
On Exploiting Message Leakage in (few) NIST PQC
Candidates for Practical Message Recovery and Key

Recovery Attacks
Prasanna Ravi∗†, Shivam Bhasin∗, Sujoy Sinha Roy‡, Anupam Chattopadhyay∗†

∗Temasek Labs, NTU Singapore
Email: prasanna.ravi@ntu.edu.sg, sbhasin@ntu.edu.sg, anupam@ntu.edu.sg

†School of Computer Science and Engineering, NTU Singapore
‡University of Birmingham, United Kingdom

Email: s.sinharoy@cs.bham.ac.uk

Abstract—With the NIST Post quantum cryptog-
raphy competition in final round, the importance of
implementation security is highlighted in the latest call.
In this regard, we report practical side-channel assisted
message recovery attacks over embedded implemen-
tations of several post-quantum public key encryp-
tion (PKE) and key encapsulation mechanisms (KEM)
based on the Learning With Errors (LWE) and Learn-
ing With Rounding (LWR) problem, which include
three finalists and three semi-finalist candidates of the
NIST standardization process. The proposed attacks
target storage of the decrypted message in memory,
a basic operation found in all libraries and typically
unavoidable in any embedded implementation.We also
identify interesting ciphertext malleability properties
for LWE/LWR-based PKEs and exploit them to gen-
eralise proposed attack to different implementation
choices as well as implementations protected with side-
channel countermeasures such as shuffling and masking.
All proposed attacks are validated on ARM Cortex-M4
microcontroller, targeting optimized open source im-
plementations of PQC schemes using electromagnetic
side-channel measurements.

I. Introduction
The impending threat of large scale quantum computers

to conventional RSA and ECC-based public-key crypto-
graphic schemes has prompted significant interest in the
cryptographic community towards developing alternate
public-key cryptographic schemes that are resistant to
attacks from quantum computers [1]. Thus, NIST in
2017 initiated a global standardization process for post-
quantum cryptographic (PQC) schemes [2], whose first
round received 69 submissions. After about three years
of intense scrutiny by the cryptographic community, the
process is currently in its third and final round with
seven main candidates and eight alternate candidates [3]
for Public Key Encryption (PKE), Key Establishment
Mechanisms (KEM) and Digital Signature (DS) schemes.
NIST and the PQC research community anticipate that
a subset of PQC candidates will be standardized around
2024 and soon reach wide scale adoption.

While the initial rounds considered theoretical post-
quantum security and implementation performance on

hardware and software platforms as key selection criteria,
NIST has made it clear that resistance against side-
channel and fault attacks will also be considered as an
important criteria for standardization. NIST states that
it “encourages additional research regarding side-channel
analysis” of the finalist candidates and that it “hopes to
collect more information about the costs of implementing
these algorithms in a way that provides resistance to such
attacks” [3]. This is especially relevant for adoption of PQC
in embedded devices, which are most likely to be used
in environemnts where an attacker can have unimpeded
physical access to the device.

In this respect, we focus on Side-channel Analysis (SCA)
of lattice-based PKE/KEMs built upon hardness of the
well known Learning With Errors (LWE) and Learning
With Rounding (LWR) problem. They formed the majority
in the standardization process with six (6) out of seventeen
(17) candidate PKE/KEMs in the semi-final round and
three (3) out of the nine (9) candidate PKE/KEMs in
the final round. Several works have demonstrated the
efficacy of implementing LWE/LWR-based PKE/KEMs
on constrained embedded devices such as 8-bit/32-bit
microcontrollers and FPGAs [4], [5], [6] and thus side-
channel analyses of their embedded implementations gained
considerable traction among researchers with several works
on practical attacks [7], [8], [9] as well as protected
implementations [10], [11], [12].

We observe that a majority of these side-channel attacks
have focused on recovery of the long term secret key used in
the decryption procedure, however much less attention has
been devoted to side-channel security of the secret message,
whose knowledge leads to recovery of the session key. The
known message recovery attacks [13], [14] on LWE/LWR-
based schemes only target the message encoding operation
within the encryption procedure, exploiting preventable
implementation level vulnerabilities that leak informa-
tion about the message. Remarkably, we observe that
LWE/LWR-based PKE/KEMs manipulate the message
in a unique manner compared to conventional RSA and
ECC-based schemes which could pave way for a wider class



of side-channel vulnerabilities leading to message recovery.
In this paper, we demonstrate novel and generic side-

channel assisted message recovery attacks over embed-
ded implementations of several chosen ciphertext secure
LWE/LWR-based PKE/KEMs (IND-CCA secure) that
directly target storage of the decrypted message in memory,
which is an unavoidable operation in most embedded
software targets that are typically RISC-based with very
few working registers. The attack operates into two phases
i.e. pre-processing and exploitation phase. We demonstrate
a single trace message recovery on public pqm4 library [15]
running on RM Cortex-M4 microcontroller. The overall
attack flow is illustrated in Fig.1. We also identify that
LWE/LWR-based PKEs possess interesting ciphertext
malleability properties which can be used as a powerful
tool in the context of side-channel analysis to perform
message recovery. We demonstrate adaptability of our
message recovery attacks in a generic manner to different
implementation variants and also break implementations
protected with concrete side-channel based shuffling and
masking countermeasures.

Ciphertext 
Malleability

Decapsulation 
Query
(DUT)

Adapted 
Ciphertexts

ct’

Template 
Match

Leakage Detection
&

Feature Selection

Build 
Reduced 

Templates

Points of 
Interest 

(PoI)

Reduced
Templates

Message 
Recovery

Pre-Processing Phase (One-Time)

Exploitation Phase

Decapsulation 
Query
(DUT)

TPr
Profiled
Traces

TAtt

Target 
Ciphertext

ctatt

Ciphertexts for 
Chosen Messages

ctchoose

Attack 
Traces

Figure 1: Illustration of our proposed message attacks
targeting the IND-CCA secure decapsulation procedure

Contributions: The contributions of this work are mani-
fold:
1) (a) We demonstrate the first message recovery attack

targeting the message decoding operation within the
decryption procedure, exploiting a side-channel vul-
nerability due to bit-wise incremental storage of the
decrypted message in memory in several IND-CCA
secure LWE/LWR-based PKE/KEMs (Sec.IV).
(b) We perform experimental validation of our attacks
with only one trace using the Electromagnetic
Emanation (EM) side-channel from optimized imple-
mentations of PQC schemes from the pqm4 public
library [15], a testing and benchmarking framework for
PQC schemes on the ARM Cortex-M4 microcontroller
(Sec.V).

2) (a) To the best of our knowledge, we identify
and exploit the notion of ciphertext malleability for
LWE/LWR-based PKE/KEMs and propose two spe-
cific ways to modify unknown messages in valid
ciphertexts: 1 - Targeted flipping of message bits and

2 - Cyclic message rotation (Sec.VI).
(b) We subsequently exploit the ciphertext malleability
property to devise a generic attack methodology to
target storage of the decrypted message in memory,
at any bit width as compared to only bit-wise in the
previous attack (Sec.VII).
(c) Our proposed attacks are applicable to six
LWE/LWR-based PKE/KEMs that competed in the
NIST standardization process - Kyber (main finalist),
Saber (main finalist), Frodo (alternative finalist) and
semi-finalist candidates such as NewHope, Round5
and LAC.

3) We also exploit the ciphertext malleability property to
break well known side-channel countermeasures such
as (Sec. VIII):
(a) Shuffling countermeasure for the message encoding
operation proposed by Sim et al. [13] in Asiacrypt’20.
(b) Adaptation of the Asiacrypt’20 countermeasure to
the message decoding operation.
(c) Masking countermeasures such as that of Oder et
al. [10] of CHES’18.

4) Subsequently, we also propose improvements to the
chosen ciphertext based key recovery attacks pro-
posed by Xu et al. [16] which rely upon complete
message recovery. While the original attack proposed
on Kyber512 required 8 decrypted messages for full
key recovery, we improve the requirement to 6 queries
and also propose non-trivial extensions of the same
attack to LWE/LWR-based schemes such as NewHope
(Sec.IX).

II. Lattice Preliminaries
A. Notation

We represent the ring of integers modulo a prime q as Zq.
We use Bn to refer to the space of all byte arrays of length
n bytes. We refer to the ith byte of m ∈ Bn as m[i], while
the jth bit of m is denoted as mj and the kth bit of m[i]
as m[i]k. The polynomial ring Zq(x)/φ(x) is denoted as Rq
where φ(x) is its reduction polynomial. Polynomials in Rq
are shown in bold lower case letters and the ith coefficient
of a ∈ Rq is referred to as a[i]. Matrices/vectors in Zk×lq

are shown in bold upper case letters. Multiplication of
two polynomials a and b in Rq is denoted as c = a × b.
An element x ∈ Rq sampled from the distribution χ with
standard deviation σ is denoted as x← χσ(Rq).

B. Learning With Errors/Rounding Problem (LWE/LWR)
The security of several lattice-based PKE/KEMs are

governed by the well known average-case hard problem
known as the Learning With Errors (LWE) problem [17].
A standard LWE instance is denoted as a tuple (A,T) ∈
(Zk×`q × Zk×nq ) where A ← U(Zk×`q ) is a public constant
and T = A × S + E where S ∈ Dσ(Z`×nq ) is the secret
and E ∈ Dσ(Zk×nq ) is the error. There is no known
algorithm (classical or quantum) that can solve for S
given polynomially many tuples (A,T) [18]. Learning With



Rounding (LWR) is a slight variant of the LWE problem
where the error component E is implicitly generated by
rounding the elements of the product (A× S) to a lower
modulus p [19].
Frodo [20] is the only scheme that is based on the

standard LWE problem while most other schemes are based
on the more efficient variants of the LWE/LWR problem
known as the Ring-LWE/Ring-LWR (RLWE/RLWR) [18]
and Module-LWE/Module-LWR (MLWE/MLWR) prob-
lem [21]. These variants involve computation over polyno-
mials in polynomial rings such as Rq = Zq[x]/(xn + 1) or
Rq = Zq[x]/(xn − x− 1). Schemes such as NewHope [22],
LAC [23] and Round5 [24] are based on the RLWE/RLWR
problem which involve computation over polynomials in
Rq, while schemes such as Kyber [25] and Saber [26]
are based on the MLWE/MLWR problem which involve
computation over small matrices and vectors of polynomials
in polynomial rings Rkq for k > 1 referred to as modules.

