryption of large amounts of
data, because it is not considered to be semantically secure (that is, it is possible to determine
some information about the plaintext by observing ciphertext). Consider, for example, that
a known plaintext block Pi is encrypted in ECB mode using a particular key to produce the
known observed ciphertext block Ci. If we later observe a second ciphertext Cj (produced
using the same key), such that Cj = Ci, we can then determine that the plaintext Pj used to
produce Cj must be the same as Pi, that is, Pj = Pi. This is a potentially significant source
of leakage of plaintext information based on observing the ciphertext and having knowledge
of some plaintext/ciphertext pairs and could be a serious problem if large amounts of data
are encrypted. ECB mode can be useful for encrypting small amounts of random data,
such as might be the case when protecting keys by encrypting them so that they can be
transferred confidentially between parties.

Note that, generally, our discussion in this article is presented using language which
implies the use of ECB mode. However, the implementation methods can be clearly translated
into other modes as appropriate and we do provide some discussion on the suitability of
implementations for different modes.

20 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

ciphertext Ci-1

plaintext Pi ciphertext Ci

cipher key K cipher key K

ciphertext Ci-1

enc

ciphertext Ci

(a) Encryption

dec

plaintext Pi

(b) Decryption

Figure 1.5: Cipher Block Chaining Mode

1.4.2 Cipher Block Chaining Mode

Cipher Block Chaining (CBC) is a mode of operation which can be effectively used to encrypt
large amounts of data using a block cipher without the semantic security issues associated
with ECB mode. Encryption and decryption using CBC mode is illustrated in Figure 1.5.
To encrypt the i-th block in a sequence of many plaintext blocks, CBC mode would XOR
the plaintext block, Pi, with the ciphertext produced for the previous block, Ci−1. The
resulting block is then fed to the input of the block cipher (operating as an encryption
process) with the resulting output considered to be the ciphertext Ci. The first plaintext
block, P1, uses an initialization vector (IV) as C0, since no ciphertext block yet exists.
Decryption in CBC mode takes the ciphertext, Ci, as input to the block cipher (operating
as a decryption process), from which the plaintext Pi is derived following XOR of the result
with the previous ciphertext block, Ci−1.

The chaining aspect ensures that the encryption of a block is dependent on the encryption
results from previous ciphertexts, thereby preventing the problem of ECB mode where
two identical plaintext blocks result in identical ciphertext blocks. In typical encryption
applications, the IV should be a nonce, which is a variable only assigned any value once.
Hence, for CBC mode, different sessions will start the chain using IVs which should be
unique to avoid semantic security issues with the first block. However, in many applications
it is not necessary to keep IVs secret. CBC can be used as a general method to encrypt
large amounts of data, consisting of many plaintext blocks and can be found applied in many
contexts.

1.4.3 Counter Mode

Counter (CTR) mode is another block cipher mode of operation suitable for encrypting a
large amount of plaintext data. In CTR mode, the block cipher is configured to operate as
a stream cipher, which produces ciphertext bits by XORing plaintext bits with keystream
bits. In CTR mode, illustrated in Figure 1.6, the block cipher takes as input a B-bit counter

1.5. GENERAL IMPLEMENTATION STRUCTURES 21

B-d bits d bits

keystream keystream

cipher key K

ciphertext Ci plaintext Pi

(a) Encryption (b) Decryption

B bits

B-d bits d bits

discard

plaintext Pi

cipher key K

counti

enc

ciphertext Ci

B bits

discard

counti

enc

Figure 1.6: Counter Mode

value, labelled as “counti”, with the resulting output of the block cipher used as keystream
to be XORed on a bitwise basis with data from the plaintext block. Although the block
cipher can be used to produce a full block of B bits of keystream, in general terms, δ bits
can be used as keystream (with the other B − δ bits being discarded) to be XORed with a
δ-bit block of plaintext, Pi, where δ ≤ B.

The counter values, counti, can be straightforwardly incremented for every block cipher
operation or can be a simple, predictable sequence of unique values. For decryption, the
operation is identical to encryption, except the roles of plaintext and ciphertext reverse.
The counter values at both sides of the communication must be synchronized in order for
ciphertext Ci to decrypt properly to plaintext Pi. Decryption is possible in this way because
of the properties of XOR: for bits C (ciphertext), P (plaintext), and Q (keystream),

C = P ⊕Q⇒ P = C ⊕Q.

The initial count value should be unique for the first block of a session, but generally need
not be kept secret. Note that both encryption and decryption use the encryption process of
the block cipher to produce the keystream. Hence, an implementation of CTR mode does
not require an implementation of the block cipher decryption process, which may result in
significant memory and area savings in software and hardware implementations, respectively.

1.5 General Implementation Structures

For SPNs and many other block ciphers, the structure of the cipher is iterative, comprised
of a number of rounds, R, of simple cryptographic operations. For SPNs, these simple
operations are the round function, which consists of round key mixing, substitution, and
permutation. As per Shannon’s product cipher proposal, the round function is executed
iteratively an appropriate number of times to ensure confidence in the security of the cipher.

Typical structures of SPN block ciphers are illustrated in Figure 1.7 and Figure 1.8. The
difference between the two diagrams is the nature of the application of the key schedule. In
Figure 1.7, the key schedule algorithm is applied before the execution of the cipher rounds

22 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

skip permutation
in R-th round

repeat for first R - 1
rounds

key schedule

key mixing

plaintext P, cipher key K

substitution

permutation

key mixing

ciphertext C

Figure 1.7: Encryption Structure with Round Key Setup

by the key schedule operation. Hence, in this case, all round keys are generated and stored
for use during the processing of the cipher data. We refer to this approach as the round key
setup approach. In contrast, in Figure 1.8, the on-the-fly approach to the key scheduling
algorithm is illustrated, where the steps of the key schedule are executed within the cipher
round by the round key generation operation, which produces the round key for use
within the round. In this case, only one round key needs to be generated at a time and no
storage of round keys is necessary. Instead, the key state is stored (from which the round
key is computed) and is updated in each step of the algorithm. The on-the-fly approach is
particularly of interest in hardware implementations where memory to store all round keys
may be too costly and where it is possible to execute the key scheduling step in each round
concurrently with the data processing operations, thereby improving the speed of the cipher
execution.

For the decryption of ciphertext, very similar structures can be used. For example,
Figure 1.9 illustrates the strategy of the round key setup before execution of the rounds.
The decrypt key schedule operation is similar the key schedule used for encryption, except
some adjustments need to be made to the round key bit positions and the round keys must
be applied in the reverse order to encryption, as discussed in Section 1.3.1, to ensure that the
same structure is used for decryption as encryption. Also, the inverses of the substitution and
permutation layers, inverse substitution and inverse permutation, must be used. For
some ciphers, like the 16-bit and 64-bit SPNs of Figures 1.1 and 1.3, the inverse permutation
is identical to the original permutation. The key mixing layer, due the property of the XOR

1.6. SUMMARY 23

skip permutation
in R-th round

repeat for first R - 1
rounds

round key generation

key mixing

plaintext P, cipher key K

substitution

permutation

key mixing

ciphertext C

round key generation

Figure 1.8: Encryption Structure with On-the-Fly Round Key Generation

function, is the same for decryption as for encryption.

We use these two general structures of (1) round key setup and (2) on-the-fly round key
generation as the basis for our discussions of the implementation of ciphers in software and
hardware.

1.6 Summary

In this chapter, we have presented the basic notions associated with block ciphers. Specifically,
we have described the concept of the substitution-permutation network, one of the basic
architectures used to implement block ciphers. We have presented concrete examples of a
toy 16-bit SPN and a practical 64-bit SPN. The 64-bit SPN is, in fact, the same architecture
as the lightweight cipher, PRESENT. We have also given the S-box from PRESENT as an

24 CHAPTER 1. INTRODUCTION TO BLOCK CIPHERS

skip permutation
in R-th round

repeat for first R - 1
rounds

decrypt key schedule

key mixing

ciphertext C, cipher key K

inverse substitution

inverse permutation

key mixing

plaintext P

Figure 1.9: Decryption Structure with Round Key Setup

example component used in the cipher.
This chapter has also introduced the notion of the mode of operation of a block cipher

and we shall see that often the mode applied to a cipher influences the selection of the
implementation method (and possibly vice versa). Finally, we have illustrated the general
iterative structure of the SPN and discussed how the key schedule can be implemented in
either a setup phase or on-the-fly during the processing of the cipher rounds.

In the next chapter, we will delve into the practical implementation of block ciphers by
considering the software implementation of the SPN focusing on general methodologies such
as table lookups and bit-slicing structures.

Chapter 2

Software Implementation

In this chapter, we outline some of the principles and methods with which a designer could
implement a block cipher in software. We focus on general concepts and do not delve
into presenting any specific coding examples. Instead, we use pseudocode, descriptions,
and examples to illustrate concepts. In doing so, we presume the availability of typical
instructions that are found in all processors and refrain from discussing implementation issues
related to specific processor instructions which might be helpful in cipher implementation
but which are not ubiquitously found in computing environments.

2.1 Structure of Encryption

Since block ciphers, such as SPNs, are iterative in structure, they can be easily structured in
a software program using “for” loops as shown in the pseudocode presented in Algorithm 1,
where D is used to represent the cipher state. In the pseudocode, the round key setup
approach is used for key scheduling so that round key values are generated prior to the
processing of the plaintext data. This is done by calling KEYSCHED which produces and
stores the data for the round key array, [RK1, RK2, ..., RKR, RKR+1], based on the initial
cipher key. This pseudocode is analogous the structure of Figure 1.7.

The pseudocode developed from the structure of Figure 1.8, with on-the-fly round key
generation, is given in Algorithm 2. Here the steps of the key scheduling algorithm are
placed within the body of the loop by calling function ROUNDKEY GENERATE. Hence, it is
not necessary to store the complete set of round keys but to just produce the round key
required for the current round based on the key state.

For an R round cipher, the body of the loop in both Algorithm 1 and Algorithm 2
performs the round operations and the loop is iterated R − 1 times, with the R-th round
(which replaces the permutation with a key mixing) following the loop. In software, the
functions KEYMIX, SUBSTITUTION, and PERMUTATION can be implemented using various
methods, with the method selected based on an objective associated with the implementation,
such as maximizing speed or minimizing storage. The implementation of these operations
will be discussed in upcoming sections.

The key setup strategy of Algorithm 1 could be used when high speeds for software

25

26 CHAPTER 2. SOFTWARE IMPLEMENTATION

Algorithm 1 Pseudocode for Encryption with Round Key Setup

function encrypt(P,K) . inputs: plaintext P and cipher key K
[RK1, RK2, ..., RKR, RKR+1]← keysched(K) . generate round keys
D ← P . load P into cipher state D
for r = 1 to R− 1 do

D ← keymix(D,RKr)
D ← substitution(D)
D ← permutation(D)

end for
D ← keymix(D,RKR)
D ← substitution(D)
D ← keymix(D,RKR+1) . last round replaces permutation with key mixing
return D . output: ciphertext C

end function

implementations are required, since the key schedule algorithm only needs to be executed
once, before the encryption of all plaintexts to be encrypted under the key. The tradeoff is
that all round keys must be stored for use, which requires more memory and this may be
an issue in a tightly constrained system such as those found in some IoT devices. Using the
on-the-fly key scheduling strategy of Algorithm 2 will be clearly slower in software, since
extra operations in ROUNDKEY GENERATE must be executed for every pass of the loop for
encryption of every plaintext. However, in this case, it is not necessary to store the full
set of round keys and, hence, there may be advantages in environments with tight memory
constraints but where speed of the encryption process is not an issue.

In subsequent sections, we discuss detailed characteristics of various implementation
methods for the operations - key mixing, substitution, and permutation - within the round
function. Although we have referred to the cipher state as D in the pseudocode described
in this section, for convenience, in our description of the layers, we shall often use different
variables to represent the state based on which layer is taking the state as input or producing
the state as output. In particular, we shall use the following labels. The state at the input
of the substitution (and output of the key mixing), we shall label as X = [xB−1xB−2...x0].
The state at the output of the substitution and input to the permutation is labelled as
Y = [yB−1yB−2...y0], while the state at the output of the permutation (and input of the key
mixing) shall be referred to as Z = [zB−1zB−2...z0]. For clarity, this is illustrated for one
round of the 16-bit SPN in Figure 2.1.

2.2 Structure of Decryption

One of the advantages of the SPN architecture is that the decryption process is similar in
structure to encryption and this is illustrated in Figure 1.9.

In Algorithm 3, we present the pseudocode for the decryption process and it can be seen
that the layers use inverse operations (specifically the S-box and permutation operations
INV SUBSTITUTION and INV PERMUTATION) as appropriate. Also notably, the round keys
for the decryption process, represented as RK∗r , require the application of the round keys

2.3. DIRECT IMPLEMENTATION OF AN SPN 27

Algorithm 2 Pseudocode for Encryption with On-the-Fly Key Generation

function encrypt(P,K) . inputs: plaintext P and cipher key K
D ← P . load P into cipher state D
K ′ ← K . load K into key state K ′

for r = 1 to R− 1 do
RKr ← roundkey generate(K ′, r) . update K ′ in function
D ← keymix(D,RKr)
D ← substitution(D)
D ← permutation(D)

end for
RKR ← roundkey generate(K ′, R)
D ← keymix(D,RKR)
D ← substitution(D)
RKR+1 ← roundkey generate(K ′, R+ 1)
D ← keymix(D,RKR+1) . last round replaces permutation with key mixing
return D . output: ciphertext C

end function

z15 z14 z13 z12 z11 z10 z9 z8 z3 z2 z1 z0 z7 z6 z5 z4

y15 y14 y13 y12 y11 y10 y9 y8 y3 y2 y1 y0 y7 y6 y5 y4

x15 x14 x13 x12 x11 x10 x9 x8 x3 x2 x1 x0 x7 x6 x5 x4

key mixing

S-box S-box S-box S-box

z15 z14 z13 z12 z11 z10 z9 z8 z3 z2 z1 z0 z7 z6 z5 z4 Z

X

Y

Z

Figure 2.1: SPN Round with Notation

from encryption in reverse order and with some adjustments made in the bit positions. For
example, the round key for round R+ 1 of encryption, RKR+1 is used as the round key for
round 1 of decryption, RK∗1 . Round key RKR of encryption is used as the round key of
round 2 of decryption, RK∗2 (with adjustments to bit ordering); RKR−1 with reordered bits
is used for RK∗3 , etc.

We now turn our focus to the operations involved in both encryption and decryption and
discuss their software implementation.

2.3 Direct Implementation of an SPN

We begin by considering the straightforward, and largely impractical, approach of directly
implementing an SPN in software. By direct implementation, we refer to the concept of
executing the functionality of the operations explicitly in software. In the following sections,

28 CHAPTER 2. SOFTWARE IMPLEMENTATION

Algorithm 3 Pseudocode for Decryption with Round Key Setup

function decrypt(C,K) . inputs: ciphertext C and cipher key K
[RK∗1 , RK

∗
2 , ..., RK

∗
R, RK

∗
R+1]← dec keysched(K) . generate round keys

D ← C . load C into cipher state D
for r = 1 to R− 1 do

D ← keymix(D,RK∗r)
D ← inv substitution(D)
D ← inv permutation(D)

end for
D ← keymix(D,RK∗R)
D ← inv substitution(D)
D ← keymix(D,RK∗R+1) . last round replaces permutation with key mixing
return D . output: plaintext P

end function

we will discuss much more practical and efficient approaches to software implementation
using wide table lookups and bit-slicing.

2.3.1 Key Mixing Layer Implementation

The key mixing layer is typically the bitwise XOR of round key bits (derived by the key
schedule) with the cipher state bits. In software this can be done very efficiently since
processors have the bitwise XOR instruction than can be executed with two word inputs. If
the cipher block size exceeds the processor word size, then multiple XOR operations may be
needed. For example, for a 64-bit block size in an 8-bit processor, the XOR operation would
need to be executed 8 times to mix a 64-bit round key with the 64-bit cipher state.

