
Privacy-Preserving Epidemiological Modeling on Mobile Graphs
Daniel Günther

guenther@encrypto.cs.tu-

darmstadt.de

Technical University of Darmstadt

Benjamin Judkewitz

benjamin.judkewitz@charite.de

Charité-Universitätsmedizin

Marco Holz

holz@encrypto.cs.tu-darmstadt.de

Technical University of Darmstadt

Helen Möllering

moellering@encrypto.cs.tu-

darmstadt.de

Technical University of Darmstadt

Benny Pinkas

benny@pinkas.net

Bar-Ilan University

Thomas Schneider

schneider@encrypto.cs.tu-

darmstadt.de

Technical University of Darmstadt

Ajith Suresh

suresh@encrypto.cs.tu-darmstadt.de

Technical University of Darmstadt

ABSTRACT
Over the last two years, governments all over the world have used a

variety of containment measures to control the spread of COVID-19,

such as contact tracing, social distance regulations, and curfews. Epi-

demiological simulations are commonly used to assess the impact

of those policies before they are implemented in actuality. Unfor-

tunately, their predictive accuracy is hampered by the scarcity of

relevant empirical data, concretely detailed social contact graphs.

As this data is inherently privacy-critical, there is an urgent need

for a method to perform powerful epidemiological simulations on

real-world contact graphs without disclosing sensitive information.

In this work, we present RIPPLE, a privacy-preserving epidemi-

ological modeling framework that enables the execution of a wide

range of standard epidemiological models for any infectious disease

on a population’s most recent real contact graph while keeping all

contact information private locally on the participants’ devices. In

this regard, we also present PIR-SUM, a novel extension to private

information retrieval that allows users to securely download the

sum of a set of elements from a database rather than individual

elements. Our theoretical constructs are supported by a proof-of-

concept implementation inwhichwe show that a 2-week simulation

over a population of half a million can be finished in 7 minutes with

each participant consuming less than 50 KB of data.

KEYWORDS
Decentralized Epidemiological Modeling, Privacy, Private Informa-

tion Retrieval, COVID-19

1 INTRODUCTION
The current pandemic had and has a significant impact on people’s

daily lives, posing significant challenges such as increased mental

illness, parents having to balance child care, homeschooling, and

work, an increase in domestic abuse cases, and many more [88, 117,

126]. Governments all over the world have taken a variety of steps

in the last two years to restrict the spread of the virus in order to

save human lives and keep the economic system working. Those

range from closing institutions, such as schools, to country-wide

lockdowns. Despite these courageous efforts, the global number

of infections skyrocketed, and COVID-19 claimed far too many

lives. Aside from highly lethal diseases like COVID-19, many other

infectious diseases have emerged and have had a significant impact

on human life over time. For example, incidences of monkey pox in

Europe have lately increased to the point that quarantine measures

have been implemented [22, 33, 52].

In the context of COVID-19, contact tracing apps are being used

all over the world to notify contacts of potential infections [3, 63,

86, 104, 109, 120, 121, 124]. Unfortunately, there is a fundamental

limitation to contract tracing: It only notifies contacts of an infected

person after the infection has been detected, i.e., typically after a

person develops symptoms, is tested, receives the test result, and

is able to connect with contacts [82, 122]. Tupper et al. [122] re-

port that in British Columbia in April 2021, this process ideally

took 5 days, reducing new cases by only 8% compared to not using

contact tracing. They conclude that contact tracing must be supple-

mented with multiple additional containment measures in order to

effectively control disease spread.

Epidemiological modelling allows to predict the spread of a

infectious disease in the future and has received a lot of atten-

tion [35, 55, 76, 112, 113, 118, 131]. It allows to assess the effective-

ness of containment measures by mathematically modelling their

impact on the spread. As a result, it can be an extremely valuable

tool for governments to select effective containment measures [118].

For example, Davis et al. [39] predicted in early 2020 that COVID-19

would infect 85% of the British population without any containment

measures in place, causing a massive overload of the health system

(13-80× the capacity of intensive care units). Their forecast also in-

dicated that short-term interventions such as school closures, social

distancing, and so on will not be effective in reducing the number

of cases. As a result, the British government decided to implement

a lockdown in March 2020, effectively reducing transmissions and

stabilising the health system [118].

With access to detailed information about a population’s size,

density, the transportation, and health care system, epidemiolog-

ical modelling could accurately forecast disease transmission in a

variety of situations [2]. Especially precise, up-to-date information

about movements and physical interactions in space and time are

crucial for precisely forecasting transmission as well as the impact

of various control measures before being implemented [73]. In prac-

tice, these simulations may quickly model future disease’s spread,

https://orcid.org/0000-0002-9053-3024
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0002-5164-7758

calculate the projected number of infections when specific actions

are taken, and divert disease spread in specific areas. However, data

on personal encounters is very scarce, thus the impact of contain-

ment measures can only be approximated so far [2, 49, 73]. This lack

of data is primarily owing to the fact that encounter data has gener-

ally been acquired by surveys, which do not accurately reflect real-

ity [45, 73], e.g., random encounters in public transport or shopping

malls. Moreover, social interaction patterns change over time and

sometimes even rapidly as we have seen with social distancing mea-

sures, rendering collected contact information outdated. None of the

existing data permits realistic simulations on the actual person-to-

person social contact graph. From a modeler’s perspective, epidemi-

ologists would ideally like to have access to the complete physical

interaction graph of a population. Furthermore, the right for pri-

vacy reflected in strict data protection regulations of liberal states

make accurate tracking of interpersonal contacts unacceptable.

To address the issue of obtaining the most recent contact data

while protecting individuals’ privacy, we present RIPPLE, a practical

privacy-preserving framework for epidemiological modelling that

allows precise simulations of disease spread based on current par-

ticipant data while taking into account deployed control measures

and without leaking any information about individuals contacts.

RIPPLE provides a privacy-preserving method for collecting real-

time physical encounters and can compute arbitrary compartment-

based epidemiological models
1
on the most recent contact graph

in a privacy-preserving manner. RIPPLE can be used to investigate

the effect of containment measures not only for COVID-19, but for

any infectious diseases. We anticipate that our framework’s pri-

vacy guarantee will encourage more people to participate, allowing

epidemiologists to compute more accurate simulations that will

eventually help to develop effective containment measures against

diseases in the future.

1.1 Our Contributions
This paper introduces RIPPLE, a framework for expanding the

scope of privacy research from contact tracing to epidemiological

modelling. While the former only warns about potential infections

in the past, epidemiological modelling can predict the spread of

infectious diseases in the future. Anticipating the effects of various

control measures allows for the development of informed epidemic

containment strategies and political interventions prior to their

implementation.

RIPPLE uses a fully decentralised system similar to the federated

learning paradigm [90] to achieve high acceptance and trust in the

system and to motivate many participants to join the system for

generating representative contact information. All participant data,

such as encounter location, time, distance, and so on, are kept locally

on the participants’ devices. Participants in RIPPLE communicate

with one another through anonymous communication channels

enabled by a group of semi-honest central servers.
RIPPLE comprises of two methods for achieving privacy-preserv-

ing epidemiological modelling, each of which caters to a different

use case. The first is RIPPLETEE, which assumes that each partici-

pant’s mobile device has a Trusted Execution Environment (TEE).

1
The implementation of concrete simulation functions is outside the scope of this

work and referred to medical experts. More details on epidemiological modelling are

given in §2.

The second method, RIPPLEPIR, eliminates this assumption by util-

ising cryptographic primitives such as Private Information Retrieval

(PIR). Along the way, we develop a multi-server PIR extension that

allows a client to directly retrieve the sum of a set of elements (in

our case infection likelihoods) from a database without learning

anything about the individual entries.

time steps

#
of
in
di
vi
du
al
s

Research Institute

3b

3c

3a 2

1
4

ΣAnonymous
Communication Participants

1 Mobile apps collect anonymous encounter tokens during interactions.

2 Research Institute begins the simulation by providing initialization pa-

rameters. 3a Participants upload infection likelihood securely to servers.

3b Servers securely compute cumulative infection likelihood per par-

ticipant. 3c Participants retrieve their cumulative infection likelihood.

4 The aggregate results (#S,#E,#I,#R) are sent to the Research Institute.

Figure 1: Overview of RIPPLE Framework.

We assess the practicality of our methods by benchmarking core

building blocks using a proof of concept implementation (cf. §6).

Our findings indicate that, with adequate hardware, both protocols

can scale up to millions of participants. For instance, a simulation

of 14 days with 1 million participants can be completed in less than

half an hour. We summarize our contributions as follows:

(1) We present RIPPLE, the first privacy-preserving framework

to perform epidemiological modelling on contact informa-

tion stored on mobile devices.

(2) RIPPLE formalises the notion of privacy-preserving epidemi-

ological modelling and defines privacy requirements in the

presence of both semi-honest and malicious participants.

(3) For epidemiological simulations using real-world contact

data acquired with participants’ mobile devices, we present

two techniques – RIPPLETEE and RIPPLEPIR, that combine

anonymous communication techniques with either TEEs or

PIR and anonymous credentials.

(4) We propose PIR-SUM, an extension to existing PIR schemes,

that allows a client to download the sum of 𝜏 distinct database

entries without learning the values of individual entries or

revealing which entries were requested.

(5) We demonstrate the practicality of our framework by pro-

viding a detailed performance evaluation of RIPPLE using

open source code as a benchmark.

2 RELATEDWORK & BACKGROUND
INFORMATION

This section provides necessary background information on con-

tract tracing and epidemiological modelling while an overview of

the (cryptographic) primitives and other techniques used in this

work is presented in §A.

Contact Tracing. A plethora of contact tracing systems were

introduced and deployed in the last two years [3, 34, 109]. They

2

either use people’s location (GPS or telecommunication provider

information) ormeasure proximity (via Bluetooth LE). Most systems

can be categorized into centralized and decentralized designs [124].

In a centralized contact tracing system (e.g., [65, 116]), computations

such as the generation of the tokens exchanged during physical

encounters are done by a central party. Similarly, this central party

may also store some contact information depending on the concrete

system design. In contrast, in decentralized approaches (e.g., [23,

104, 121]), computation and encounter information remain (almost

completely) locally at the participants’ devices.

Presence Tracking and Hotspot Detection. The recent work of

CrowdNotifier [86] notifies visitors of (large) events about an infec-

tion risk when another visitor reported SARS-CoV-2 positive after

the event even if they have not been in close proximity of less than

2 meters. To protect user privacy, it follows a distributed approach

where location and time information are stored encrypted on the

user’s device. Bampoulidis et al. [12] introduce a privacy-preserving

two-party set intersection protocol that detects infection hotspots

by intersecting infected patients, input by a health institute, with

customer data from mobile network operators.

Quarantine and Social Distancing. Al-Turjman and David Dee-

bak [4] integrate privacy-protecting health monitoring into a Medi-

cal Things device that monitors the health status (heart rate, oxygen

saturation, temperature, etc.) of users in quarantine with moderate

symptoms. Only in the event of an emergency medical personnel is

notified. Pezzutto et al. [103] optimize the distribution of a limited

set of tests to identify as many positive cases as possible, which

are then quarantined. Their system can be deployed in a decen-

tralized, privacy-preserving environment to identify individuals

who are at high risk of infection. Barocchi et al. [13] develop a

privacy-preserving architecture for indoor social distancing based

on a privacy-preserving access control system. When users visit

public facilities (for example, a supermarket or an airport), their

mobile devices display a route recommendation for the building

that maximizes the distance to other people. Bozedemir et al. [18]

suggest privacy-preserving trajectory clustering to identify typi-

cal movements of people as well as to detect forbidden gatherings

when contact restrictions are in place.

Contact tracing, presence tracing, and hotspot detection are

concerned with “flattening the curve” in relation to infections in

the past. In contrast, epidemiological modelling is a tool for decision

makers to evaluate the efficacy of containment measures like social

distancing in the future, allowing them to “get ahead of the wave”.

Epidemiological Modeling. There are several options to mathe-

matically model a disease. The popular compartment models [19,

20, 51, 57, 60, 62, 110, 131] capture the spread with a few continu-

ous variables linked by simple differential equations. A prominent

example is the SEIR model [42, 62, 71, 131] with four compartments

to which people are assigned, namely, susceptible (S), exposed (E),

infectious (I), and recovered (R). For each simulated time interval,

the number of people assigned to each class are computed. While

such models are useful for capturing macroscopic trends and also

used in state-of-the-art epidemiological research, e.g., [31, 115], the

basic approaches condense complex individual behaviour into few

variables, thus, limiting the simulation’s predictive power [89, 100].

Agent-based epidemiological models [50], on the otheer hand, ini-

tialise a large number of agents with a set of individual properties

(e.g., location, age, etc.). These agents then interact according to

a set of interaction rules (e.g., location-based, age-based, etc.) to

simulate disease spread. The simulations are carried out in many

time steps. Combining both directions, i.e., using agents in a com-

partment model, allows for a more realistic model of individual

behaviour for forecasting disease transmission in a population.

Many such simulations with varying parameters are run in parallel

to simulate the effect of various policy interventions (e.g., reducing

interactions between agents of a certain age, capping the maximum

number of allowed contacts, or vaccinating a selected group of

agents). The aggregated number of agents assigned to the same

“infection class” (e.g., susceptible, exposed, infected, and recovered

for the SEIR model) is then computed for each simulation step.

A crucial question is how to model the agents’ individual contact

behaviour. Older models relied on survey-based contact matrices,

which included information such as the average number of contacts

in a given age range [73]. This is already a significant improvement

over treating all people the same. However, aggregated network

statistics cannot recreate the dynamics of a real complex network

graph, as evidenced by the prevalence of super-spreaders with far

more contacts than the average [77]. Thus, using the real-world

contact graph between all individual members of the population

would be ideal from an epidemiological standpoint.

Contact Tracing for Privacy-Preserving Epidemiological Modeling.
If contact information collected through contact tracing apps was

centralised, an up-to-date full contact graph could be constructed

for epidemiological simulations. Contact information, on the other

hand, is highly sensitive information that should not be shared.

Contact information collected via mobile phones can reveal who,

when, and whom people meet which is by itself sensitive informa-

tion and must be protected. Beyond, those information also enable

to derive indications about the financial situation [15, 87, 114], per-

sonality [94], life-partners [6], and ethnicity [6]. One can think

about many more examples: By knowing which medical experts are

visited by a person information about the health condition can be

anticipated; contact to members of a religious minority as well as

visits to places related to a religion might reveal a religious orienta-

tion, etc. Thus, it would be ideal to enable precise epidemiological

simulations without leaking individual contact information.

One way to achieve privacy-preserving epidemiological mod-

elling from contract tracing apps is to let each participant (i.e., each

device using the contact tracing app) secretly share its contact in-

formation between a set of non-colluding servers, which can then

jointly run simulations using techniques like secure multi-party

computation (cf. §A). In fact, a recent paper showed how to effi-

ciently run graph algorithms on secret shared graphs via MPC [9].

Even though such a non-collusion assumption is common in the

crypto community, the general public in some countries may have

difficulty trusting a system in which all contact information is dis-

closed if the servers collude. As a result, RIPPLE aims to distribute

trust by involving all participants in such a way that they can keep

their own contact information local while simulating the spread

of a disease by sending messages to each other anonymously. Fur-

thermore, only aggregated simulation results will be shared with a

3

research institute, so no data directly relating to a single identity

will be shared. This approach mimics the baseline idea of Federated

Learning [90] and prominent contact tracing designs supported

by Google and Apple.
2
The increased trust level of a distributed

design fosters the crucial broad adoption of such a system in the

population. To the best of our knowledge, RIPPLE is the first frame-

work that allows the execution of any agent-based compartment

model on the real contact graph while maintaining privacy.

3 THE RIPPLE FRAMEWORK
RIPPLE’s primary goal is to enable the evaluation of the impact of

multiple combinations of potential containment measures defined

by epidemiologists and the government, and to find a balance be-

tween the drawbacks and benefits of those measures, rather than

to deploy the measures in “real-life" first and then analyse the

impact afterwards. Such measures may include, for example, the

requirement to wear face masks in public places, restrictions on

the number of people allowed to congregate, the closure of specific

institutions and stores, or even complete curfews and lockdowns

within specific regions.

Participants in RIPPLE collect personal encounter data anony-

mously and locally store it on their mobile devices such as cell

phones, similar to privacy-preserving contract tracing apps. How-

ever, for epidemiological modelling, RIPPLE must also derive a

contact graph without leaking sensitive personal information in

order to compute simulations of disease spread, which may involve

multiple sets of containment measures for some time period, such

as two weeks. In almost every country, we can find a 6-hour period

during the night when the majority of the population sleeps and

mobile devices are idle, connected to the Internet via WiFi, and

possibly charging, i.e., an ideal time window for running RIPPLE

simulations. The results can then be analysed by medical experts

to learn more about the disease or by political decision makers to

determine the most promising containment measures to implement.