Algorithm 1: LPE Encryption Scheme [18]
1 Procedure PKE.KeyGen()
2 a ∈ Rq
3 s, e← χσ(Rq) ∈ Rq
4 t = a × s + e ∈ Rq
5 return pk = (a, t), sk = (s)
6
1 Procedure PKE.Encrypt(pk,m ∈ B32, r ∈ B32)
2 s′, e′, e′′ ← χσ(Rq)
3 u = a × s′ + e′
4 v′ = t× s′ + e′′
5 x = Encode(m)
6 v = v′ + x
7 return ct = (u,v)
8
1 Procedure PKE.Decrypt(ct, sk)
2 x′ = (v− u× s) ∈ Rq
3 m′ = Decode(x′)
4 return m′

C. A Generic Framework for LWE/LWR based PKE/KEMs
Most LWE/LWR-based PKE/KEMs are built upon a

generalized paradigm for public key encryption schemes
proposed by Lyubashevskey, Peikert and Regev [18] in
2010, now well known as the “LPR Encryption scheme”.
We provide a high level description of the LPR encryption
scheme based on the RLWE problem in Alg. 1, while
the same can be adapted to both the standard and
module variants of the LWE/LWR problem. We define
the procedure Encode which encodes a byte array in Bn
into a corresponding polynomial in the ring Rq and the
corresponding inverse procedure Decode which maps a
polynomial in Rq into a corresponding byte array in Bn.
1) Security in the Chosen-Ciphertext Model: The LPR

PKE is provably secure in the Indistinguishability under
Adaptive Chosen-Plaintext Attack (IND-CPA) security
model. However, an adversary with access to the decrypted
message for chosen ciphertexts can recover the long term
secret key. Thus, most LWE/LWR-based schemes typically
employ the Fujisaki-Okamoto (FO) transform [27] in order
to achieve security in the Indistinguishability under Adap-
tive Chosen-Ciphertext Attack (IND-CCA) security model.

The FO transform forms a wrapper around the encryption
and decryption procedures using several instantiations of
one-way hash functions resulting in IND-CCA secure encap-
sulation (KEM.Encaps) and decapsulation (KEM.Decaps)
procedures respectively, which are shown in Alg.2. The
main feature of the FO transform is the recomputation
of the ciphertext from the decrypted message through
a re-encryption procedure (line 4 in KEM.Decaps). The
computed ciphertext ct′ is subsequently compared with
the received ciphertext ct (line 5). For an invalid ciphertext,
this comparison step will always fail and thus an adversary
does not get any information about the decrypted message
for maliciously chosen ciphertexts, thereby defeating chosen
ciphertext attacks.

D. Tools for Feature Selection in Side-Channel Analysis

Algorithm 2: FO transform of a IND-CPA secure
PKE into a IND-CCA secure KEM

1 Procedure KEM.Encaps(pk)
2 ρ← U(B32)
3 m = H(ρ)
4 r = G(m, pk)
5 ct = PKE.Encrypt(pk,m, r)
6 K = H(r, ct)
7 return (ct, K)
8
1 Procedure KEM.Decaps(sk, pk, ct)
2 m′ = PKE.Decrypt(sk, ct)
3 r′ = PRF(m′, pk)
4 ct′ = PKE.Encrypt(pk,m′, r′)
5 if ct′ = ct then
6 return K = KDF(r′‖ct′)
7 end
8 else
9 return K = KDF(z‖ct′) // z ∈ B32 is a random secret

10 end

1) Test Vector Leakage Assessment (TVLA) [28]: TVLA
is a popular conformance-based evaluation methodology
widely used by both academia and the industry to perform
side-channel evaluation of cryptographic implementations.
TVLA involves computation of the well known univariate
Welch’s t-test over two sets of side-channel measurements
to identify differentiating features in them. The formulation
of TVLA over two sets of measurements Tr and Tf is given
by:

TVLA = µr − µf√
σ2
r

mr
+ σ2

f

mf

, (1)

where µr, σr and mr (resp. µr, σr and mr) are univariate
mean, standard deviation and cardinality of the trace set
Tr (resp. Tf ). The null hypothesis (two means are equal) is
rejected with a confidence of 99.9999% when the absolute
value of the t-test score is greater than 4.5 [28]. A rejected
hypothesis implies that the two sets are noticeably different
and hence could leak some side-channel information.
2) Normalized Inter-Class Variance (NICV) [28]: While

TVLA is used to differentiate between two classes, a more
generic metric known as Normalized Inter Class Variance



(NICV) can be used to simultaneously differentiate between
two or more classes. We assume the variable X of interest
can be partitioned into n classes and let C(X) denotes the
class of given value of X. If the observed leakage of X is
denoted as T , then NICV can be calculated as follows:

NICV = σ2(µ(T |C(X))
σ2(T ) , (2)

where µ(x) and σ(x) refer to the univariate mean and
standard deviation of x. It is an univariate ANOVA
(ANalysis Of VAriance) F-test, as a ratio between the
variance of means of leakage conditioned upon the class and
the total leakage variance. There is no definitive threshold
for NICV as in the case of TVLA. Thus, higher the value
of NICV at a given point, more significant is the difference
in leakage between each class.

While both NICV and TVLA have been used is mainly
used as a metric for side-channel evaluation, we utilize
TVLA as a tool for feature selection from side-channel
traces [29], [30].

III. Prior Works and Motivation
LWE/LWR-based PKE/KEMs have been subjected to

different types of SCA and they can be broadly divided
as (1) Key Recovery Attacks and (2) Message Recovery
Attacks. However, most works on SCA of LWE/LWR-
based PKE/KEMs have focussed on key recovery attacks
targeting the long term secret key, while message recovery
attacks leading to session key recovery are much less
studied.

A. Key Recovery Attacks
Key recovery attacks on LWE/LWR-based PKE/KEMs

can be broadly split into the following two classes.
1) Direct Key Recovery: The first class of attacks work

by directly targeting the polynomial/matrix-vector mul-
tiplication that manipulates the long term secret key in
the decryption procedure. Several attacks have targeted
different polynomial multiplication algorithms such as the
schoolbook polynomial multiplier [31], Number Theoretic
Transform (NTT) [9], [8] and the product-scanning based
polynomial multiplier [32].
2) Message Recovery leading to Key Recovery: The

second class of key-recovery attacks are closely tied to
message recovery and work by gaining crucial side-channel
information about the decrypted message for chosen cipher-
texts, which leads to key recovery in several LWE/LWR-
based PKE/KEMs. D’Anvers et al. [33] reported the
first such attack on two post-quantum KEMs LAC and
RAMSTAKE by extracting binary information about the
message through the timing side-channel of error correcting
procedures used in decryption. Subsequently, Ravi et al. [7]
proposed generic side-channel assisted chosen ciphertext
attacks on six LWE/LWR-based PKE/KEMs which work
by gaining binary information about the message through
EM side-channel leakage in error correcting procedures and

FO transform, leading to key recovery in a few thousand
traces. The aforementioned key recovery attacks worked by
using side-channels to instantiate an oracle that provides
binary information about the decrypted message for chosen
ciphertexts.
More recently, Xu et al. [16] furthered in the same

direction to show that an attacker with complete knowledge
of the decrypted message for chosen ciphertexts can
perform full key recovery only using 8 decryption queries for
Kyber (Kyber512) and the same attack can be extended
to other LWE/LWR-based schemes as well. This work
highlights the need to protect the message in LWE/LWR-
based schemes since any SCA vulnerability that leaks the
complete message easily leads to recovery of the long term
secret in a handful of decryption queries. This motivates
us to analyze the presence of SCA leakage of the message
in LWE/LWR-based PKE/KEMs.

B. Message Recovery Attacks
However, side-channel attacks targeting complete mes-

sage recovery is much less studied and the message encoding
operation within the encryption procedure is the only
operation that has been analyzed in the context of message
recovery. In this respect, Amiet et al. [14] proposed the
first single trace template style attack on NewHope KEM
targeting the message encoding function. Their attack
exploits leakage from a sensitive intermediate variable
referred to as the determiner which leaks information about
single bits of the message. We refer to it as the Determiner-
Leakage vulnerability throughout this work. Subsequently,
Sim et al. [13] in Asiacrypt 2020 generalized the attack
to target several LWE/LWR-based PKE/KEMs. In the
following, we briefly analyze the source of Determiner-
Leakage at the micro-architectural level.

C. Analyzing Determiner-Leakage Vulnerability:
Referring to the encryption procedure PKE.Encrypt in

Alg.1, the function Encode maps a given message m ∈ Br (r
bytes and n bits) into a corresponding polynomial x ∈ Rq.
It works by iteratively encoding a given message bit mi for
i ∈ [0, n− 1] into a corresponding coefficient x[i] such that
x[i] = C ·mi where C is the center of the operating integer
ring Zq.
Schemes such as NewHope and Kyber compute x[i] =

mask &C where & is a bitwise-and operation and the mask
variable takes two possible values (i.e) mask = 0xFFFF if
mi = 1 else mask = 0x0000 otherwise. Though an efficient
technique to encode, side-channel leakage from the bitwise-
and operation with the mask easily leaks the value of mask
(0x0000 or 0xFFFF) which inturn reveals the corresponding
message bit mi, which is referred to as the determiner in
[13]. This is however a well known vulnerability that was
the main target of a couple of attacks on embedded ECC
implementations [34], [35]. Thus, the same vulnerability
within the Encode operation could have been avoided with a
little more care. However, schemes such as Saber and Frodo



avoid the use of the leaky mask and compute the product
x[i] = C ·mi using a simple arithmetic shift operation since
C is a power of 2. In these schemes, the determiner mainly
arises due to storage of the encoded coefficients x[i] (C or
0) of the message polynomial in memory. It is well known
that the storage operation leaks the hamming weight (HW)
of the stored value [36], [37] (i.e) storage of X leaks HW(X).
Thus, an attacker who can distinguish between HW(C) and
HW(0) = 0 can recover mi and subsequently the complete
message.

D. Looking Beyond Determiner-Leakage Vulnerability
The determiner vulnerability is not generic as it does

not apply to schemes such as Round5 and LAC. Upon
analyzing the implementation of Round5 and LAC, we
found that a mere alternate implementation choice for
the Encode function seems to unintentionally eliminate
the vulnerability. Instead of implementing Encode as
a standalone function, implementation of Round5 and
LAC compute the message encoding operation with the
subsequent polynomial addition operation (line 6) in an
interleaved manner. As a result, x[i] = kd ·mi is computed
and immediately added to the corresponding coefficient
v[i] which is then stored to memory. This eliminates direct
storage of x[i] in memory thereby eliminated Determiner-
Leakage. Alternatively, vectorized computation of multiple
coefficients also can be potentially used as a fix which
prevents targeting of single coefficients. Thus, we observe
that the Determiner-Leakage purely arises due to design
choices of the Encode function and could be avoided using
fixes at the implementation level.