2.3.2 Substitution Layer Implementation

Direct implementation of the S-box in software implies the use of a lookup table to mimic
an S-box like the one of Table1.1. For the 4-bit S-box discussed in this paper, a direct
implementation would require a table of 24 4-bit values, where a 4-bit value in the table
represents the 4-bit output of the S-box which is indexed by the 4-bit input to the S-box.
We refer to this approach as the narrow table lookup. It is straightforward in code to
represent the data in the system using integers. However, because the S-boxes work on 4-bit
sub-blocks of the larger block, care must be taken to extract the 4-bit inputs and move data
into the correct position within the block for each of the S-box lookups. We describe the
process of table lookups in more detail in Section 2.4.

2.3.3 Permutation Layer Implementation

The permutation operation does not obviously lend itself well to direct implementation in
software. In a straightforward approach, an implementation could process each bit by using a
mask to isolate the bit, shifting it to an appropriate position and then combining it back into
the output being constructed. We refer to this as the bit rotation method for permutation

2.4. TABLE LOOKUP IMPLEMENTATIONS 29

implementation. For example, consider the leftmost 2 bits entering the 16-bit permutation of
Table 1.2. Assume the input to the permutation is the 16-bit state Y and the 16-bit output
state is Z. The two bits, y15 and y14, are assigned to outputs as follows: z15 ← y15 and
z11 ← y14. This can be done by initializing Z to all zeroes. Then, assign Y to a temporary
16-bit variable of the state, W , and mask the leftmost bit by ANDing W with 800016.
XOR the result with Z to produce Z = [y1500...00]. Next, assign Y again to W , mask the
second bit using 400016, shift 3 bits to the right to generate W = [0000y140...00], which
when XORed with Z produces Z = [y15000y14...00].1 This can be repeated to move, very
inefficiently, all 16 bits of the state, according to the permutation. The bit rotation method
is generally a poor choice to implement the permutation, although some modern processors
have data manipulation instructions that may allow an improvement in the efficiency of the
approach.

2.4 Table Lookup Implementations

In order to improve the efficiency of the software implementation of an SPN, one could make
much more extensive use of table lookups. As we discussed in the previous section, S-boxes
are naturally implemented as table lookups and, in this section, we will discuss how they can
be conveniently combined with a lookup for the permutation. The other layer in a round,
key mixing, is efficiently done using bitwise XOR on data blocks and does not need to involve
table operations.

2.4.1 Permutation in a Table

Generally, since the bit rotation implementation approach requires operations on all bits of
the block, it is not efficient on large blocks (typically, 64 or 128 bits) used for a practical
block cipher. A much more efficient method for the permutation would be a table lookup
approach. For the 16-bit SPN, the table lookup approach would make use of four tables, each
consisting of 24 16-bit values, where each value represents the output of the permutation
with appropriate input bits moved to the correct locations within the 16 output. For
example, one of four tables will correspond to the leftmost nibble of the input Y , that
is, [y15y14y13y12]. The table associated with the permutation of the bits in this nibble is
presented in Table 2.1. A lookup in this table returns a 16-bit result, Z1, of the form: Z1 =
[y15000y14000y13000y12000]. Similarly, three other results from table lookups are produced
using the other three input nibbles as indices into the 3 other tables producing outputs: Z2 =
[0y11000y10000y9000y800], Z3 = [00y7000y6000y5000y40], and Z3 = [000y3000y2000y1000y0].
The output of the permutation is produced by isolating the 4 nibbles of Y (using shifts and
masks as appropriate), using the nibbles as indices, looking up values in the 4 tables to
retrieve Z1, Z2, Z3, and Z4, and generating the permutation output using bitwise XORing
of the retrieved words: Y = Z1⊕Z2⊕Z3⊕Z4. This is much more efficient that individually
moving the bits around, particularly for realistic block sizes.

Now, considering that the most efficient approaches to implement the S-box operation
and the permutation both involve table lookups, it perhaps make sense to combine the tables

1At many points within this article, we shall refer to the mixing of data in different bit positions together
using the bitwise XOR operation on two words. However, this can also be done using a bitwise OR operation.

30 CHAPTER 2. SOFTWARE IMPLEMENTATION

Input Output
[y15y14y13y12] Z1

0000 0000000000000000
0001 0000000000001000
0010 0000000010000000
0011 0000000010001000
0100 0000100000000000
0101 0000100000001000
0110 0000100010000000
0111 0000100010001000
1000 1000000000000000
1001 1000000000001000
1010 1000000010000000
1011 1000000010001000
1100 1000100000000000
1101 1000100000001000
1110 1000100010000000
1111 1000100010001000

Table 2.1: Permutation Table for Leftmost Nibble
(All values in binary.)

into one table and complete the combination of the substitution and permutation operations
with only one table lookup. This is described in the next section.

2.4.2 Combined Substitution/Permutation Table

An efficient implementation of both S-box and permutation is accomplished by combining
both the S-box and permutation operations into table lookups where the values stored in
the table are not the size of the S-box output, but the size of the block. We refer to this as
the wide table lookup method.2 Consider, for example, the leftmost bits of the 16-bit state
at the input to the substitution layer, [x15x14x13x12]. The S-box operation results in a 4
bit output, [y15y14y13y12], which, at the output of the permutation (from Table 1.2) would
move these bits into the positions in the block as follows:

y15 −−− y14 −−− y13 −−− y12 −−−

Hence, we construct a table (which we call a substitution/permutation table or SP table) of
all 16 outputs of the S-box with values of size equal to the block size where the S-box outputs
are moved into the appropriate positions within the block according to the permutation. Such
a table for the leftmost nibble is given in Table 2.2. A lookup in this table returns a 16-bit
result, Z1, of the form: Z1 = [y15000y14000y13000y12000], where the yi values represent
the outputs of the leftmost S-box (S1 in Figure 1.1) for input [x15x14x13x12]. (The middle
column in the table is the 4-bit output of the S-box.) Similarly, tables can be constructed

2For AES, a similar approach is referred to as the T-table approach by the cipher’s proponents [2].

2.4. TABLE LOOKUP IMPLEMENTATIONS 31

Input S-box Output Table Output
[x15x14x13x12] [y15y14y13y12] Z1

(Table Index) (Intermediate Value)
0000 1100 1000100000000000
0001 0101 0000100000001000
0010 0110 0000100010000000
0011 1011 1000000010001000
0100 1001 1000000000001000
0101 0000 0000000000000000
0110 1010 1000000010000000
0111 1101 1000100000001000
1000 0011 0000000010001000
1001 1110 1000100010000000
1010 1111 1000100010001000
1011 1000 1000000000000000
1100 0100 0000100000000000
1101 0111 0000100010001000
1110 0001 0000000000001000
1111 0010 0000000010000000

Table 2.2: SP Table for Leftmost S-box (S1) Input
(All values in binary.)

for the second, third and fourth S-boxes (nibbles [x11x10x9x8], [x7x6x5x4], and [x3x2x1x0]).
Note that, although the S-box outputs are identical for identical inputs, four SP tables are
used because the permutation results in different values for the table based on which S-box
is receiving the input. For example, if the leftmost S-box, S1, has input “0000”, the SP
table lookup results in an output of “1000100000000000” (as can be seen in Table 2.2), while
input “0000” to the S-box second from the left, S2 in Figure 1.1, results in an output of
“0100010000000000” from the SP table lookup (not illustrated).

Determining the output of the combined substitution/permutation layers can be achieved
by using the four S-box inputs to complete four table lookups similar to Table 2.2. The 4
blocks corresponding to the outputs of these lookups can then be combined to produce the
output block of the combined operation by XORing the 4 blocks together. Since the blocks
in the tables have “0”s in the bits which are not directly affected by the corresponding S-
box output, these bits have no effect in the XORing outcome and only the bits produced
by the S-box output end up affecting the appropriate output block bit. The pseudocode
representing the combined substitution/permutation operation based on wide table lookup
using multiple lookup tables (4 in this example) is given in Algorithm 4. In the pseudocode,
notation “⊕”, “·”, and “>> i” represent bitwise XOR, bitwise AND, and right rotation by i
bits, respectively. For right rotations, bits shifted out of the rightmost end of the variable are
shifted into the leftmost end of the variable. Function SP LOOKUP(i, ·) represents a lookup
in the SP table corresponding to S-box i. An example of the application of the pseudocode
is given in Table 2.3.

32 CHAPTER 2. SOFTWARE IMPLEMENTATION

Algorithm 4 Pseudocode for SP Wide Table Lookup (Multiple Tables)

function sub perm(X) . input: 16-bit state X
Z ← 000016
for i = 1 to 4 do

W ← [X >> 4(4− i)] · (000F16) . extract 4-bit bit index
V ← SP lookup(i,W) . perform 4-bit lookup in table i
Z ← Z ⊕ V . combine 16-bit result into 16-bit state

end for
return Z . output: 16-bit state Z

end function

Input X = 7AF8 Z ← 0000
i = 1 W ← 7

V ← SP LOOKUP(1, 7) = 8808
Z ← 0000⊕ 8808 = 8808

i = 2 W ← A
V ← SP LOOKUP(2,A) = 4444
Z ← 8808⊕ 4444 = CC4C

i = 3 W ← F
V ← SP LOOKUP(3,F) = 0020
Z ← CC4C⊕ 0020 = CC6C

i = 4 W ← 8
V ← SP LOOKUP(4, 8) = 0011
Z ← CC6C⊕ 0011 = CC7D

Output Z = CC7D

Table 2.3: Example of Wide Table Lookup (Multiple Tables)
(All values in hexadecimal.)

For the case discussed above, 4 tables are required, each consisting of 16 values of size 16
bits. Hence, a minimum total of 4×16 = 64 16-bit words must be stored.3 This is compared
to the memory requirement of 16 nibbles if simply the S-box is stored for the narrow table
lookup approached mentioned in Section 2.3.2.

In some cases, such as for the 16-bit SPN, the memory requirement for the combined
substitution/permutation method can be reduced further noting that the values in the 4
different SP tables associated with each S-box position are simply rotations of the table for
the leftmost S-box. For example, all values in the table for the S-box that is second from the
left, S2, are the same as the values for the leftmost S-box shifted right by one bit. Hence, for
input “0000” to S1, the table output is “1000100000000000”, while for input ‘0000” to S2, the
table output is “0100010000000000”. As a result, we do not need to store 4 tables, but can
store one table and then with a rotation operation produce the appropriate 16-bit value to

3Of course, this total could also be enumerated as 256 nibbles or 128 bytes. Also it should be noted that
how much is allocated for a table is dependent on how the table is stored in memory. For example, a 16-bit
table value might be conveniently stored as a 32-bit integer, resulting in twice as many nibbles (bytes) being
used.

2.5. TIME/MEMORY TRADEOFFS OF LOOKUP TABLES 33

[x7 x6 x5 x4]

SP table
nibble 3

retrieve
table value

index into
table

table value

state input X

v15v14v13v12 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

state output Z

rotate right by 2

16 16-bit values

v1 v0 v15v14 v13v12v11v10 v9 v8 v7 v6 v5 v4 v3 v2

z15z14z13z12 z11z10z9 z8 z7 z6 z5 z4 z3 z2 z1 z0

XOR with table
values from

nibbles 1, 2, and 4

x15x14x13x12 x11x10x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Figure 2.2: SP Wide Table Lookup Using Single Table

be used in the production of the round output block. The memory size of the required table
can now be 16 16-bit words (or, equivalently, 64 (32) nibbles (bytes)). The penalty for this
saving of memory is the additional rotation operation required for each lookup. The process
for the wide table lookup using a single table is illustrated in Figure 2.2. In the figure, it is
shown how the nibble that is 2nd from the right is used as an index into the table, following
which the retrieved value is rotated right by 2 positions. The resulting output, combined
using XOR with the lookup/rotations from the other 3 nibbles of the state is the new state
value at the output of the round.

2.5 Time/Memory Tradeoffs of Lookup Tables

Consider now a generalized perspective on the memory requirements and speed associated
with the combined substitution/permutation wide table lookup approach. Assume that an

34 CHAPTER 2. SOFTWARE IMPLEMENTATION

SPN is constructed using n-bit S-boxes and that the block size is B. Also, let ω represent
the size of word used in the processor for instruction operands and storage of data.

Consider first the direct implementation of the SPN using the narrow table lookup
discussed in Section 2.3.2 for the S-box followed by bit rotation approach for the permutation
implementation. Such an implementation would use one table for the S-box of size 2n

words, where we assume that each value in the table would take a full word, even though
typically ω > n.4 Using the bit rotation method for the permutation operation would require
operations on all B bits of the block.

Consider now using the wide table lookup of the combined substitution/permutation
layers using multiple SP tables. For convenience, assume that the word size is equal to the
block size, i.e., ω = B. (The discussion presented can be easily adjusted for cases where
ω 6= B.) Now, B/n tables are required for a total of B/n · 2n words of size B. There
are a total of B/n lookups (and associated XORs) required to determine the output of the
round. With an appropriate permutation, it may be possible to reduce the number of tables
from B/n to 1, by adding a rotation following each table lookup. That is, the combined
subsitution/permutation layer can be accomplished using a single SP table, rather than
multiple SP tables. Note that, while this is possible for some permutations (such as the ones
for the SPNs of Figures 1.1 and 1.3), permutations exist for which this is not possible.

Let’s now look at a realistically sized SPN, specifically the 64-bit SPN of Figure 1.3,
based on 4-bit S-boxes. We assume an implementation based on a word size of ω = B = 64
bits. In this case, a wide table lookup approach can be taken using 64/4 = 16 tables (one
for each S-box position) for a total size of 16 · 24 = 28 = 256 words.5 There are 16 lookup
operations (with 15 XORs) to execute the round. Considering the permutation in Figure 1.3,
it is possible to reduce the memory requirements from 16 tables to a single table, requiring
only 16 words, but the small penalty is the need for an extra rotation operation following
each table lookup.

In order to speed up the execution of the cipher, it is possible to build a larger lookup
table with more values in it and consequently having fewer look up operations. We could,
for example, increase the size of the index into the table from 4 bits to 8 bits by grouping
together two adjacent 4-bit S-boxes into effectively one 8-bit S-box, which could then be
combined with the permutation layer using the wide table lookup approach. In this case, for
the 64-bit SPN, using the multiple table approach requires (64/8) · 28 = 211 = 2048 words
(of size 64 bits) in the tables and 64/8 = 8 lookup operations or, if the single table approach
is used, 28 = 256 words and 8 lookups along with appropriate rotations are required. Hence,
using 8-bit indices, for both the multiple table and single table approaches, there are half
the lookups needed (8 vs. 16) when compared to lookup tables with 4-bit indices, while
in terms of memory, the 8-bit indices approach requires several times more memory words
when compared to lookup tables with 4-bit indices: 2048 vs. 256 for the multiple tables
method and 256 vs.16 for the single table method.

Decreasing the number of lookups at the expense of larger memory use, can be extended
even further. We could group 4 S-boxes together, effectively creating a 16-bit S-box for a

4A compact implementation, could be realized which would only require 2n · n/ω words in cases where
ω/n S-box outputs can be saved in 1 word.

5In most contexts, the sensible minimum memory unit size is the processor word size and, hence, it makes
most sense to discuss memory requirements in terms of the word size. We leave to the reader to determine
which appropriate base unit should be considered for their context of interest.

2.6. BIT-SLICE IMPLEMENTATIONS 35

Index Size Multiple Tables Memory Single Table Memory # Lookups
(64-bit words) (64-bit words)

4 28 = 256 24 = 16 16
8 211 = 2048 28 = 256 8
16 218 = 262144 216 = 65536 4

Table 2.4: Tradeoffs for Wide Table Lookup (64-bit SPN using 4-bit S-boxes)

process requiring only 4 lookup operations, resulting in table requirements of 64/16 · 216 =
218 = 262, 144 words (of size 64 bits) for 4 separate S-box tables or 216 = 65, 536 words for
the single table approach. Although this might seem like a way to speed up the encryption
process, in fact, as the tables grow larger, table lookup operations can take longer due to
memory access phenomena such as cache issues. Hence, there is a limit to the value of
increasing the memory size to increase cipher speed by decreasing the number of lookups.
Further grouping S-boxes together for the table lookups would clearly become impractical:
a grouping of 8 4-bit S-boxes implying 32-bit indices would require the size of a single table
to be an impractically large 232 words.