To acquire representative and up-to-date physical encounter

data, we require widespread public acceptance of RIPPLE, similar

to contact tracing apps. One way to encourage this is to piggyback

RIPPLE on the official contract tracing applications used by most

countries. Politicians, on the other hand, can motivate residents

beyond the intrinsic incentive of supporting public health by cou-

pling the use of RIPPLE with additional benefits such as discounted

or free travel passes.

System and Threat Model. RIPPLE comprises of p participants,

denoted collectively by P, a research institute RI who is in charge

of the epidemiological simulations, and a set of MPC servers C
responsible for anonymous communication among the participants.

We assume that the research institute and MPC servers follow

the semi-honest security model [56], which means they correctly

follow protocol specifications while attempting to gather additional

information. Though not the strongest security model, it provides

a good trade-off between privacy and efficiency, which is why

it is commonly used in the design of several practical privacy-

preserving applications such as privacy-preserving machine learn-

ing [25, 91, 93, 101], genome/medical research [111, 119, 125], and

2
https://covid19.apple.com/contacttracing

localization services [68, 123]. It also protects against passive at-

tacks by curious administrators and accidental data leakage. Fur-

thermore, it is quite often the first step toward developing protocols

with stronger privacy guarantees [11, 84]. We believe this is a rea-

sonable assumption in our setting because the research institute and

the servers will be controlled/run by generally trusted entities such

as governments or (public) medical research centres, potentially in

collaboration with NGOs such as the EFF
3
or the CCC

4
.

Since it is in general interest to find effective containment mea-

sures, we anticipate that many participants will be highly intrinsi-

cally motivated to contribute to a successful epidemiological mod-

elling. However, assuming that each and every one of potentially

millions of participants is honest is unrealistic. As a result, we also

consider a client-malicious security model [24, 81] for the partici-

pants in P, in which some of the participants may deviate from the

protocol to gather additional information about their encounters.

We should also mention that malicious behaviour can actively try to

hamper or even destroy the simulation itself. However, in the scope

of this work, we concentrate on the aforementioned deviations for

additional information gain, leaving the problem of developing effi-

cient countermeasures against correctness attacks to future work.

Tab. 1 summarises the notations used in this work.

Parameter Explanation

P Set of all participants; P = {P1, . . . ,Pp}.
RI Research Institute

C Communication Servers; {S0, S1, S2} in this work

paramsim simulation parameters defined by RI
𝑁sim # distinct simulations (executed in parallel)

𝑁step # steps per simulation

classinf infection classes; classinf = {class1inf , . . . , class
Ninf
inf }

𝐼 s
𝑖

P𝑖 ’s infection class in simulation step s ∈ [0, 𝑁step]
E𝑖 Encounter tokens of P𝑖

𝐸max
𝑖

#max. encounters by P𝑖 in pre-defined time interval

𝜅 computational security parameter; 𝜅 = 128 in this work

𝑟𝑒 Unique token for encounter 𝑒 ∈ [0, 𝐸max]
𝛿
𝑟𝑒
𝑖

P𝑖 ’s infection likelihood w.r.t token 𝑟𝑒
Δ𝑖 P𝑖 ’s cumulative infection likelihood

𝑚𝑒
𝑖

metadata of an encounter 𝑒 by P𝑖
(pk𝑖 , sk𝑖) P𝑖 ’s public/private key pair

𝜎𝑒
𝑖
. P𝑖 ’s signature on message about encounter 𝑒

Entities

Simulations

Protocols

Table 1: Notations used in RIPPLE.

3.1 Phases of RIPPLE
RIPPLE is divided into four phases as shown in Fig. 1: i) Token

Generation, ii) Simulation Initialization, iii) Simulation Execution,

and iv) Result Aggregation. While our framework can be applied to

any compartment-based epidemiological modeling of any infectious

disease (cf. §2), we explain RIPPLE using the prevalent Covid-19

and the SEIR model [42, 71] as a running example. For the sake of

simplicity, we assume that an app that emulates RIPPLE is installed

on each participant’s mobile device, and that the participants locally

enter attributes such as workplace, school, regular eateries, and

cafes in the app after installing the app.

3
https://www.eff.org

4
https://www.ccc.de/en/

4

https://www.eff.org
https://www.ccc.de/en/

1 - Token Generation: During a physical encounter, partic-

ipants exchange data via Bluetooth LE to collect anonymous en-

counter information (Fig. 2), similar to contact tracing [61, 104, 121].

These tokens are stored locally on the devices of the users and do

not reveal any sensitive information (i.e., identifying information)

about the individuals involved.

dkc9

b1kq

Figure 2: Token Generation.

In addition to these tokens, the un-

derlying application will collect addi-

tional information on the context of

the encounter known as "metadata"

for simulation purposes. This can in-

clude details such as duration, prox-

imity, time, and location, etc. The

metadata can be used to include or

exclude different encounters in the simulation phase, allowing the

effect of containment measures to be modelled (e.g., restaurant

closings, by excluding all encounters that happened in restaurants).

The token generation phase is not dependent on the simulation

phase, so no simulation-dependent infection data is exchanged. The

token generation phase is modelled as an ideal functionality Fgen
that will be instantiated later in §4.

– As an example, assume that a participant, Alice, takes the bus

to pick up her daughter from school. There are several other people

on this bus – for simplicity, we call them Bob1, . . . , Bobx. As part

of the token generation phase, Alice’s phone exchanges unique

anonymous tokens with the devices of the different Bobs. Now, two

weeks later, it is night, and the national research institute (RI) wants
to run a simulation covering 14 days to see what effect closing all

schools would have on the disease’s spread. To accomplish this,

the RI notifies all registered participants’ applications to run a

simulation using encounter data from the previous two weeks.

2 - Simulation Initialization: The research institute RI initi-
ates the simulation phase by sending a set of parameters, denoted

by paramsim, to the participants in P. The goal is to "spread" a

fictitious infection across 𝑁sim different simulation settings. To

begin a simulation, each participant P𝑖 is assigned to an infec-

tion class 𝐼 init
𝑖
∈ classinf (e.g., {S}usceptible, {E}xposed, {I}nfectious,

{R}ecovered for the SEIR model) as specified in paramsim. For each

individual simulation, paramsim defines a set of containment mea-

sures, such as school closings and work from home, which the

participants will use as filters to carry out the simulation in the

next stage. In addition, RI publishes a formula to calculate the infec-

tion likelihood, which is denoted by 𝛿 . The likelihood is determined

by several parameters in the underlying modelling, such as en-

counter distance and time. For example, this likelihood might range

from 0 (no chance of infection) to 100 (certain to get infected).

– In our example, assume Alice is designated as infectious, while

Bob1 is designated as susceptible by RI. The other participants

Bob2, . . . , Bobx are also assigned to an infection class (S, E, I, or R).

To simulate containment measures, the RIPPLE-app now employs

filters defined in paramsim. Using the information provided by the

participants
5
, the application may automatically filter out encoun-

ters that would not happen if a containment measure were in place,

such as encounters in school while simulating school closings.

5
This may also include location data obtained from the mobile app., e.g., Check In

and Journal fields in the Corona-Warn contact tracing app.

3 -Simulation Execution: Once the RI initialises the simula-

tion, 𝑁step simulation steps (3a , 3b , 3c in Fig. 1) are performed

for each of the 𝑁sim simulation settings (e.g., 𝑁step = 14 days).

Without loss of generality, consider the first simulation step and

let 𝑁sim = 1. The simulation proceeds as follows:

1) ParticipantP𝑖 ∈ P filters out the relevant encounters based on

the containment measures defined by RI and let the corresponding

encounter tokens be represented by the set E𝑖 .
2) For each token 𝑟𝑒 ∈ E𝑖 , P𝑖 computes the infection likeli-

hood 𝛿
𝑟𝑒
𝑖

using the formula from RI, i.e., the probability that P𝑖
infects the respective participant they met during the encounter

with identifier token 𝑟𝑒 .

3) Participants use the likelihood values 𝛿 obtained in the previ-

ous step to execute an ideal functionality called Fesim, which allows
them to communicate the 𝛿 values anonymously through a set of C
communication servers. Furthermore, it allows each participant P𝑗
to receive a cumulative infection likelihood, denoted by Δ 𝑗 , based

on all of the encounters they had on the day being simulated, i.e.,

Δ 𝑗 =
∑

𝑟𝑒 ∈E 𝑗
ˆ𝛿
𝑟𝑒
𝑗
. In this case,

ˆ𝛿
𝑟𝑒
𝑗

denotes the infection likelihood

computed by participant P𝑓 and communicated to P𝑗 for an en-

counter between P𝑓 and P𝑗 with identifier token 𝑟𝑒 . As will be

discussed later in §3.2, Fesim must output the cumulative result

rather than individual infection likelihoods because the latter can

result in a breach of privacy.

4) Following the guidelines set by the RI, P𝑗 updates its infection
class 𝐼 𝑗 using the cumulative infection likelihood Δ 𝑗 acquired in

the previous step.

These steps above are repeated for each of the 𝑁step simulation

steps in order and across all the 𝑁sim simulation settings.

– In our example, let the simulated containment measure be

closure of schools. As Alice is simulated to be infectious, Alice’s

phone computes the infection likelihood for every single encounter

it recorded on the day exactly two weeks ago (Day 1) except those
that occurred at her daughter’s school. Following that, Alice’s phone

combines the computed likelihood of each encounter with the cor-

responding unique encounter token to form tuples, which are then

sent to an entry point for an anonymous communication channel.

Sent:
dkc9

Sent:
b1kq

Received:
dkc9
b1kq

simulated

Figure 3: Simulation.

Using the encounter token

as an address, this channel

anonymously forwards the

likelihood to the person Alice

has met, for example, Bob1

(cf. Fig. 3). Likewise, Bob1

receives one message from

each of the other participants

he encountered and contains

the corresponding likelihood

information. Bob1 aggregates

all likelihoods he obtained

from his encounters on Day 1

and checks the aggregate result to a threshold defined by the RI to
see if he has been infected in the simulation

6
.

6
Bob1 obtains the aggregated likelihood in the actual protocol.

5

4 - Result Aggregation: For a given simulation setting, each

participant P𝑖 ∈ P will have its infection class 𝐼 s
𝑖
updated at the

end of every simulation step s ∈ [𝑁step]. The goal of this phase to
allow RI to obtain the aggregated number of participants per class

(e.g., #S, #E, #I, #R) for each simulated time step. For this, we rely on

a Secure Aggregation functionality, denoted by Fagg, which takes

a 𝑁inf-tuple of the form {v1i , . . . , v
Ninf
i }s from each participant for

every simulation step s and outputs the aggregate of this tuple over
all the p participants to RI. In this case, vki is an indicator variable

for the 𝑘-th infection class, which is set to one if 𝐼 s
𝑖
= classkinf and

zero otherwise. Secure aggregation [47, 78, 83, 83] is a common

problem in cryptography these days, particularly in the context

of federated learning, and there are numerous solutions proposed

for various settings, such as using TEEs, a semi-trusted server ag-

gregating ciphertexts under homomorphic encryption, or multiple

non-colluding servers that aggregate secret shares. In this work, we

consider Fagg to be a black-box that can be instantiated using any

of the existing solutions that are compatible with our framework.

– In our example, all participants will know their updated infec-

tion class at the end of Day 1’s simulation round, and they will pre-

pare a 4-tuple of the form {vS, vE, vI, vR} representing their updated
infection class in the SEIR model. Participants will then engage in a

secure aggregation protocol that determines the number of partici-

pants assigned to each infection class, which is then delivered to

the RI. Then, the second simulation round begins, which replicates

the procedure but this time using encounters from 13 days ago, i.e,

Day 2. The RI holds the aggregated number of participants per day

per class after simulating all 14 days, i.e., a simulation of how the

disease would spread if all schools had been closed in the previous

14 days (cf. graph in Fig. 1).

Complete Protocol: Fig. 4 summarises the phases of the RIPPLE

framework in the context of a single simulation setting. Note that

multiple simulations can be executed in parallel.

1 - Token Generation

• P𝑖 ∈ P executes Fgen all the time (on its mobile device), collecting

encounter data of the form (𝑟𝑒 ,𝑚𝑒) with 𝑒 < 𝐸max
𝑖

.

2 - Simulation Initialization

• P𝑖 ∈ P receives paramsim from RI and locally sets 𝐼 1
𝑖
= 𝐼 init

𝑖
.

3 - Simulation Execution

For each simulation step s ∈ [𝑁step], P𝑖 ∈ P execute the following:

• Filter out encounters using paramsim to obtain encounter set Es
𝑖
.

• For each token 𝑟𝑒 ∈ Es𝑖 , compute the infection likelihood 𝛿
𝑟𝑒
𝑖

locally

using the formula from RI.
• Invoke Fesim with the input {𝛿𝑟𝑒

𝑖
}𝑟𝑒 ∈Es𝑖 and obtain Δs

𝑖
=

∑
𝑟𝑒 ∈Es𝑖

ˆ𝛿
𝑟𝑒
𝑖
.

• Update the infection class 𝐼 s
𝑖
using Δs

𝑖
and the guidelines from RI.

4 - Result Aggregation

For each simulation step s ∈ [𝑁step], execute the following:
• P𝑖 ∈ P prepares {v1i , . . . , v

Ninf
i }s with vki = 1 if 𝐼 s

𝑖
= classkinf and

vki = 0 otherwise, for 𝑘 ∈ [𝑁inf].

Protocol RIPPLE

• Invoke Fagg with inputs {v1i , . . . , v
Ninf
i }s to enable RI obtain the tuple

{C1
inf, . . . ,C

Ninf
inf }

s
where Ck

inf =
∑
P𝑖 ∈P

vki for 𝑘 ∈ [𝑁inf].

Figure 4: RIPPLE Framework (for one simulation setting).

3.2 Privacy Requirements
A private contact graph necessitates that participants remain un-

aware of any unconscious interactions. This means they cannot

find out if they had unconscious contact with the same person more

than once or how often they did. We remark that an insecure vari-

ant of RIPPLE, in which each participant P𝑖 receives the infection
likelihood

ˆ𝛿𝑒
𝑖
for all of its encounters 𝑒 ∈ 𝐸𝑖 separately, will be

unable to meet this condition.

1
1
1

Figure 5: Linking Identities Attack.
Alice and Bob had several encounters,
but Alice and Charlie only had one.

To demonstrate this, ob-

serve that when running

multiple simulations (with

different simulation param-

eters paramsim) on the same

day, participants will use

the same encounter tokens

and metadata from the to-

ken generation phase in

each of the simulations. If

a participant P𝑖 can see the

infection likelihood
ˆ𝛿𝑖 of each of their interactions, P𝑖 can look

for correlations between those likelihoods to see if another partici-

pant P𝑗 was encountered more than once. We call this a Linking
Identities Attack and depict it in Fig. 5, where, for simplicity, the

infection likelihood accepts just two values: 1 for high and 0 for

low infection likelihood.

Consider the following scenario to help clarify the issue: Alice

and Bob work together in the same office. As a result, they have

numerous conscious encounters during working hours. However,

in their spare time, they may be unaware that they are in the same

location (e.g., a club) and may not want the other to know. Even if

they do not see each other, their phones are constantly collecting

encounters. Assume the RI sent the participants a very simple

infection likelihood formula that simply returns 0 (not infected) or

1 (infected). Furthermore, since the data is symmetric, both Alice

and Bob have the same metadata (duration, distance, etc.) about

their conscious and unconscious encounters.

Let Bob be modelled as infectious in the first simulation. As a re-

sult, he will send a 1 for each (conscious and unconscious) encounter

he had (including those with Alice). If multiple simulations are run

on the same day (i.e., with the same encounters), Alice will notice

that some encounters, specifically all conscious and unconscious

encounters with Bob, always have the same infection likelihood: If

Bob is not infectious, all will return a 0; if Bob is infectious, all will

return a 1. Thus, even if Alice had unconscious encounters with

Bob, she can detect the correlations between the encounters and,

as a result, determine which unconscious encounters were most

likely with Bob. The more simulations she runs, the more confi-

dent she becomes. Since every participant knows the formula, this

attack can be extended to complex infection likelihood functions

as well. While it may be more computationally expensive than the

simple case, Alice is still able to identify correlations. This attack

6

also works even if all of the encounters were unconscious. In such

situations, Alice may not be able to trace related encounters to a

single person (Bob), but she can infer that they were all with the

same person (which is more than learning nothing).