Message 
Encoding

Encryption 
Core

Ciphertext 
Compare

Encryption Procedure

Decryption Procedure

FO Transform

m

ct

pk

r

x

ct’

x’

This Work This Work

Sim et al. [13], Amiet et al. [14] 

Valid Key
or

Random Key

Pass
/Fail

PRF

<latexit sha1_base64="86SkWqUbAJbpN+yYIreiPiyeRK0=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWZE0WVREJdV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWlldW19o7xZ2dre2d2r7h+0dZwqylo0FrHqBkQzwSVrGW4E6yaKkSgQrBOMb2Z+54kpzWP5aCYJ8yMylDzklBgreV5EzEiHWfPhdtqv1py6kwMvE7cgNSjQ7Fe/vEFM04hJQwXRuuc6ifEzogyngk0rXqpZQuiYDFnPUkkipv0szzzFJ1YZ4DBW9kmDc/X3RkYirSdRYCfzjIveTPzP66UmvPIzLpPUMEnnh8JUYBPjWQF4wBWjRkwsIVRxmxXTEVGEGltTxZbgLn55mbTP6u55/eL+vNa4LuoowxEcwym4cAkNuIMmtIBCAs/wCm8oRS/oHX3MR0uo2DmEP0CfPxW7kbk=</latexit>

KDF

<latexit sha1_base64="38p4i0scF1ktLJ9ZuxfJfQDT8YY=">AAAB83icbVDLSsNAFL2pr1pfUZduBovgqiRS0WVREcFNBfuAJpTJdNIOnUzCzEQoob/hxoUibv0Zd/6N0zQLbT0wcDjnXu6ZEyScKe0431ZpZXVtfaO8Wdna3tnds/cP2ipOJaEtEvNYdgOsKGeCtjTTnHYTSXEUcNoJxtczv/NEpWKxeNSThPoRHgoWMoK1kTwvwnqkwuz+5nbat6tOzcmBlolbkCoUaPbtL28QkzSiQhOOleq5TqL9DEvNCKfTipcqmmAyxkPaM1TgiCo/yzNP0YlRBiiMpXlCo1z9vZHhSKlJFJjJPOOiNxP/83qpDi/9jIkk1VSQ+aEw5UjHaFYAGjBJieYTQzCRzGRFZIQlJtrUVDEluItfXibts5pbr50/1KuNq6KOMhzBMZyCCxfQgDtoQgsIJPAMr/BmpdaL9W59zEdLVrFzCH9gff4A+LWRpg==</latexit>

Message 
Encoding

Decryption 
Core

Figure 2: Illustration of our message recovery attacks
targeting the IND-CCA secure decapsulation procedure
(KEM.Decaps() in Alg.2) of LWE/LWR-based PKE/KEMs

In the following, we demonstrate generic message recov-
ery attacks targeting a more fundamental operation within
the decryption procedure (i.e) storage of the decrypted mes-
sage in memory. This operation cannot be easily avoided as
the computed message is typically too long to be retained in
registers (i.e) 256 bits or more and hence has to be moved to
memory. This is especially true for embedded RISC based
devices which typically contain very few working registers.
Furthermore, we exploit inherent algorithmic properties of

LWE/LWR-based schemes to adapt our attack to different
implementation variants and also break well known side-
channel countermeasures such as shuffling and masking.
Fig.2 illustrates the target vulnerability presented in the
rest of the paper to perform message recovery attack on the
IND-CCA secure decapsulation procedure of LWE/LWR-
based PKE/KEMs.

IV. Side-Channel Analysis of the Message
Decoding Operation

We observe that the secret message in LWE/LWR-based
PKE/KEMs is manipulated in a very unique manner
compared to conventional PKE/KEMs based on RSA and
ECC. The decryption procedure computes the message
polynomial x′ ∈ Rq from the ciphertext ct (line 2 in
PKE.Decrypt of Alg.1). Subsequently, a decoding procedure
denoted as Decode (line 3) is used to iteratively map each
coefficient x′[i] for i ∈ [0, n − 1] into a corresponding
message bit m′i, thereby computing the message one bit at a
time. This type of bitwise manipulation at the algorithmic
level is not observed in RSA/ECC-based schemes where the
message is typically computed as a whole. In the following,
we show that this behaviour gives rise to an exploitable
side-channel vulnerability within the message decoding
function, leading to full message recovery.

A. SCA Vulnerability of Message Decoding Operation:
We use Kyber based on the MLWE problem, which is one

finalist of the NIST PQC competition, as a representative
scheme for illustration, while our analysis applies in the
same manner to schemes such as Saber, NewHope, Round5
and LAC unless otherwise specified. Refer Fig.3 for the C
code snippet of the message decoding function Decode used
in Kyber KEM [25] (m ∈ B32). Please note that the same
implementation is used in the NIST submission as well
as within several indepdendently developed PQC libraries
such as pqm4 [15] and LibOQS [38].
1) Vulnerability Analysis: The Decode function takes

as input x ∈ Rq (n = 256 coefficients) and outputs the
message m ∈ B32. The message bytes are first initialized to
zero (line 9 in Fig.3). Every coefficient x[k] for k ∈ [0, 256]
with k = (8 ∗ i+ j) is iteratively decoded to bit t (line x)
which is then updated in m[i]j (i.e) bit j of byte m[i] in
memory (line 17). Thus, every byte m[i] for i ∈ [0, 31] is
incrementally updated in memory one bit at a time in 8
iterations of the innermost for loop running over variable
j.
We analyze the compiled assembly code to better un-

derstand the effect of bitwise manipulation at the micro-
architectural level on our target platform (i.e) 32-bit ARM
Cortex-M4. We compiled our implementations using the
arm-none-eabi-gcc compiler with the highest compiler
optimization level -O3. Refer to Fig.4 for the compiled
assembly code for the body of the innermost loop running
over variable j in the C code of Fig.3. We denote the
intermediate value of message byte m[i] at the end of the



1 void Decode ( unsigned char *m, poly *x)
2 {
3 uint16_t t;
4 int i, j;
5 poly_csubq (x);
6 for (i = 0; i < 32; i++)
7 {
8 /* init byte m[i] to zero */
9 m[i] = 0;

10 for (j = 0; j < 8; j++)
11 {
12 k = 8*i+j;
13 t = (x-> coeffs [k] � 1) + Q/2;
14 /* Calculate Message Bit */
15 t = (t/Q) & 1;
16 /* Bit Update in Memory */
17 m[i] |= t � j;
18 }
19 }
20 }

Figure 3: C code snippet of message decoding operation in
Kyber KEM

1 /* t = (x-> coeffs [n]<<1)+Q/2; in r6 */
2 LDRSH.W r6 , [r4 , #2]
3 LSLS r6 , r6 , #1
4 ADD.W r6 , r6 , #1664 ; 0x680
5 /* t = (t/Q) & 1; in r6 */
6 SMULL ip , r7 , r1 , r6
7 ADD r7 , r6
8 ASRS r6 , r6 , #31
9 RSB r6 , r6 , r7 , asr #11

10 AND.W r6 , r6 , #1
11 /* m[i] |= t << j; in r3 */
12 ORR.W r3 , r3 , r6 , lsl #1
13 /* Store updated m[i] in memory */
14 STRB r3, [r2, #0]

Figure 4: Assembly code snippet of a single iteration of
the message decoding function in Kyber KEM
jth iteration as m[i, j] with j ∈ [0, 7]. We consider the
update of bit m[i]j to the intermediate byte m[i, j − 1] in
memory for illustration. Register r3 contains the current
value (i.e) m[i, j − 1] and the decoded bit t is computed in
register r6 (line 10). Then, r6 is left shifted by j positions
(in our case, j = 1) and subsequently bitwise-or’red with
r3 to compute the updated message byte m[i, j] (line 12).
The result in r3 is then stored to memory using the STRB
instruction (line 14). The same set of operations is repeated
8 times for every message byte m[i] with i ∈ [0, 31].
2) Attack Methodology: Since the power/EM side-

channel leaks the hamming weight (HW) of the stored value,
side-channel information from the STRB instruction of
every iteration leaks (roughly) the HW of the corresponding
intermediate value m[i, j]. Recovery of HW(m[i, j]) for all
j ∈ [0, 7] can be used to trivially recover m[i] in the
following manner. Since m[i] starts with a value of zero,
HW of the first store m[i, 0] is nothing but the first bit
m[i]0. Subsequently, the other bits m[i]j for j ∈ [1, 7] can

be retrieved using the following rule:

m[i]j =
{

0, if HW(m[i, j]) = HW(m[i, j − 1])
1, if HW(m[i, j]) = HW(m[i, j − 1] + 1)

(3)

The same procedure can be applied to the other message
bytes for full message recovery. Thus, we observe that
bitwise computation of the decrypted message leads to an
incremental update of message in memory and we refer
to this as the Incremental-Storage vulnerability throughout
the paper. Thus, an attacker with a perfect HW classifier
can recover the full message in a single trace. The same
vulnerability/behaviour also exists in the compiled code at
all optimization levels (-O0 to -03) of Kyber KEM and we
also observe a very similar behaviour in implementations of
four other schemes - NewHope, Round5, Saber and LAC.
We refer the reader to Appendix B for a detailed analysis
of the individual schemes.

V. Single Trace Message Recovery Attack
We now demonstrate efficient attack techniques to

perform practical single trace message recovery attacks tar-
geting the Incremental-Storage vulnerability in LWE/LWR-
based PKE/KEMs.

A. Adversary Model
Given a ciphertext ct, the attacker’s main motive is to

recover the hidden message m. The ciphertext corresponds
to a valid PKE/KEM instance between the target device
(DUT) and another legitimate device. With the recovered
message and the corresponding ciphertext, an attacker
can recover the corresponding shared secret/session key
as shown in Alg.2. We assume the following attacker
capabilities:
• Physical access to DUT performing decapsulation for
power/EM measurement.

• Ability to request the DUT to decrypt arbitrary
number of chosen ciphertexts.

• No knowledge of secret key of the DUT or any innate
knowledge of the underlying implementation such as
the source or compiled executable.

While recent works have shown that remote power
measurement on embedded devices is possible [39],our
experiments assume physical access and uses the setup
described in the following.

B. Experimental Setup
The DUT is the STM32F407VG microcontroller housed

on the STM32F4DISCOVERY evaluation board. The im-
plementations of the targeted schemes are taken from the
well known public pqm4 library [15], a benchmarking and
testing framework for PQC schemes on the 32-bit ARM
Cortex-M4 microcontroller, which is a NIST recommended
optimization target for embedded software implementa-
tions. All our target implementations are clocked at 24
MHz. We use the EM side-channel for our experiments and
side-channel measurements/traces were observed using a



Langer RF-U 5-2 near-field probe placed on top of the chip
and are then collected using a Lecroy 610Zi oscilloscope
at a sampling rate of 1.25 GSam/sec, amplified 30dB with
a pre-amplifier. Refer Fig.11 in Appendix A for our EM-
based SCA setup used for our experiments. We omit results
of measurements at 100MSam/sec, which also reported
successful attacks. Attack success at these low sampling
rate make our work compatible with low-cost platforms like
Chipwhisperer.