A comparison of the tradeoffs for selections of the index size for a wide lookup table
approach for a 64-bit SPN using 4-bit S-boxes is presented in Table 2.4. The number of
XOR operations is equal to the number of table lookups minus 1, while the number of
necessary rotations after the lookup is zero for the multiple table approach and equal to the
number of lookups minus 1 for the single table approach. Note that the tradeoff comparison
of lookup table sizes for x86 architectures is detailed in [13], including a discussion on the
PRESENT cipher.

2.6 Bit-slice Implementations

A dramatically different approach to a software implementation of an SPN, would be what
to use what is referred to as bit-slicing. The application of bit-slicing for encryption was
first proposed for an implementation of DES by Biham in [14]. A bit-slice implementation
makes use of the representation of the bits in an S-box using Boolean functions and typically
structures a description of the cipher based on the parallel implementation of a number of
blocks. In our discussion, we shall assume that B blocks are to be encrypted in parallel
and the size of the cipher block, B, is the same as the word size ω. Towards the end of our
discussion, we address the issues involved if B 6= ω.

Essentially, the bit-slice approach can be thought of as a 3 phase process:

1. Structure plaintext blocks into a format for bit-slicing,

2. Process data using bitwise logical instructions, and

3. Restructure bit-slice data into ciphertext blocks.

We begin our discussion by examining the middle phase, which implements the cipher
operations using logical instructions based on the Boolean function representation of the
cipher operations. It is useful for the reader of this section to have good knowledge of

36 CHAPTER 2. SOFTWARE IMPLEMENTATION

Boolean functions, Boolean algebra, and/or combinational logic design techniques. At the
end of this section, we present an example of the 16-bit SPN to clarify the approach.

2.6.1 Bit-slicing the S-box

Consider the S-box of Figure 1.2, given in Table 1.1. It is possible to consider each output
bit as a Boolean function of the 4 input bits and, as shown in Table 2.5, the S-box can
be described as truth tables, one for each of the 4 output bits.6 As an example, using the
canonical sum-of-products representation, Y0 can be written as:

Y0 = X3 ·X2 ·X1 ·X0 +X3 ·X2 ·X1 ·X0 +X3 ·X2 ·X1 ·X0

+ X3 ·X2 ·X1 ·X0 +X3 ·X2 ·X1 ·X0 +X3 ·X2 ·X1 ·X0

+ X3 ·X2 ·X1 ·X0 +X3 ·X2 ·X1 ·X0

where the Boolean operators of AND, OR, and NOT are represented by “·”, “+”, and an
overbar, respectively. In subsequent expressions, the “·” is generally omitted where AND
is implied. Using logical operations of only one or two inputs, one could produce Y0 in the
following way. First generate temporary variables Gi, Hi, and Mi as follows:

G0 ← X0 G1 ← X1 G2 ← X2 G3 ← X3

H0 ← G3G2 H1 ← G3X2 H2 ← X3G2 H3 ← X3X2

H4 ← G1G0 H5 ← G1X0 H6 ← X1G0 H7 ← X1X0

M0 ← H0H4 M1 ← H0H5 M2 ← H0H6 M3 ← H0H7

M4 ← H1H4 M5 ← H1H5 M6 ← H1H6 M7 ← H1H7

M8 ← H2H4 M9 ← H2H5 M10 ← H2H6 M11 ← H2H7

M12 ← H3H4 M13 ← H3H5 M14 ← H3H6 M15 ← H3H7

EachG variable represents the inverse of an input bit and would take one logical operation
to produce. The H variables are generated by the AND of two X and/or G variables and
M variables are produced by the AND of the H variables. Each M variable represents a
minterm, which is a four input AND of all 4 input bits or their inverse. This takes a total
of 4 + 8 + 16 = 28 two (or one) input logical operations. Now Y0 is produced by selecting
the appropriate minterm corresponding to the locations of the “1”s in the truth table for
Y0. Since

Y0 = M1 +M3 +M4 +M7 +M8 +M10 +M13 +M14,

S-box output Y0 can be computed using the following sequence of two-input operations:

Y0 ←M1 +M3

Y0 ← Y0 +M4

Y0 ← Y0 +M7

Y0 ← Y0 +M8

Y0 ← Y0 +M10

Y0 ← Y0 +M13

Y0 ← Y0 +M14.

6Note that we now use the notation where Xi and Yi represent the S-box input and output bits,
respectively, rather than xi and yi as previously. We do this to distinguish that, as we shall see, bit-slicing
actually operates on Xi and Yi as words, rather than bits.

2.6. BIT-SLICE IMPLEMENTATIONS 37

X3X2X1X0 Y3 Y2 Y1 Y0
0000 1 1 0 0
0001 0 1 0 1
0010 0 1 1 0
0011 1 0 1 1
0100 1 0 0 1
0101 0 0 0 0
0110 1 0 1 0
0111 1 1 0 1
1000 0 0 1 1
1001 1 1 1 0
1010 1 1 1 1
1011 1 0 0 0
1100 0 1 0 0
1101 0 1 1 1
1110 0 0 0 1
1111 0 0 1 0

Table 2.5: Truth Table for S-box of Table 1.1
(All values in binary.)

To generate one output bit of the S-box, Y0, in this way would require at total of 35
operations, 28 to produce the G, H, and M variables and 7 more to generate Y0 from the
M variables.7 This is a lot of operations. However, consider that the canonical expressions
for the remaining 3 outputs of the S-box, Y1, Y2, and Y3, are:

Y1 = M2 +M3 +M6 +M8 +M9 +M10 +M13 +M15,

Y2 = M0 +M1 +M2 +M7 +M9 +M10 +M12 +M13,

and
Y3 = M0 +M3 +M4 +M6 +M7 +M9 +M10 +M11.

Since the M variables only need to be produced once, to generate the output bits of the
S-boxes takes a total of 28 + 4 · 7 = 56 operations or 56/4 = 14 operations on average per
output bit.8

It is apparent that 14 operations per bit is not efficient. As we shall see, a major challenge
for bit-slicing is finding a minimized form of the Boolean functions which ensures that the
maximum efficiency for the software implementation of the Boolean function is achieved. For
our example, can we reduce the average number of Boolean operations to produce an output
bit to something substantially less that 14? In fact, for the PRESENT S-box of Table 1.1, it

7Since Y0 only needs 8 of the 16 M values, strictly speaking only 20 + 7 = 27 operations are needed for
Y0. However, all 16 M values must be calculated for the remaining outputs in any case.

8The number of operations can be further reduced to a small degree by calculating temporary variables
representing the sum of pairs of M bits which are used to produce multiple output bits. For example,
calculating M9 +M10 and saving the result in a variable could reduce the number of operations by two since
the variable can be used to generate Y1, Y2, and Y3.

38 CHAPTER 2. SOFTWARE IMPLEMENTATION

can be shown that the following simple Boolean function can be used to produce the output
bit, Y0 [15]9:

Y0 = X0 ⊕X3 ⊕X2 · (X1 ⊕X2)

which can be structured as the following sequence of two-input logic operations, making use
of variables, Ti:

T1 ← X1 ⊕X2

T2 ← X2 · T1
T3 ← X3 ⊕ T2
Y0 ← X0 ⊕ T3.

(2.1)

The remaining outputs can be subsequently generated using the following process [15]:

T2 ← T1 · T3
T1 ← T1 ⊕ Y0
T2 ← T2 ⊕X2

T4 ← X0 + T2
Y1 ← T1 ⊕ T4

T4 ← X0

T2 ← T2 ⊕ T4
Y3 ← Y1 ⊕ T2

T2 ← T2 + T1
Y2 ← T2 ⊕ T3.

(2.2)

The total number of logical operations is therefore only 14 to produce the 4 output bits!
Hence, the average number of operations per bit is only 3.5, substantially reduced over the
previous analysis’ average of 14 operations per bit.

Let us now consider how we can make use of Boolean expressions to efficiently implement
the S-box in software. For convenience, we shall initially assume that the block size of the
cipher, B, is equal to the size of the words used as operands in processor instructions, ω,
and let ω = B = 64. Consider that we have four 64-bit words, X3, X2, X1, and X0, with
each word corresponding to an input bit of the S-box. That is, Xi is a word containing
information for input bit xi of an S-box (as illustrated in Figure 1.2), with each of the 64
bits of Xi corresponding to the same S-box input bit associated with the encryption of 64
different plaintext blocks. More specifically, consider an S-box in a particular round of the
cipher has its four input bits represented by the word Xi = [xi,63xi,62...xi,0], i ∈ {0, 1, 2, 3},
and, within this word, bit j, 0 ≤ j ≤ 63, represented as xi,j , represents input i to the S-box
for the j-th plaintext block.

Now, assuming that Y0 = [y0,63y0,62...y0,0] is a 64-bit word that represents the S-box
output bit y0 for all 64 encryptions. It is possible to produce all 4 S-box output bits for all
64 blocks in parallel by using (2.1) and (2.2), where the logical operations are performed in
parallel on all bits of the word using the processor’s bitwise logical instructions. However,

9Methods used to determine simple Boolean functions made up of 2-input operations to compute S-box
output bits is beyond the scope of this article.

2.6. BIT-SLICE IMPLEMENTATIONS 39

executing these instructions produces S-box output bits for 64 different blocks. Hence,
although it may seem costly to implement the Boolean function in software instructions, the
parallel nature of the process gives the potential for improved speed up compared to other
approaches such as the wide table lookup approach.

Using this process for our sample S-box, from (2.1) and (2.2), 14 instructions produces
4 output bits of an S-box for 64 parallel encryptions, meaning the average number of
instructions to produce an S-box output bit value across all encryptions is (14/4)/64 = 0.055.
For the 64-bit cipher, it would take 14 · 16 = 224 instructions to produce the output of the
substitution layer (16 S-boxes in total) for 64 parallel encryptions, which is equivalent to
an average of 224/64 = 3.5 instructions to produce the output of a substitution layer for
the encryption of one block. This can be compared to the multiple table lookup approach
using a 4-bit index, which would require 16 table lookups and 15 XOR instructions for the
substitution layer applied to each block. Hence, using bit-slicing for the substitution layer,
when compared to the wide table lookup method, it appears that there is a potential for
speed-up on the order of (16 + 15)/3.5 ≈ 9.10 Ignoring any memory requirements for the
key schedule, bit-slicing would have modest memory requirements requiring B = 64 words
to store the words representing each bit of the state for the parallel encryptions. Depending
on the nature of the key schedule and its implementation, the memory requirements to store
and produce round keys could be significantly more.

Although there seems to be great potential using bit-slicing, there are two significant
challenges: (1) an efficient Boolean function representation of the S-box must be found,
and (2) the plaintext block from 64 different encryptions must be restructured into the
data structure appropriate for bit-slicing where words should contain information from the
same bit from numerous blocks. In the next section, we discuss the the nature of the data
restructuring. For small S-boxes, such as 4-bit S-boxes found in lightweight ciphers such
as PRESENT, simple 4-bit Boolean functions may be found (such as illustrated previously)
that can lead to potentially very efficient bit-slice implementations. However, for larger S-
boxes, such as the 8-bit S-boxes found in AES, the 8-bit Boolean functions are substantially
more complex than for smaller functions. Consider that the canonical form of the Boolean
function representing an AES S-box consists of 128 minterms, each with 8 inputs (taken
from the S-box input bits or their inverses). Of course, this can be reduced using logic
minimization techniques, but there will still be clearly many two-operand logic instructions
to produce the 8-bit output of an S-box. In fact, the average number of instructions per bit
for the AES S-boxes is much larger than for 4-bit S-boxes and, in general, bit-slicing is best
suited to systems comprised of small S-boxes.

2.6.2 Restructuring the Data for Bit-Slicing

Since the idea behind bit-slicing is to have multiple blocks of plaintext being encrypted
simultaneously by executing the logical operations representing the cipher components using
bitwise logical instructions on words, it is necessary to restructure the data representing the

10This is a gross simplification. This speed-up only applies to the substitution portion of the processing
and presumes the convenience of data being structured for bit-slicing. Also, the timing cost of different
instructions is not the same. For example, certainly a table lookup operation (which includes the setup steps
for the index, as well as the actual memory access) is not equivalent in timing cost to a simple XOR of 2
operands.

40 CHAPTER 2. SOFTWARE IMPLEMENTATION

plaintext into an appropriate format. Let us continue assuming ω = B = 64. At the
input of the system, for the 64-bit SPN, we shall assume that we have 64 plaintext blocks
to encrypt, with each block stored in a word. We can visualize the data as organized
into a matrix of plaintext where the words containing blocks map onto rows containing 64
elements each consisting of 1 bit of a plaintext and each column of the matrix represents
the position of bits within the block. For example, the leftmost column is bit 63 of the
plaintext and the rightmost is bit 0 of the plaintext. We label this plaintext maxtrix as P †

and let the rows of P †, from top to bottom, be P †63, P
†
62, ..., P

†
0 , each representing a different

plaintext block. Each block maps to a 64-bit word with the j-th bit of block, P †i , labelled

as p†i,j , j ∈ {0, 1, ...63}. Hence, we have the following representation:

P † =

P †63
P †62
P †61
...

P †1
P †0

=

p†63,63 p†63,62 p†63,61 ... p†63,1 p†63,0
p†62,63 p†62,62 p†62,61 ... p†62,1 p†62,0
p†61,63 p†61,62 p†61,61 ... p†61,1 p†61,0
...

p†1,63 p†1,62 p†1,61 ... p†1,1 p†1,0
p†0,63 p†0,62 p†0,61 ... p†0,1 p†0,0

.

To encrypt using bit-slicing, the bits of the plaintext matrix must be reassigned to the
bit-slicing data structure, an 64×64 matrix of bits (represented by 64 rows of 64-bit words),

which we refer to as the bit-slicing state, D†, comprised of elements d†i,j , i, j ∈ {0, 1, ..., 63},
where i represents the row (starting with 63 at the top) and j represents the column (starting
with 63 at the left). The resulting matrix representing the bit-slice state thus has the format:

D† =

D†63
D†62
D†61
...

D†1
D†0

=

d†63,63 d†63,62 d†63,61 ... d†63,1 d†63,0
d†62,63 d†62,62 d†62,61 ... d†62,1 d†62,0
d†61,63 d†61,62 d†61,61 ... d†61,1 d†61,0
...

d†1,63 d†1,62 d†1,61 ... d†1,1 d†1,0
d†0,63 d†0,62 d†0,61 ... d†0,1 d†0,0

.

The elements of D† are derived from the original plaintext block, P †, as follows:

d†i,j ← p†j,i

for all i, j ∈ {0, 1, ..., 63}. That is, the j-th bit of the i-th block of plaintext should be
put into the i-th bit of the j-th word of D†. This is equivalent to saying that D† is a
transposition of matrix P †. Similarly, after the completion of the encryption of all 64 blocks
to produce the ciphertext blocks, the data in D† must be restructured back into one word
(row) representing the bits of one block. In other words, we need to transpose D† to get the
ciphertext matrix, C†, following the encryption process. The flow of the encryption process
for bit-slicing can thus be summarized as follows:

{(P †)T → D†} =⇒ {Update D†using bit-slice encryption} =⇒ {(D†)T → C†}

where (·)T represents transposition of the argument matrix.

2.6. BIT-SLICE IMPLEMENTATIONS 41

For the encryption of 64 blocks, the two transposition operations on the 64×64 matrices
result in 2 × 64 × 64 = 213 variable assignments for an average of 128 such assignments
per plaintext block. These operations are not needed for other encryption methods such as
the table lookup approaches. Hence, they indicate an overhead associated with bit-slicing.
However, if the core Boolean function operations can be implemented efficiently, then this
overhead may be small enough to ensure that bit-slicing is more efficient than methods such
as table lookup.