To avoid a Linking Identities attack, RIPPLE ensures that in a

simulation phase, each participant receives just an aggregation of all

infection likelihoods of their encounters. It cannot be avoided that

participants can understand that when “getting infected” someone

of their contacts must have been in contact with a (simulated)

infectious participant. As this is only a simulated infection, we

consider this leakage acceptable.

11

Figure 6: Sybil Attack.

While the Linking Identities

Attack is already significant in

a semi-honest security model,

malicious participants may go

even further to circumvent ag-

gregation mechanisms that pre-

vent access to individual infec-

tion likelihoods. They could, for

example, construct many sybils,
i.e., multiple identities using several mobile devices, to collect each

encounter one by one and then conduct a Linking Identities Attack

with the information.

A registration system can be used to increase the costs of per-

forming sybil attacks, i.e., to prevent an adversary from creating

many identities. This assures that only legitimate users are allowed

to join and participate in the simulation. This might be done in

a closed ecosystem, such as a firm, where each member receives

exactly one token to participate in the simulation. This might also

be done on a larger scale at the national level, with each citizen

receiving a token linked to a digital ID card. In such authentication

mechanisms, anonymous credentials (cf. §A) can be used to ensure

anonymity, and we leave the problem for future work.

4 INSTANTIATING Fesim
In this section, we propose two instantiations of Fesim that cater to

different use cases and offer different efficiency-trust trade-offs. Our

first design, RIPPLETEE (§4.1), assumes the presence of trusted exe-

cution environments (TEEs) such as ARM TrustZone on the mobile

devices of the participants. In our second design, RIPPLEPIR (§4.2),

we eliminate this assumption and provide privacy guarantees using

cryptographic techniques such as private information retrieval and

secure multi-party computation.

4.1 RIPPLETEE

The deployment of the entire operation in a single designated TEE

would be a simple solution to achieving the ideal functionality Fesim.
However, given the massive amount of data that must be handled

in a large scale simulation with potentially millions of users, TEE

resource limitations are a prohibitive factor. Furthermore, since

the TEE would contain the entire population’s contract graph, it

would be a single point of failure and an appealing target for an

attack on TEE’s known vulnerabilities. RIPPLETEE (Fig. 7), on the

other hand, leverages the presence of TEEs in participants’ mobile

devices, but in a decentralised manner, ensuring that each TEE

handles only information related to the encounters made by the

respective participant.

Before going into the details of RIPPLETEE, we will go over the

Fanon functionality (cf. §B.3), which allows two participants, P𝑖
and P𝑗 , to send messages to each other anonymously via a set of

communication servers denoted by C. The set C consists of one

server acting as an entry node (Nentry), receiving messages from

senders, and one server acting as an exit node (Nexit), forwarding

messages to receivers. In Fanon, sender P𝑖 does not learn to whom

the message is sent, and receiver P𝑗 does not learn who sent it.

Similarly, the servers in C will be unable to relate receiver and

sender of a message. Anonymous communication (cf. §A) is an

active research area, e.g., [1, 5, 48, 59] and Fanon in RIPPLETEE can

be instantiated using any of these efficient techniques.

72 1

0
3

Anonymous Communication

4

6

5

Figure 7: RIPPLETEE Overview. Messages in red denote addi-
tional steps needed for malicious participants.

Token Generation (cf. steps 0 to 1 in Fig. 7): During the pre-

computation phase, the TEE of each participant P𝑖 ∈ P generates a

list of fresh unique public/private key pairs (pk𝑒𝑖 , sk
𝑒
𝑖) for all possi-

ble encounters 𝑒 ∈ [𝐸max
𝑖
]. The keys, for example, can be generated

and stored a day ahead of time. The newly generated public keys

are then sent by P𝑖 ’s TEE to the exit node Nexit (cf. step 0 in

Fig. 7) to enable anonymous communication (cf. §B.3) via Fanon
later in the protocol’s simulation part.

During a physical encounter 𝑒 , P𝑖 and P𝑗 exchange two unused

public keys pk
𝑒
𝑖 and pk

𝑒
𝑗 (cf. step 1 in Fig. 7). Simultaneously, both

participants compute and record metadata 𝑚𝑒 , such as the time,

location, and duration of the encounter, and store this information

alongside the received public key.

Additional measures are required for malicious participants to

ensure that the participants are exchanging public keys generated

by the TEEs. After obtaining the new public keys from P𝑖 , the exit
node Nexit goes one step further: It signs them and returns the

signatures to P𝑖 after checking that it is connecting directly with a

non-corrupted TEE (cf. step 0 in Fig. 7 and §A). During a physical

encounter, P𝑖 will provide the corresponding signature, denoted by
𝜎𝑒
𝑖
along with pk

𝑒
𝑖 so that the receiver P𝑗 can verify that the key

was correctly generated by P𝑖 ’s TEE (cf. step 2 in Fig. 7).

Simulation Execution (cf. steps 2 to 7 in Fig. 7): All local com-

putations, including infection likelihood calculation and infection

class updates, will be performed within the participants’ TEEs. In

7

detail, for each encounter 𝑒 involving participants P𝑖 and P𝑗 , the
following steps are executed:

– P𝑖 ’s TEE computes 𝛿
𝑟𝑒
𝑖

and encrypts it using the public key of

P𝑗 obtained during the token generation phase. Let the ciphertext

be 𝑐𝑒
𝑖, 𝑗

= Enc
pk

𝑒
𝑗
(𝛿𝑟𝑒
𝑖
) (cf. step 2 in Fig. 7).

– P𝑖 ’s TEE establishes a connection with the anonymous com-

munication servers C via remote attestation and uploads the tuple

(𝑐𝑒
𝑖, 𝑗
, pk𝑒𝑗) to C (cf. step 3 in Fig. 7).

– The tuple (𝑐𝑒
𝑖, 𝑗
, pk𝑒𝑗) traverse through multiple servers in C

and reaches the exit node Nexit (cf. step 4 in Fig. 7).

– Nexit discards the tuple if the public key pk
𝑒
𝑖 has already been

used in this simulation step
7
(cf. step 5 in Fig. 7).

– If not, Nexit uses pk
𝑒
𝑗 to identify the recipient P𝑗 and the

ciphertext 𝑐𝑒
𝑖, 𝑗

is sent to P𝑗 (cf. step 6 in Fig. 7).

After receiving the ciphertexts for all of the encounters, P𝑗 ’s
TEE decrypts them and aggregates the likelihoods to produce the

desired output (cf. step 7 in Fig. 7).

4.1.1 Security of RIPPLETEE. First, we consider the case of semi-

honest participants. During the token generation phase, since the

current architecture in most mobile devices does not allow direct

communication with a TEE while working with Bluetooth LE inter-

faces, participant P𝑖 can access both the sent and received public

keys before they are processed in the TEE. However, unique keys

are generated per encounter and do not reveal anything about an

encounter’s identities due to the security of the underlying Fgen
functionality, which captures the goal of several contract tracing

apps in use.

The Fanon functionality, which implements an anonymous com-

munication channel utilising the servers in C, aids in achieving

contact graph privacy by preventing participants from learning

to/from whom they are sending/receiving messages. While the en-

try node learns who sends messages to it, it does not learn who

receives them. Similarly, the exit node Nexit has no knowledge of

the sender but learns the recipient using the public key. Regard-

ing confidentiality, participants in RIPPLETEE have no knowledge

of the messages being communicated because they cannot access

the content of the TEEs and the TEEs communicate directly to the

anonymous channel. Furthermore, servers in C will not have access

to the messages as they are encrypted.

For the case of malicious participants, they could send specifi-

cally crafted keys during the token generation phase instead of the

ones created by their TEE. However, this will make the signature

verification fail and the encounter will get discarded. Furthermore,

a malicious participant may reuse public keys for multiple encoun-

ters. This manipulation, however, will be useless because the exit

node Nexit checks that each key is only used once before forward-

ing messages to participants. During the simulation phase, all data

and computation are handled directly inside the TEEs of the par-

ticipants, so no manipulation is possible other than cutting the

network connection, i.e., dropping out of the simulation, ensuring

correctness. Dropouts occur naturally when working with mobile

devices and have no effect on privacy guarantees.

7
This step is not required for semi-honest participants.

4.2 RIPPLEPIR

In the following, we show how to get rid of RIPPLETEE’s assumption

of each participant having access to a TEE on their mobile devices.

If we simply remove the TEE part of RIPPLETEE and run the same

protocol, decryption and aggregation of a participant’s received

infection likelihoods would be under their control. Thus, the indi-

vidual infection likelihoods of all encounters would be known to

them, leaking information about the contact graph (cf. §3.2). To get

around this privacy issue, we need to find another way to aggregate

the infection likelihoods so that only the sum, not individual values,

can be derived by the participants.

2

6
2 1

4

5
3

Anonymous Communication

Figure 8: RIPPLEPIR Overview.

Private Information Retrieval (PIR, cf. §A) is one promising so-

lution for allowing participants to anonymously retrieve infection

likelihoods sent to them. PIR enables the private download of an

item from a public database D held byM servers without leaking

any information to the servers, such as which item is queried or

the content of the queried item. However, the normal textbook PIR

is unsuitable for our needs because we need to retrieve the sum of,

say, 𝜏 items from the database rather than the individual ones. As a

result, we introduce the ideal functionality Fpirsum (Fig. 9), which is

similar to a conventional PIR functionality, but returns the sum of

𝜏 queried locations of the database as the result. For the remainder

of this section, we consider Fpirsum to be an ideal black-box, and

will discuss concrete instantiations in §5.

Fpirsum interacts with M servers, denoted by C, and participant P𝑖 ∈ P.
Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖
and a database D from C.
Output: Fpirsum sends

∑𝜏
𝑗=1 D[𝑞 𝑗] to P𝑖 as the output.

Functionality Fpirsum

Figure 9: Ideal functionality for PIR-SUM (semi-honest).

We now detail the changes needed in the token generation phase

to make it compatible with the rest of the RIPPLEPIR protocol.

Token Generation (cf. step 1 in Fig. 8): During a physical en-

counter 𝑒 among participants P𝑖 and P𝑗 , they generate and ex-

change unique random tokens denoted by 𝑟𝑒
𝑖
and 𝑟𝑒

𝑗
. Both partici-

pants, like in RIPPLETEE, record the metadata𝑚𝑒
as well. Thus, at

the end of a simulation step s ∈ [𝑁step] (e.g., a day), P𝑖 holds a list
of sent encounter tokens, denoted by 𝐸s

𝑖
= {𝑟𝑒

𝑖
}𝑒∈E𝑖 , and a list of

8

received tokens, denoted by 𝑅s
𝑖
= {𝑟𝑒

𝑗
}𝑒∈E𝑖 . Looking ahead, these

random tokens will be used as addresses for communicating the

corresponding infection likelihood among the participants.

Simulation Execution (cf. steps 2 to 6 in Fig. 8): Local computa-

tions such as encounter filtering and infection likelihood calculation

proceed similarly to RIPPLETEE but without TEE protection. The

steps for an encounter 𝑒 among P𝑖 and P𝑗 are as follows:
• P𝑖 blinds each 𝛿𝑟𝑒𝑖 computed with the corresponding random

token 𝑟𝑒
𝑗
received from P𝑗 and obtains the ciphertext 𝑐𝑒

𝑖, 𝑗
= 𝛿

𝑟𝑒
𝑖
+

H(𝑟𝑒
𝑗
| |ssim). In addition, it computes the destination address for the

ciphertext as 𝑎𝑖, 𝑗 = H(ssim | |𝑟𝑒𝑗). Here, H() is a cryptographic hash
function and ssim ∈ [𝑁sim] denotes the current simulation setting.

(cf. step 2 in Fig. 8)

– Note that ssim is used in H() to ensure that distinct (cipher-

text, address) tuples are generated for the same encounters across

multiple simulation settings, preventing the exit nodeNexit from

potentially linking messages from different simulations.

• P𝑖 sends the tuple (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗) anonymously to Nexit with the

help of the servers in C.Nexit discards all the tuples with the same

address field (𝑎𝑖, 𝑗). (cf. step 3 to 4 in Fig. 8)

As a server in C, Nexit locally creates the database D for the

current simulation step using all of the (𝑐𝑒
𝑖, 𝑗
, 𝑎𝑖, 𝑗) tuples received

(part of step 4 in Fig. 8). A naive solution of inserting 𝑐𝑒
𝑖, 𝑗

using

a simple hashing of the address 𝑎𝑖, 𝑗 will not provide an efficient

solution in our case since we require only one message to be stored

in each database entry in order to have an injective mapping be-

tween addresses and messages. This is required in order for the

message receiver to precisely download the messages that were

sent to them. Using simple hashing, this would translate to a large

database size to ensure a negligible probability of collisions. Instead,

in RIPPLEPIR, we use a novel variant of a garbled cuckoo table, that

we call arithmetic garbled cuckoo table (AGCT, cf. §B.4), with 𝑎𝑖, 𝑗
as the insertion key for the database.

Once the databaseD is created,Nexit sends it to the other servers

in C based on the instantiation of Fpirsum (cf. §5). Each P𝑗 ∈ P
will then participate in an instance of Fpirsum with the servers in C
acting as PIR servers holding the database D. P𝑗 uses the addresses
of all its sent encounters from 𝐸s

𝑗
, namely H(ssim | |𝑟𝑒), as the input

to Fpirsum and obtains a blinded version of the cumulative infection

likelihood, denoted by Δ̂ 𝑗 , as the output (cf. step 5 in Fig. 8). The

cumulative infection likelihood, Δ 𝑗 , is then unblinded as

Δ 𝑗 = Δ̂ 𝑗 −
∑︁

𝑟𝑒 ∈ 𝐸s
𝑗

H(𝑟𝑒 | |ssim)

concluding the current simulation step (cf. step 6 in Fig. 8).

4.2.1 Security of RIPPLEPIR. Except for the database constructions
at exit node Nexit and the subsequent invocation of the Fpirsum
functionality for the cumulative infection likelihood computation,

the security guarantees for semi-honest participants in RIPPLEPIR
are similar to those of RIPPLETEE. Unlike RIPPLETEE, Nexit in

RIPPLEPIR will be unable to identify the message’s destination

from the address because it will be known only to the receiving

participant. Furthermore, each participant obtains the cumulative

infection likelihood directly via the Fpirsum functionality, ensuring

that Nexit cannot infer the participant’s encounter details and,

thus, contact graph privacy.
Malicious participants in RIPPLEPIR, as opposed to RIPPLETEE,

can tamper with the protocol’s correctness by providing incorrect

inputs. However, as stated in the threat model in §3, we assume that

malicious participants in our framework will not tamper with the

correctness and will only seek additional information. A malicious

participant could re-use the same encounter token for multiple

encounters during token generation. As a result, the protocol will

generate multiple tuples with the same address. However, as stated

in the protocol,Nexit will discard all such tuples, effectively remov-

ing the malicious participant from the system. Another potential

information leakage caused by the participant’s aforementioned

action is that the entry point of the anonymous communication

channel will be able to deduce that multiple participants, say P𝑖
and P𝑗 , had an encounter with the same participant. This is not an

issue in our protocol because we instantiate the Fanon functionality
using a 3-server oblivious shuffling scheme (cf. §B.3), where all the

servers except Nexit will not see any messages in the clear, but

only see secret shares.

5 PIR-SUM: INSTANTIATING Fpirsum
So far, the discussion has focused on RIPPLE as a generic frame-

work composed of multiple ideal functionalities that could be effi-

ciently instantiated using state-of-the-art privacy-enhancing tech-

nologies. In this section, we will concentrate on instantiating our

novel Fpirsum functionality (Fig. 9) using three semi-honest MPC

servers. In particular, we have three servers S0, S1, and S2, and we

design the PIRsum protocol to instantiate the Fpirsum functionality.

The problem statement in our context is formally defined as

follows: Participant P𝑖 ∈ P has a set of 𝜏 indices denoted by

Q = {𝑞1, . . . , 𝑞𝜏 } and wants to retrieve res =
∑
𝑞∈Q D[𝑞]. In this

case, D is a database with 𝑁 elements of ℓ-bits each that is held

in clear by both the servers S1 and S2. The server S0 aids in the

computation performed by the servers S1 and S2. Furthermore,

we assume a one-time setup (cf. §B.1) among the servers and P𝑖
that establishes shared pseudorandom keys among them to facili-

tate non-interactive generation of random values and, thus, save

communication [9, 25, 101].

5.1 Overview of PIRsum protocol
At a high level, the idea is to use multiple instances of a standard

2-server PIR functionality [17, 32], denoted by F 2S
pir , and combine

the responses to get the sum of the desired blocks as the output.