For efficient attacks, measured traces are desired to
have a high SNR. Some common techniques to boost SNR
involve employing high precision EM probes, hardware ana-
log filters, averaging of repeated measurements, advanced
digital filtering, trace re-synchronization to remove jitter,
averaging etc. The choice of noise reduction technique is
completely platform dependent. For all our experiments,
we emulate SNR boosting by averaging of side-channel
information from repeated experiments.

C. Leakage Detection
We first validate the presence of side-channel leakage

due to the Incremental-Storage vulnerability. We adopt the
TVLA metric to perform leakage detection and focus on
detecting leakage from the first byte m[0]. We construct
two sets of ciphertexts, denoted as CT0 and CT1. Both
sets contain ciphertexts of random messages except that
their first message byte is fixed to 0 (m[0] = 0) and 1
(m[0] = 1) respectively. If m[0] = 0, then HW(m[0, j]) =
0 ∀ j ∈ [0, 7], else HW(m[0, j]) = 1 ∀ j ∈ [0, 7] if m[0] = 1.
This persistent 1 bit difference in the hamming weight of
all eight intermediate updates (i.e) HW(m[0, j])∀j ∈ [0, 7]
should be detectable through the EM side-channel.
We collect two sets of ` = 500 EM side-channel traces

corresponding to decapsulation of ciphertexts in sets CT0
and CT1 denoted as T0 and T1 respectively. We normalize
each trace and compute the Welch’s t-test to identify
the differentiating features between the trace sets. Refer
Fig.12(a) for the t-test plot for Kyber which shows eight
distinct peaks (greater than the pass-fail threshold ±4.5)
that correspond to the storage of m[0, j] for j ∈ [0, 7].
We repeated the same experiments between m[0] = 0 and
m[0] = 2 and observed 7 distinct peaks since HW(m[0, 0]) =
0 for both sets (Fig.12(b)). For validation, we also repeat
the same experiments on NewHope which also showed
the same behaviour (Refer Fig.6(a) and Fig.6(b)), thus
confirming our hypothesis of side-channel leakage due to the
Incremental-Storage vulnerability. This leakage detection
test also helps us precisely identify the narrow time window
Wj of every intermediate byte update m[i, j] for j ∈ [0, 7]
as shown in Fig.12 and Fig.6.

D. Two Phase Message Recovery Attack
Our message recovery attack works in two phases - (1)

Pre-Processing phase and (2) Exploitation phase. The
attack technique must not be confused with popular
profiled attacks which needs complete access to a clone

(a) (b)

Figure 5: TVLA results for Kyber targetingm[0] (a)m[0] =
0 and m[0] = 1 (b) m[0] = 0 and m[0] = 2

(a) (b)

Figure 6: TVLA results for NewHope targeting m[0] (a)
m[0] = 0 and m[0] = 1 (b) m[0] = 0 and m[0] = 2

device used for profiling. In our attack, the pre-processing
is done over public information without any knowledge of
secret information. Thus, the attacker can directly perform
the pre-processing on DUT without a need of clone device.
The attack technique also applies in a generic manner to all
schemes that exhibit Incremental-Storage of the decrypted
message.

1) Pre-Processing Phase: It involves building side-
channel templates for different values of the decrypted
message. It is only a one-time process for a given target
device since the same templates can be used for multiple
attacks. Moroever, the chosen ciphertexts used for profiling
can correspond to different public-private key pairs (pk, sk)
used by the target device since templates are only built for
the message.

We individually profile each message byte and profiling
byte m[i] requires to build HW templates independently for
all of its eight intermediate updates (i.e) update of m[i, j]
for j ∈ [0, 7]. The first update m[i, 0] only has two possible
HWs (0 and 1). The number of possible HWs increases by
one with every iteration, with 9 possible HWs (0 to 8) in
the last iteration j = 7. Thus, (j+ 2) HWs (i.e) (0 to j+ 1)
are possible for the update of m[i, j]. We focus on building
templates for the update of m[i, j] in memory.
For each class k ∈ [0, j + 1], we construct a valid

ciphertext set CTk(i,j) containing ` ciphertexts of random
messages which satisfy the condition: HW(m[i, j]) = k.
The corresponding side-channel traces are denoted as T k(i,j).
We use the well known Normalized Inter Class Variance
metric (NICV) [40] to select those features in T k(i,j) for



(a) (b)

Figure 7: NICV plot for iterations (a) j = 0 and (b) j = 1
for Kyber. The corresponding time windows W0 and W1
have been highlighted in bold.

k ∈ [0, j + 1] that distinguishes the corresponding HW
class. We compute NICV over T k(i,j) for k ∈ [0, j + 1] and
select those features within the corresponding window Wj

whose NICV value is above a certain threshold Th(i,j) as
our set of Points of Interest (PoI) denoted as P(i,j). Th(i,j)
for each m[i, j] is a parameter of the experimental setup
and is empirically determined. Please refer Fig.7(a)-(b) for
the NICV plot for iterations j = 0 and j = 1 of byte m[0]
in Kyber where we can identify clear NICV peaks within
their respective time windows W0 and W1. When profiling
iteration j, we also observe NICV peaks in time windows
of other iterations (Wk 6= Wj) but they can be ignored.

We now use the selected features P(i,j) to build a reduced
trace set RT k(i,j) from T k(i,j) and the mean of each reduced
trace set RT k(i,j) denoted as rtk(i,j) serves as the reduced
template for HW(m[i, j]) = k. Building similar templates
for all k ∈ [0, j+ 1] completes the profiling of the update of
m[i, j]. Similarly, the other iterations j ∈ [0, 7] of m[i] can
be profiled in the same manner resulting in a full template
set for message byte m[i]. For practical measurements, we
collected 500 traces each for every 256 possible values of
the message byte m[0] and used these traces to build all the
required profiles for the message byte m[0] which amounts
to about 128k traces.
Since the message bytes are processed independently,

it is possible to simultaneously profile multiple bytes
at the same time in the following manner. We create
ciphertexts for messages whose alternate bytes (i.e) m[j]
for j ∈ {0, 2, . . . , r − 1} are fixed to a given value k for
k ∈ [0, 256] while the remaining bytes are random. This
enables to use the same trace set to simultaneously build
profiles for half the number of message bytes (r/2). Thus,
all message bytes can be profiled only using (128×2) = 256k
traces. Note that the exact number of traces required for
profiling is an empirical parameter of the experimental
setup.
2) Exploitation Phase: The attacker now matches the

obtained HW templates with the trace tr obtained from
decapsulation of target ciphertext ct to perform message
recovery. A given byte m[i] can be recovered using the HWs
of all of its intermediate updates (i.e) HW(m[i, j]) ∀ j ∈
[0, 7].

To recover HW(m[i, j]), we build a reduced trace tr′(i,j)
corresponding to the PoI set P(i,j). We then compute the
sum-of-squared difference Γk between tr′ and each reduced
template rtk(i,j) for k ∈ [0, j + 1] as follows:

Γk = (tr′ − rtk(i,j))T · (tr′ − rtk(i,j))

We then assign HW(m[i, j]) = k based on the smallest
value of Γk (i.e) reduced template with the least distance
from the reduced attack trace. We can similarly recover
HW(m[i, j]) ∀ j ∈ [0, 7] leading to recovery of m[i] and
similarly the full message.
Confidence in HW Classification: The SNR available in the
side-channel measurements heavily impacts the success rate
of hamming weight classification. We devise a techique to
label a given HW classification of HW(m[i, j]) as confident
or doubtful in the following manner. We sort the classes
in increasing order of Γk for k ∈ [0, j + 1] and let the
corresponding ordered set of HW classes be denoted as
W = {HWk} with k ∈ [0, j + 1]. We label the classification
as confident only if ΓHW2 ≥ (C(i,j) · ΓHW1) else the
classification is labelled doubtful. The value of C(i,j) for
each iteration is a parameter of the experimental setup
and is empirically determined. Thus, all the updates whose
hamming weight class is labelled as doubtful will need to
be brute-forced for message recovery.
We summarize our pre-processing and attack method-

ology in the form of an algorithm in Alg.3. The function
NICV-Select() refers to NICV-based feature selection. LSQ-
Test() refers to the least sum-of-squared difference compu-
tation and Recover() refers to retrieval of byte m[i] from
HW(m[i, j]) ∀ j ∈ [0, 7], according to Eqn.3.
3) Experimental Results: We perform experimental vali-

dation of our attack on Kyber which serves as an exemplar
for Module-LWE/LWR based schemes such as Saber. We
additionally validate our attacks on NewHope which serves
as an exemplar for Ring-LWE/LWR based schemes such
as Round5 and LAC. Fig.8(a)-(b) shows the evolution
of success rate against SNR for full message recovery for
Kyber. Without SNR enhancement, the success rate stands
at 81.25% with a brute-force complexity of 267, however
the success rate quickly ramps to 98.24% with just 5
averaged traces and settles to about 99.5% with a brute-
force complexity of 26. As stated earlier, there are a range
of techniques which can adopted to boost SNR. We emu-
late SNR boosting by averaging repeated measurements.
Similarly, we also validate our attack on NewHope (Refer
Fig.9(a)-(b)) and without SNR enhancement, the success
rate stands at 91.25% with a 224 brute-force however the
success rate quickly goes to 100% with increase in SNR. An
attacker with an optimized attack setup with high SNR can
perform full message recovery in a single trace. Thus, a side-
channel based HW classifier can be efficiently used to target
the Incremental-Storage of decrypted message to perform
full message recovery in LWE/LWR-based schemes.