Also, it should be noted that, in practice, assembly language instructions on modern
processors can allow some efficiencies in the movement of data bits within the words of data
representing the cipher data blocks. For example, in [16], assembly code is given for an
efficient data restructuring.

To this point, we have discussed how to structure the implementation to determine the
output of an S-box by executing the appropriate Boolean operators of NOT, AND, OR, and
XOR using bitwise logical instructions in software. We have discussed the need to transform
data at both the input (plaintext) and output (ciphertext) to ensure data is an appropriate
format for bit-slicing during the processing of the data. We emphasize again that unless an
effort is made to minimize the number of logical operations to realize the S-box, clearly this
will not be as efficient as a table lookup approach. We need to finish our explanation by
clarifying how the bit-slice data processing can be done for the other round function layers,
the permutation and the key mixing.

2.6.3 Bit-slicing the Permutation and Key Mixing

We have focused on discussing the Boolean function representation of S-boxes and its
relationship to bit-slicing. However, before we present a detailed example of bit-slicing, we
should comment on the other operations that comprise the round operation of the cipher.
The permutation operation is a simple reordering of the bit positions and, hence, can be
easily incorporated into bit-slicing at negligible cost: instead of assigning the output of the
Boolean operations to the word representing the state bit at the output of the substitution
layer, the output can be assigned to the word representing the bit position to which the
permutation will move the S-box output bit. For example, for the 64-bit SPN using the
permutation in Table 1.5, the word representing the state bit 19 (at the output of the
substitution), will be assigned into the word representing state bit 52, which is the position
to which bit 19 is moved due to the permutation.

For the key mixing operation, incorporation into the bit-slicing process is also trivial.
Since most applications will use the same key for a large number of plaintext data blocks,
it is reasonable to assume all blocks being encrypted by one pass through the bit-sliced
cipher implementation are using the same key and, hence, the round keys are the same for
each block. In general for a B-bit SPN, for bit-slicing, the round key data structure should
also represent a B × B matrix, stored in the system as B words of size B-bits, where each
word represents one bit position within the cipher round key and each bit within the word
represents the round key bit value for each of the B blocks being encrypted. However, since
all round keys are the same for all encryptions, all words (which are the rows of the B ×B
matrix) of the bit-slice round key structure must be all “0”s or all “1”s. Using bit-slicing, it
is possible to prepare and store the words to represent the round key bits prior to processing
the encryption of any plaintext blocks using a particular cipher key. In order to execute key

42 CHAPTER 2. SOFTWARE IMPLEMENTATION

mixing using XOR with the state bits and round key bits, during the round key setup, the
bit-slice round key structure must be created by having each round key bit replicated to each
bit in one word of the structure. Then, during the bit-slice encryption process, round key
words are bitwise XORed with the word representing the corresponding state bit of all the
different blocks. The necessary setup of the round keys will not have a significant impact on
the speed of encryption, assuming that large amounts of plaintext are encrypted under one
key, which is the case if keys change infrequently. The memory storage required will be the
number of words equal to the total number of bits found in all round keys. If bit-slicing is
used to encrypt plaintext blocks using different keys, then the formulation of the round key
matrices used in bit-slicing would be more complex, as the rows of the round key matrices
would need to reflect different round key bits for the different blocks being encrypted under
different keys.

2.6.4 Example of Bit-Slicing

Let us now consider an example of the application of bit-slicing for the 16-bit SPN using
the PRESENT S-box of Table 1.1. We use the 16-bit, rather than the 64-bit SPN for our
example so that the data presentation is more manageable. For convenience, we shall focus
our discussion on only the first round and assume that the first round key used for all
encryptions is

RK1 = 0110111001111001.

Assume that 16 plaintext blocks to be encrypted are represented as:

P
†
=

1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0
1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1
0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0
0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1
1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1
0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0
0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1
1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0
0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0

where each row is a plaintext of 16 bits and, for illustration, we have highlighted the plaintext
block of the first row to illustrate the transposition operation to produce D†.

To process using bit-slicing, the data is restructured to become the bit-slice state, D†,

2.6. BIT-SLICE IMPLEMENTATIONS 43

as follows:

D
†
= (P

†
)
T

=

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1
1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0
1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1
0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1
1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1
1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1
1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1
0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0

.

At the input to the first round, the state bits are mixed with the round key bits, where
the bit-slice round key has each bit replicated to all positions in 16 words, resulting in the
following updating of the state:

D
† ← D

† ⊕

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

The updated state is now:

D
†
=

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0
1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0
0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0
0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0
0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0
1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1
1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1

.

This state is now the input to the substitution layer. So let’s now focus on just the 4
bits entering the leftmost S-box. These bits correspond to the top 4 rows of D†, represented
as D†15, D†14, D†13, and D†12 from the top row to the 4th from the top row. We can use
the Boolean functions in (2.1) and (2.2) to determine the output of this S-box and, by

44 CHAPTER 2. SOFTWARE IMPLEMENTATION

incorporating the permutation, place these 4 bits into the correct new positions within
the state. We now let Yi, i ∈ {0, 1, .., 15}, represent the words for each output bit of the
substitution layer (rather than just an individual S-box). Hence, bits Y15, Y14, Y13, and Y12
represent the outputs bits of the leftmost S-box. The following operations must occur:

T1 ← D†13 ⊕D
†
14 = [AFF4]⊕ [4D55] = [E2A1]

T2 ← D†14 · T1 = [4D55] · [E2A1] = [4001]

T3 ← D†15 ⊕ T2 = [E8CC]⊕ [4001] = [A8CD]

Y12 ← D†12 ⊕ T3 = [C3D8]⊕ [A8CD] = [6B15]

T2 ← T1 · T3 = [E2A1] · [A8CD] = [A081]
T1 ← T1 ⊕ Y12 = [E2A1]⊕ [6B15] = [89B4]

T2 ← T2 ⊕D†14 = [A081]⊕ [4D55] = [EDD4]

T4 ← D†12 + T2 = [C3D8] + [EDD4] = [EFDC]
Y13 ← T1 ⊕ T4 = [89B4]⊕ [EFDC] = [6668]

T4 ← D†12 = [C3D8] = [3C27]
T2 ← T2 ⊕ T4 = [EDD4]⊕ [3C27] = [D1F3]
Y15 ← Y13 ⊕ T2 = [6668]⊕ [D1F3] = [B79B]

T2 ← T2 + T1 = [D1F3] + [89B4] = [D9F7]
Y14 ← T2 ⊕ T3 = [D9F7]⊕ [A8CD] = [713A]
...

D†15 ← Y15 = [B79B] ... D†11 ← Y14 = [713A] ...

D†7 ← Y13 = [6668] ... D†3 ← Y12 = [6B15]

Note that we have used hexadecimal notation to represent 16-bit words for convenience of
presentation. The last four assignments update state bits based on the permutation and
should only be done after similarly logical operations are applied to produce words Y11 to
Y0, with the resulting assignments to the appropriate D†i words to finalize the output of the
substitution/permutation combination.

After the application of the Boolean functions and permutation to all bits, the resulting
state matrix becomes

D
†
=

1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1
...
0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0
...
0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0
...
0 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1
...

.

where we only illustrate the four rows for D†15, D†11, D†7, and D†3 and leave the remaining
rows as an exercise for the reader. Subsequent rounds would follow similarly. After the last
round (which recall would have the permutation replaced with an extra key mixing), the
bit-slice state needs to be restructured so that the resulting data is formatted as 16 rows of
16 bits, where each row contains a ciphertext block (rather than a particular bit from all
blocks). This is similar to the data structuring operation at the start of encryption and is
the equivalent to C† = (D†)T .

2.6. BIT-SLICE IMPLEMENTATIONS 45

2.6.5 Other Structures for Bit-slicing

We have described constructing a bit-slice implementation assuming that B blocks are to be
encrypted in parallel in an implementation where the word size ω is the same as the block
size of the cipher, that is, ω = B. But clearly it is possible that, in some circumstances,
the word size will not equal the block size. How do we structure a bit-slice implementation
when B 6= ω? Consider the two cases (1) ω > B and (2) B > ω.

For the first case, ω > B, and, for convenience in our discussions, let ω = 128 and B = 64.
For this case, it is possible to apply bit-slicing by treating the two 64-bit blocks as one 128-
bit superblock and constructing the appropriate bit-slice process with 128 simultaneously
encryptions. In this scenario, the permutation does not mix bits between the 2 blocks
making up the superblock. Since there will 128 superblocks processed in parallel, in fact,
there will be 256 64-bit blocks that will be processed with one pass through the bit-slice
structure.

For the second case, B > ω, and, for convenience in our discussions, let ω = 32 and
B = 128. One possible approach is to structure the bit-slicing around a virtual 128-bit
word, which is made up of four 32 words. So in this case, 128 encryptions will be done in
parallel. Each logical operation on the bits from 128 encryptions will need 4 instructions,
one for each word making up the 128-bit virtual word. Essentially, each operation on the
128-bit virtual word, will require the equivalent of 4 instructions on 32-bit operands.

To this point, we have assumed that the number of blocks encrypted in parallel using bit-
slicing is the same as the block size (or superblock size). Although this can be particularly
efficient, it presents challenges in environments where data is to be encrypted in small
batches, since a large number of blocks must be collected before the data can be restructured
and processed using bit-slicing. However, it is also possible to encrypt fewer than B blocks
in parallel. Consider for example, the 64-bit SPN where 16 blocks are encrypted in parallel
by using a bit-slicing state, D†, of 64 rows and 16 columns. In this case, each bitwise logic
operator is only operating on 16 bits of the ω bits of a word. If ω is 64, for example, this
would be only 1/4 of the efficiency of operating on 64 parallel blocks. It is also possible
to pack data into words (corresponding to a row of D†) so that more than one bit of a
block occurs in each row. For example, rather than 64 rows with 16 columns to implement
encryption of 16 blocks, one could pack the data into an matrix of 16 rows and 64 columns,
where each row would contain bit i from 16 different blocks and also, bits i+ 16, i+ 32, and
i+ 64 from all 16 blocks. This is possible because each output bit of an S-box corresponding
to a particular position is produced using the same Boolean function for all S-boxes. In this
approach, instructions available in the processor would have to be exploited to efficiently
move data around to achieve the permutation operation. This is done for PRESENT in [17].

In some cases, ciphers have been designed to be specifically suited to implementation
using bit-slicing [18] [19] [20]. Such designs, in addition to being efficiently implementable
using a software bit-slicing method, are also very compact for hardware implementation
and can be implemented to be resistant to side channel attacks. It has even be found,
applying bit-slicing to CTR mode and taking advantage of available processor instructions,
it is possible to develop a high throughput implementation of AES [21].

46 CHAPTER 2. SOFTWARE IMPLEMENTATION

2.7 Software Implementation of Cipher Modes

As presented in Section 1.4, block ciphers are applied using one of many possible modes of
operation, such as ECB, CBC, and CTR. In all cases, certainly a table lookup implementation
would be a useful approach to implementing an efficient encryption. The input to the
block cipher “encryption” operation would be plaintext for ECB, plaintext XORed with the
previous ciphertext for CBC, and a counter value for CTR mode. Table lookup approaches
represent a fast implementation that can be used effectively for modes which must process
plaintext sequentially, that is, modes for which the previous ciphertext is generated before
the current plaintext is processed. For example, CBC relies on using the previous ciphertext
as part of the next block input and can only be used in applications which sequentially
process plaintext data. ECB and CTR modes can be structured to execute one encryption
at a time and such applications can also benefit from an efficient table lookup approach.

Bit-slicing can be more efficient than table lookups in circumstances where the Boolean
functions representing the S-boxes can be implemented using a small number of two-operand
logical instructions. However, if it is necessary to require the parallel processing of B input
blocks for efficient bit-slicing, issues can arise. In ECB mode, plaintext blocks could be
buffered and then encrypted when B plaintext blocks become available. In the case of CTR
mode, the count is easily predictable and, hence, it is quite possible to process B blocks in
parallel to produce keystream, which can then be stored for when B plaintext blocks are
available to encrypt. However, using a bit-slice implementation is particularly problematic
if the block cipher is used in CBC mode. Since, CBC mode relies on the previous ciphertext
to prepare the next block input, only one block at a time can encrypted and parallelizing
encryption as required for bit-slicing is not possible.11 Other feedback modes, such as output
feedback (OFB) mode and cipher feedback (CFB) mode [12], also require linkages between
consecutive encryptions, making the parallelization needed for bit-slicing challenging.

Consider now CTR mode. The nature of the mode presents an opportunity to make
particularly efficient use of bit-slicing, by eliminating some data restructuring. Normally, at
the output of a bit-slice process, the data is generally restructured from the bit-slice state
format back to the general data format where words become ciphertext blocks. However, in
CTR mode, the block cipher is used in encryption mode to produce a sequence of keystream
blocks, not ciphertext directly. If we followed the normal method and the output of the
bit-slice process restructures the data, CTR mode would result in a conventional bit order
in the keystream of:

bit 1 of block 1⇒ bit 2 of block 1⇒ ...⇒ bit B of block 1
⇒ bit 1 of block 2 ⇒ bit 2 of block 2⇒ ...

However, for an application of CTR mode, this restructuring operation at the output is not
necessary. The result of not restructuring the data format would be that keystream will be
non-conventionally ordered as follows:

bit 1 of block 1⇒ bit 1 of block 2⇒ ...⇒ bit 1 of block B
⇒ bit 2 of block 1⇒ bit 2 of block 2⇒ ...

11One could apply bit-slicing in CBC mode, if one could encrypt B independent, interleaved streams.
However, it is possible in such a scenario that the streams could be using different keys and this would have
to be considered in the setup of the round key structure for bit-slicing.

2.8. SUMMARY 47

This ordering of keystream creates no more predictability in the keystream and, hence, can be
considered as secure as the conventional ordering. However, since this is a non-conventional
way to generate the keystream in CTR mode, both the transmitter and receiver would
have to be in agreement of how to implement the mode. For example, it would not be
possible for the transmitter to use a bit-slice implementation and then, for efficiency, use
the non-conventional ordering, while the receiver uses a table lookup implementation and
uses the conventional ordering. Of course, the receiver could use the table lookup method
and restructure the keystream to use the non-conventional ordering, thereby making itself
compatible with the transmitter.

2.8 Summary

In this chapter, we have discussed software implementation approaches to block ciphers,
using the 16-bit and 64-bit SPNs as case studies. Approaches have included table lookup
methods and bit-slicing. The wide table lookup approach can be used to combine the
S-box and permutation operations into table lookups where the values stored in the table
represent the full block width with the S-box output bits moved into the appropriate positions
within the block according to the permutation. The width of the table index (and the
associated size of the table) is somewhat adjustable allowing for tradeoffs between the speed
of the implementation and the amount of memory required. Bit-slicing is a dramatically
different approach to implementation and its value is highly dependent on finding a logical
representation of the S-box which requires a small number of 2-operand logic gates. Due
to the necessary structuring of data, typically multiple blocks are encrypted in parallel
and, hence, bit-slicing is most appropriate for applications which employ compatible modes
of operation, such as counter mode. Finally, we note that other techniques exist for fast
software implementations which make explicit use of instructions of the SIMD architecture
found on modern processors. For example, the vector permutation (vperm) technique
described in [22] [13] relies on the existence of shuffling instructions. Most significantly,
processors now support an AES instruction set (AES-NI) designed to efficiently accelerate
AES operations [4].