D𝑚 = D +𝑚 denotes a modified version of the database D in which

every block is summed with an ℓ-bit mask𝑚, i.e., D𝑚 [𝑖] = D[𝑖] +𝑚
for 𝑖 ∈ [𝑁]. The protocol proceeds as follows:

– S1 and S2 non-interactively sample 𝜏 random mask values

{𝑚1, . . . ,𝑚𝜏 } such that

∑𝜏
𝑗=1𝑚 𝑗 = 0.

– S1, S2, and P𝑖 execute 𝜏 instances of F 2S
pir in parallel, with

servers using D𝑚 𝑗
as the database and P𝑖 using 𝑞 𝑗 as the query for

the 𝑗-th instance for 𝑗 ∈ [𝜏].
– Let res𝑗 denote the result obtained by P𝑖 from the 𝑗-th F 2S

pir
instance. P𝑖 locally computes

∑𝜏
𝑗=1 res𝑗 to obtain the desired result.

9

The details for instantiating F 2S
pir using the standard linear sum-

mation PIR approach [32] are provided in §C.1. The approach re-

quires P𝑖 to communicate 𝑁 · 𝜏 bits to the servers, which is further

reduced in RIPPLEPIR as shown in §5.2.

Security of PIRsum. While it is simple to show that the above solu-

tion is adequate for semi-honest participants, malicious participants

must be dealt with separately. A malicious participant, for example,

could use the same query, say 𝑞 𝑗 , in all 𝜏 instances and retrieve only

the block corresponding to 𝑞 𝑗 by dividing the result by 𝜏 . We use a

simple verification scheme over the F 2S
pir functionality to prevent

these manipulations. Its details are presented next.

For malicious participants, we want to ensure that P𝑖 used a

distinct vector
®b during the 𝜏 parallel instances. One naive approach

is to have S1 and S2 compute the bitwise-OR of all the 𝜏 bit vectors

®b1, . . . , ®b𝜏 , and then run a secure two-party computation protocol

to compare the number of ones in the resultant vector to 𝜏 . We use

the additional server S0 to further optimize this step. S1 and S2 send
randomly shuffled versions of their secret shared bit vectors to S0,
who reconstructs the shuffled vectors and perform the verification

locally. This approach leaks no information to S0 because it has
no information about the underlying database D. The verification
procedure is as follows:

– S1 and S2 non-interactively agree on a random permutation,

denoted by 𝜋 .

– S𝑢 sends 𝜋 ([®b 𝑗]𝑢) to S0 for 𝑗 ∈ [𝜏] and 𝑢 ∈ {1, 2}.
– S0 locally reconstructs 𝜋 (®b 𝑗) = 𝜋 ([®b 𝑗]1) ⊕ 𝜋 ([®b 𝑗]2), for 𝑗 ∈

[𝜏]. If all the 𝜏 bit vectors are correctly formed and distinct, it sends

Accept to S1 and S2. Else, it sends abort.

Note that the verification using P0 will incur a communication

of 2𝜏𝑁 bits among the servers. Furthermore, the above verification

method can be applied to any instantiation of F 2S
pir that generates a

boolean sharing of the query bit vector among the PIR servers and

computes the response as described above, e.g., the PIR schemes

of [16, 17, 32].

5.2 Reducing participant’s communication
PIRsum is realized in RIPPLEPIR using two different approaches,

each with its own set of trade-offs, with a goal of minimizing the

communication at the participant’s end. While the first approach,

denoted by PIRIsum, sacrifices computation for better communica-

tion, the second approach, denoted by PIRIIsum, reduces both the

computational and communication overhead of the participant in

PIRIsum with the help of additional server S0 ∈ C.

5.2.1 PIRIsum (Fig. 18 in §C.2.2). In this approach, we instanti-

ate F 2S
pir using PIR techniques based on Function Secret Sharing

(FSS) [16, 17, 36]. To retrieve the 𝑞-th block from the database, P𝑖
uses FSS on a Distributed Point Function (DPF) [54] that evaluates

to a 1 only when the input 𝑞 is 1 and to 0 otherwise. P𝑖 generates
two DPF keys 𝑘1 and 𝑘2 that satisfy the above constraint and sends

one key to each of the servers S1 and S2. The servers S1 and S2 can
then locally expand their key share to obtain their share for the

bit vector
®b and the rest of the procedure proceeds similarly to the

naive linear summation method discussed in §5.1 (more details on

Linear Summation PIR are given in §C.1). The key size for a database

of size 𝑁 records using the optimised DPF construction in [17] is

about 𝜆 log(𝑁 /𝜆), where 𝜆 = 128 for an AES-based implementation.

We provide more details about FSS-based PIR in §C.1.1.

Security. For semi-honest participants, the security of ourmethod

directly reduces to that of the 2-server PIR protocol in [17]. How-

ever, as mentioned in [17], a malicious participant could generate

incorrect DPF keys, putting the scheme’s security as well as the

correctness at risk. To prevent this type of misbehaviour, Boyle et

al. [17] present a form of DPF called “verifiable DPF”, which can as-

sure the correctness of the DPF keys created by P𝑖 at the cost of an
increased constant amount of communication between the servers.

While using verifiable DPFs in PIRIsum ensures that the 𝜏 bit

vectors generated by P𝑖 are valid, it does not ensure that the bit
vectors

®b1, . . . , ®b𝜏 correspond to 𝜏 distinct locations in the database

D. However, we leverage the correctness guarantee of verifiable
DPFs to reduce the communication cost for verification, as dis-

cussed in §5.1. In detail, all 𝜏 bit vectors
®b1, . . . , ®b𝜏 , i.e., the PIR

queries, that are available in a secret-shared form among S1 and
S2 are now guaranteed to have exactly one 1 in them, with the

remaining bit positions being 0. To ensure distinctness, S1 and S2
XORs all their respective 𝜏 shares locally to obtain the secret-share

of a single vector
®b𝑐 = ⊕𝜏

𝑘=1
®b𝑘 . The problem now boils down to

determining whether or not
®b𝑐 has exactly 𝜏 bit positions set to 1.

This can be accomplished by servers S1 and S2 agreeing on a ran-

dom permutation 𝜋 and reconstructing 𝜋 (®b𝑐) to S0 and allowing

S0 to perform the check, as in the naive approach (cf. §5.1).

Computation Complexity (#AES operations). In PIRIsum, the par-
ticipant P𝑖 must perform 4 · log(𝑁 /𝜆) AES operations as part of the
key generation algorithm for each of the 𝜏 instances of F 2S

pir over a

database of size 𝑁 , where 𝜆 = 128 for an AES-based implementa-

tion. Similarly, S1 and S2 must perform log(𝑁 /𝜆) AES operations
for each of the 𝑁 DPF evaluations. We refer to Table 1 in [17] for

more specifics.

5.2.2 PIRIIsum (Fig. 10). In this approach, we use the server S0 to
reduce the computation and communication of the participant P𝑖 in
PIRIsum. The idea is that S0 plays the role of P𝑖 for the PIR-protocol
in PIRIsum. However, P𝑖 cannot send its query, say 𝑞, to S0 in clear

because it would violate privacy. As a result, P𝑖 selects random
values 𝑞′, 𝜃𝑞 ∈ [𝑁] such that 𝑞 = 𝑞′ + 𝜃𝑞 . In this case, 𝑞′ is a shifted
version of the index 𝑞, and 𝜃 is a shift correction for 𝑞. P𝑖 sends 𝑞′
to S0 and 𝜃𝑞 to both S1 and S2. The remainder of the computation

until output retrieval will now take place solely among the servers.

The servers run a DPF instance [17] with S0 acting as the client

and input query 𝑞′. At the end of the computation, S1 and S2 obtain
the bit vector

®b𝑞′ , which corresponds to 𝑞′. However, as discussed
in PIRIsum, the servers require an XOR sharing corresponding to the

actual query 𝑞 in order to continue the computation. S1 and S2 do
this by using the shift correction value 𝜃𝑞 received from P𝑖 . Both
S1 and S2 will perform a right cyclic shift of their

®b𝑞′ shares by 𝜃𝑞
units. A negative value for 𝜃𝑞 indicates a cyclic shift to the left.

It is easy to see that the XOR shares obtained after the cyclic shift

correspond to the bit vector
®b𝑞 . To further optimise P𝑖 ’s commu-

nication, P𝑖 and servers S1, S2 non-interactively generate random

10

shift correction values 𝜃𝑞 first using the shared-key setup (cf. §B.1),

and only the corresponding 𝑞′ values are communicated to S0. The
rest of the protocol is similar to PIRIsum, and the formal protocol is

shown in Fig. 10. In terms of malicious participants, PIRIIsum has an

advantage over PIRIsum as there is no need to use a verifiable DPF

to protect against malicious P𝑖 , because the semi-honest server S0
generates the DPF key instead of P𝑖 .

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞]

Computation S1 and S2 sample 𝜏 randommask values {𝑚1, . . . ,𝑚𝜏 } ∈
Z𝜏
2
ℓ such that

∑𝜏
𝑗=1𝑚 𝑗 = 0. For each 𝑞 ∈ Q, execute the following:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 , i.e., D𝑚𝑞 [𝑗] = D[𝑗] +𝑚𝑞 ,

for 𝑗 ∈ [𝑁].
2. P𝑖 , S1, S2 sample random 𝜃𝑞 ∈ [𝑁].
3. P𝑖 computes and sends 𝑞′ = 𝑞 − 𝜃𝑞 to S0.

4. Servers execute DPF protocol [17] with S0 as client with input 𝑞′.

Server S𝑢 obtains [®b𝑞′]𝑢 with b𝑗
𝑞′ = 1 for 𝑗 = 𝑞′ and b𝑗

𝑞′ = 0 for 𝑗 ≠ 𝑞′,

for 𝑢 ∈ {1, 2}.
5. S𝑢 locally applies 𝜃𝑢 on [®b𝑞′]𝑢 to generate [®b𝑞]𝑢 , for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-

shares are generated during the preceding steps.

6. S𝑘 computes [®b𝑐]𝑘 = ⊕𝑞∈Q [®b𝑞]𝑘 , for 𝑢 ∈ {1, 2}
7. S1 and S2 non-interactively agree on random permutation 𝜋 .

8. S𝑢 sends 𝜋 ([®b𝑐]𝑢) to S0, for 𝑢 ∈ {1, 2}.
9. S0 locally reconstructs 𝜋 (®b𝑐) = 𝜋 ([®b𝑞]1) ⊕ 𝜋 ([®b𝑞]2) . It sends
Accept to S1 and S2, if 𝜋 (®b𝑐) has exactly 𝜏 ones. Else, it sends abort.

Output Transfer Send ⊥ to P𝑖 if S0 generated abort during verifica-

tion. Otherwise, proceed as follows:

10. S𝑢 sends [𝑦𝑞]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D𝑚𝑞 [𝑗] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

11. P𝑖 locally computes res =
∑
𝑞∈Q ([𝑦𝑞]1 ⊕ [𝑦𝑞]2) .

Protocol PIRIIsum

Figure 10: PIRIIsum Protocol.

5.2.3 Summary of communication costs. Tab. 2 summarises the

communication cost for our two PIRsum approaches for instan-

tiating Fpirsum over a database of size 𝑁 with 𝜏 PIR queries per

client. More concrete details along with the security guarantees are

provided in §C.

Stage PIRIsum PIRIIsum

P𝑖 to servers in C 2𝜏 (𝜆 + 2) log(𝑁 /𝜆) + 4𝜏𝜆 𝜏 log𝑁

Server to server 0 2𝜏 (𝜆 + 2) log(𝑁 /𝜆) + 4𝜏𝜆
Servers in C to P𝑖 𝜏 · 2ℓ 𝜏 · 2ℓ

+ Verification (mal.) 2𝑁 + 2 + 𝛿 2𝑁 + 2

Table 2: Summary of communication costs for PIRsum. Here, 𝜆
denotes the AES key size (𝜆 = 128 in [16]), ℓ denotes the block
size in bits (ℓ = 128 in this work) and 𝛿 denotes the constant
involved in the verifiable DPF approach [17] (cf. §C.1.1).

6 EVALUATION
In this section, we evaluate and compare the computation and com-

munication efficiency of our two RIPPLE protocols presented in §4.

A fully-fledged implementation, similar to existing contact tracing

apps, would necessitate collaboration with industry partners to

develop a real-world scalable system for national deployment. In-

stead, we carry out a proof-of-concept implementation and provide

micro benchmark results for all major building blocks.
8
We focus

on the simulation phase for benchmarking, which is separate from

the token generation phase. The simulations can ideally be done

overnight while mobile phones are charging and have access to a

high-bandwidth WiFi connection. According to studies [127, 129],

sleeping habits in various countries provide a time window of sev-

eral hours each night that can be used for this purpose.

Setup and Parameters. We run the benchmarks on the server-side

with three servers (two for FSS-PIR and one as helper server as

discussed in §5.2) with Intel Core i9-7960X CPUs@2.8 GHz and

128 GB RAM connected with 10 Gbit/s LAN and 0.1 s RTT. The

client is a Samsung Galaxy S10+ with an Exynos 9820@2.73 GHz

and 8GB RAM. As Android does not allow third-party developers

to implement applications for Android’s TEE Trusty [7], we use

hardware-backed crypto operations already implemented by An-

droid instead. We use the code of [70] to instantiate FSS-PIR. We

implement the AGCT in C++ and follow previous work on cuckoo

hashing [108] by using tabulation hashing for the hash functions.

We instantiate our protocols in RIPPLE with 𝜅 = 128 bit se-

curity. We use RSA-2048 as the encryption scheme in RIPPLETEE
since Android offers a hardware-backed implementation. We omit

the overhead of remote attestation for the sake of simplicity. For

RIPPLEPIR, we use the FSS-PIR scheme of [17, 70] as the base-

line and the addresses are hashed with SHA-256 and trimmed to

40−1+log
2
(p ·𝐸avg), where p represents the number of participants

and 𝐸avg represents the average number of encounters per partici-

pant per simulation step. We set 𝐸avg = 100 while benchmarking

based on numbers provided by research on epidemiological mod-

eling [40, 95]. To avoid cycles when inserting 𝑛 messages into the

AGCT (cf. §B.4), we set its size to 10𝑛. This can be further improved

as discussed in §B.4 [105, 107, 108]. A typical simulation step would

be one day such that 14 simulation steps can simulate two weeks.

6.1 Communication Costs
In this section, we look at the communication costs that our proto-

cols incur.We consider participant sizes, denoted by p, ranging from
thousand (1K) to twenty million (20M) to analyse the scalability of

our protocols. Tab. 3 summarises the communication costs incurred

by each participant as well as the communication servers (C) for
one simulation step in a specific simulation. It should be noted

that one simulation step includes all protocol steps, beginning with

participants locally computing their infection likelihood (𝛿) and

ending with them obtaining their cumulative infection likelihood

(Δ) for that step.

8
Note that we are not attempting to create the most efficient instantiation. More

optimizations will undoubtedly improve efficiency, and our protocols can be heavily

parallelized with a large number of servers. Instead, our goal here is to demonstrate

the viability of RIPPLE protocols for large-scale deployment.

11

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1) 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

RIPPLEPIR: PIRIsum (§5.2.1) 51.63 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

RIPPLEPIR: PIRIIsum (§5.2.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

RIPPLETEE (§4.1) 0.02 0.19 0.96 9.60 19.20 1.92 38.40 96.00 192.00 384.00

RIPPLEPIR (§5) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

Entities Protocol

Population (p)

Participants in P
(in KB)

Servers in C
(in GB)

Table 3: Communication costs per simulation step in our RIPPLE instantiations.

Participant Communication. A participant in RIPPLETEE requires

just 16KB of total communication every simulation step, as indi-

cated in Tab. 3, and is independent of the population on which the

simulation is done. This is because each participant will only send

and receive infection likelihood messages related to its encounters.

While the value in the table corresponds to an average of 100 en-

counters (𝐸avg = 100), we depict the participants’ communication

in Fig. 11 with varied 𝐸avg ranging from 10 to 500 for a popula-

tion of 10M. Note that a 2-week simulation with 𝐸avg = 500 can

be completed by a participant in RIPPLETEE with roughly 1MB of

communication.

5
0

1
0
0

2
5
0

5
0
0

100

200

300

400

500

𝐸avg

Comm. (in KB)
RIPPLETEE

PIRI
sum

PIRII
sum

Figure 11: Participant’s communication with varying 𝐸avg for a pop-
ulation of 10M.