Algorithm 3: SCA-Assisted Message Recovery
Attack

1 Procedure Pre-Processing ()
2 for i = 0 to r − 1 do
3 for j = 0 to 8 do

/* Trace Acquisition */
4 for k = 0 to j + 1 do
5 T(i,j) ⇐= Decaps(CT(i,j));
6 end

/* NICV-based Feature Selection */
7 P(i,j) = NICV-Select(T 0

(i,j), T
1

(i,j), . . . , T
(j+1)

(i,j) );
/* Build Reduced HW templates */

8 for k = 0 to j do
9 RT k(i,j) = T k(i,j)(P(i,j));

10 rtk(i,j) = Mean(RT k(i,j));
11 end
12 end
13 end

1 Procedure Attack (rt∗(i,j), P(i,j) for i ∈ [0, r − 1] and j ∈ [0, 7])
2 for i = 0 to r − 1 do
3 for j = 0 to 8 do

/* Build Reduced trace */
4 tr′ = tr(P(i,j));

/* LSQ-Test with Reduced HW templates */
5 for k = 0 to j + 1 do
6 Γ[k] = LSQ-Test(tr′, rtk(i,j));
7 end

/* Class Assignment based on LSQ-test */
8 k∗ = argmin(Γ);
9 HW(m(i,j)) = k∗;

10 end
/* Recover m[i] using HW progression */

11 m[i] = Recover(HW(m(i,0)),HW(m(i,1)), . . . ,HW(m(i,7)));
12 end

(a) (b)

Figure 8: Success rate and Brute Force Complexity for full
message recovery against SNR for Kyber

(a) (b)

Figure 9: Success rate and Brute Force Complexity for full
message recovery against SNR for NewHope

VI. Ciphertext Malleability in LWE/LWR-based
PKE/KEMs

In this section, we identify two novel ciphertext mal-
leability properties for LWE/LWR-based PKEs which can

serve as a crucial tool for a side-channel attacker to perform
generic message recovery attacks. Given a ciphertext ct for
an unknown message m, it is possible to construct adapted
ciphertexts (ct′) from ct, that decrypt to deterministic
variants m′ of the original message m. We identified two
ways to manipulate unknown messages hidden in target
ciphertexts - (1) Targeted flip of message bits and (2) Cyclic
message rotation.
1) Targeted Flip of Message Bits: Referring to the

encryption procedure PKE.Encrypt in Alg.1, the encoded
message polynomial x is simply added to a pseudoran-
dom LWE instance v′, which is subsequently output as
the ciphertext component v (line 6). Thus, the message
polynomial is only additively hidden within the ciphertext
v (i.e) v[i] = x[i] + v′[i] for i ∈ [0, n − 1]. Moreover,
x[i] can only take two values (i.e) x[i] = C (center of
the integer ring Zq) if the corresponding bit mi = 1,
else x[i] = 0 otherwise. We also observe that the de-
cryption procedure PKE.Decrypt extracts a noisy version
of the message polynomial by simply subtracting the
pseudorandom LWE instance v′ from v (line 2). Thus in
essence, there is no mixing/interaction between the different
coefficients x[i] of the the encoded message polynomial x.
This type of scalar behaviour in handling the message
within LWE/LWR-based PKE/KEMs is very different
compared to classical RSA and ECC-based schemes and
enables to target individual bits of the message.
Thus, a given bit mi can be flipped (1 → 0 or

0 → 1) by simply subtracting C from the corresponding
ciphertext coefficient v[i]. While schemes such as Kyber,
Saber, Round5 and LAC encode a given bit into a single
coefficient, we observe that NewHope and Frodo adopt
slightly modified approaches in the encoding/decoding
operation. NewHope redundantly encodes a single bit
mi into multiple coefficients to reduce decryption failure
rate (i.e) two coefficients x[i + w] with w ∈ {0, 256} in
case of NewHope512 and four coefficients x[i + w] with
w ∈ {0, 256, 512, 768} in case of NewHope1024. In this
case, mi can be flipped by subtracting C from all the
corresponding coefficients v[i + w]. Frodo on the other
hand encodes multiple bits into a single element in Zq and
the number of encoded bits depends upon the parameter
set. However, we observe that the bit flipping property also
holds true for Frodo and we refer the reader to Appendix
D for a detailed explanation.
Since all the message bits are handled independently,

it is possible to simultaneously flip any number of bits of
the message m by subtracting C from the corresponding
coefficients of v. We can thus build ciphertexts ct′ which
decrypts to a modified message m′ whose targeted bits are
flipped compared to the original message m. We denote
m′i = Flip(m, i) whose ith bit has been flipped compared
to m and the corresponding ciphertext is denoted as ct′i =
Flip(ct, i). This is very similar to the malleability property
of Cipher block chaining (CBC) mode of operation for
block ciphers that allows to selectively flip single bits of



the decrypted plaintext [41]. We refer to this as the Bit-Flip
property of LWE/LWR-based PKE/KEMs throughout this
paper.
2) Cyclic Message Rotation: Several efficient

LWE/LWR-based PKE/KEMs including the schemes
covered in this work operate over polynomials in rings Rq
modulo special cyclotomic polynomials, denoted as cyclic
and anti-cyclic polynomial rings. Multiplication in these
polynomial rings possess special rotational properties and
hence the name. In schemes operating over such rings, we
identify that it is possible to construct adapted ciphertexts
ct′ from ct which decrypt to cyclic rotations of the original
message m. We denote the message rotated by i positions
as m′ = Rotr(m, i) for i ∈ [0, n − 1]. We refer to it as
the Rotate-Message property throughout this paper. We
do not utilize this property to aid the message recovery
attacks reported in this work, but we speculate that this
could potentially be used to aid possible message recovery
attacks in the future. We refer the reader to a detailed
explanation of the Rotate-Message property in Appendix
C.

VII. Generic Message Recovery Attacks for
LWE/LWR-based PKE/KEMs

In this section, we demonstrate efficient exploitation
of ciphertext malleability as a powerful tool to perform
generic message recovery attacks targeting different imple-
mentation variants of message storage in LWE/LWR-based
PKE/KEMs.

A. Eliminating the Incremental-Storage Vulnerability
As shown in Sec.V, bitwise manipulation of the decrypted

message manifests as an Incremental-Storage vulnerability
at the implementation level leading to efficient message
recovery. We attempt to propose an implementation fix to
eliminate the Incremental-Storage vulnerability. Referring
to Fig.13 for the C code snippet of the message decoding
function, we observe that the message bit is directly
updated within m[i] in memory, resulting in a store in
each iteration (line 17). Instead, the message byte m[i] can
simply be accumulated in a temporary variable temp over
eight iterations (i.e) temp| = t� j in line 17. Subsequently,
the temp variable can be pushed to m[i] after the innermost
for loop over variable j (i.e) once every eight iterations.

We compiled the modified implementation and observed
that the message bits are now aggregated in registers
and only the fully updated message byte is stored in
memory once every eight iterations, thereby eliminating the
intermediate stores. Note that this was not automatically
done by the compiler even at the highest optimization
level (O3). We refer to this as the Bytewise-Storage style of
the decrypted message in this paper. Though this seems
to defeat our single trace message recovery attack, we
demonstrate that ciphertext malleability can be effectively
used to perform full message recovery over the improved
implementation.

B. Exploiting Ciphertext Malleability for Message Recovery
Firstly, we observe that the modified implementation

still stores all message bytes m[i] for i ∈ [0, r−1] in memory.
Thus, we can use our side-channel HW classifier to recover
the hamming weight of all message bytes (i.e) HW(m[i]) for
i ∈ [0,m−1]. We exploit the Bit-Flip property to construct
ct′ = Flip(ct, 0)) which decrypts to m′ = Flip(m, 0)) (i.e)
flip bit m0. We then query the target device to decrypt
ct′ and recover HW(m′[0]). Flipping m0 will create a
perturbation in HW(m[0]) and bit m0 can be recovered
as follows:

m0 =
{

0, if HW(m′[0]) = HW(m[0]) + 1
1, if HW(m′[0]) = HW(m[0])− 1

(4)

In a similar manner, we can construct ciphertexts to
separately flip other bits of m[0] and fully recovery m[0]
one bit at a time. Since all message bytes are stored
iteratively, it is possible to simultanouesly flip one bit
in each byte m[i] for i ∈ [0, r − 1] and recover these r
bits in a single decapsulation query/trace. Thus, complete
message recovery is possible only using 8 adapted ciphertext
queries and 1 original ciphertext query. While our attack
on the Incremental− Storage implementation only required
a single trace (provided enough SNR), our attack on the
Bytewise-Storage requires 9 traces for full message recovery.
It is straightforward to see that the aforementioned

attack methodology exploiting malleability can be used
to target storage of the decrypted message in memory of
any width (i.e) bytewise (8-bits), half-wordwise (16-bits)
or wordwise (32-bits). In the presence of a side-channel
HW classifier, full message recovery can be performed in
(w + 1) traces where w is the storage width. This makes
our attack applicable not only to the message decoding
operation, but to any other operation that involves storage
of the decrypted message in memory.
1) Targeting Other Operations: In this respect, we

analyze the IND-CCA secure decapsulation procedure to
identify other operations that manipulate the decrypted
message (procedure KEM.Decaps in Alg.2). We observe that
the decrypted message is appended to the public key and
passed to a Pseudo Random Function (PRF), immediately
after decryption (line 3). The PRF is implemented in
several schemes using the well known Keccak permutation
and we identified an internal operation in the KeccakAbsorb
function that copied the decrypted message from one
memory location to another, 32-bits at a time.
We used the same t-test based leakage detection ap-

proach to confirm leakage from HW storage of the de-
crypted words and for illustration, we focus on leakage
from the first word denoted as m[0 → 3]. Please refer
Fig.10(a) for the t-test plot computed between two sets of
` = 500 traces each corresponding to HW(m[0 → 3]) = 1
and HW(m[0→ 3]) = 2, which shows a single t-test peak
well beyond the t-test threshold. Similarly, the t-test plot
between HW(m[0 → 3]) = 1 and HW(m[0 → 3]) = 3



(a) (b)

Figure 10: TVLA results for Kyber KEM (Kyber512) to
distinguish HW(m[0→ 3]) between HW classes (a) HW =
1 and HW = 2 and (b) HW = 1 and HW = 3

in Fig.10(b) shows a higher peak at the same time
instance due to a larger difference in hamming weight,
thus concretely proving presence of HW leakage, which
can also be exploited in a similar manner.
In a nutshell, the proposed generic message recovery

attacks show that any leakage related to storing of the
message (bit-wise or otherwise) can be exploited. The
earlier attacks of [13], [14] targeting encoded message
storage can thus be considered to specific instances of our
generic message recovery attacks.

VIII. Attacking Protected Implementations
Shuffling and masking are two well known countermea-

sures used to protect against side-channel analysis [42], [43].
In this section, we show that ciphertext malleability can
yet again be used as an effective tool to break implementa-
tions of LWE/LWR-based PKE/KEMs protected with the
aforementioned countermeasures.
Attack Assumption: We make an additional attack assump-
tion along with the attacker capabilities stated in the
adversary model in Sec.V-A. The pre-processing phase
requires to build HW templates using decapsulation queries
for known messages. However, both shuffling and masking
countermeasures randomly modify the processed message,
thereby disabling the attacker from building HW templates.
Hence, for attacks on protected implementation, we assume
the presence of a clone device, in which the attacker can
turn off or deactivate the countermeasure to build the
required HW templates. This is a common assumption
used often in profiled attacks [44].

A. Attacking the Shuffling Countermeasure
Shuffling the order of processing of message bits was

proposed as a concrete countermeasure by Sim et al. [13]
in Asiacrypt’20, to protect against single trace attacks
targeting Determiner-Leakage in the message encoding
operation [13], [14], which we denote as the Shuffled-
Determiner-Leakage in this work. While shuffling is also
applicable for storage of the decrypted message in memory,
we demonstrate efficient utilization of ciphertext malleabil-
ity to propose the first concrete attack on the shuffling
countermeasure for full message recovery.