48 CHAPTER 2. SOFTWARE IMPLEMENTATION

Chapter 3

Hardware Implementation

We now turn our attention to hardware implementations of block ciphers, again focusing
on SPNs. We discuss synchronous sequential logic designs that can be used for target
technologies such as field-programmable arrays (FPGAs) and application-specific integrated
circuits (ASICs) realized for different CMOS technologies. The architectures that we discuss
in this section presume that the reader has a basic knowledge of digital hardware design,
including concepts such as logic gates, registers, multiplexers, and synchronous sequential
logic design aspects such as datapaths, controllers, and timing issues.1

Cryptographic applications fall on a spectrum with the two extremes being (1) high
speed/throughput (eg. core network routers) and (2) compact and often low power or
energy (eg. wireless sensor nodes or other IoT devices). We shall discuss hardware structures
which can be used to target these two extremes, as well as applications falling somewhere
in between. In synchronous sequential logic designs, the speed or throughput of the block
cipher hardware implementation is determined by (1) the average number of ciphertexts
produced per clock cycle and (2) the frequency of the clock (which can be as high as the
inverse of the minimum possible clock period). The complexity of a hardware design is
often characterized by (1) the number of logic gates required for a synthesized design, (2)
the number of logic blocks used in an FPGA implementation, or (3) the area required in
an ASIC implementation. Often, the design complexity is characterized as the number of
equivalent gates, where a gate is a 2-input NAND gate. In our discussions, we shall often use
“area” when referring to a design’s complexity, where smaller area implies a more compact
design.

In the following sections, we discuss various design strategies for encryption by describing
sample designs. By necessity, these descriptions leave out some details so that we can focus
on the main aspects of interest. We leave it to the reader to envision the potential structures
for the components of the designs not specifically outlined.

1For convenience, we shall assume in our discussion that registers used to store data such as the cipher
state are loaded on the rising edge of the clock.

49

50 CHAPTER 3. HARDWARE IMPLEMENTATION

RK

k B

B B

RK K_control

C_flag

sel

P_flag

round function

state register

controller

key
schedule

K P

K_flag

C

B

last round correction

B

Figure 3.1: Basic Iterative Architecture for Encryption

3.1 Iterative Design

3.1.1 Basic Iterative Architecture

The most straightforward approach to structuring a hardware design for encryption using
an SPN is to implement the combinational logic required for one round function and then,
using a register to store the state, iterate through the round function a number of times
to achieve the appropriate number of rounds. This approach is illustrated in the design
of Figure 3.1, which is the block diagram of a synchronous sequential logic circuit where
the clock, while not shown, is an implicit component of the system. The design consists of
component hardware such as a controller (on the left) and datapath (on the right) using
multiplexers, register bits, and logic gates to implement the operations found in the round
function. In the figure, we present the basic iterative structure for processing the cipher
state and leave the hardware associated with the round key generation as a separate, not
described component, key schedule. For simplicity, at this point, we simply assume that
this component generates keys for all rounds and presents the round key as RK to the
datapath as appropriate. We briefly discuss hardware implementation issues for the key
schedule in the Appendix. Also, at this point we focus our discussion on the encryption
process and defer our comments on decryption until Section 3.5.

3.1. ITERATIVE DESIGN 51

We now provide a rough description of the flow of the data through the encryption
system of Figure 3.1. The hardware for the basic iterative design will operate as follows.
The controller will be comprised of a state machine that moves from control state to state as
appropriate based on inputs to the controller and provides output control signals based on
the control state. Upon assertion of the K flag, the controller will use control signals in the
K control interface to indicate to the key schedule module that the cipher key is available
at the κ-bit input K. Subsequent to the key input, plaintext will be available at B-bit
input P as signalled by input P flag. With the arrival of a plaintext block, the controller
will set control signal sel to ensure that the data of P is selected by the multiplexer and
passed into the combinational logic of the round function, such that the output will be
loaded into the B-bit state register on the next rising clock edge. The value stored in
the register represents the state of the cipher and in subsequent clock cycles, sel will be
set for the multiplexer to select the feedback from the register as the input to the round
function logic. Each clock cycle with the feedback selection represents the processing of a
round and the appropriate round key RK must be presented by the key schedule module.
After the R rounds of the cipher, the C flag signal is asserted to indicate to an external
device the B-bit output signal C (coming from the state register output and fed through
the combinational logic module last round correction) is the valid ciphertext produced
during the encryption operation. Hence, for the basic iterative architecture, a ciphertext
block is produced every R clock cycles and the throughput is 1/(R · tclock) blocks/second,
where tclock is the clock period.

Two factors in determining the clock timing requirements for the iterative architecture
are (1) the propagation delay between register loads (including both the delays of the register
and combinational logic of the round hardware) and (2) the setup time of the register. The
propagation delay of the register is the time from the rising clock edge to when the output
of the register becomes valid. The setup time of the register is the window of time before a
clock edge during which the inputs to the register should be stable to avoid problems when
loading at the clock edge. In general, the circuit timing must satisfy the following expression:

tclock > tpd reg + tpd comb + tsetup (3.1)

where tpd reg is the propagation delay of the register, tpd comb is the propagation delay of
the combinational logic in the round, and tsetup is the setup time of the register. Note that
tpd comb is determined by propagation delay through the multiplexer, key mixing and S-box
layers, with the permutation having no gates and, hence, negligible propagation delay.

Note that in Figure 3.1 the round function hardware is re-used for all rounds, including
the last round. However, since the actual structure of the SPN requires a last round that is
modified from all other rounds, we have added at the output the last round correction
module. This module can correct the output of the last round function by applying the
inverse permutation (and thereby removing the permutation from the last round) and adding
a new key mixing operation with RK now set as the final round key value. We leave details
on how the key schedule block will generate and manage the necessary round keys to the
reader to resolve.

52 CHAPTER 3. HARDWARE IMPLEMENTATION

d15 d11 d7 d3 d0

x0 x1 x2 x3

y0 y1 y2 y3

S-box Logic S-box Logic S-box Logic S-box Logic

!!"∗

rk15 rk7 rk11 rk3 ... rk0

... !!$∗ !%∗ !!∗ !&∗ !'∗

Figure 3.2: Round Function Logic for 16-bit SPN

3.1.2 Round Function Hardware

Let’s now consider the combinational logic that would comprise the round function. For
the 16-bit SPN, this is illustrated in Figure 3.2, where di, d

∗
i , and rki are used to represent

input bit i of the round function, output bit i of the round function, and bit i of the
current round key. The round function combinational logic can simply consist of the 3 layers
corresponding to the operations: key mixing, substitution, and permutation. The key mixing
operation is comprised of B 2-input XOR gates, where each gate has as inputs a state bit
and the corresponding round key bit. The permutation layer represents a routing of bit
positions and is simply a matter of wiring, requiring no logic gates. The substitution logic
will be multi-level logic. It could be two-level sum-of-products (AND-OR) logic or product-
of-sums (OR-AND) logic were each bit represents the output bit of an S-box and has as input
the 4-bits of the corresponding S-box. The logic for each output can be minimized using
appropriate combinational logic minimization techniques (eg. Boolean algebra, Karnaugh
maps, computer-based minimization tools). If the logic for one S-box output is in the sum-
of-products form, the logic can use as few as 2 levels (excluding inverters), where the first
level involves AND gates with as many as 4 inputs and the second level will be an OR
gate with as many as 8 inputs.2 Alternatively, the logic of the outputs of the S-box can be
minimized jointly to allow for the sharing of gates, although this could result in more gate
levels. For example, in Section 2.6.1, a logic description of the PRESENT S-box is presented
with a small number of two-input gates to compute the S-box outputs. The corresponding
logic is illustrated in Figure 3.3. Note, this logic requires 8 levels of logic, with each level
involving 2-input gates or inverters.

For convenience, assume that the propagation delay through each gate is tprop, regardless
of the number of inputs. Hence, the propagation delay through the simplified PRESENT
S-box of Figure 3.3 is 8 · tprop. In comparison, the 2-level AND-OR logic would have a
propagation delay of 3·tprop (including the propagation delay through the necessary inverters,
in addition to the delay through the 2 levels of ANDs and ORs). The allowable clock period
of the circuit, tclock, is dependent on the delay through the combinational logic of the round
function, including the layers of the key mixing (one level of 2-input XOR gates) and the

2The canonical sum-of-products form will have exactly 8 AND terms, since the S-boxes are constructed
from balanced Boolean functions. However, a minimized sum-of-products form could have fewer AND terms
and those AND terms could have fewer that 4 inputs.

3.1. ITERATIVE DESIGN 53

y3

y1

y2

y0

x3

x2

x1

x0

Figure 3.3: Compact S-box Logic

d15 d11 d10 d4 d0 d12 d8

!"#∗ ... !"%∗ !&∗ !"∗ !'∗ !(∗ !"'∗

rk15

...

... ...

rk14 rk10

...
rk2 rk3 rk1 rk0

... ...

...

Figure 3.4: Last Round Correction Logic for 16-bit SPN

S-box layer (multiple levels of gates). Hence, while the simplified S-box implementation of
Figure 3.3 might allow for a more compact implementation, the speed at which the circuit
can be run will be lower, since the period of the clock must be large enough to ensure that
no timing violations occur for the registers as per (3.1).

As previously mentioned, the last round correction combinational module is necessary
between the state register and the output C to correct for the differences between the last
round and the other round functions. For the 16-bit SPN, the circuit for the last round
correction module is illustrated in Figure 3.4, where di, d

∗
i , and rki are used to represent

input bit i of the state, output bit i of the state, and bit i of the current round key.

3.1.3 Loop Unrolling

For the basic iterative implementation, we assume that every clock cycle would process one
round, with a new state being loaded into the register every rising clock edge. More generally,
a design could be structured to have multiple rounds processed for every clock cycle.3 When
multiple rounds are processed per clock cycle, we refer to this as loop unrolling and this is
illustrated in Figure 3.5. In the figure, we unrolled 4 rounds, resulting in a combinational
logic module, 4-round function, that is executing the equivalent of 4 consecutive rounds
in each clock. In general, it is possible to unroll m rounds up to m = R, as long as R is
a multiple of m. In our design, inputs to the 4-round function module are the cipher
state and the 4 round keys, RKA, RKB , RKC , and RKD, which are provided by the

3Indeed, it is also possible to have a partial round (that is, less than one full round) executed every clock
cycle. This will be discussed in Section 3.4.

54 CHAPTER 3. HARDWARE IMPLEMENTATION

RKE

state register

B

B B

B

B k

RKC

RKD

RKB

RKA

K_control

C_flag

sel
P_flag 4-round

function

controller

key
schedule

K P

K_flag

C

last round
correction

Figure 3.5: Encryption with Loop Unrolling

key schedule module. As a result, the state register is loaded with the output of the
combinational logic needed to realize 4 rounds. The cipher states between every 4th round
processed during a clock cycle occur implicitly within the combinational logic and are never
stored in the register.

Since the round function combinational logic has 4 times as many levels as the 1-round
basic iterative design, we would expect that the clock of the unrolled 4-round design would
have a period that is 4 times the period of the basic iterative design. In compensation,
ciphertext is produced every R/4 clock cycles so that the throughtput is now given by
4/(R · tclock) blocks/second, with the expectation that tclock is roughly 4 times larger than
for the basic iterative design. In fact, it might be possible to decrease tclock to something
less than 4 times that of the basic iterative design. Consider the timing constraint given
in (3.1). It is reasonable to expect tpd comb will be a little less than 4 times larger, since,
although there are 4 layers of the round function operations, there is still only one layer
of input multiplexer and tpd reg and tsetup will remain unchanged from the basic iterative
design. Hence, if the timing values of the register, tpd reg and tsetup, and the propagation
delay through the multiplexer are not negligible, then the new tclock for the 4-round unrolled
design could be significantly smaller than 4 times the 1-round basic iterative clock period.
As a result, it might be possible to increase the speed of encryption by unrolling the iterative
design.

3.2. PARALLELIZATION - A HIGH SPEED IMPLEMENTATION 55

B B

B B B
k

C1

RK

round function

key
schedule

K P1

Cm

round function

Pm

C2

round function

P2

state register state register state register

B

last round correction last round correction last round correction

Figure 3.6: Parallel Encryption (Datapath Only)

Although improvement in the speed of the cipher is possible with loop unrolling, it
is difficult to predict whether such improvement will be significant, as it will be highly
dependent on the target technology and the associated abilities of the design tools. However,
it is clear that, since the combinational logic of 4 rounds (rather than one round) is required
for our design, we do expect that the area of the unrolled design will be substantially more.

3.2 Parallelization - A High Speed Implementation

An approach to hardware implementation that is of interest for high speed applications is
the concept of parallelization. In Figure 3.6, a parallelization method is used based on the
underlying structure of a basic iterative design. Note that, for simplicity, the diagram does
not illustrate the controller module and any necessary control signals. The key schedule
and last round correction modules perform roles as previously described for the basic
iterative architecture. The idea with parallelization is to replicate hardware so that the
processing of multiple blocks can be undertaken concurrently. For example, in the figure,
m blocks are processed by accepting simultaneously m plaintext blocks, P1 to Pm, into m
different datapaths. Within each datapath is an iterative design consisting of the hardware
for one round and appropriate input selected by a multiplexer. Hence, each plaintext block is
processed independently on the m different sets of hardware. After the appropriate number
of rounds, the output is made available for all ciphertexts as C1 to Cm as shown. Since m
iterative datapaths are happening concurrently, it is reasonable to assume that this design
produces ciphertext blocks at a speed that is m times the speed of the iterative design of
Section 3.1.1.

Obviously, there is a significant cost to parallelization in terms of the area of the resulting

56 CHAPTER 3. HARDWARE IMPLEMENTATION

implementation. For example, the area is increased by a factor of about m over the basic
iterative approach, if we ignore the area of the controller (which is usually negligible) and the
key schedule module. Another drawback of the approach is that the I/O requirements are
also increased since the architecture is expected to accept m plaintext blocks simultaneously
and present m ciphertext blocks simultaneously and this may not suit some applications.
This can be mitigated by building a hardware interface to accept input blocks sequentially,
store the blocks, and present the blocks simultaneously to the parallel processing. Then
the blocks can be simultaneously stored, followed by the outputting of the ciphertext blocks
sequentially. Alternatively, the m parallel processing modules can have their processing
staggered, so that only one block begins and one block finishes in a clock cycle. This would
involve careful design of the flow of data in and out of the datapaths.

Since the target application for this architecture is focused on speed and, hence, the
implementation accepts the tradeoff of increased hardware complexity of multiple datapaths,
it would be desirable to optimize the iterative design within each datapath for speed, rather
than area. Hence, the round function component implementation is most likely to be based
on a minimized 2-level logic form (such as sum-of-products) and not the logic of Figure 3.3,
which, although compact in area, would be dramatically slower than 2-level logic. A 2-
level implementation would have a lower propagation delay through the round function and,
therefore, would be able to operate with a smaller clock period and larger clock frequency.
The result would be a high throughput of the iterative datapath.

It should also be noted that Figure 3.6 implies that all datapaths have the same key (and
round keys) applied. A more complicated design could be realized where the controller and
key schedule components generate and apply different round keys to the different encryption
datapaths.

3.3 Pipelining - A High Speed Implementation

Another approach to the design of a high speed hardware implementation is pipelining.
Pipelining is a method where sequential modules of hardware are organized into stages and
then data from different blocks is sent through the hardware stages in a staggered manner
so that at any one time different stages are processing different parts of different block
encryptions. As we shall see, there is significant potential for increasing the speed of the
encryption process, with the obvious drawback of increased area required for the hardware.

3.3.1 Description of Pipeline Architecture

A pipeline architecture is illustrated in Figure 3.7. The figure illustrates the case where the
number of pipeline stages is equal to the number of rounds, R. For simplicity, we do not
illustrate the controller module and associated control signals. The last round correction
module is required as previously described, while, in this case, the key schedule module
provides all round keys simultaneously to the round function modules.

During the first clock cycle of operation, the first plaintext block, P1, is processed by
the first stage (while the other stages are operating on invalid data) and on the subsequent
rising clock edge, the state at the output of round 1 is stored in the state register D1. In
the second clock cycle, the state associated with P1 at the output of round 1 is processed in

3.3. PIPELINING - A HIGH SPEED IMPLEMENTATION 57

state register DR

state register DR-1

stage 2
f2

state register D2

RKR+1
B

B

k

K
state register D1

RKR

RKR-1

RK2

RK1
round function

key
schedule

P

C

round function

round function

round function

last round
correction

stage 1
f1

stage R-1
fR-1

stage R
fR

g

Figure 3.7: Encryption Using Pipelining (Datapath Only)

the second stage hardware and stored in the register D2 at the output of this stage on the
next rising clock edge. Also, during this cycle, a second plaintext block, P2, is processed by
the first stage and stored in register D1 at the next clock edge. During the 3rd clock cycle,
the 3rd stage processes data from P1, the 2nd stage processes data from P2, and now the 1st
stage processes a third plaintext block P3. Data is stored in the associated 3 registers at the
subsequent rising clock edge. Note that during this time, the data in all the registers which
follow stages not processing proper data is not meaningful and should be ignored. We refer
to the first R clock cycles as the period during which the pipeline is being primed and data
output C will not be valid while the pipeline is being primed.