Unlike RIPPLETEE, participant communication in both PIRIsum
and PIRIIsum increases for larger populations as the correspond-

ing database size increases. The communication, however, is only

sub-linear in the database size
9
. In particular, the participant’s com-

munication in PIRIsum ranges from 51.63KB to 98.06KB, with the

higher cost over RIPPLETEE attributed to the size of DPF keys used

in the underlying FSS-PIR scheme [17], as discussed in §5. The com-

munication in PIRIIsum, on the other hand, is in the range of 3.5KB

for all of the participants size under consideration. This reduced

communication is due to the optimization in PIRIIsum, which offloads

the DPF key generation task to the helper server S0 (cf. §5.2.2). A

9
The DB size and communication costs of RIPPLEPIR can be reduced by optimizing

the database size by extending the database by only 𝑑 + 𝜆 bins, where 𝑑 is the upper

bound of double collisions and 𝜆 is an error parameter, instead of 10𝑛 (cf. §B.4). [105]

participant in PIRIsum must communicate approximately 7MB of

data for a 2-week simulation for a 10M population with 𝐸avg = 500,

whereas it is only 0.25MB in the case of PIRIIsum.

10 50 100 250 500

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.2.1) 6.24 34.99 73.22 193.79 403.83

RIPPLEPIR: PIRIIsum (§5.2.2) 0.35 1.76 3.53 8.87 17.81

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.2.1) 7.32 40.38 84.02 220.78 457.81

RIPPLEPIR: PIRIIsum (§5.2.2) 0.35 1.78 3.57 8.98 18.01

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.2.1) 8.40 45.78 94.81 247.77 511.79

RIPPLEPIR: PIRIIsum (§5.2.2) 0.36 1.80 3.62 9.08 18.22

Population (p) Protocol

𝐸avg

100K

1M

10M

Table 4: Communication per participant (in KB) in a simula-
tion step over different 𝐸avg and population sizes.

Tab. 4 provides the communication cost for a participant for

multiple population sizes while varying the average number of

encounters (𝐸avg) per simulation step from 10 to 500. The commu-

nication cost in RIPPLETEE is independent of population size and

grows linearly in 𝐸avg. A similar trend can be seen in RIPPLEPIR
with the exception that the cost increases sub-linearly with popula-

tion size due to the use of FSS-based PIR scheme in RIPPLEPIR.

Server Communication. The servers’ communication is primarily

attributed to the anonymous communication channel that they

have established, which provides unlinkability and, thus, privacy to

the messages of the participants. As discussed in §B.3, in order to

communicate𝑀 messages through the channel, the servers must

communicate 2𝑀 messages in RIPPLETEE, and 3𝑀 messages in

RIPPLEPIR. When it comes to concrete values, however, the server

communication in RIPPLEPIR is half that of RIPPLETEE, as shown

in Tab. 3. This is due to the larger message size in RIPPLETEE as a

result of the use of public-key encryption.

For a population of 10M, the servers in RIPPLETEE must com-

municate 192GB of data among themselves, whereas RIPPLEPIR
requires 96GB. Setting the proper bit length for the address field in

the messages can further reduce communication. For example, a

population of 20M with 𝐸avg = 100 can be accommodated in a 70-

bit address field. Using this optimization will result in an additional

12

23 percent reduction in communication at the servers, as shown

in Tab. 7 (cf. §D). Fig. 12 captures these observations better, and

Tab. 7 and Tab. 4 in §D provide a detailed analysis of the concrete

communication costs.

2
M

5
M

1
0
M

2
0
M

100

200

300

Population (p)

Comm. (in GB)
RIPPLETEE
RIPPLEPIR

RIPPLEPIR
★

Figure 12: Communication costs for servers per simulation
step for varying population. ★ denotes the results for opti-
mized bit addresses in RIPPLEPIR (cf. Tab. 7).

6.2 Computation Costs and Runtime
This section focuses on the runtime, which includes time for com-

putation as well as communication between entities. Tab. 5 sum-

marizes the computation time with respect to a participant P𝑖 for
a two-week simulation over a half-million population. The longer

computation time in RIPPLETEE, as shown in Tab. 5, is due to the

public key encryption and decryption that occurs within the mobile

device’s TEE. This cost, however, is independent of population size

and scales linearly with the average number of encounters, denoted

by 𝐸avg. In particular, for a 14-days simulation with a population of

half million, P𝑖 in RIPPLETEE needs approximately 43.7 seconds of

computation time to perform the encryption and decryption tasks

and may require additional time for the remote attestation proce-

dure, which is not covered in our benchmarks. P𝑖 ’s computation

time in RIPPLEPIR, on the other hand, is significantly lower and

is at most 5 milliseconds for the case of PIRIIsum, while it increases
to around 165 milliseconds for the case of PIRIsum. The increased
computation time in PIRIsum is due to DPF key generation, which

scales sub-linearly with population size.

RIPPLETEE 80.00 - 3040.00 1.12 - 42.56

PIRIsum 0.30 11.73 4.8e-2 4.26e-3 0.16 6.72e-4

PIRIIsum 0.30 3.0e-3 4.8e-2 4.26e-3 4.2e-5 6.72e-4

Per Simulation Step Per Simulation (𝑁step = 14)

Message

Generation

(in ms)

PIR

Queries

(in ms)

Output

Computation

(in ms)

Message

Generation

(in sec)

PIR

Queries

(in sec)

Output

Computation

(in sec)

Table 5: Average participant computation times per simula-
tion step distributed across various tasks. Values are obtained
using a mobile for a population of 500K with 𝐸avg = 100.

Fig. 13 plots the overall runtime of the two instantiations in

RIPPLE over population ranging from 1K to 500K. Similarly, in

Fig. 14, we plot the overall runtime of our two instantiations in

RIPPLE for a full simulation of 2 weeks over various populations

ranging from 1K to 500K. After a population of 100K, the runtime

of RIPPLEPIR begins to exceed that of RIPPLETEE due to an increase

in database size, which results in longer data transfer times. More

details regarding computation time is presented in Tab. 6 in §D.

1
0
K

5
0
K

1
0
0
K

5
0
0
K

5

10

15

20

25

Population (p)

Time. (in sec)

RIPPLETEE
RIPPLEPIR

Figure 13: Runtime per simulation step in RIPPLE (1 day).

1
0
K

5
0
K

1
0
0
K

5
0
0
K

100

200

300

400

Population (p)

Time. (in sec)

RIPPLETEE
RIPPLEPIR

Figure 14: Runtime per simulation in RIPPLE (14 days).

Our benchmarking using the proof-of-concept implementation

demonstrated the RIPPLE framework’s viability for real-world adap-

tation. One of the key benefits of our approaches is that participants

have very little work to do. The system’s efficiency can be increased

with appropriate hardware and optimized implementations.

Code availability. Available at DOI: 10.5281/zenodo.6595449.

ACKNOWLEDGEMENTS
This project received funding from the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 850990 PSOTI). It was

co-funded by the Deutsche Forschungsgemeinschaft (DFG) within

SFB 1119 CROSSING/236615297 and GRK 2050 Privacy & Trust/

251805230, and by the German Federal Ministry of Education and

Research and the Hessen State Ministry for Higher Education, Re-

search and the Arts within ATHENE.

13

http://dx.doi.org/10.5281/zenodo.6595449

REFERENCES
[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder: MPC Based

Scalable and Robust Anonymous Committed Broadcast. In ACM CCS.
[2] David Adam. 2020. Special report: The simulations driving the world’s response

to COVID-19. Nature (2020).
[3] Nadeem Ahmed, Regio A Michelin, Wanli Xue, Sushmita Ruj, Robert Malaney,

Salil S Kanhere, Aruna Seneviratne, Wen Hu, Helge Janicke, and Sanjay K Jha.

2020. A Survey of COVID-19 Contact Tracing Apps. IEEE Access (2020).
[4] Fadi Al-Turjman and Bakkiam David Deebak. 2020. Privacy-Aware Energy-

Efficient Framework Using the Internet of Medical Things for COVID-19. IEEE
Internet Things Mag. 3, 3 (2020).

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.

2017. MCMix: Anonymous Messaging via Secure Multiparty Computation. In

USENIX Security.
[6] Yaniv Altshuler, Nadav Aharony, Micky Fire, Yuval Elovici, and Alex Pentland.

2012. Incremental Learning with Accuracy Prediction of Social and Individual

Properties from Mobile-Phone Data. In International Conference on Privacy,
Security, Risk and Trust and 2012 International Conference on Social Computing.

[7] Android. unk. Third-party Trusty applications. https://source.android.com/

security/trusty.

[8] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. In S&P.
[9] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rose-

marin, and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In ACM
CCS.

[10] ARM. 2009. ARM security technology building a secure system using TrustZone

technology. https://developer.arm.com/documentation/genc009492/c.

[11] Yonatan Aumann and Yehuda Lindell. 2010. Security Against Covert Adversaries:

Efficient Protocols for Realistic Adversaries. Journal of Cryptology (2010).

[12] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales,

Christian Rechberger, and Roman Walch. 2020. Privately Connecting Mobility

to Infectious Diseases via Applied Cryptography. https://ia.cr/2020/522.

[13] Paolo Barsocchi, Antonello Calabrò, Antonino Crivello, Said Daoudagh,

Francesco Furfari, Michele Girolami, and Eda Marchetti. 2021. COVID-19 &

privacy: Enhancing of indoor localization architectures towards effective social

distancing. Array 9 (2021).

[14] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-

mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian

Weinert. 2020. Offline Model Guard: Secure and Private ML on Mobile Devices.

Design, Automation & Test in Europe Conference & Exhibition (2020).

[15] Joshua Blumenstock, Gabriel Cadamuro, and Robert On. 2015. Predicting poverty

and wealth from mobile phone metadata. Science (2015).
[16] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2021. Lightweight Techniques for Private Heavy Hitters. In S&P.
[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Im-

provements and Extensions. In CCS.
[18] Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Möllering, Melek Önen,

and Thomas Schneider. 2021. Privacy-preserving Density-based Clustering. In

ASIACCS.
[19] Fred Brauer. 2008. Compartmental models in epidemiology. In Mathematical

Epidemiology.
[20] Fred Brauer, Carlos Castillo-Chavez, and Zhilan Feng. 2019. Simple Compartmen-

tal Models for Disease Transmission. In Mathematical Models in Epidemiology.
[21] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:

Fast and Robust Framework for Privacy-preserving Machine Learning. PETS
(2020).

[22] Clea Caulcutt. 2022. Belgium introduces quarantine for monkeypox cases.

Politico (2022). https://www.politico.eu/article/belgium-introduce-quarantine-

monkeypox-case/.

[23] Justin Chan, Dean Foster, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham

Kakade, Tadayoshi Kohno, John Langford, Jonathan Larson, Puneet Sharma,

Sudheesh Singanamalla, Jacob Sunshine, and Stefano Tessaro. 2020. PACT:

Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing. https:

//arxiv.org/pdf/2004.03544.pdf.

[24] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash

Shah. 2022. SIMC: ML Inference Secure Against Malicious Clients at Semi-

Honest Cost. In USENIX Security.
[25] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019.

ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM CCSW@CCS.
[26] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC

Framework for Privacy Preserving Machine Learning. In NDSS.
[27] David Chaum. 1985. Security without Identification: Transaction Systems to

Make Big Brother Obsolete. In Communications of the ACM.

[28] David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender

and Recipient Untraceability. Journal of Cryptology (1988).

[29] David L Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and

Digital Pseudonyms. Commun. ACM (1981).

[30] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. 2019. OPERA: Open Remote

Attestation for Intel’s Secure Enclaves. In CCS.
[31] Yi-Cheng Chen, Ping-En Lu, Cheng-Shang Chang, and Tzu-Hsuan Liu. 2020. A

Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons.

Transactions on Network Science and Engineering (2020).

[32] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

Information Retrieval. In FOCS.
[33] Adam Durbin Christy Cooney. 2022. High-risk monkeypox contacts advised to

isolate. BBC (2022). https://www.bbc.com/news/uk-61546480.

[34] Matteo Ciucci and Frédéric Gouardères. 2020. National COVID-19 contact

tracing apps. EPRS: European Parliamentary Research Service (2020).
[35] Ian Cooper, Argha Mondal, and Chris G Antonopoulos. 2020. A SIR model

assumption for the spread of COVID-19 in different communities. Chaos, Solitons
& Fractals (2020).

[36] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An

Anonymous Messaging System Handling Millions of Users. In S&P.
[37] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In EUROCRYPT.
[38] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority –

Or: Breaking the SPDZ Limits. In ESORICS.
[39] Nicholas G Davies, Adam J Kucharski, Rosalind M Eggo, Amy Gimma, W John

Edmunds, Thibaut Jombart, Kathleen O’Reilly, Akira Endo, Joel Hellewell,

Emily S Nightingale, et al. 2020. Effects of non-pharmaceutical interventions

on COVID-19 cases, deaths, and demand for hospital services in the UK: a

modelling study. The Lancet Public Health (2020).

[40] Sara Y Del Valle, James M Hyman, Herbert W Hethcote, and Stephen G Eubank.

2007. Mixing patterns between age groups in social networks. Social Networks
(2007).

[41] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
[42] Odo Diekmann, Hans Heesterbeek, and Tom Britton. 2012. Mathematical Tools

for Understanding Infectious Disease Dynamics. Princeton University Press.

[43] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In CCS.
[44] Wenliang Du. 2001. A study of several specific secure two party computation

problems. USA: Purdue University (2001).

[45] W John Edmunds, CJ O’callaghan, and DJ Nokes. 1997. Who mixes with whom?

A method to determine the contact patterns of adults that may lead to the

spread of airborne infections. Proceedings of the Royal Society of London. Series
B: Biological Sciences (1997).

[46] J. Ekberg, K. Kostiainen, and N. Asokan. 2014. The Untapped Potential of Trusted

Execution Environments on Mobile Devices. In S&P.
[47] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and F. Perez-Gonzalez. 2013.

Privacy-Preserving Data Aggregation in Smart Metering Systems: An Overview.

In Signal Processing Magazine.
[48] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication

from Multiparty Shuffling Protocols. In NDSS.
[49] Neil Ferguson. 2005. What would happen if a flu pandemic arose in Asia? Nature

(2005).

[50] Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka,

Philip C Cooley, and Donald S Burke. 2006. Strategies for mitigating an influenza

pandemic. Nature (2006).
[51] Jesús Fernández-Villaverde and Charles I Jones. 2022. Estimating and Simulating

a SIRD Model of COVID-19 for Many Countries, States, and Citie. Journal of
Economic Dynamics and Control (2022).

[52] European Centre for Disease Prevention and Control. 2022. Epidemiological

update: Monkeypox outbreak. (2022). https://www.ecdc.europa.eu/en/news-

events/epidemiological-update-monkeypox-outbreak.

[53] Craig Gentry and Shai Halevi. 2019. Compressible FHE with Applications to

PIR. In TCC.
[54] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Appli-

cations. In EUROCRYPT.
[55] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro

Di Filippo, Angela DiMatteo, andMarta Colaneri. 2020. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy. Nature
Medicine (2020).

[56] Oded Goldreich. 2009. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press.

[57] Alison Gray, David Greenhalgh, Liangjian Hu, Xuerong Mao, and Jiafeng Pan.

2011. A Stochastic Differential Equation SIS Epidemic Model. SIAM J. Appl.
Math. (2011).

[58] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. 2022.

GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale

Applications. In USENIX Security.

14

https://source.android.com/security/trusty
https://source.android.com/security/trusty
https://developer.arm.com/documentation/genc009492/c
https://ia.cr/2020/522
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://arxiv.org/pdf/2004.03544.pdf
https://arxiv.org/pdf/2004.03544.pdf
https://www.bbc.com/news/uk-61546480
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak

[59] Thomas Haines and Johannes Müller. 2020. SoK: Techniques for Verifiable Mix

Nets. In CSF.
[60] Tiberiu Harko, Francisco SN Lobo, and MK3197716 Mak. 2014. Exact analytical

solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of

the SIR model with equal death and birth rates. Appl. Math. Comput. (2014).
[61] Gary F Hatke, Monica Montanari, Swaroop Appadwedula, Michael Wentz, John

Meklenburg, Louise Ivers, JenniferWatson, and Paul Fiore. 2020. Using Bluetooth

Low Energy (BLE) Signal Strength Estimation to Facilitate Contact Tracing for

COVID-19. https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf.

[62] Shaobo He, Yuexi Peng, and Kehui Sun. 2020. SEIR modeling of the COVID-19

and its dynamics. Nonlinear Dynamics (2020).
[63] Katie Hogan, Briana Macedo, Venkata Macha, Arko Barman, Xiaoqian Jiang,

et al. 2021. Contact Tracing Apps: Lessons Learned on Privacy, Autonomy, and

the Need for Detailed and Thoughtful Implementation. JMIR Medical Informatics
(2021).

[64] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are

Garbled Circuits Better than Custom Protocols?. In NDSS.
[65] Inria and Fraunhofer AISEC. 2020. ROBust and privacy-presERving proximity

Tracing protocol. https://github.com/ROBERT-proximity-tracing/documents.