1) Breaking Asiacrypt’20 Countermeasure for Message
Encoding: We target the message encoding operation of the
re-encryption procedure in IND-CCA secure decapsulation
(line 4 in KEM.Decaps of Alg.2). Shuffling does not remove
the source of Determiner-Leakage and hence a side-channel
attacker targeting Determiner-Leakage can still recover all
the bits mi for i ∈ [0, n− 1] but not its correct ordering,
thus preventing message recovery. However, we observe
that it is possible to compute the hamming weight of m
(i.e) HW(m) even without knowledge of the shuffling order.
In simpler terms, shuffling does not modify the count of
1s/0s in the message and hence does not have any effect
on its hamming weight.
We can thus exploit the Bit-Flip property to construct

ct′ = Flip(ct, i) which decrypts to m′ = Flip(m, i) (i.e)
flip bit mi. We query the target device to decapsulate
ct′ and recover the modified hamming weight HW(m′).
Subsequently, the message bit mi can be recovered as
follows:

mi =
{

0, if HW(m′) = HW(m) + 1
1, if HW(m′) = HW(m)− 1

(5)

In the same way, we can construct ciphertexts to flip
other bits of the message to recover the full message in
(n+ 1) traces (n adapted ciphertexts queries and 1 target
ciphertext query).
2) Breaking Asiacrypt’20 Countermeasure for Message

Decoding: We now demonstrate novel attacks to break
the shuffling countermeasure for the message decoding
operation. We consider two implementation variants -
(1) Shuffled-Incremental-Storage and (2) Shuffled-Bytewise-
Storage.

a) Attacking Shuffled-Incremental-Storage: To recall, our
attack targeting Incremental-Storage works by recovering
HW(m[i, j]) ∀j ∈ [0, 7] for every message byte m[i] ∀ i ∈
[0, r−1], resulting in full message recovery in a single trace.
Shuffling the order of processing of message bits does not
remove the source of leakage and hence an attacker can
still recover the hamming weight of all intermediate byte
updates albeit without the correct ordering. However, we
exploit the Bit_Flip property to perform message recovery
one bit at a time in the following manner.
We observe that a single bit flip will create a slight

bias in the average hamming weight of the intermediate
byte updates observed across several executions. From
decapsulation of ct, we compute the average hamming
weight of all shuffled intermediate byte updates, denoted as
hwavg. Similarly, we retrieve hwavg for ` such executions
which together form the set HWavg(m). We repeat the
same experiments for an adapted ciphertext ct′ = Flip(ct, i)
which decrypts to m′ = Flip(m, i) (i.e) flip bit mi. Let the
resulting set of average hamming weights be denoted as
HWavg(m′). If mi = 1, then the mean of set HWavg(m)
should be higher than that of set HWavg(m′) since m′i = 0
and vice versa for mi = 0. We use the t-test score (denoted



as D) to distinguish the mean of the two sets and recover
mi as follows:

mi =
{

0, if D > +4.5
1, if D < −4.5

(6)

We performed attack simulations over Kyber and
NewHope whose message size is 256 bits and we empirically
observed that about ` = 1500 observations are required to
recover a single message bit with a 100% success rate. This
amounts to a total of 1500× 256 + (1500) = 385.5k traces
for full message recovery targeting Shuffled-Incremental-
Storage, while its unprotected variant could be broken in
a single trace.

b) Attacking Shuffled Shuffled-Bytewise-Storage: Even if
the order of storage of the message bytes are randomized,
we observe that it is possible to retrieve hamming weight
of the full message m by simply summing the hamming
weights of all shuffled byte updates in a single execution.
Thus, we can perform message recovery in a very similar
manner to our attack on the shuffled message encoding
operation (Sec.VIII-A1). We first recover HW(m) from
decapsulation of the target ciphertext ct. We then query
the adapted ciphertext ct′ = Flip(ct, i) which decrypts to
m′ = Flip(m, i), to recover HW(m′). The perturbation in
HW due to flip of mi can be used to recover mi as in Eqn.5.
Thus, full message recovery (n bits) can be done in only
(n + 1) side-channel traces. Please note that this attack
also applies in the same manner to other operations which
shuffle the storage of the decrypted message in memory
(irrespective of storage width).

B. Attacking the Masking Countermeasure
In the following, we assess the impact of masking

countermeasures for protection against message recovery
attacks in LWE/LWR-based PKE/KEMs. There have been
several masking schemes proposed for LWE/LWR-based
PKE/KEMs [10], [45], [46] and almost all schemes work
by additively splitting the long term secret key s into two
random shares s1, s2 which are processed individually in
each execution such that s = s1 + s2. Subsequently, the
resulting decrypted message m is also processed as two
random shares m1 and m2 such that m = m1⊕m2 where
⊕ is the bitwise-xor operation.
While masking is effective against DPA style attacks

that work over multiple traces, they do not protect against
single trace attacks since both shares can be attacked
individually to recover the masked variable. Thus, the
masking countermeasure is not effective against the single
trace attacks targeting the Determiner-Leakage vulnerabil-
ity [14], [13] as well as our proposed single trace attacks
targeting Incremental-Storage of the decrypted message
(Sec.V). However, our message recovery attack targeting the
Bytewise-Storage of the message is not a single trace attack
(requires 8 traces) and hence breaking the Masked-Bytewise-
Storage is not trivial. We yet again demonstrate use of

Table I: Number of traces required for full message recovery
across different implementation variants of the storage of
decrypted message in memory. The numbers are reported
for messages of length 256 bits and assuming a perfect
single trace side-channel HW classifier

Vulnerability No. of Traces

No Protection

Determiner-Leakage [13], [14] 1
Incremental-Storage [This work] 1

Bytewise-Storage [This work] 9
Wordwise-Storage [This work] 33

Shuffling Countermeasure

Shuffled-Determiner-Leakage [This work] 257
Shuffled-Incremental-Storage [This work] 385, 500

Shuffled-Bytewise-Storage [This work] 257

Masking Countermeasure

Masked-Determiner-Leakage [This work] 1
Masked-Incremental-Storage [This work] 1

Masked-Bytewise-Storage [This work] 1100

ciphertext malleability to perform full message recovery,
one bit at a time. We focus on recovery of the first bit m0.
In the presence of Masked-Bytewise-Storage, we can

recover hamming weight of the first byte of both shares
(i.e) HW(m1[0]) and HW(m2[0]), which we denote as the
ordered pair (v1, v2) for simplicity. We observe that the
set of possible values of (v1, v2) for a given m[0] = k
uniquely identifies HW(k) and this is due to linearity of the
bitwise-xor operation. Thus, we can obtain enough ordered
pairs (v1, v2) from several decapsulations of the target
ciphertext ct to uniquely determine HW(m[0]). We then
repeat the same for the adapted ciphertext ct′ = Flip(ct, 0)
that decrypts to m′ = Flip(m, 0) (i.e) flip m0, to determine
HW(m′[0]). Perturbation in the hamming weight of m[0]
can help recover bit m0 based on the same rule as in Eqn.5.
We performed attack simulations over both NewHope and
Kyber (n = 256) and obtained 100% success rate with
an average trace requirement of about 1100 traces for full
message recovery.
We summarize the trace requirement of our attacks

over different implementation variants of storage of the
decrypted message in memory in Tab.I.

IX. Key Recovery From Recovered Messages
While message recovery leads to trivial recovery of the

session key, message recovery for specially structured chosen
ciphertexts also leads to recovery of the long term secret
key in LWE/LWR-based PKE/KEMs [7]. Recently, Xu et
al. [33] demonstrated full key recovery in Kyber512 with the
knowledge of just eight decrypted messages for specially
crafted ciphertexts. This work brought to light the serious
impact of full message recovery, easily leading to long
term secret key recovery in LWE/LWR-based schemes.
However, their proposed technique does not trivially extend
to schemes like NewHope which adopts redundancy in the
message encoding/decoding operation. In this section, we
propose improvements to the key recovery attack of Xu
et al. [16] and also propose generic extensions to schemes
such as NewHope.



A. Constructing Chosen Ciphertexts:
We first explain the attack of Xu et al. [16], assuming op-

eration over polynomials in Rq (RLWE). Given ciphertext
ct = (u,v) ∈ (Rq×Rq), the decryption procedure computes
x = (v−w) where w = u · s, which is then decoded to m.
The attacker chooses u = ku and v = (kv ·

∑n−1
i=0 x

i) with
(ku, kv) ∈ (Zq × Zq) which results in

mi = Decode(kv − ku · s[i]) (7)
= F(ku, kv, s[i]) (8)

Thus, message bit mi only depends upon s[i] and an
attacker can choose values for (ku, kv) which distinguish
every candidate of s[i] based on the corresponding values of
mi. To search for tuples (ku, kv), Xu et al. [16] fix the value
of kv and exhaustively vary ku over [0, q − 1] to compute
mi for all candidates of s[i]. They use the responses to
build a One-versus-the-Rest (OvR) classifier [47] for each
candidate, resulting in four ciphertexts to uniquely identify
5 candidates for s[i] ∈ [−2, 2]. All coefficients of s can be
recovered simultaneously and the secret key of Kyber512
has two polynomials, thus resulting in full key recovery in
eight queries.

An OvR classifier for n = 5 candidates requires (n−1) =
4 queries for classification while adopting a binary decision
tree approach only requires Q = dlog2(n)e queries, provided
all possible 2n set of responses for mi exist. Unlike Xu et
al. [16], we thus propose to perform a randomized search
for (ku, kv) to yield a unique response for each candidate
in just log2(n) queries. Please refer Tab.II for the decision
table which optimally yields s[i] only using three queries,
resulting in full key recovery in just six traces for Kyber512.

Table II: Chosen values of (ku, kv) that uniquely identify
s[i] based on mi for Kyber512. While O refers to the case
of m′ = 0, X refers to m′ = 1.