After R clock cycles, the first plaintext has travelled through all R round functions and
the output data has now been loaded into the register following the last stage, DR, and,
hence, is now available as ciphertext to the output (through the last round correction
module). In each subsequent clock cycle, the results from the following plaintexts are put
into the output register DR and presented as ciphertext. In other words, after the pipeline
is primed, each clock cycle will produce one ciphertext. As data flows through the pipeline
stages, the data of plaintext Pi will be followed by the data of plaintext Pi+1. Note that,
although it takes R clock cycles for the original ciphertext to come out, once the pipeline
is primed and all stages are processing legitimate data, ciphertext will be available every
clock cycle (assuming plaintext has been fed to the input in every clock cycle). Since the
propagation delay through the round function can be the same as for the round function of
the basic iterative architecture, the speed at which the clock can be run is similar. However,

58 CHAPTER 3. HARDWARE IMPLEMENTATION

instead of producing a ciphertext block every R cycles, pipelining can produce a ciphertext
block every clock cycle. Hence, for this pipeline structure of one stage for every round,
pipelining is R times faster than the basic iterative design and this comes at the expense
of roughly R times more area. Note that, although ciphertext can be produced every clock
cycle, the latency of the system is still R clock periods, where we define latency to be the
delay from when a plaintext enters the system until when its ciphertext is produced at the
output.

As with the parallel design, since pipelining is targeted to high speed applications, the
round function hardware is best implemented as a low propagation delay 2-level logic circuit,
thereby allowing for minimizing the period of the clock and maximizing the frequency of the
clock. Note that, unlike other hardware architectures, a pipeline design has no feedback in
the circuit.

3.3.2 Selecting Hardware for a Pipeline Stage

Just as the basic iterative design can be unrolled, it is also possible to construct a pipeline
architecture which has several consecutive rounds in a stage, rather than just one. For
example, if R = 16, an 8 stage pipeline architecture could have 2 consecutive round functions
in one stage. (Registers would be placed between stages and not between rounds.) In this
case, the pipeline will be processing 8 blocks simultaneously (but staggered) and, when
it is primed, a ciphertext block will be available every clock cycle. However, since the
clock cycle must be long enough in duration to ensure that signals can flow through the
combinational logic of 2 rounds without creating any timing violations, the clock frequency
of the implementation will be lower than the pipeline architecture with 1 round per stage.

For some ciphers, it is possible to construct a pipeline architecture where a pipeline stage
has the logic of a partial round. For example, if a round is complex enough that it is possible
to slice the combinational logic of the round function into two halves (somewhat balanced
in terms of their propagation delay) with a register between them, then a structure can be
implemented with 2R stages and it may be possible that the clock period can be cut roughly
in half. The result is an even faster implementation which produces a ciphertext block every
clock cycle, while processing data from 2R plaintext blocks simultaneously (but staggered) in
the pipeline. Since the round function of AES is somewhat complex using 8-bit S-boxes and
a linear transformation (of ShiftRows and MixColumns) rather than a simple permutation,
it is practical to break up the round function into different stages and this has lead to some
very fast architectures for AES [23]. For SPNs, like PRESENT, using 4-bit S-boxes, which
have much smaller logic circuits in their realization of a round function, using stages which
process a partial round is less practical.

3.3.3 Timing Issues for Pipeline Designs

In general, there is limited value in breaking up rounds in an attempt to increase the number
of stages, increase the clock frequency, and increase the throughput of the cipher. Firstly,
in breaking up round functions into stages, it is important to have each stage reasonably
well balanced in terms of the propagation delay, since the clock period must be as large
as the worst case propagation delay. For example, breaking down a round function with a
propagation delay of tround into two stages, one with a propagation delay of 0.1× tround and

3.3. PIPELINING - A HIGH SPEED IMPLEMENTATION 59

one with a propagation delay of 0.9 × tround, gives little value in speeding up the cipher,
since the clock can only be sped up by a factor of 1/0.9 = 1.11 at most. However, if the
propagation delays of both stages are 0.5× tround, then the clock speed-up and the resulting
increase in encryption throughput has the potential to be about 1/0.5 = 2.

Another issue that limits the value in reducing the logic contained in any stage is that
the register associated with a stage creates a certain fixed overhead. Clearly, increasing the
number of registers is going to increase the hardware complexity and the area of the final
realized design. But, also there are timing issues associated with loading a register which
could be significant. As previously noted in Section 3.1.1, the period of the clock is affected
by the propagation delay of the register, tpd reg, and the setup time of the register, tsetup.
These times are fixed which, as the amount of combinational hardware in a stage decreases,
become an increasingly significant factor. Considering (3.1), since tpd reg and tsetup are
fixed for a particular technology, reducing tpd comb (which we now take to represent the
propagational delay of the combinational logic of a stage) by a factor of 2, does not cut tclock
in half unless tpd reg, tsetup � tpd comb. So there is a limit, imposed by tpd reg and tpd comb,
to the value to trying to reduce tpd comb by dividing a stage into multiple stages.

3.3.4 Example of Pipelining

To reinforce the concepts of pipelining, we present an example of pipelining for a simple
16-bit SPN. The SPN is similar to the SPN in Figure 1.1 and will use the S-box mapping in
Table 1.1. We shall assume a cipher with R = 4 rounds and let the number of stages be equal
to 4. The round keys will be generated for cipher key “011011100111100100002 = 6E79016”
using the algorithm described in the Appendix with parameters, κ = 20, α = 13, and
γ = 8. These are the round keys that are found in the example summarized in Table A.1.
The resulting values for a pipelined implementation are given in Table 3.1. The following
notation is used in the table to represent the relationships between values. Variables P and
C represent the plaintext and ciphertext at the input and output of the system. Note that
the current value of C does not represent the ciphertext for the current plaintext P , since
there are several clock cycles before the current value of P affects the ciphertext output. The
4 registers used for the stages are labelled as Di, i ∈ {1, 2, 3, 4}. The values at clock cycle
i are loaded at the rising clock edge at the start of clock cycle i and the values loaded are
driven by the values given for clock cycle i − 1. Function fi represents the round function
for round i (that is, the round function using round key i found in Table A.1). Function g
represents the last round correction necessary to accommodate that the last round, round
4, is different from rounds 1 to 3 as explained in Sections 3.1.1 and 3.1.2.4 The superscript
“−” is used to indicate the value of the associated variable in the previous clock cycle. For
example, in clock cycle 3, the value of D2 is produced by f2(D−1), which means that D2 is
given by the round function operating on the value of D1 in clock cycle 2 and the round key
2.

Now, in Table 3.1, consider specifically the encryption of plaintext P = CC85, which is
presented to the cipher during clock cycle 2. The values produced in processing this plaintext

4Note that for pipelining, we could just construct f4 to have the permutation replaced by key mixing
with round key 5. However, there is virtually no extra hardware cost to the approach of adding last round
correction hardware since it only involves a permutation, which requires no logic gates, and a round key
mixing.

60 CHAPTER 3. HARDWARE IMPLEMENTATION

Clock P D1 D2 D3 D4 C
Cycle f1(P−) f2(D−1) f3(D−2) f4(D−3) g(D4)

0 DEBE XXXX XXXX XXXX XXXX XXXX
1 BCA8 D701 XXXX XXXX XXXX XXXX
2 CC85 0FEB C726 XXXX XXXX XXXX
3 662A 8DE8 B0F2 C44A XXXX XXXX
4 8D0B 9855 246E A1AF 584D 2AA3
5 083E 635E 00F7 EFFF E949 AB2F
6 5728 F1C3 D877 30AF 81CF C2BF
7 1E75 C5C9 8E87 7041 650D 6C2F
8 D4D4 EF08 9A8B FC03 CC9C 8CA8

Table 3.1: Pipelining Example
(All values in hexadecimal.)

are the values bolded in the table. At the clock edge at the end of clock cycle 2, the value
8DE8 representing the output of round 1 for this plaintext is loaded into register D1 for
clock cycle 3. At the next clock edge, value 246E, produced by round function f2, is loaded
into D2. Similarly, value EFFF is loaded into D3 for clock cycle 5 and then value 81CF
is loaded into D4 for clock cycle 6. Recall this is output of the round function with key
mixing (using round key 4), substitution, and permutation. Function g contains the inverse
permutation (to negate the permutation of round function f4) and the key mixing of round
key 5. The output of g is the value of cipertext C2BF, which is available in clock cycle 6,
since there is no register in the last round correction hardware.

3.4 Serial Design - A Compact Implementation

Often the requirements of a hardware implementation demand that the cipher take up only a
small area of a device and this requirement often coincides with an expectation of low power
consumption as well. Such compact implementations are necessary for applications such as
wireless sensor nodes and some IoT devices. One typical method to minimize hardware area
is to reduce the footprint caused by the most complex layer, substitution. Consider, for
example, an SPN based on the S-boxes of Table 1.1. A compact hardware realization of the
S-box is illustrated in Figure 3.3, which uses only 14 2-input gates to implement the complete
4-bit S-box, where the gates include inverters, ANDs, ORs, and XORs. This is equivalent
to 3.5 gates per bit of the state. In comparison, the key mixing layer requires only 1 gate
per state bit, an XOR of the data bit and round key bit, and the permutation layer involves
no gates, only wiring, to implement. The S-box complexity with 3.5 gates per bit is very
low and many other 4-bit S-boxes may not simplify to such a small number. Notably, when
large S-boxes are used, such as the 8-bit S-boxes of AES, there is a much larger number of
gates per bit. The most compact implementations of the AES S-box require about 250-300
gates [24], which results in about 35 gates per bit.

3.4. SERIAL DESIGN - A COMPACT IMPLEMENTATION 61

3.4.1 The Concept of Serialization

One way to reduce the footprint of the substitution layer is to process a partial block or sub-
block at one time, rather than the full B-bit block. We refer to this approach as serialization.
Serialization presumes that every S-box mapping is the same and, hence, it is not necessary
to replicate the n-bit S-box hardware for every n-bit sub-block. For example, for the 64-
bit SPN based on 4-bit S-boxes, the basic iterative approach processes a full block of 16
S-boxes concurrently per clock cycle. However, using a serial design, the 64-bit SPN could
be constructed to process a 16-bit sub-block per clock cycle, with 4 S-boxes being processed
concurrently. It would then take 4 clock cycles to process the 4 sub-blocks of a round.
Hence, such a design is naturally going to produce ciphertext at a slower rate. For many
applications, a lower throughput is an acceptable price to be paid for a smaller area and/or
power taken by the implementation of the cipher.

In the most extreme case of serialization, the 64-bit SPN could operate on a sub-block of
4 bits (that is, one S-box) for each clock cycle. The resulting operation of a round would take
16 clock cycles and, hence, such a design could be expected to be substantially slower than
the basic iterative design and much slower than a high speed architecture like parallelization
or pipelining. Since this approach uses the smallest possible sub-block size in serialization
(4 bits), we refer to this case as full serialization, while the previous example with a 16-bit
sub-block size, we refer to as partial serialization.

3.4.2 A Sample Design

In order to explain thoroughly the concept of a serial design, we use as the basis for our
discussion, the full serialization of the 16-bit SPN, based on a 4-bit sub-block. A serial
encryption architecture is shown in Figure 3.8. The concepts presented for this simple
example can be extrapolated to more practical designs with larger block sizes and larger
S-boxes. In the figure, there 3 general modules, the key schedule module, the controller
module, and the datapath (including the S-box, selectable register, XOR gates, and the
multiplexer). As in our discussions of the previous architectures, we will not discuss the
key schedule module except to note that we presume it provides the appropriate round
key bits at the appropriate time. In this design, 4 bits of the round key, labelled RK, are
to be provided to XOR with the state bits coming from the register and feeding into the
S-box input. The controller is responsible for managing the input of the key and plaintext
data and controlling the flow of data in the datapath. The K flag and P flag signals are
used by the external device to signal the input of the key K and plaintext block P . The
key need only be loaded once for the subsequent processing of a large number of plaintext
blocks. The controller also uses the 3-bit control signal, sel, to set the selection inputs of
the register and the multiplexer at the output of the register.

Consider now the datapath. With the block size of 16 bits, it is necessary to have a
16-bit register to store the cipher state. The 16-bit selectable register used to hold the
state has the ability to select from four inputs based on sel, including an input feeding from
the plaintext input to the system, an input from the S-box output and two other internal
inputs (not shown in Figure 3.8) which are fedback from bits within the register. The special
feedback features of the selectable register and how sel could be used to select inputs will
be discussed in the next section.

62 CHAPTER 3. HARDWARE IMPLEMENTATION

2

3

sel

16

4

K_flag

4

4

4

4 4

4

4

4

4

4

16 S-box

RK

K_control
ol

P_flag
controller

key
schedule

K

P

C_flag C

selectable register

Figure 3.8: Serial Encryption Design for 16-bit SPN

When the initial plaintext block is presented to the cipher, it is selected and loaded into
the register by the appropriate setting of sel. In the figure, the 16 bits of plaintext are
loaded into the corresponding 16 bits of the register by dividing the 16-bit block into four 4-
bit sub-blocks and feeding each sub-block into 4 bits of the register as shown. Subsequently,
the cipher will process the substitution layer (as well as the key mixing layer) of the round
using 4 clock cycles, where in one clock cycle the appropriate sub-block is selected by the
4-bit multiplexer at the output of the register based on the sel signal provided by the
controller. The sub-blocks will be selected sequentially, XORed with the 4 bits of round
key coming from the key schedule module, fed through the S-box and into the register.
The appropriate sub-block of the register will be updated with output from the S-box, while
the other sub-blocks will remain unchanged based on the setting of the sel bits. Following
the updating of the register based on the processing of 4 inputs to the S-box requiring 4
clock cycles, the permutation layer of the S-box can be implemented using an appropriate
selection of register output bits fedback into the appropriate register input bits (internal to
the register and not shown in Figure 3.8) and thus, in one clock cycle, the register bits can
be moved around based on the permutation wiring. As a result, with this design, 5 clock
cycles are required to process a round. After the required number of R rounds, the register
output can be presented to the external device as the ciphertext indicated by control signal
C flag. If we assume the propagation delay of the combinational logic of a round is similar
to the expected propagation delay of the basic iterative block cipher (which is reasonable if
the same logic realization is used for the S-box and ignoring the extra multiplexer delay), it
can be expected that it will take about 5 times longer to produce ciphertext for this serial

3.4. SERIAL DESIGN - A COMPACT IMPLEMENTATION 63

selectable register
inside dashed box

00 01 10 11

4

4

sel0

sel1

4

4

 d15 d11 d7 d3

from plaintext
 p15 p14 p13 p12

00 01 10 11

4

d15 d14 d13 d12

4

from S-box

sel2

from other register sub-blocks

sel0

sel1

´ 4

to S-box

to ciphertext
 c15 c14 c13 c12

Figure 3.9: Selectable Register Design (for Leftmost Sub-block)

design compared to the basic iterative design (assuming the register timing overheads are
insignificant).

Note that this design does not properly deal with the difference in the last round (where
the permutation is replaced by a key mixing). The permutation is easy to reverse with
simple wiring of the inverse permutation between the register and the output C, but careful
modification would need to be done to efficiently mix in bits from the last round key. This
could be done by adding a layer of key mixing at the S-box output, where in the first
R − 1 rounds, the post-S-box key bits mixed would be all zeroes and then in round R, the
post-S-box key bits mixed would be the last round key bits.