[66] Intel. 2014. Intel® Software Guard Extensions Programming Reference. https:

//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.

[67] Intel. unk. Attestation Service for Intel Software Guard Extensions. https:

//api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf.

[68] Kimmo Järvinen, Helena Leppäkoski, Elena-Simona Lohan, Philipp Richter,

Thomas Schneider, Oleksandr Tkachenko, and Zheng Yang. 2019. PILOT: Prac-

tical Privacy-Preserving Indoor Localization Using OuTsourcing. In EUROS&P.
[69] P. Jauernig, A. Sadeghi, and E. Stapf. 2020. Trusted Execution Environments:

Properties, Applications, and Challenges. In S&P.
[70] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. 2019. Revisiting User

Privacy for Certificate Transparency. In EuroS&P. Code: https://github.com/

dkales/dpf-cpp.

[71] W. O. Kermack and A. G. McKendrick. 1991. Contributions to the mathematical

theory of epidemics—I. In Bulletin of Mathematical Biology.
[72] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2010. More Robust

Hashing: Cuckoo Hashing with a Stash. Journal on Computing (2010).

[73] Petra Klepac, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria L

Tang, Hannah Fry, and Julia R Gog. 2020. Contacts in context: large-scale setting-

specific social mixing matrices from the BBC Pandemic project. MedRxiv (2020).
[74] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.
[75] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively

Secure 4PC for Secure Training and Inference. In NDSS.
[76] Adam J Kucharski, Petra Klepac, Andrew JK Conlan, Stephen M Kissler, Maria L

Tang, Hannah Fry, Julia R Gog, W John Edmunds, Jon C Emery, Graham Medley,

et al. 2020. Effectiveness of isolation, testing, contact tracing, and physical

distancing on reducing transmission of SARS-CoV-2 in different settings: a

mathematical modelling study. The Lancet Infectious Diseases (2020).
[77] Kai Kupferschmidt. 2020. Case clustering emerges as key pandemic puzzle.

https://www.science.org/doi/full/10.1126/science.368.6493.808.

[78] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-friendly

aggregation for the smart-grid. In PETS.
[79] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOTNeeded: SINGLE

Database, Computationally-Private Information Retrieval. In FOCS.
[80] Sven Laur, Jan Willemson, and Bingsheng Zhang. 2011. Round-Efficient Oblivi-

ous Database Manipulation. In International Conference on Information Security.
[81] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada

Popa. 2021. MUSE: Secure Inference Resilient to Malicious Clients. In USENIX
Security.

[82] Dyani Lewis. 2020. Where Covid contract-tracing went wrong. Nature (2020).
[83] F. Li, B. Luo, and P. Liu. 2010. Secure Information Aggregation for Smart Grids

Using Homomorphic Encryption. In International Conference on Smart Grid
Communications.

[84] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-

Party Computation in the Presence of Malicious Adversaries. In EUROCRYPT.
[85] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. 2015. Effi-

cient Constant Round Multi-Party Computation Combining BMR and SPDZ. In

CRYPTO.
[86] Wouter Lueks, Seda F. Gürses, Michael Veale, Edouard Bugnion, Marcel Salathé,

Kenneth G. Paterson, and Carmela Troncoso. 2021. CrowdNotifier: Decentralized

Privacy-Preserving Presence Tracing. PoPETs. (2021).
[87] Shaojun Luo, FlavianoMorone, Carlos Sarraute, Matías Travizano, and Hernán A

Makse. 2017. Inferring personal economic status from social network location.

Nature Communications (2017).
[88] Dominika Maison, Diana Jaworska, Dominika Adamczyk, and Daria Affeltowicz.

2021. The challenges arising from the COVID-19 pandemic and the way people

deal with them. A qualitative longitudinal study. PloS One (2021).
[89] Robert M. May and Alun L. Lloyd. 2001. Infection dynamics on scale-free

networks. Phys. Rev. E (2001).

[90] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In International Conference on Artificial Intelli-
gence and Statistics.

[91] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng,

and Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for

Neural Networks. In USENIX Security.
[92] Payman Mohassel and Saeed Sadeghian. 2013. How to Hide Circuits in MPC an

Efficient Framework for Private Function Evaluation. In EUROCRYPT.
[93] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In S&P.
[94] Yves-Alexandre de Montjoye, Jordi Quoidbach, Florent Robic, and Alex Sandy

Pentland. 2013. Predicting Personality Using Novel Mobile Phone-Based Metrics.

In International conference on social computing, behavioral-cultural modeling,
and prediction.

[95] Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikola-

jczyk, MarcoMassari, Stefania Salmaso, Gianpaolo Scalia Tomba, JaccoWallinga,

et al. 2008. Social Contacts and Mixing Patterns Relevant to the Spread of Infec-

tious Diseases. PLoS Medicine (2008).
[96] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. 2016. TrustZone

Explained: Architectural Features and Use Cases. In International Conference on
Collaboration and Internet Computing.

[97] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Kapil Vaswani,

and Manuel Costa. 2016. Oblivious Multi-Party Machine Learning on Trusted

Processors. In USENIX Security.
[98] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. Journal of

Algorithms (2004).
[99] Christian Paquin and Greg Zaveruch. 2013. U-Prove Cryptographic Specification

V1.1 (Revision 3). http://www.microsoft.com/uprove.

[100] Romualdo Pastor-Satorras and Alessandro Vespignani. 2002. Immunization of

complex networks. Phys. Rev. E (2002).

[101] Arpita Patra, Thomas Schneider, Ajith Suresh, andHossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.
[102] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. In NDSS.
[103] Matthias Pezzutto, Nicolás Bono Rosselló, Luca Schenato, and Emanuele Garone.

2021. Smart Testing and Selective Quarantine for the Control of Epidemics.

Annu. Rev. Control. 51 (2021), 540–550.
[104] Benny Pinkas and Eyal Ronen. 2021. Hashomer–Privacy-Preserving Bluetooth

Based Contact Tracing Scheme for Hamagen. Real World Crypto and NDSS
Corona-Def Workshop (2021).

[105] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS

Fast, Malicious Private Set Intersection. In EUROCRYPT.
[106] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private Set Intersection Using Permutation-based Hashing. In USENIX Security.
[107] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.

Efficient Circuit-Based PSI via Cuckoo Hashing. In EUROCRYPT.
[108] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private

Set Intersection based on OT Extension. TOPS (2018).
[109] Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2021. Poster: Privacy-

Preserving Contact Tracing of COVID-19 Patients. S&P (2021).

[110] Reinhard Schlickeiser and Martin Kröger. 2021. Analytical Modeling of the Tem-

poral Evolution of Epidemics Outbreaks Accounting for Vaccinations. (2021).

[111] Thomas Schneider and Oleksandr Tkachenko. 2019. EPISODE: Efficient Privacy-

PreservIng Similar Sequence Queries on Outsourced Genomic DatabasEs. In

ASIACCS.
[112] Gitanjali R Shinde, Asmita B Kalamkar, Parikshit N Mahalle, Nilanjan Dey,

Jyotismita Chaki, and Aboul Ella Hassanien. 2020. Forecasting Models for

Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Computer
Science (2020).

[113] Petrônio CL Silva, Paulo VC Batista, Hélder S Lima, Marcos A Alves, Frederico G

Guimarães, and Rodrigo CP Silva. 2020. COVID-ABS: An agent-based model of

COVID-19 epidemic to simulate health and economic effects of social distancing

interventions. Chaos, Solitons & Fractals (2020).
[114] Vivek K Singh, Laura Freeman, Bruno Lepri, and Alex Sandy Pentland. 2013.

Predicting Spending Behavior Using Socio-mobile Features. In International
Conference on Social Computing.

[115] Michael Small and Chi K Tse. 2005. Small World and Scale free Model of

Transmission of SARS. In International Journal of Bifurcation and Chaos.
[116] Hallam Stevens and Monamie Bhadra Haines. 2020. TraceTogether: Pandemic

Response, Democracy, and Technology. https://www.tracetogether.gov.sg.

[117] Amanda Taub. 2020. A New Covid-19 Crisis: Domestic Abuse Rises Worldwide.

The New York Times (2020).
[118] Robin N. Thompson. 2020. Epidemiological models are important tools for

guiding COVID-19 interventions. BMC Medicine 18, 1 (2020), 152.
[119] Oleksandr Tkachenko, ChristianWeinert, Thomas Schneider, and KayHamacher.

2018. Large-Scale Privacy-Preserving Statistical Computations for Distributed

Genome-Wide Association Studies. In ASIACCS.

15

https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf
https://github.com/ROBERT-proximity-tracing/documents
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://github.com/dkales/dpf-cpp
https://github.com/dkales/dpf-cpp
https://www.science.org/doi/full/10.1126/science.368.6493.808
http://www.microsoft.com/uprove
https://www.tracetogether.gov.sg

[120] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.

Epione: Lightweight Contact Tracing with Strong Privacy. arXiv preprint

arXiv:2004.13293. https://arxiv.org/abs/2004.13293.

[121] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé, James R.

Larus, Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele Antonioli,

Ludovic Barman, Sylvain Chatel, Kenneth G. Paterson, Srdjan Capkun, David A.

Basin, Jan Beutel, Dennis Jackson, Marc Roeschlin, Patrick Leu, Bart Preneel,

Nigel P. Smart, Aysajan Abidin, Seda Gurses, Michael Veale, Cas Cremers,

Michael Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro Cattuto, Alain Barrat,

Dario Fiore, Manuel Barbosa, Rui Oliveira, and José Pereira. 2020. Decentralized

Privacy-Preserving Proximity Tracing. IEEE Data Eng. Bull. (2020).
[122] Paul Tupper, Sarah P. Otto, and Caroline Colijn. 2021. Fundamental Limitations

of Contact Tracing for COVID-19. FACETS (2021).
[123] Christopher van der Beets, Raine Nieminen, and Thomas Schneider. 2022.

FAPRIL: Towards Faster Privacy-Preserving Fingerprint-Based Localization.

In SECRYPT.
[124] Serge Vaudenay. 2020. Centralized or Decentralized? The Contact Tracing

Dilemma. Cryptology ePrint Archive, Report 2020/531. https://ia.cr/2020/531.

[125] Meilof Veeningen, Supriyo Chatterjea, Anna Zsófia Horváth, Gerald Spindler,

Eric Boersma, Peter van der SPEK, Onno Van Der Galiën, Job Gutteling, Wessel

Kraaij, and Thijs Veugen. 2018. Enabling Analytics on Sensitive Medical Data

with Secure Multi-Party Computation. In Medical Informatics Europe.
[126] Nina Vindegaard and Michael Eriksen Benros. 2020. COVID-19 pandemic and

mental health consequences: Systematic review of the current evidence. Brain,
Behavior, and Immunity (2020).

[127] Olivia J Walch, Amy Cochran, and Daniel B Forger. 2016. A global quantification

of “normal” sleep schedules using smartphone data. Science advances (2016).
[128] Guan Wang, Tongbo Luo, Michael T Goodrich, Wenliang Du, and Zutao Zhu.

2010. Bureaucratic protocols for secure two-party sorting, selection, and per-

muting. In ASIACCS.
[129] Victoria Woollaston. 2015. Sleeping habits of the world revealed: The US wakes

up grumpy, China has the best quality shut-eye and South Africa gets up the
earliest. https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-

habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-

Africa-wakes-earliest.html.

[130] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In FOCS.
[131] Tijana Šušteršič, Andjela Blagojević, Danijela Cvetković, Aleksandar Cvetković,

Ivan Lorencin, Sandi Baressi Šegota, Dragan Milovanović, Dejan Baskić, Zlatan

Car, and Nenad Filipović. 2021. Epidemiological Predictive Modeling of COVID-

19 Infection: Development, Testing, and Implementation on the Population of

the Benelux Union. Frontiers in Public Health 9 (2021).

A RELATED PRIMITIVES
In the following, we provide an overview about the (cryptographic)

primitives and other techniques used in this work.

Anonymous Communication: To simulate the transmission of the

modelled disease, RIPPLE requires anonymous messaging between

participants. Mix-nets [29] and protocols based on the dining cryp-

tographer (DC) problem [28] were the first approaches to anony-

mous messaging. A fundamental technique underlying mix-nets

is the execution of an oblivious shuffling algorithm that provides

unlinkability between the messages before and after the shuffle.

In a mix-net, so-called mix servers jointly perform the oblivious

shuffling so that no single mix server is able to reconstruct the

permutation performed on the input data. Past research established

a wide variety of oblivious shuffle protocols based on garbled cir-

cuits [44, 64, 128], homomorphic encryption [64], distributed point

functions [1], switching networks [92], permutation matrices [80,

§4.1], sorting algorithms [80, §4.2], and re-sharing [80, §4.3+4.4].

Recently, the works of [9] and [48] proposed efficient oblivious

shuffling schemes using a small number of mix net servers.

Trusted Execution Environment (TEE): RIPPLETEE (§4.1) assumes

the availability of TEEs on the mobile devices of participants. TEEs

are hardware-assisted environments providing secure storage and

execution for sensitive data and applications isolated from the nor-

mal execution environment. Data stored in a TEE is secure even

if the operating system is compromised, i.e., it offers confidential-

ity, integrity, and access control [46, 69]. Widely adopted TEEs

are Intel SGX [66] and ARM TrustZone [10] (often used on mo-

bile platforms [96]). Using TEEs for private computation has been

extensively investigated, e.g., [14, 97]. A process called remote at-

testation allows external parties to verify that its private data sent

via a secure channel is received and processed inside the TEE using

the intended code [30, 67].

Private Information Retrieval (PIR): The first computational single-

server PIR (cPIR) scheme was introduced by Kushilevitz and Ostro-

vsky [79]. Recent cPIR schemes [8, 53] use homomorphic encryption

(HE). However, single-server PIR suffers from significant compu-

tation overhead since compute intensive HE operations have to

be computed on each of the database block for each PIR request.

In contrast, multi-server PIR relies on a non-collusion assumption

between multiple PIR servers and uses only XOR operations [16,

17, 32, 36, 37] making it significantly more efficient than cPIR.

Cuckoo Hashing: In RIPPLEPIR (§4.2), messages of participants

have to be stored in a database𝐷 . To do so, a hash function𝐻 can be

used to map an element 𝑥 into bins of the database: 𝐷 [𝐻 (𝑥)] = 𝑥 .

However, as we show in §4.2, RIPPLEPIR requires that at most

one element is stored in every database location which renders

simple hashing impracticable [106]. Cuckoo hashing uses ℎ hash

functions𝐻1, . . . , 𝐻ℎ to map elements into bins. It ensures that each

bin contains exactly one element. If a collision occurs, i.e., if a new

element is to be added into an already occupied bin, the old element

is removed to make space for the new one. The evicted element,

then, is placed into a new bin using another of the ℎ hash functions.

If the insertion fails for a certain amount of trials, an element is

inserted into a special bin called stash which is the only one that is

allowed to hold more than one element. Pinkas et al. [106] show

that for ℎ = 2 and 𝑛 = 2
20

elements inserted to 2.4𝑛 bins, a stash

size of 3 is sufficient to have a negligible error probability.

Garbled Cuckoo Table (GCT): As RIPPLEPIR uses key-value pairs

for the insertion into the database, a combination of garbled Bloom

filters [43] with cuckoo hashing [72, 98], called Garbled Cuckoo

Table [105], is needed. Instead of storing 𝑥 in one bin as in an

ordinary cuckoo table, in a GCT ℎ XOR shares of 𝑥 are stored at

the ℎ locations determined by inputting 𝑘 into all ℎ hash functions.

E.g., with ℎ = 2, if one of these two locations is already in use, the

XOR share for the other (free) location is set to be the XOR of 𝑥

and the data stored in the used location. In §B.4, we introduce a

variant of GCT called arithmethic garbled cuckoo table (AGCT) that
uses arithmetic sharing over the ring Z

2
ℓ instead of XOR sharing.

For a database with 2.4𝑛 entries where 𝑛 is the number of elements

inserted, Pinkas et al. [105] show that the number of cycles is

maximally log𝑛 with high probability.

Secure Multi-Party Computation (MPC): MPC [130] allows a set

of mutually distrusting parties to jointly compute an arbitrary func-

tion on their private inputs without leaking anything but the out-

put. In the last years, MPC techniques for various security mod-

els have been introduced, extensively studied, and improved, e.g.,

in [38, 41, 85]. These advancements significantly enhance the effi-

ciency of MPC making it more and more practical for real-world

applications. Due to the practical efficiency it can provide, various

works [9, 21, 26, 74, 75, 102] have recently concentrated on MPC

for a small number of parties, especially in the three and four party

16

https://arxiv.org/abs/2004.13293
https://ia.cr/2020/531
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html

honest majority setting tolerating one corruption. In RIPPLE, we

employ MPC techniques across three servers to enable an anony-

mous communication channel (cf. §B.3) and to develop efficient

PIRsum (cf. §5) protocols.