Secret Coeff.
mi = 0 (O)/mi = 1 (X)

(ku, kv)
(211, 416) (627, 1248) (1252, 0)

-2 O O O
-1 O O X
0 O X O
1 O X X
2 X O O

While this technique easily applies to schemes with a
small error span, extension to schemes such as NewHope
encounters two challenges: (1) Wide Error distribution:
s[i] ∈ [−8, 8] with 17 candidates and (2) Redundant
Encoding: NewHope512 and NewHope1024 encode a single
bit into two and four coefficients respectively. For brevity,
we use NewHope512 for analysis, while the same can also
extended to NewHope1024. Each bit mi for i ∈ [0, n/2− 1]
in NewHope512 is encoded to x[i+w] for w ∈ {0, n/2}. We
propose to choose v = (kv1 ·

∑n/2−1
i=0 xi)+(kv2 ·

∑n−1
i=n/2 x

i),

which results in

mi = Decode(kv1 − ku · s[i], kv2 − ku · s[i+ n/2]) (9)
= F(ku, kv1, kv2, s[i], s[i+ n/2]) (10)

Thus, mi depends upon the pair (s[i], s[i+ n/2]), which
need to be distinguished together, thus increasing the num-
ber of candidates to 172 = 289. Similarly for NewHope1024,
mi depends upon four coefficients (s[i + w · n/4] with
w ∈ [0, 3], thus increasing the number of candidates
to 174 = 83521. Given the large number of candidates
to distinguish, we adopt a two-staged approach similar
to that of Ravi et al. [7]. For Stage− 1, we perform
a randomized search for a fixed number of Q1 tuples
(ku, kv1, kv2) which can minimize the possible candidates
for s[i] as much as possible, in Q1 queries. For Stage− 2,
we pre-compute tuples to uniquely resolve the conflict
between the remaining candidates for s[i] using a knock-out
tournament style One-versus-One (OvO) approach [47]. We
refer the reader to [7] for a detailed explanation of the
two-stage approach.
Experimental Results: We performed attack simulations
to validate key recovery attacks on NewHope and as-
sume knowledge of complete decrypted message. For
NewHope512, full key recovery with 100% success rate
needs only 20 Stage-1 queries. For NewHope1024, we adopt
the two stage approach with Q1 = 20 queries in Stage-1
and an average of Q2 ≈ 150 queries in Stage− 2, thus an
average of Q ≈ 170 queries for full key recovery with 100%
success rate.

X. Countermeasures
Based on the range of attacks presented earlier, we

discuss few mitigation technqiues here.
• Random Jitter: Introducing jitter adds horizontal noise
and disturbs alignment of PoI across measurements.
Thus, it increases the attack effort. However, a stronger
adversary can adopt re-alignment techniques [48] to
boost the SNR.

• Combined Masking and Shuffling: While individual
shuffling and masking countermeasures were shown
to be vulnerable, a combination of masking and
shuffling would increase the trace requirement for the
attack. However, a concrete analysis require further
investigation and out of scope of this work.

• Key Refreshment Rate: An ephemeral key setting will
limit the attacker to only one trace. Combining this
with jitter, shuffling and masking can make single trace
attacks infeasible. Even in case the key is used for
multiple runs, the refresh rate must be upper bounded
by no. of runs in Tab.I.

XI. Conclusion
This work demonstrates generic side-channel as-

sisted message recovery attacks over LWE/LWR-based
PKE/KEMs targeting storage of the decrypted message
in memory, a fundamental and unavoidable operation



in any embedded implementation. We have also shown
efficient exploitation of the ciphertext malleability property
to adapt our attacks to different implementation variants,
including implementations protected with concrete side-
channel countermeasures such as masking and shuffling.
Our attacks essentially exploit the algorithmic properties
of LWE/LWR-based PKE/KEMs and highlight the suscep-
tibility of LWE/LWR-based PKE/KEMs to side-channel
based message recovery attacks. All attacks are validated
with practical EM measurement from ARM Cortex-M4
microcontroller and capable of recovering the message with
only a single trace when targeting several implementations
in pqm4 library.

References
[1] D. J. Bernstein, “Introduction to post-quantum cryptography,”

in Post-quantum cryptography. Springer, 2009, pp. 1–14.
[2] NIST, “Submission requirements and evaluation

criteria for the post-quantum cryptography standard-
ization process,” https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/
call-for-proposals-final-dec-2016.pdf, 2016.

[3] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta et al.,
“Status report on the second round of the nist pqc standardization
process,” NIST, Tech. Rep., July, 2020.

[4] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical
lattice-based cryptography: A signature scheme for embedded
systems,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2012, pp. 530–547.

[5] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede,
“Saber on ARM CCA-secure module lattice-based key
encapsulation on ARM,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2018, no. 3, pp. 243–266, 2018. [Online].
Available: https://doi.org/10.13154/tches.v2018.i3.243-266

[6] J. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppel-
mann, “High-performance and lightweight lattice-based public-
key encryption,” in Proceedings of the 2nd ACM International
Workshop on IoT Privacy, Trust, and Security. ACM, 2016,
pp. 2–9.

[7] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic
side-channel attacks on cca-secure lattice-based pke and kems,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 307–335, 2020.

[8] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel
attacks on masked lattice-based encryption,” in Cryptographic
Hardware and Embedded Systems – CHES 2017, W. Fischer and
N. Homma, Eds. Cham: Springer International Publishing,
2017, pp. 513–533.

[9] P. Pessl and R. Primas, “More practical single-trace attacks on
the number theoretic transform,” in International Conference on
Cryptology and Information Security in Latin America. Springer,
2019, pp. 130–149.

[10] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, “Practi-
cal CCA2-secure and masked ring-LWE implementation,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2018, no. 1, pp. 142–174, 2018.

[11] T. Zijlstra, K. Bigou, and A. Tisserand, “FPGA Implementation
and Comparison of Protections against SCAs for RLWE,” in
International Conference on Cryptology in India. Springer,
2019, pp. 535–555.

[12] P. Ravi, R. Poussier, S. Bhasin, and A. Chattopadhyay, “On
configurable sca countermeasures against single trace attacks for
the ntt,” IACR Cryptology ePrint Archive, vol. 2020, p. 1038.

[13] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T.-H. Lee, J. Han,
H. Yoon, J. Cho, and D.-G. Han, “Single-trace attacks on message
encoding in lattice-based kems,” IEEE Access, vol. 8, pp. 183 175–
183 191, 2020.

[14] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden, “Defeat-
ing newhope with a single trace,” in International Conference
on Post-Quantum Cryptography. Springer, 2020, pp. 189–205.

[15] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“PQM4: Post-quantum crypto library for the ARM Cortex-M4,”
https://github.com/mupq/pqm4.

[16] Z. Xu, O. Pemberton, S. S. Roy, and D. Oswald, “Magnifying
side-channel leakage of lattice-based cryptosystems with chosen
ciphertexts: The case study of kyber,” Cryptology ePrint Archive,
Report 2020/912, Tech. Rep., 2020, https://eprint.iacr.org/2020/
912.

[17] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” Journal of the ACM (JACM), vol. 56, no. 6,
p. 34, 2009.

[18] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices
and learning with errors over rings,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2010, pp. 1–23.

[19] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions
and lattices,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2012,
pp. 719–737.

[20] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig,
V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila,
“Frodo : Algorithm Specifications And Supporting Documenta-
tion (March 25, 2020),” Submission to the NIST post-quantum
project, 2020.

[21] A. Langlois and D. Stehlé, “Worst-case to average-case reductions
for module lattices,” Designs, Codes and Cryptography, vol. 75,
no. 3, pp. 565–599, 2015.

[22] E. Alkim, R. Avanzi, J. W. Bos, L. Ducas, A. d. la Piedra,
T. Poppelmann, P. Schwabe, and D. Stebila, “NewHope (Version
1.1): Algorithm Specifications And Supporting Documentation
(April 10, 2020),” Submission to the NIST post-quantum project,
2020.

[23] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z. Zhang, Z. Liu, H. Yang,
B. Li, and K. Wang, “LAC: Practical Ring-LWE Based Public-
Key Encryption with Byte-Level Modulus (19th Dec, 2019),”
2019.

[24] H. Baan, S. Bhattacharya, S. Fluhrer, O. G.-M. Garcia-Morchon,
T. Laarhoven, R. Player, R. Rietman, M.-J. O. Saarinen, ,
L. Tolhuizen, J. L. Torre-Arce, and Z. Zhang, “Round5 : Al-
gorithm Specifications And Supporting Documentation (10th
April, 2020),” Submission to the NIST post-quantum project.

[25] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. Schanck, P. Schwabe, G. Seiler, and D. Stehlé,
“CRYSTALS-Kyber (version 2.0) - Algorithm Specifications And
Supporting Documentation (April 1, 2019),” Submission to the
NIST post-quantum project, 2020.

[26] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren,
“Saber: Algorithm Specifications And Supporting Documentation
(Round 3),” Submission to the NIST post-quantum project, 2020.

[27] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric
and symmetric encryption schemes,” in Annual International
Cryptology Conference. Springer, 1999, pp. 537–554.

[28] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi et al., “A testing
methodology for side-channel resistance validation,” in NIST
non-invasive attack testing workshop, vol. 7, 2011, pp. 115–136.

[29] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. stochas-
tic methods,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2006, pp. 15–29.

[30] P. Ravi, B. Jungk, D. Jap, Z. Najm, and S. Bhasin, “Feature
selection methods for non-profiled side-channel attacks on ecc,”
in 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP). IEEE, 2018, pp. 1–5.

[31] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky,
“Horizontal side-channel vulnerabilities of post-quantum key
exchange protocols,” in 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2018,
pp. 81–88.

[32] W.-L. Huang, J.-P. Chen, and B.-Y. Yang, “Power analysis on
ntru prime,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 123–151, 2020.

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.13154/tches.v2018.i3.243-266
https://github.com/mupq/pqm4
https://eprint.iacr.org/2020/912
https://eprint.iacr.org/2020/912


[33] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede,
“Timing attacks on error correcting codes in post-quantum secure
schemes.” IACR Cryptology ePrint Archive, vol. 2019, p. 292,
2019.

[34] E. Nascimento and Ł. Chmielewski, “Applying horizontal cluster-
ing side-channel attacks on embedded ecc implementations,” in
International Conference on Smart Card Research and Advanced
Applications. Springer, 2017, pp. 213–231.

[35] E. Nascimento, Ł. Chmielewski, D. Oswald, and P. Schwabe,
“Attacking embedded ecc implementations through cmov side
channels,” in International Conference on Selected Areas in
Cryptography. Springer, 2016, pp. 99–119.

[36] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999, pp.
388–397.

[37] A. Bauer, E. Jaulmes, E. Prouff, and J. Wild, “Horizontal and
vertical side-channel attacks against secure rsa implementations,”
in Cryptographers’ Track at the RSA Conference. Springer,
2013, pp. 1–17.

[38] D. Stebila and M. Mosca, “Post-quantum key exchange for the
internet and the open quantum safe project,” in International
Conference on Selected Areas in Cryptography. Springer, 2016,
pp. 14–37.

[39] C. O’Flynn and A. Dewar, “On-device power analysis across hard-
ware security domains.” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 126–153, 2019.

[40] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “Nicv: normal-
ized inter-class variance for detection of side-channel leakage,” in
2014 International Symposium on Electromagnetic Compatibility,
Tokyo. IEEE, 2014, pp. 310–313.

[41] U. Maurer and B. ö. Tackmann, “On the soundness of
authenticate-then-encrypt: formalizing the malleability of sym-
metric encryption,” in Proceedings of the 17th ACM conference
on Computer and communications security, 2010, pp. 505–515.

[42] M. Rivain, E. Prouff, and J. Doget, “Higher-order masking
and shuffling for software implementations of block ciphers,”
in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2009, pp. 171–188.