3.4.3 Selectable Register

To better understand the selectable nature of the register, consider Figure 3.9 which illustrates
a potential design of the selection for the leftmost sub-block comprised of 4-bits of the
register, labelled as d15d14d13d12. Control signal sel from the controller in Figure 3.8
can be implemented as a 3-bit signal (sel2sel1sel0) and used to control both the output
multiplexer and the input multiplexers (one for each sub-block of 4 bits).

As shown in Figure 3.9, the input multiplexer selection bits are set to “10” to select
the leftmost bits of the plaintext block, p15p14p13p12, when the register is initially loaded.
The remaining 12 plaintext bits are loaded simultaneously into the remaining register bits.

64 CHAPTER 3. HARDWARE IMPLEMENTATION

sel2 sel1 sel0 Mux 1 Mux 2 Mux 3 Mux 4
Selection Selection Selection Selection

(Select Bits) (Select Bits) (Select Bits) (Select Bits)
0 0 0 S-box feedback feedback feedback

(00) (01) (01) (01)
0 0 1 feedback S-box feedback feedback

(01) (00) (01) (01)
0 1 0 feedback feedback S-box feedback

(01) (01) (00) (01)
0 1 1 feedback feedback feedback S-box

(01) (01) (01) (00)
1 0 0 plaintext plaintext plaintext plaintext

(10) (10) (10) (10)
1 0 1 permutation permutation permutation permutation

(11) (11) (11) (11)
1 1 0 don’t care don’t care don’t care don’t care

(XX) (XX) (XX) (XX)
1 1 1 don’t care don’t care don’t care don’t care

(XX) (XX) (XX) (XX)

Table 3.2: Control of Selectable Register

Once substitution layer processing begins, the leftmost sub-block is selected by the register
output multiplexer in Figure 3.8 based on two bits which can be mapped directly from sel1
and sel0. For the leftmost S-box, sel1 = 0 and sel0 = 0 is used to feed the correct register
sub-block to the S-box input. The S-box output is then selected to feed into the leftmost
4-bit sub-block by setting the input multiplexer selection to “00”. During the processing of
the other sub-blocks by the S-box, the leftmost 4-bit sub-block of the register should remain
unaltered and this can be done by setting the selection of the input multiplexer to “01”,
which simply allows for the sub-block output of the register to feed back directly into the
same sub-block input bits of the register. Lastly, to accomplish the permutation, updating
the leftmost sub-block of the register requires selection from the appropriate bits of the
register by setting the input multiplexer selection bits to “11”. In this case, d15d11d7d3 are
used to update the register bits d15d14d13d12. Other 4-bit sub-blocks would have their input
multiplexers for input “11” fed by the appropriate inputs to achieve the permutation in one
clock cycle, since all the register bits can be updated simultaneously.

Table 3.2 summarizes the mapping of the 3 bits of sel to the selection bits of the input
multiplexer for all 4 input sub-blocks. In the table, Mux 1 refers to the input multiplexer at
the input of the leftmost sub-block, Mux 2 is the input multiplexer for the sub-block second
from the left, etc. Note that for all sub-blocks, the output multiplexer is controlled directly
by bits sel1 and sel0. Table 3.2 can be used to determine the appropriate selection logic
mapping the 3 bits of sel to the 2-bit selection of the input multiplexesr. This logic will
vary based on the sub-block and is shown in Figure 3.9 for the leftmost sub-block where the
most significant bit of the input multiplexer selection is fed directly from sel2 and the least
significant bit is derived by the OR of sel1 and sel0.

3.5. HARDWARE IMPLEMENTATION OF DECRYPTION 65

In practice, there is likely to be little gained by the serialization of the 16-bit SPN of
Figure 3.8. While the hardware required to implement multiple copies of the S-box has been
reduced, other hardware has been added in order to manage the appropriate flow of data
in the datapath. For example, five 4-bit 4 × 1 multiplexers, one at the output and four at
the input of the register are required in a serial design, while, in the basic iterative design,
one 16-bit 2× 1 multiplexer at the input is needed. Since the complexity of a 4-bit S-box is
not large, with only a few gates per bit, the complexity of serializing the design is not likely
to significantly decrease the area of the design and may even increase it. Also, the penalty
of slower operation is a definitive drawback to the architecture that may make any minor
saving in hardware not worthwhile for some applications. Serialization will have more value
for ciphers with larger block sizes, such as a 64-bit SPN like PRESENT, and for ciphers such
as AES, which use large 8-bit S-boxes with a large area cost per bit for the S-box hardware.
In such cases, reducing the number of S-box modules by serialization can result in much
more significant savings than the cost of the necessary added multiplexers needed to control
the flow of data in the serial design. Serial designs for PRESENT [25] and AES [26] have
been proposed.

3.5 Hardware Implementation of Decryption

Our discussion of hardware implementation has focussed on encryption (or the forward
direction) in the processing of data in a cipher. In an SPN, as previously noted, decryption
involves going in the reverse direction through the network and using the inverse components.
Because the datapath for decryption is similar to the encryption datapath, generally, the
same architectures, from serial designs to pipeline designs, can be applied as appropriate for
the target application. We have already noted that the inverse key mixing is the same as
the forward key mixing and permutations can be used for which the inverse permutation is
identical to the forward permutation. This is the case for the SPNs in this article. In AES,
however, the inverse linear transformation (specifically, the inverse MixColumns operation)
is quite different than the forward operation [2]. Most significantly, for decryption the inverse
S-boxes must be used in place of the S-box and this may be of consequence because of the
potentially large complexity. In some cipher proposals, S-boxes for which the forward and
inverse mappings are the same are proposed. Such S-boxes are called involution S-boxes
and can be found, for example, in the KLEIN cipher [27] and the Midori cipher [28]. Using
involution S-boxes allows the sharing of the S-box hardware between the encryption and
decryption structures. Such hardware re-use can reduce the overall area required by the
cipher if both the encryption and decryption operations are required for an implementation.

One other significant aspect of decryption that may have influence on the design is the
need to apply the round keys in reverse order (that is, the round key of the last round in
encryption is the first round key applied in decryption). This may be problematic for an
implementation of decryption that wishes to use an on-the-fly approach to the key schedule.
Since, typically, the only way to generate the last round key from encryption is to apply
the full key schedule algorithm, the last round key state may need to be pre-computed.
From this last key state, the key schedule can possibly proceed with an on-the-fly approach
going backwards through the key schedule. Of course, in some applications, where plentiful
memory resources are available for the implementation, it may instead be desirable to simply

66 CHAPTER 3. HARDWARE IMPLEMENTATION

store all the pre-computed round keys and then simply make use of them at the appropriate
time and location within the decryption process.

3.6 Hardware Implementation of Cipher Modes

All modes could make use of an implementation which processes an individual block before
moving on to the next. This means the basic iterative design, loop unrolled design, and
the serial design are all suitable for all three modes introduced in Section 1.4. However, as
we noted in our discussion of the implementation of block cipher modes in software, some
modes are well suited to implementations which involve concurrent processing of plaintext
blocks, while other modes are not.

CBC mode is not suited for implementation using parallel and pipeline structures since,
with these architectures, several plaintext blocks are processed at the same time and CBC
mode relies on the generation of the previous ciphertext block before the encryption of a
new plaintext block. Conversely, CTR mode is very well suited to implementations like
parallelization and pipelining since the input to the block cipher system is not plaintext,
but counter values, which are easily predicted. Hence, for pipelining it is very practical
to input, in successive clock cycles, incrementing count values, which are processed in the
pipeline before coming out as keystream to be XORed with plaintext blocks. Because each
keystream block can be produced independently, there is no issue with working on several
successive count values at once. For ECB, the use of a parallel or pipeline architecture may
be practical, as long as it is possible to collect up enough blocks of plaintext to process the
blocks concurrently as necessary for the implementation structure.

Another important factor in the application of a mode to hardware implementation is
that some modes, such as CTR mode, only require the encryption (forward) process of the
block cipher. This means it is possible that smaller hardware area will be necessary, since
encryption of plaintext and decryption of ciphertext can share the same hardware structure
and components. Also, not needing the decryption (reverse) process in the hardware can
eliminate the complexities that might arise for an implementation of the key schedule for
decryption. Both ECB and CBC modes require both encryption and decryption processing
of the block cipher and the resulting key schedule issues would need to be considered.

3.7 Tradeoffs Between Architectures

In Figure 3.10, we present a rough characterization of the tradeoffs between hardware
architectures that we have discussed. As you move to the right in the figure, you can
expect architectures to require more area in a hardware realization. Moving up in the figure
represents an increase in the throughput of the architecture. Hence, a general expectation
is that the most compact, yet slowest implementation architecture is the full serial design.
On the other extreme, in the top right corner, the parallel and pipelined implementations
represent the highest speed structures, but at the penalty of the highest area for the realized
designs. As expected, the basic iterative design represents a tradeoff that is somewhat in
the middle between the extremes. Note that the scales of the graph are not labelled and
the placement of the designs in the space does not accurately reflect the relative scale of the

3.7. TRADEOFFS BETWEEN ARCHITECTURES 67

parallel/pipeline

basic iterative

full serial

partial serial

increasing
throughput

increasing
area

Figure 3.10: Characterization of Architecture Tradeoffs

area and throughput. The figure is meant to be a rough characterization only. It does not
include loop unrolling, which is likely to be slightly faster, but with significantly increased
area over a basic iterative design. Also, the graph does not characterize the many levels of
parameterization that may occur for an architecture. For example, increasing the stages in
a pipeline design will increase the area required and likely increase the throughput.

A more detailed comparison of the characteristics of the various hardware architectures
of a 64-bit SPN block cipher is given in Table 3.3. In the table, the throughput and area
requirements of the various architectures are considered. For simplicity in the comparison,
the timing and area implications of any necessary multiplexers are not included. For a
more precise comparison, since the various architectures have different requirements for the
multiplexing of data, the effect of multiplexers should be considered.

The propagation delay through the combinational logic of the round function (specifically,
the XOR gate of the key mixing and the logic of the S-box) is defined to be tfunc (in
seconds) and, for simplicity, it is assumed that the S-box is the same implementation in
all cases. For example, the S-boxes may be assumed to be a 2-level minimized AND-OR
structure. Of course, in practice, different architectures are likely to make use of different
S-box circuits: a high-speed implementation (such as pipelining) will probably use a low
delay, 2-level structure for the S-box, while a compact implementation (such as a serial
design) is likely to use a compact S-box structure (such as the one for the PRESENT S-box
in Figure 3.3) which may have a significantly larger propagation delay since more levels of
logic may be used. In more precise timing comparisons, differences between the propagation
delay through combinational hardware used in a round may occur due to the presence or

68 CHAPTER 3. HARDWARE IMPLEMENTATION

Architecture Minimum Throughput Combinational Sequential
Clock Period Area Area

(sec) (blocks/sec) (nm2) (nm2)
Basic Iterative tfunc

1
R·tfunc

Afunc Areg

Loop Unrolled ≤ 4 · tfunc ≥ 1
R·tfunc

4 ·Afunc Areg
(4 rounds)

Parallel tfunc
m

R·tfunc
m ·Afunc m ·Areg

(m Copies)
Pipeline tfunc

1
tfunc

R ·Afunc R ·Areg
(R stages)
Full Serial tfunc

1
16·R·tfunc

≥ 1
16 ·Afunc Areg

(1 4-bit S-box)
Partial Serial tfunc

1
4·R·tfunc

≥ 1
4Afunc Areg

(4 4-bit S-boxes)

Table 3.3: Hardware Tradeoffs for R-Round 64-bit SPN
(Ignoring effects of multiplexers.)

absence of multiplexers in the datapath. As well, it is possible the minimum clock period is
also significantly affected by the propagation delay of the register and the setup time of the
register, but this is not considered in the table.

In the table, the variable Afunc represents the area requirement (in nanometers squared)
of the combinational logic of the round function consisting of 16 parallel 4-bit S-boxes and the
XOR gates of the key mixing layer. Although we do not consider it, in some architectures,
the presence or absence of multiplexers affects the area required in a round. Again, it
is assumed that one type of S-box implementation is used in the comparison across the
architectures. The variable Areg represents the area required for the implementation of
a 64-bit register. Note that the area requirements of the key schedule module and the
controller are not considered in the analysis. In most cases, it is probably reasonable to
assume that the controller area is negligible compared to the datapath. However, depending
on the implementation structure, which is affected by the details of the key scheduling
algorithm, the key schedule module could require a significant amount of hardware area
(although not likely as much as the cipher datapath) and/or a large amount of register
memory (perhaps significantly more than the datapath if the round keys are pre-computed
and stored). These issues are not considered in the comparison presented in the table. In
the table, the cipher is assumed to have R rounds and, for the parallel implementation, a
general number, m, of parallel implementations are considered.

In Table 3.3, the nominal design can be considered to be the basic iterative design with a
clock period of tfunc (ignoring the register timings), resulting in a throughput of 1/(R ·tfunc)
blocks/sec, and areas of Afunc and Areg for the combinational logic of the round function
and the register used to store the state, respectively.

For the unrolled architecture, the propagation delay must be at least tfunc but is certainly
≤ 4 · tfunc for 4 unrolled rounds. In practice, the delay may be less than 4 times the delay of
the 1-round basic iterative architecture, since the delay due to the multiplexer at the input

3.8. SUMMARY 69

of the combinational hardware only affects the round hardware once (not 4 times) and the
register timing values are possibly not negligible as discussed in Section 3.1.3. This results in
a throughput which is at least as large as the throughput for the basic iterative architecture,
but it may be larger if these timing factors are significant. So the unrolled architecture may
be an improvement on the speed of the basic iterative design, but will certainly have a larger
combinational logic area requirement, while having the same area needed for sequential logic
registers.

Both the parallel and pipelined structures can improve the speed of encryption by
operating on multiple blocks simultaneously. For the parallel structure, if the I/O interface
allows as many as m simultaneous inputs and outputs, then a corresponding speed-up occurs
in the throughput and a corresponding increase in the area costs occur. For pipelining, with
the number of stages equal to R, the throughput and area increases by a factor of roughly R.
For R stages, the I/O can be structured to present and receive one plaintext and ciphertext
block each clock cycle. This can be adjusted to structures with fewer than R stages with
corresponding effects on the throughput and area. Since there are no multiplexers now
in the round hardware, in practice, the clock could be marginally faster than for the basic
iterative design. As well, if a pipelining architecture can split one round into multiple stages,
there will be a corresponding increase in throughput and the area as the number of stages
increase. It should be noted that, as previously discussed in Section 3.3.3, as the number
of stages increase, the propagation delay through the combinational logic will decrease and
the register propagation delay and setup time might become significant.

Lastly, the serial implementation decreases the throughput by a factor of at least the
number of clock cycles to finish a round. Because multiplexers are required at both the
input and output of the register, the effect on the combinational logic propagation delay
could be significant (although this is not reflected in the table). Further, the combinational
area is reduced by possibly as much as the same factor, although practically, this is not
likely since the reduced S-box hardware area will be offset by extra multiplexer circuitry to
control data flow. It should be noted that the sequential logic area still requires as many
bits as are needed to store the state. Hence, no reduction in register bits can occur from
the basic iterative architecture. Note also that the decrease in throughput should actually
have a factor equal to “block size / sub-block size + 1” (that is, one greater than the value
in the table) if the strategy used is the same as the sample hardware design discussed in
Section 3.4 which required one more clock cycle in a round to complete the permutation.
For example, using this approach, the full serialization for 64-bit SPN with 4-bit S-boxes
takes 17, not 16, clock cycles to complete a round.

3.8 Summary

In this chapter, we have discussed different architectures for implementing SPN block ciphers
in a synchronous, sequential logic design targeted to common hardware technologies like
FPGAs and CMOS ASICs. The most basic approach would be an iterative design using
the round structure of the cipher to guide the architecture. To improve cipher thoughput,
parallelization and pipelining are discussed as options. As well, serialization is presented as
method that could be used to decrease the area requirement of a cipher implementation. For
all architectures, sample designs are used to illustrate the concepts. The chapter also briefly

70 CHAPTER 3. HARDWARE IMPLEMENTATION

discusses issues associated with the implementation of decryption and the three block cipher
modes introduced in Section 1.4. To wrap up the discussion, a brief overview of the tradeoffs
that exist between the various implementation strategies is discussed. It should be noted
that comprehensive introduction to block cipher hardware implementation architectures,
with a focus on AES, can be found in Chapters 10-12 of [29].