Anonymous Credentials: To protect against sybil attacks (cf. §3.2),
i.e., to hinder an adversary from creating multiple identities that can

collect encounter information to detect correlations among uncon-

scious encounters, we suggest to use anonymous credentials such

that only registered participants can join RIPPLE. In this manner,

the registration process can, for example, be linked to a passport.

Such a registration system increases the cost to create (fake) identi-

ties. Chaum [27] introduced anonymous credentials where a client

holds the credentials of several unlinkable pseudonyms. The client

can then prove that it possesses the credentials of pseudonyms with-

out the service provider being able to link different pseudonyms

to the same identity. Additionally, anonymous credentials allow

to certify specific properties like the age. Several instantiations

for anonymous credentials have been proposed, e.g., Microsoft

U-Prove [99].

B BUILDING BLOCKS IN RIPPLE
This section contains details about the building blocks used in the

RIPPLE framework, such as shared-key setup, anonymous commu-

nication channels, AGCT tables and Distributed Point Functions.

B.1 Shared-Key Setup
Let 𝐹 : {0, 1}𝜅 × {0, 1}𝜅 → 𝑋 be a secure pseudo-random function

(PRF), with co-domain 𝑋 being Z
2
ℓ and C′ = C ∪ {P𝑖 } for a partic-

ipant P𝑖 ∈ P. The following PRF keys are established among the

parties in C′ in RIPPLE:

– 𝑘𝑖 𝑗 among every 𝑃𝑖 , 𝑃 𝑗 ∈ C′ and 𝑖 ≠ 𝑗 .

– 𝑘𝑖 𝑗𝑘 among every 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ∈ C′ and 𝑖 ≠ 𝑗 ≠ 𝑘 .

– 𝑘C′ among all the parties in C′.
To sample a random value 𝑟𝑖 𝑗 ∈ Z2ℓ non-interactively, each of 𝑃𝑖
and 𝑃 𝑗 can invoke 𝐹𝑘𝑖 𝑗 (𝑖𝑑𝑖 𝑗). In this case, 𝑖𝑑𝑖 𝑗 is a counter that 𝑃𝑖 and
𝑃 𝑗 maintain and update after each PRF invocation. The appropriate

sampling keys are implied by the context and are, thus, omitted.

B.2 Collision Resistant Hash Function
A family of hash functions {H : K × L → Y} is said to be collision
resistant if, for all probabilistic polynomial-time adversaries A,

given the description of H𝑘 , where 𝑘 ∈𝑅 K , there exists a negligible

function 𝑛𝑒𝑔𝑙 () such that Pr[(𝑥, 𝑥 ′) ← A(𝑘) : (𝑥 ≠ 𝑥 ′) ∧H𝑘 (𝑥) =
H𝑘 (𝑥 ′)] = 𝑛𝑒𝑔𝑙 (𝜅), where 𝑥, 𝑥 ′ ∈𝑅 {0, 1}𝑚 and𝑚 = poly(𝜅).

B.3 Anonymous Communication Channel
This section describes how to instantiate the Fanon functionality

used by RIPPLE for anonymous communication, as discussed in

§4. We start with the protocol for the case of RIPPLEPIR and then

show how to optimize it for the use in the RIPPLETEE protocol.

Recall from §4.2 that in RIPPLEPIR, participants in P upload a set

of messages from which a database D must be constructed at the

end by S1 and S2. The anonymous communication is required to

ensure that neither S1 nor S2 can link the source of the message

even after receiving all messages in clear, which may not be in the

same order. To tackle this problem, we use an approach based on

oblivious shuffling inspired by [9, 48], which is formalised next.

Problem Statement. Consider the vector ®𝑚 = {𝑚1, . . . ,𝑚𝜏 } of
𝜏 messages with 𝑚 𝑗 ∈ Z2ℓ for 𝑗 ∈ [𝜏]. We want servers S1 and

S2 to obtain 𝜋 (®𝑚), where 𝜋 () denotes a random permutation that

neither S1 nor S2 knows. Furthermore, an attacker with access to

a portion of the network and, hence, the ability to monitor net-

work data should not be able to gain any information about the

permutation 𝜋 ().
In RIPPLEPIR, the vector ®𝑚 corresponds to the infection likeli-

hood messages of the form (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗) that each participant P𝑖 ∈ P
conveys over the network (cf. §4.2). W.l.o.g., we let P𝑖 have the

complete ®𝑚 with them. The protocol makes use of the third server

S0 in our setting and proceeds as follows:

1. P𝑖 generates an additive sharing of ®𝑚 among S0 and S1:

a) P𝑖 , S0 sample random
®⟨𝑚⟩1 ∈ Z𝜏

2
ℓ .

b) P𝑖 computes and sends
®⟨𝑚⟩2 = ®𝑚 − ®⟨𝑚⟩1 to S1.

2. S0 and S1 agree on a random permutation 𝜋01 and locally apply

𝜋01 to their shares. Let 𝜋01 (®𝑚) = 𝜋01 (®⟨𝑚⟩1) + 𝜋01 (®⟨𝑚⟩2).
3. S0, S1 perform a re-sharing of 𝜋01 (®𝑚), denoted by ®𝑚01, by jointly

sampling a random ®𝑟01 ∈ Z𝜏
2
ℓ and setting

®⟨𝑚01⟩1 = 𝜋01 (®⟨𝑚⟩1) + ®𝑟01
and

®⟨𝑚01⟩2 = 𝜋01 (®⟨𝑚⟩2) − ®𝑟01.
4. S1 sends ®⟨𝑚01⟩2 to S2. Now, (®⟨𝑚01⟩1, ®⟨𝑚01⟩2) forms an additive

sharing of ®𝑚01 among S0 and S2.

5. S0 and S2 agree on a random permutation 𝜋02 and apply 𝜋02 to

their shares. Let 𝜋02 (®𝑚01) = 𝜋02 (®⟨𝑚01⟩1) + 𝜋02 (®⟨𝑚01⟩2).
6. S0 sends 𝜋02 (®⟨𝑚01⟩1) to S2, who reconstructs 𝜋02 (®𝑚01).
7. S2 generates an additive-sharing of 𝜋02 (®𝑚01), denoted by ®𝑚02,

among S1 and S2, by jointly sampling
®⟨𝑚02⟩1 ∈ Z𝜏

2
ℓ with S1 and

locally setting
®⟨𝑚02⟩2 = 𝜋02 (®𝑚01) − ®⟨𝑚02⟩1.

8. S2 sends ®⟨𝑚02⟩2 to S1, who locally compute the output as ®𝑚02 =

®⟨𝑚02⟩1 + ®⟨𝑚02⟩2.

We claim that the protocol described above will produce a ran-

dom permutation of the vector ®𝑚 that neither S1 nor S2 is aware of.
To see this, note that

®𝑚02 = 𝜋02 (®𝑚01) = 𝜋02 (𝜋01 (®𝑚))

and both S1 and S2 know only one of the two permutations 𝜋01 and

𝜋02, but not both. Furthermore, the re-sharing performed in step 3

and the generation of additive-shares in step 6 above ensures that

an attacker observing the traffic cannot relate between messages

sent and received.

Anonymous Communication in RIPPLETEE. As discussed in §4.1,

the server S2 is only required to have the complete set of messages

in clear, but in an unknown random order. As a result, in the case

of RIPPLETEE, only the first permutation (𝜋01 in Step 2) is sufficient

and steps 5-8 are no longer required. Furthermore, in addition to

the communication by S1 in step 4, S0 sends its share of ®𝑚01 to S2,
who can then reconstruct ®𝑚01 = 𝜋01 (®𝑚).

17

B.4 Arithmetic Garbled Cuckoo Table (AGCT)
We design a variant of garbled cuckoo tables ([105], cf. §A) that

we term arithmetic garbled cuckoo table (AGCT) to reduce the

required size of a PIR database while ensuring a negligible collision

likelihood. It uses arithmetic sharing instead of XOR-sharing to

share database entries and the details are presented next.

0 1 N-1

...
2

0 1 N-1

...
2

0 1 N-1

...
2

Figure 15: Insertion into the Arithmetic Garbled Cuckoo
Table (AGCT). H1 and H2 are two hash functions. {𝑘1,𝑚1}
and {𝑘2,𝑚2} are key-value pairs where the key is used to
determine the address of the data in the database.

Let’s assume two key-message pairs {𝑘1,𝑚1} and {𝑘2,𝑚2}10 that
shall be added to database 𝐷 with 𝑁 bins and two hash function H1

and H2 to determine the insertion addresses. The insertion process

works as follows:

1. Insertion of {𝑘1,𝑚1}:
a) Compute 𝑎1 = H1 (𝑘1) mod 𝑁 and 𝑎2 = H2 (𝑘1) mod 𝑁 .

b) Check if bins 𝑎1 and 𝑎2 are already occupied. Let’s assume

this is not the case.

c) Compute the arithmetic sharing of the message𝑚1: ⟨𝑚1⟩0 =
𝑟1 ∈𝑅 Z2ℓ and ⟨𝑚1⟩1 =𝑚1 − ⟨𝑚1⟩0.

d) Insert 𝐷 [𝑎1] = ⟨𝑚1⟩0 and 𝐷 [𝑎2] = ⟨𝑚1⟩1.

2. Insertion of {𝑘2,𝑚2}:
a) Compute 𝑏1 = H1 (𝑘2) mod 𝑁 and 𝑏2 = H2 (𝑘2) mod 𝑁 .

b) Check if bins 𝑏1 and 𝑏2 are already occupied. Let’s assume

𝑏1 = 𝑎1, i.e., the first bin is already occupied, but bin 𝑏2 is free.

c) Compute the arithmetic sharing𝑚2 with ⟨𝑚2⟩0 = ⟨𝑚1⟩0 as
𝑏1 = 𝑎1. Then, the other share is ⟨𝑚2⟩1 =𝑚2 − ⟨𝑚2⟩0.

d) Insert 𝐷 [𝑏1] = ⟨𝑚2⟩0 and 𝐷 [𝑏2] = ⟨𝑚2⟩1.

Double Collision: Now the question is how to handle the insertion

of a database entry if both addresses determined by the two hash

functions are already occupied. An easy solution is to pick different

hash functions s.t. no double collision occurs for all 𝑛 elements that

shall be stored in the database. Alternatively, Pinkas et al. [105]

demonstrate for a garbled cuckoo table how to extend the database

by 𝑑 + 𝜆 bins, where 𝑑 is the upper bound of double collisions and

𝜆 is an error parameter, such that double collisions occur with a

negligible likelihood. For details, please refer to [105, §5].

10 𝑘 corresponds to a key and𝑚 to a message in our application.

B.5 Distributed Point Functions (DPF)
Consider a point function 𝑃𝛼,𝛽 : Z

2
ℓ → Z

2
ℓ′ such that for all

𝛼 ∈ Z
2
ℓ and 𝛽 ∈ Z

2
ℓ′ , 𝑃𝛼,𝛽 (𝛼) = 𝛽 and 𝑃𝛼,𝛽 (𝛼 ′) = 0 for all 𝛼 ′ ≠ 𝛼 .

That is, when evaluated at any input other than𝛼 , the point function

𝑃𝛼,𝛽 returns 0 and when evaluated at 𝛼 it returns 𝛽 .

An (𝑠, 𝑡)-distributed point function (DPF) [36, 54] distributes a

point function 𝑃𝛼,𝛽 among 𝑠 servers in such a way that no coalition

of at most 𝑡 servers learns anything about 𝛼 or 𝛽 given their 𝑡 shares

of the function. We use (2, 1)-DPFs in RIPPLE to optimize the com-

munication of PIR-based protocols, as discussed in §5.2. Formally,

a (2, 1)-DPF comprises of the following two functionalities:

– Gen(𝛼, 𝛽)→ (𝑘1, 𝑘2). Output two DPF keys 𝑘1 and 𝑘2, given

𝛼 ∈ Z
2
ℓ and 𝛽 ∈ Z

2
ℓ′ .

– Eval(𝑘, 𝛼 ′) → 𝛽 ′. Return 𝛽 ′ ∈ Z
2
ℓ′ , given key 𝑘 generated

using Gen, and an index 𝛼 ′ ∈ Z
2
ℓ .

A (2, 1)-DPF is said to be correct if for all 𝛼, 𝑥 ∈ Z
2
ℓ , 𝛽 ∈ Z

2
ℓ′ ,

and (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), it holds that

Eval(𝑘1, 𝑥) + Eval(𝑘2, 𝑥) = (𝑥 = 𝛼) ? 𝛽 : 0.

A (2, 1)-DPF is said to be private if neither of the keys 𝑘1 and

𝑘2 leaks any information about 𝛼 and 𝛽 . That is, there exists a

polynomial time algorithm that can generate a computationally

indistinguishable view of an adversary A holding DPF key 𝑘𝑢 for

𝑢 ∈ {1, 2}, when given the key 𝑘𝑢 .

As mentioned in [17, 36], a malicious participant could manip-

ulate the Gen algorithm to generate incorrect DPF keys that do

not correspond to any point function. While [36] used an external

non-colluding auditor to circumvent this issue in the two server

setting, [17] formalised this issue and proposed an enhanced ver-

sion of DPF called Verifiable DPFs. In addition to the standard DPF,

a verifiable DPF has an additional function called Ver that can be

used to ensure the correctness of the DPF keys. In contrast to Eval,
Ver in a (2, 1)-verifiable DPF is an interactive protocol between the

two servers, with the algorithm returning a single bit indicating

whether the input DPF keys 𝑘1 and 𝑘2 are valid.

A verifiable DPF is said to be correct if for all 𝛼 ∈ Z
2
ℓ , 𝛽 ∈ Z

2
ℓ′ ,

keys (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), the verify protocol Ver outputs 1 with
probability 1. Ver should ensure that no additional information

about 𝛼 or 𝛽 is disclosed to the party in possession of one of the

DPF keys. Furthermore, the probability that Ver outputs 1 to at

least one of the two servers for a given invalid key pair (𝑘 ′
1
, 𝑘 ′

2
) is

negligible in the security parameter 𝜅.

Communication Complexity. Using the protocol of Boyle et. al. [17],
a (2, 1)-DPF protocol for a point function with domain size 𝑁 re-

quires key size to be (𝜆 + 2) · log(𝑁 /𝜆) + 2 · 𝜆 bits, where 𝜆 = 128

for an AES based implementation. The additional cost in the case

of verifiable DPF is for executing the Ver function, which has con-

stant number of elements in [17]. Furthermore, as stated in [17],

the presence of additional non-colluding servers can improve the

efficiency of Ver, and we use S0 in the case of PIRIsum, as discussed
in §5.2.1. We refer to [17] for more details regarding the scheme.

18

C PIR-SUM PROTOCOL DETAILS
This section provides additional details of the PIRsum (cf. §5) pro-

tocols proposed in this work. We begin by recalling the security

guarantees of a 2-server PIR with respect to our setting [32, 58].

Informally, a single server S𝑢 ∈ {S1, S2} should not learn any infor-

mation about the client’s query in a two-server PIR protocol, where

the database D is held by two non-colluding servers S1 and S2. The
security requirement is formally captured in Definition C.1.

Definition C.1. (Security of 2-server PIR) A PIR scheme with two

non-colluding servers is called secure if each of the server does not

learn any information about the query indices.

Let 𝑣𝑖𝑒𝑤 (S𝑢 ,Q) denote the view of server S𝑢 ∈ {S1, S2} with
respect to a list of queries, denoted by Q. We require that for any

databaseD, and for any two 𝜏-length list of queries Q = (𝑞1, . . . , 𝑞𝜏)
and Q ′ = (𝑞′

1
, . . . , 𝑞′𝜏), no algorithm whose run time is polynomial

in 𝜏 and in computational parameter 𝜅 can distinguish the view

of the servers S1 and S2, between the case of participant P𝑖 using
the queries in Q ({𝑣𝑖𝑒𝑤 (S𝑢 ,Q)}𝑢∈{1,2}), and the case of it using Q ′
({𝑣𝑖𝑒𝑤 (S𝑢 ,Q ′)}𝑢∈{1,2}).

C.1 Linear Summation PIR for F 2S
pir

This section describes the 2-server linear summation PIR protocol

in [32], as well as how to optimize communication using DPF tech-

niques discussed in §B.5. To retrieve the 𝑞-th block from database D
of size 𝑁 , the linear summation PIR proceeds as follows:

– ParticipantP𝑖 prepares an𝑁 -bit boolean string
®b𝑞 = {b1𝑞, . . . , b𝑁𝑞 }

with b𝑗𝑞 = 1 for 𝑗 = 𝑞 and b𝑗𝑞 = 0 and 𝑗 ≠ 𝑞, for 𝑗 ∈ [𝑁].

– P𝑖 generates a boolean sharing of
®b𝑞 among S1 and S2, i.e.,

P𝑖 , S1 non-interactively sample the random [®b𝑞]1 ∈ {0, 1}𝑁 and

P𝑖 sends [®b𝑞]2 = ®b𝑞 ⊕ [®b𝑞]1 to S2.

– S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D[𝑗] to P𝑖 .

– P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.

The linear summation PIR described above requires communication

of 𝑁 + 2ℓ bits, where ℓ denotes the size of each data block in D.

C.1.1 Optimizing Communication using DPFs. Several works in
the literature [17, 36, 54, 58] have used DPFs (cf. §B.5) as a primitive

to improve the communication of a multi-server PIR scheme. The

idea is to use a DPF function to allow the servers S1 and S2 to obtain
the XOR shares of an 𝑁 -bit boolean string

®b that has a zero in all

positions except the one representing the query 𝑞. Because DPF

keys are much smaller in size than the actual database size, this

method aids in the elimination of 𝑁 -bit communication from P𝑖 to
the servers, as discussed in the linear summation PIR in §C.1.

To query the 𝑞-th block from a database D of size 𝑁 ,

– Participant P𝑖 executes the key generation algorithm with

input 𝑞 to obtain two DPF keys, i.e., (𝑘1, 𝑘2) ← Gen(𝑞, 1).

– P𝑖 sends 𝑘𝑢 to S𝑢 , for 𝑢 ∈ {1, 2}.
– S𝑢 , for 𝑢 ∈ {1, 2}, performs a DPF evaluation at each of the

positions 𝑗 ∈ [𝑁] using key 𝑘𝑢 and obtains the XOR share corre-

sponding to bit vector
®b𝑞 .

• S𝑢 expands the DPF keys as [b𝑗𝑞]𝑢 ← Eval(𝑘𝑢 , 𝑗) for 𝑗 ∈ [𝑁].

– S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D[𝑗] to P𝑖 .

– P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.

For the case of semi-honest participants, we use the DPF protocol

of [17] and the key size is 𝑂 (𝜆 · log(𝑁 /𝜆)) bits where 𝜆 = 128

is related to AES implementation in [17]. To prevent a malicious

participant from sending incorrect or malformed keys to the servers,

we use the verifiable DPF construction proposed in [17] for the case

of malicious participants. As discussed in §B.5, this will only result

in a constant communication overhead over the semi-honest case.

Furthermore, as noted in [17], we use the additional server S0 for
a better instantiation of the verifiable DPF, removing the need for

interaction with the participant P𝑖 for verification. We refer the

reader to [17] for more details.

C.2 PIRsum Protocol
Fig. 16 presents the ideal functionality for PIRsum in the context

of malicious participants. In this case, Fpirsum first checks whether

all the queries made by the participant P𝑖 are distinct. If yes, the
correct result is sent to P𝑖 ; otherwise, ⊥ is sent to P𝑖 .

Fpirsum interacts with servers in C, and participant P𝑖 ∈ P.
Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖
and a database D from C.
Computation: Fpirsum sets 𝑦 =

∑𝜏
𝑗=1 D[𝑞 𝑗] if all the queries in Q are

distinct. Else, it sets 𝑦 = ⊥.
Output: Fpirsum sends 𝑦 to P𝑖 .

Functionality Fpirsum

Figure 16: PIR-SUM functionality (malicious participants).

We use a standard 2-server PIR functionality, denoted by F 2S
pir , to

instantiateFpirsum. The guarantees ofF 2S
pir , however, are insufficient

to meet the security requirements of Fpirsum, so we modify F 2S
pir

as a sequence of hybrids, denoted by HYB. The modification is

carried out in such a way that for a malicious participant P𝑖 , each
hybrid is computationally indistinguishable from the one before it.

As the first hybrid, F 2S
pir is denoted by HYB0.

HYB0: Let F 2S
pir denote a 2-server PIR ideal functionality for our

case, with servers S1 and S2 acting as database holders andP𝑖 acting
as the client. For a database D held by S1 and S2 and a query 𝑞 held

by P𝑖 , F 2S
pir returns D[𝑞] to P𝑖 , but S1 and S2 receive nothing.

HYB1: We modify F 2S
pir so that it returns D[𝑞] + r to P𝑖 , and S1, S2

receive r, where r is a random value from the domain of database

block size. In other words, the modification can be thought of as

the standard F 2S
pir being executed over a database Dr = D + r rather

than the actual database D. This modification leaks no additional

information regarding the query to the servers because they will

be receive random masks that are independent of the query 𝑞.

Furthermore, from the perspective of P𝑖 with no prior knowledge of
the databaseD,HYB1 will be indistinguishable fromHYB0 because

the values it sees in both cases are from the same distribution. As a

result, HYB0 ≈ HYB1.

19

HYB2: Looking ahead, in PIRsum, the servers S1, S2 and the partici-
pant P𝑖 run 𝜏 instances of F 2S

pir in parallel, one for each query 𝑞 ∈ Q.
As shown in Fpirsum (Fig. 16), the servers must ensure that all of

the queries in Q are distinct. For this, we modify F 2S
pir in HYB1 to

additionally output a secret share of the query 𝑞 to each of S1 and
S2. Because the servers S1 and S2 are assumed to be non-colluding

in our setting, this modification will leak no information about the

query 𝑞 to either server. Since the output to P𝑖 remains unchanged,

HYB1 ≈ HYB2 from P𝑖 ’s perspective.

C.2.1 Instantiating Fpirsum. The formal protocol for PIRsum in

the case of malicious participants is provided in Fig. 17, assuming

the presence of an ideal functionality F 2S
pir as discussed in HYB2

above. In PIRsum, the servers S1, S2 and the participant P𝑖 run 𝜏

instances of F 2S
pir in parallel, one for each query 𝑞 ∈ Q. Following

the execution, P𝑖 receives D[𝑞] + r𝑞 whereas S𝑢 receives r𝑞, [𝑞]𝑢 ,
for 𝑢 ∈ {1, 2} and 𝑞 ∈ Q. P𝑖 then adds up the received messages to

get a masked version of the desired output, i.e,

∑
𝑞∈Q D[𝑞] +maskQ

with maskQ =
∑
𝑞∈Q r𝑞 . S1, S2 compute maskQ in the same way.

The protocol could be completed by S1 and S2 sending maskQ
to P𝑖 , then P𝑖 unmasking its value to obtain the desired output.

However, before communicating the mask, the servers must ensure

that all queries in Q are distinct, as shown in Fpirsum (Fig. 16). For

this, S1, S2 use their share of the queries 𝑞 ∈ Q and participate in a

secure computation protocol with S0. We capture this with an ideal

functionality Fvrfy, which takes the secret shares of 𝜏 values from

S1 and S2 and returns Accept to the servers if all of the underlying

secrets are distinct. Otherwise, it returns abort.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞] for distinct queries, else res = ⊥.

Computation

1. For each 𝑞 ∈ Q,
a. S1, S2 and P𝑖 invoke F2Spir (cf. HYB2 in §C.2) with the inputs

D, 𝑞.

b. Let r𝑞, [𝑞]𝑢 denote the output of S𝑢 , for𝑢 ∈ {1, 2} andD[𝑞]+r𝑞
denote the output of P𝑖 .

2. P𝑖 computes res′ =
∑
𝑞∈Q (D[𝑞]+r𝑞) , while S1, S2 computesmaskQ =∑

𝑞∈Q r𝑞 .

3. S1, S2 and S0 invokes Fvrfy on the secret shares of queries, denoted

by { [𝑞]𝑢 }𝑞∈Q,𝑢∈{1,2} , to check the distinctness of the queries in Q.
4. If Fvrfy returns Accept, S1, S2 sends maskQ to P𝑖 , who computes

res = res′ −maskQ . Otherwise, abort.

Protocol PIRsum

Figure 17: PIRsum Protocol.

Lemma C.2. Protocol PIRsum (Fig. 17) securely realises the Fpirsum
ideal functionality (Fig. 16) for the case of malicious participants in
the {F 2S

pir , Fvrfy}-hybrid model.

Proof. The proof follows with a hybrid argument based on the

three hybrids HYB0, HYB1, and HYB2 discussed in §C.2. Further-

more, any secure three-party protocol can be used to instantiate

Fvrfy in RIPPLE. □

C.2.2 PIRIsum Protocol Details. Fig. 18 provides the formal details

of PIRIsum protocol discussed in §5.2.1.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞]

Computation S1 and S2 sample 𝜏 randommask values {𝑚1, . . . ,𝑚𝜏 } ∈
Z𝜏
2
ℓ such that

∑𝜏
𝑗=1𝑚 𝑗 = 0. For each 𝑞 ∈ Q, execute the following:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 .

2. Execute DPF protocol [17] (verifiable DPF for malicious participants)

with P𝑖 as client with input 𝑞. Server S𝑢 obtains [®b𝑞]𝑢 with b𝑗𝑞 = 1

for 𝑗 = 𝑞 and b𝑗𝑞 = 0 for 𝑗 ≠ 𝑞, for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-

shares are generated during the preceding steps.

3. Servers verify correctness of 𝑞 𝑗 , 𝑗 ∈ [𝜏], by executing the Ver
algorithm of the verifiable DPF protocol [17] (cf. §B.5). It outputs Accept
to S1 and S2 if 𝑞 𝑗 has exactly 1 one and (𝑁 − 1) zeroes. Else, it outputs
abort.

4. S𝑢 computes [®b𝑐]𝑢 = ⊕𝑞∈Q [®b𝑞]𝑢 , for 𝑢 ∈ {1, 2}.
5. S1 and S2 non-interactively agree on random permutation 𝜋 .

6. S𝑢 sends 𝜋 ([®b𝑐]𝑢) to S0, for 𝑢 ∈ {1, 2}.
7. S0 locally reconstructs 𝜋 (®b𝑐) = 𝜋 ([®b𝑞]1) ⊕ 𝜋 ([®b𝑞]2) . It sends
Accept to S1 and S2, if 𝜋 (®b𝑐) has exactly 𝜏 ones. Else, it sends abort.

Output Transfer Send ⊥ to P𝑖 if verifiable DPF or S0 generated abort
during verification. Otherwise, proceed as follows:

8. S𝑢 sends [𝑦𝑞]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D𝑚𝑞 [𝑗] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

9. P𝑖 locally computes res =
∑
𝑞∈Q ([𝑦𝑞]1 ⊕ [𝑦𝑞]2) .

Protocol PIRIsum

Figure 18: PIRIsum Protocol.

C.2.3 PIRIIsum Protocol Details. This section contains additional

details about the PIRIIsum protocol, which was discussed in §5.2.2. A

large amount of communication is used in the PIRIIsum protocol to

verify malicious participants. More specifically, in Step 8 of Fig. 10,

2𝑁 bits are communicated towards S0 to ensure the distinctness

of the queries made by the participant P𝑖 . We note that allowing a

small amount of leakage to S0 could improve this communication

and is discussed next.

Improving Verification Costs in PIRIIsum. Consider the following
modification to the PIRIIsum protocol. Instead of sampling 𝜃𝑞 for

each query 𝑞 ∈ Q (cf. Step 2 in Fig. 10), P𝑖 , S1, and S2 sample only

one random shift value 𝜃 and uses it for all 𝜏 instances. Since the

queries must be distinct, P𝑖 is forced to send distinct 𝑞′ values to
S0 in Step 3 of Fig. 10. If not, S0 can send abort to S1 and S2 at this
step, eliminating the need for communication intensive verification.

The relative distance between the queried indices would be leaked

to S0 as a result of this optimization. In concrete terms, if we use

the same 𝜃 value for any two queries 𝑞𝑚, 𝑞 𝑗 ∈ Q, then 𝑞𝑚 − 𝑞𝑛 =

𝑞′𝑚 − 𝑞′𝑛 . Because S0 sees all 𝑞′ values in clear, it can deduce the

relative positioning of P𝑖 ’s actual queries. However, since S0 has
no information about the underlying database D, this leakage may

be acceptable for some applications.

20

D ADDITIONAL BENCHMARKING
This section provides additional benchmarking details of RIPPLE

framework, specifically RIPPLETEE in §4.1 and RIPPLEPIR in §4.2.

Tab. 6 and Tab. 7 detail the computation costs per simulation and

communication costs per simulation step at various stages in our

instantiations of RIPPLE’s. As shown in Tab. 6, data transfer time

as part of anonymous communication through servers accounts

for the majority of computation time and begins to affect over-

all performance as population grows. Our system crashed due to

memory constraints after a population of 500K while running the

experiments. This will not be the case in a real-world deployment

of powerful servers linked by high-speed bandwidth. We find that

a participant’s computation and communication costs are very low

in comparison to the overall costs. In RIPPLETEE, a participant com-

municates at most 268 KB and incurs a runtime of 92 seconds over

a two-week simulation over a population of one million. In PIRIIsum,
the cost is reduced to 100 KB and 40 seconds of runtime. While the

runtime remains same as that of PIRIIsum, communication increases

to 1.2 MB in PIRIsum due to the participant’s handling of DPF keys.

Finally, Tab. 7 does not include costs for verification against ma-

licious participants since they can be eliminated using server S0
(cf. §C.2.3) or sketching algorithms similar to those in [17].

1K 10K 50K 100K 500K 1M

RIPPLETEE (§4.1) 1.12 1.12 1.12 1.12 1.12 1.12

RIPPLEPIR: (§4.2) 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3

RIPPLETEE (§4.1) 0.70 5.20 25.38 60.77 211.47 493.33
★a

RIPPLEPIR (§4.2) 0.78 6.65 32.36 71.17 386.68 1542.30
★

RIPPLETEE (§4.1) 44.66 44.66 44.66 44.66 44.66 44.66

PIRIsum (§5.2.1) 32.31 32.33 32.34 32.35 32.36 32.37

PIRIIsum (§5.2.2) 32.20 32.20 32.20 32.20 32.20 32.20

Stages of RIPPLE Protocol

Population (p)

Message Generation by P𝑖 ∈ P
(in sec)

Secure Shuffle by C
(in sec)

Output Computation
b

(in sec)

a★
denotes system crash due to memory.

b
includes message download, decryption/PIR queries, summation.

Table 6: Detailed computation costs per simulation (𝑁step = 14, i.e., 14 days) in RIPPLE.

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1)
a

12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80

RIPPLEPIR: (§4.2) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20

RIPPLEPIR: G# (§4.2) 2.30 2.34 2.38 2.39 2.41 2.43 2.44 2.45 2.46 2.48

RIPPLETEE (§4.1) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00

RIPPLEPIR - (§4.2) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

RIPPLEPIR - G# (§4.2) 0.01 0.07 0.36 0.72 3.62 7.28 14.63 36.75 73.88 148.50

RIPPLETEE (§4.1) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40

PIRIsum - (§5.2.1) 51.36 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

PIRIsum - G# (§5.2.1) 26.48 32.64 37.69 39.82 44.77 47.05 49.38 52.33 54.77 57.26

PIRIIsum (§5.2.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

Stages of RIPPLE Protocol

Population (p)

Message Generation

by P𝑖 ∈ P
(in KB)

Secure Shuffle by C
(in GB)

Output Computation

by P𝑖 ∈ P
(in KB)

b

 - 128-bit address for RIPPLEPIR and G# - 40 − 1 + log
2
(p · 𝐸avg) bit address for RIPPLEPIR.

a
Includes registration of public keys with the exit nodeNexit.

b
includes message download, decryption/PIR queries, summation.

Table 7: Detailed communication costs per simulation step in RIPPLE.
21

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work & Background Information
	3 The RIPPLE Framework
	3.1 Phases of RIPPLE
	3.2 Privacy Requirements

	4 Instantiating Fesim
	4.1 RIPPLETEE
	4.2 RIPPLEPIR

	5 PIR-SUM: Instantiating Fpirsum
	5.1 Overview of PIRsum protocol
	5.2 Reducing participant's communication

	6 Evaluation
	6.1 Communication Costs
	6.2 Computation Costs and Runtime

	References
	A Related Primitives
	B Building Blocks in RIPPLE
	B.1 Shared-Key Setup
	B.2 Collision Resistant Hash Function
	B.3 Anonymous Communication Channel
	B.4 Arithmetic Garbled Cuckoo Table (AGCT)
	B.5 Distributed Point Functions (DPF)

	C PIR-SUM Protocol Details
	C.1 Linear Summation PIR for F2Spir
	C.2 PIRsum Protocol

	D Additional Benchmarking