Chapter 4

Conclusion

In this article, we have presented a tutorial on several basic implementation strategies of
block ciphers. Our implementations span software applications, where we discuss table
lookup approaches and bit-slicing, to hardware applications, where we describe basic iterative
approaches, as well as high-speed designs like pipelining, and compact designs involving
serialization. For the basis of our descriptions, we have used the basic SPN as the model
cipher. This represents a practical structure found in many proposed ciphers and is the
foundation for the most applied block cipher, AES. However, many distinct implementation
structures are proposed for different ciphers and such considerations must be made for any
cipher targeted for implementation. AES, in particular, has been extremely well studied
and discussed for its software and hardware implementation approaches and the reader is
encouraged to investigate further many of the clever implementation approaches applied to
AES.

Finally, it should be noted that a very important consideration for the implementation
of ciphers is the notion of resistance to side channel analysis (SCA) attacks [30]. SCA
attacks are a category of attacks that take advantage of implementation characteristics to
relate side-channel information to the cipher key. Side-channel information exploited in
attacks includes power traces, timing of encryption, and response to injected faults, as well
as others. All implementations should be aware of and mitigate the susceptibility of a system
to leakage of information due to side channels. This is an extremely rich area of research,
with many hundreds of papers published. Alas, we choose to leave this discussion to others,
but encourage all cipher implementers to pursue these issues, once their knowledge of the
basic implementation structures discussed in this article is solidified.

71

72 CHAPTER 4. CONCLUSION

References

[1] National Institute of Standards and Technology. NIST Special
Publication 197: Advanced Encryption Standard (AES), November 2001.
csrc.nist.gov/publications/detail/fips/197/final.

[2] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[3] Alex Biryukov and Léo Perrin. State of the art in lightweight symmetric cryptography.
IACR Cryptology ePrint Archive, 2017:511, 2017.

[4] Shay Gueron. Intel’s new AES instructions for enhanced performance and security. In
Orr Dunkelman, editor, Fast Software Encryption, 16th International Workshop, FSE
2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers, volume 5665 of
Lecture Notes in Computer Science, pages 51–66. Springer, 2009.

[5] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact rijndael
hardware architecture with s-box optimization. In Colin Boyd, editor, Advances in
Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and
Application of Cryptology and Information Security, Gold Coast, Australia, December
9-13, 2001, Proceedings, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer, 2001.

[6] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: an
ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of
Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

[7] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J.,
28(4):656–715, 1949.

[8] U.S. Department of Commerce. National Bureau of Standards Federal Information
Processing Standard 46: Data Encryption Standard (DES), January 1977.

[9] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application

73

74 REFERENCES

of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume
765 of Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[10] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In
Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO
’90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1990, Proceedings, volume 537 of Lecture Notes in Computer Science,
pages 2–21. Springer, 1990.

[11] International Organization for Standardization. ISO/IEC 29192-2:2019 Information
security — Lightweight cryptography — Part 2: Block ciphers, November 2019. available
at iso.org.

[12] National Institute of Standards and Technology. NIST Special Publication 800-
38A: Recommendation for Block Cipher Modes of Operation, December 2001.
crsc.nist.gov/publications/detail/sp/800-38a/final.

[13] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
lightweight block ciphers on x86 architectures. In Tanja Lange, Kristin E. Lauter, and
Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
volume 8282 of Lecture Notes in Computer Science, pages 324–351. Springer, 2013.

[14] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor, Fast
Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-
22, 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science, pages 260–
272. Springer, 1997.

[15] Kostas Papapagiannopoulos. High throughput in slices: The case of present, PRINCE
and KATAN64 ciphers. In Nitesh Saxena and Ahmad-Reza Sadeghi, editors, Radio
Frequency Identification: Security and Privacy Issues - 10th International Workshop,
RFIDSec 2014, Oxford, UK, July 21-23, 2014, Revised Selected Papers, volume 8651 of
Lecture Notes in Computer Science, pages 137–155. Springer, 2014.

[16] Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on
intel core2 processor. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science, pages 121–134. Springer, 2007.

[17] Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud: Exploit the
power of bitslice implementation. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture
Notes in Computer Science, pages 408–425. Springer, 2012.

[18] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Proposal for the Advanced
Encryption Standard. National Institute of Science and Technology, January 1998.

REFERENCES 75

[19] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and Ingrid
Verbauwhede. RECTANGLE: A bit-slice ultra-lightweight block cipher suitable for
multiple platforms. IACR Cryptol. ePrint Arch., 2014:84, 2014.

[20] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. Ls-
designs: Bitslice encryption for efficient masked software implementations. In Carlos
Cid and Christian Rechberger, editors, Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume
8540 of Lecture Notes in Computer Science, pages 18–37. Springer, 2014.

[21] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2009.

[22] Mike Hamburg. Accelerating AES with vector permute instructions. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, volume 5747 of Lecture Notes in Computer Science, pages 18–32. Springer,
2009.

[23] Alireza Hodjat and Ingrid Verbauwhede. Area-throughput trade-offs for fully pipelined
30 to 70 gbits/s AES processors. IEEE Trans. Computers, 55(4):366–372, 2006.

[24] David Canright. A very compact s-box for AES. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659
of Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

[25] Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar. Ultra-lightweight
implementations for smart devices - security for 1000 gate equivalents. In Gilles
Grimaud and François-Xavier Standaert, editors, Smart Card Research and Advanced
Applications, 8th IFIP WG 8.8/11.2 International Conference, CARDIS 2008, London,
UK, September 8-11, 2008. Proceedings, volume 5189 of Lecture Notes in Computer
Science, pages 89–103. Springer, 2008.

[26] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. Aes implementation on a grain of sand.
IEE Proceedings - Information Security, 152(1):13–20, Oct 2005.

[27] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of lightweight
block ciphers. In Ari Juels and Christof Paar, editors, RFID. Security and Privacy -
7th International Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011, Revised
Selected Papers, volume 7055 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2011.

[28] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low
energy. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -

76 REFERENCES

ASIACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - December
3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages
411–436. Springer, 2015.

[29] Çetin Kaya Koç, editor. Cryptographic Engineering. Springer, 2009.

[30] François-Xavier Standaert. Introduction to side-channel attacks. In Ingrid M. R.
Verbauwhede, editor, Secure Integrated Circuits and Systems, Integrated Circuits and
Systems, pages 27–42. Springer, 2010.

[31] Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229–246, 1994.

[32] Céline Blondeau and Benôıt Gérard. Links between theoretical and effective differential
probabilities: Experiments on PRESENT. IACR Cryptology ePrint Archive, 2010:261,
2010.

Appendix: Key Scheduling

Generalization of the PRESENT Key Schedule

In the main body of this article, we have described the data flow associated with the plaintext
to ciphertext processing and only alluded to the key schedule which is responsible for the
generation of round keys from the original cipher key. Key scheduling algorithms tend to
be uniquely defined for each proposed cipher and, hence, it is harder to identify a general
structure that represents the concepts typically found in a key schedule. So, here, we describe
the key scheduling algorithm in PRESENT, but generalize to various sizes of parameters.

Consider a cipher key K = kκ−1kκ−2...k1k0 of size κ bits, used for an SPN cipher with a
block size of B bits and n-bit S-boxes. It is assumed that κ ≥ B. Let K ′ = k′κ−1k

′
κ−2...k

′
1k
′
0

represent the key state bits that are processed during the key schedule. Let R represent the
number of rounds and assume that R < 32 and, hence, the round number can be represented
in binary by 5 bits.1 To represent the round number, we use variable r, referred to as the
round count, where the 5 bits of r are given by [r4r3r2r1r0]. Variable α represents a rotational
value used during the key schedule. A typical key schedule (derived from the PRESENT
key schedule), illustrated in Figure A.1, might consist of the following steps:

1. Let r = 1 and assign the bits of cipher key K to key state K ′:

[k′κ−1k
′
κ−2...k

′
1k
′
0]← [kκ−1kκ−2...k1k0]

2. If r > R+ 1, then stop.

3. Use the leftmost B bits of K ′, [k′κ−1k
′
κ−2...k

′
κ−B+1k

′
κ−B] as round key, RKr.

4. Update K ′ as follows:

(a) Rotate K ′ left by α positions:

[k′κ−1k
′
κ−2...k

′
1k
′
0]← [k′κ−α−1k

′
κ−α−2...k

′
κ−α+1k

′
κ−α]

(b) Process the leftmost n bits with the n-bit S-box:

[k′κ−1k
′
κ−2...k

′
κ−n]← S(k′κ−1, k

′
κ−2, ..., k

′
κ−n)

1The limit of 32 rounds is a reasonable limit satisfied by practical ciphers. However, it is a trivial matter
to extend the size of the round count to more bits if necessary.

77

78 REFERENCES

load cipher key into
key register

XOR round count

!!" !!#$" !!#%" !!#&" !!#'"

				!(#$" !(#%" . . . !)"

take leftmost
B bits as

round key, RK

repeat until
all round keys

generated

apply S-box to
leftmost n bits

cipher key

state output Z

rotate left by a

v1 v0 v15v14v13v12v11v10v9 v8 v7 v6 v5 v4 v3 v2

r4 r3 r2 r1r0

!(#$!(#%. . . !)

 !(#$" !(#%" . . . !)"

				!(#$" !(#%" . . . !)"

$(!(#$" . . . !(#*")

Figure A.1: Sample Key Schedule Structure

(c) XOR the round count into round key bits from position γ down to γ − 4:

[k′γk
′
γ−1k

′
γ−2k

′
γ−3k

′
γ−4]

← [k′γk
′
γ−1k

′
γ−2k

′
γ−3k

′
γ−4]⊕ [r4r3r2r1r0]

5. Increment r and return to step 2.

Note that operation “⊕” represents the bitwise XOR operation and S(·) represents the S-box
mapping.

For the version of the PRESENT cipher with an 80-bit key, κ = 80, B = 64, n = 4,
R = 31, α = 61, and γ = 19. Overall this key schedule derives informational content in
a balanced way from all cipher key bits, mixes in a complex nonlinear operation on the
bits through the S-box, and ensures that each round has a distinct operation by adding a
constant derived from the round number (thereby preventing attacks such as related keys
attacks [31]).

In Table A.1, we present an example of the key schedule for a simple 16-bit SPN. The
SPN is similar to the SPN in Figure 1.1 and uses the S-box mapping in Table 1.1. We
assume that there are R = 4 rounds and, therefore, 5 round keys must be generated. The
round keys for the system will be generated for 20-bit cipher key 011011100111100100002
(6E79016) using the algorithm described above with parameters, κ = 20, α = 13, and γ = 8.

REFERENCES 79

Round Key Round Key Rotate Apply XOR
r Register Left 13 S-box with r
1 6E790 6E79 20DCF 60DCF 60DDF
2 60DDF 60DD BEC1B 8EC1B 8EC3B
3 8EC3B 8EC3 771D8 D71D8 D71E8
4 D71E8 D71E D1AE3 71AE3 71AA3
5 71AA3 71AA - - -

Table A.1: Key Schedule Example
(All values in hexadecimal.)

Many other proposals for the key scheduling algorithms are given for different ciphers.
We do not discuss these in detail here, but only present the algorithm above as a typical
example of the operations found within a key schedule.

Software Implementation of the Key Schedule

Consider now the software implementation of the key schedule. Usually, the key scheduling
algorithm contains operations such as rotations, S-box lookups, and mixing of the round
count, as described above. If we consider the operations, we can realize that they are
conceptually straightforward, but may require some care in the details of implementation.
Let’s consider the key schedule described in the previous section, and, for ease of description,
assume that B = 16, κ = 20, α = 13 and the processor word size is 16 bits.2 Left rotation
of the key state, K ′ = [k′19k

′
18...k

′
0], by α = 13 bits is equivalent to the following assignment:

[k′19k
′
18k
′
17k
′
16||k′15k′14k′13k′12k′11k′10k′9k′8k′7k′6k′5k′4k′3k′2k′1k′0]

← [k′6k
′
5k
′
4k
′
3||k′2k′1k′0k′19k′18k′17k′16k′15k′14k′13k′12k′11k′10k′9k′8k′7]

where “||” indicates a word boundary of the storage of the key state. Hence, the 20-bit key
state is stored as the 4 bits to the left of the “||” in one word and the 16 bits to the right
of the “||” in another word. To produce the new 4 bits of the left word, [k′19k

′
18k
′
17k
′
16], the

old right word must be rotated right 3 bit positions and then masked to retrieve the new
4 bits to be assigned to the new left word. The new right word can be prepared by XOR
combination of 3 words produced as follows: (1) rotate the old right word right by 7 positions
and mask to retrieve the rightmost 9 bits, (2) rotate the old left word left by 9 positions
and mask to retrieve the 4 bits, and (3) rotate the old right word right by 3 positions and
mask to retrieve the leftmost 3 bits. Of course, this is a contrived simple example and real
ciphers (such as PRESENT) will have different, realistic parameters, but may still need to
work with multiple words storing the key state used during the key schedule. For example,
an implementation of PRESENT with an 80-bit key on a processor using words of size 32
bits would require storing the 80-bit key state as at least 3 words (eg. two with 32 bits and
one with 16 bits).

2The B, κ, and α parameters are the same values chosen for the experimental study of a scaled-down
version of PRESENT found in [32]. This cipher has the same structure as the 16-bit SPN of Figure 1.1. The
16-bit word size for the processor is simply selected for the purposes of easy illustration.

80 REFERENCES

For the implementation of the S-box, a table lookup approach can be easily used.
Appropriate shifting and masking must be used to prepare the index for the lookup and
to move the result into the appropriate position within the words used to store the key
state. The mixing (i.e., XOR) of the round count is also straightforward to realize using
appropriate masking. For example, for the key schedule parameters for the 16-bit SPN above
and assuming that the key state bits to be XORed with the round count to be [k′8k

′
7k
′
6k
′
5k
′
4],

the XOR of the round count with the key state can be achieved as follows:

[k′15k
′
14k
′
13k
′
12k
′
11k
′
10k
′
9k
′
8k
′
7k
′
6k
′
5k
′
4k
′
3k
′
2k
′
1k
′
0]⊕ [0000000r4r3r2r1r00000]

where r4r3r2r1r0 are the bits of the round count r.

Hardware Implementation of Key Schedule

In our discussion of the various architectures that could be employed for the hardware
implementation of block ciphers, we did not deal with the hardware necessary to implement
the key schedule. The key schedule for different ciphers can vary quite dramatically, but if we
consider the sample key schedule previously described, we can conclude that the necessary
structure should be somewhat simpler than the datapath processing the cipher state. For
example, the operations involved in the key schedule include storage of key state (generally
the same size as the original cipher key), the application of one S-box mapping per round,
the XOR of the round count value, and the rearrangement of the bit positions within the
key register. These are not difficult to implement and, for an iterative design, will not take
up much area in the targeted technology.

The most significant decision to be made for the implementation of the key schedule is
whether to use (1) a round key setup approach, which pre-computes and stores all round
keys prior to processing any plaintext data, or (2) an on-the-fly round key generation
approach, where the key schedule is applied concurrently with the round function of the
cipher datapath. These are the two approaches highlighted in Figures 1.7 and 1.8. Unlike
in software implementations, where there is small cost of the memory necessary for storing
all round keys for subsequent use during data processing, in hardware implementations,
storing a full set of round keys (in registers or in possibly on-board RAM in an FPGA)
would typically add dramatically to the resource and area requirement for the design. For
example, an implementation of the 64-bit SPN PRESENT key schedule which stores all
round keys would require (R+ 1) ·B = 32 · 64 = 2048 bits, which dwarfs the requirement of
64 register bits to store the state needed in a basic iterative implementation. For this reason,
most hardware implementations are more likely to choose an on-the-fly approach to the key
schedule. Such an approach can generate the round keys concurrently with the round data
processing and, hence, is likely to have little impact on the cipher throughput.