[43] P. Pessl, “Analyzing the shuffling side-channel countermeasure
for lattice-based signatures,” in International Conference on
Cryptology in India. Springer, 2016, pp. 153–170.

[44] L. Wu and S. Picek, “Remove some noise: On pre-processing of
side-channel measurements with autoencoders,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pp.
389–415, 2020.

[45] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren,
and I. Verbauwhede, “Additively homomorphic ring-LWE
masking,” in Post-Quantum Cryptography - 7th International
Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26,
2016, Proceedings, 2016, pp. 233–244. [Online]. Available:
https://doi.org/10.1007/978-3-319-29360-8_15

[46] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“A masked ring-LWE implementation,” in Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th
International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, 2015, pp. 683–702. [Online]. Available:
https://doi.org/10.1007/978-3-662-48324-4_34

[47] C. M. Bishop, Pattern recognition and machine learning.
springer, 2006.

[48] S. Guilley, K. Khalfallah, V. Lomne, and J.-L. Danger, “Formal
framework for the evaluation of waveform resynchronization
algorithms,” in IFIP International Workshop on Information
Security Theory and Practices. Springer, 2011, pp. 100–115.

Appendix A
Experimental Setup for SCA

The actual experimental setup and validation of leakage
on low sampling rate setting (low-cost setup) is shown in
Fig. 11 and Fig. 12.

(a) (b)
Figure 11: Experimental Setup for SCA (a) SCA Setup (b)
Zoomed-in view of EM-probe over the DUT

(a) (b)

Figure 12: TVLA results for Kyber targeting m[0] (a)
m[0] = 0 and m[0] = 1 (b) m[0] = 0 and m[0] = 2 at
low sampling rate of 100 MSam/sec

Appendix B
Side-channel Analysis of Message Storage in

several LWE/LWR-based PKE/KEMs
In the following, we analyze the side-channel vulnerabil-

ity due to storage of the decrypted message in memory in
several LWE/LWR-based schemes. All the analyzed imple-
mentations are compiled in the same manner as described
in Sec.IV. Note that we hae made minor modifications such
as altering variable names in C code, for better readability.

1 void poly_to_msg ( unsigned char *m, const
poly *x)

2 {
3 unsigned int i;
4 uint16_t t;
5 /* init byte array m to zero */
6 memset (m ,0 ,32);
7 for(i=0;i <256;i++)
8 {
9 t = flipabs(x→coeffs[i+0]);

10 t += flipabs(x→coeffs[i+256]);
11 t = ((t - Q/2));
12 /* Calculate message bit in t */
13 t �= 15;
14 /* Inc. Update of t in m[i>>3] */
15 m[i�3] |= t � (i&7);
16 }
17 }

Figure 13: C code snippet of message decoding operation
in NewHope KEM

https://doi.org/10.1007/978-3-319-29360-8_15
https://doi.org/10.1007/978-3-662-48324-4_34


A. NewHope KEM
Refer to Fig.13 for the C code snippet of the message

decoding operation in NewHope, which demonstrates
Incremental-Storage of the decrypted message, simliar to
Kyber. Instructions that incrementally update the message
in memory (line 15) are highlighted in the C code snippet
and the target store instruction is also highlighted in red
in the assembly code in Fig.14.

1 /* msg[i>>3] is present in r6 */
2 /* Compute t >>= 15 in r3 */
3 UBFX r3, r3, #15, #1
4 /* Compute t<<(i&7) in r3 */
5 AND.W r2, r0, #7
6 LSLS r3, r2
7 /* Compute byte msg[i>>3] in r6; */
8 ORRS r6, r3
9 /* Store r6 in msg[i>>3] */

10 STRB r6, [r4, r5]

Figure 14: Assembly code snippet of Incremental-Storage
of decrypted message in NewHope KEM

B. Round5 PKE

1 /* init all bytes of message m to zero */
2 memset (m, 0, sizeof (m));
3 for (i = 0; i < PARAMS_MU ; i++)
4 {
5 /* Compute bit i of m in x_p */
6 x_p = ((v[i] << (P - T)) - x[i]);
7 x_p = ((( x_p + H3) >> (P - 1)) \& 1;
8 /* Inc. Update of x_p in m[i>>3] */
9 m[i � 3] = (m[i � 3] | (x_p � (i & 7)));

10 }

Figure 15: C code snippet of message decoding operation
in Round5 PKE

Refer to Fig.15 for the C code snippet of the message
decoding operation in Round5. The message decoding
operation is not implemented as a separate function, but
is inlined within the decryption procedure. The message
bit mi is computed in variable xp (line 7) subsequently
updated within m[i� 3] (line 9) as an Incremental-Storage,
similar to Kyber. The corresponding operations in the C
code snippet and the target store instruction in assembly
are highlighted in red in Fig.15 and Fig.16 respectively.
LAC which is another RLWE based KEM also performs
Incremental-Storage of the decrypted message in memory,
but we do not analyse the same due to space constraints.
We however refer the reader to [15] for more details on the
implementation of LAC.

C. Saber KEM
In Saber KEM, we observe that the decrypted message

is stored in memory by two different operations. Schemes
such as Kyber, NewHope and Frodo decode individual bits

1 /* Compute x_p in r3 */
2 UBFX r3 , r3 , #6, #1
3 /* Load byte m[i >> 3] in lr */
4 LDRB.W lr , [r4 , ip]
5 /* Compute (i \& 7) in r2 */
6 AND.W r2 , r2 , #7
7 /* Compute byte m[i>>3] in r3 */
8 LSLS r3 , r2
9 ORR.W r3 , r3 , lr

10 CMP r1 , r0
11 /* Store updated byte in m[i>>3] */
12 STRB.W r3, [r4, ip]

Figure 16: Assembly code snippet of a Incremental-Storage
of message in Round5 PKE

1 /* Compute message in v */
2 for(i=0;i< SABER_N ;i++)
3 {
4 v[i] = v[i] + h2;
5 v[i] = v[i] - (op[i] << (EP -ET));
6 /* Compute and Store bit i in v[i] */
7 v[i] = (v[i] & MP) � (EP-1);
8 }

Figure 17: C code snippet of message decoding operation
in SABER KEM
mi and store them into the message byte array in memory
in a tightly packed fashion. However, Saber chooses to store
single bits mi in separate memory locations (16-byte) in an
unpacked fashion. Refer Fig.17 for the C code snippet of
the message decoding operation where bit mi is stored in a
memory location v[i]. The corresponding operation in the
C code snippet and the target store instruction in assembly
is highlighted in red in Fig.17 and Fig.18 respectively. Thus,
v[i] can only take two possible values 0 or 1 and hence a
side-channel attacker who can distinguish between 0 and
1 can recover m[i] and subsequently perform full message
recovery in a single trace. This can be considered as a
simpler variant of the Incremental-Storage vulnerability.

1 /* Load v[i] in r3 */
2 LDRH.W r3 , [r2 , #2]!
3 /* Load op[i] in r4 */
4 LDRH.W r4 , [r0 , #2]!
5 /* Compute (v[i] + h2) in r3 */
6 ADDS r3 , #228
7 /* Compute (v[i]-(op[i]<<(EP -ET))) in r3

*/
8 SUB.W r3 , r3 , r4 , lsl #6
9 /* Compute ((v[i] & MP) >>(EP -1)) in r3 */

10 UBFX r3 , r3 , #9, #1
11 CMP r2 , r5
12 /* Store bit i in v[i] */
13 STRH r3, [r2, #0]

Figure 18: Assembly code snippet of Incremental-Storage
of message in SABER KEM

Saber subsequently performs an additional operation
to pack the message bits into a compact byte array m in



memory, denoted as POL2MSG. We analyzed its C code
snippet in Fig.19 and identified an Incremental-Storage of
message bits in memory (line 12 in Fig.19 highlighted in
red). However upon compilation, we observed that the
compiler unrolled the innermost loop 8 times, thereby
resulting in a Bytewise-Storage of the message in memory
(Refer Fig.20). Thus, this operation can be targeted using
our malleability assisted message recovery attack presented
in Sec.VII leading to message recovery in 9 side-channel
traces.

1 void POL2MSG ( uint16_t *v, unsigned char *
m)

2 {
3 int32_t i,j;
4 for(j=0; j< SABER_KEYBYTES ; j++)
5 {
6 /* init message byte m[j] to zero */
7 m[j] = 0;
8 for(i=0; i <8; i++)
9 {

10 n = j*8 + i;
11 /* Update bit v[n] in m[j] */
12 m[j] = m[j] | (v[n] « i);
13 }
14 }
15 }

Figure 19: C code snippet of message packing operation in
SABER KEM

D. Frodo KEM

1 /* Unrolled Computation of m[j] |= (v[n
]<<i) */

2 LSLS r2 , r2 , #2
3 ORRS r3 , r2
4 ORR.W r2 , r2 , r8 , lsl #1
5 ORR.W r3 , r3 , lr , lsl #3
6 ORR.W r3 , r3 , ip , lsl #4
7 ORR.W r3 , r3 , r7 , lsl #5
8 ORR.W r3 , r3 , r5 , lsl #6
9 ORR.W r3 , r3 , r4 , lsl #7

10 /* Store packed byte in m[j] */
11 STRB.W r3, [r0, #1]!

Figure 20: Assembly code snippet of Bytewise-Storage of
decrypted message within message packing operation in
Saber KEM

Frodo KEM is based on the standard LWE problem and
hence operates upon matrices and vectors with elements
in Zq, instead of polynomials in Rq. While most schemes
encode one bit into a single coefficient/element (i.e) (mi →
x[i]), Frodo KEM encodes multiple message bits into a
single element and the number of encoded bits differs based
on the parameter set. For simplicity, we utilize Frodo640
for our analysis which encodes two coefficients into a single
element (i.e) (m2·i,m2·i+1 → x[i]) and the corresponding
mapping is done as follows: The integer ring Zq is divided

into four equal quadrants and each quadrant thus maps to
00, 01, 10 and 11 in increasing order starting from 0 upto
q − 1.

1 void key_decode ( uint16_t *out , const
uint16_t *in)

2 {
3 unsigned int i, j, index = 0;
4 uint16_t temp , maskex = 3;
5 uint16_t maskq = 0x7FFF;
6 uint8_t temp_bits ;
7 uint64_t tt;
8 for (i = 0; i < 8; i++)
9 {

10 tt = 0;
11 /* Extract 16 bits from 8 elements */
12 for (j = 0; j < 8; j++)
13 {
14 temp = (in[index] & maskq);
15 temp = (temp + 0x4000) >> 14;
16 /* Decode 2 bits */
17 temp_bits = (temp & maskex );
18 /* Aggregate the bits in tt */
19 tt |= ( temp_bits ) <<(2*j);
20 index ++;
21 }
22 for (j = 0; j < 2; j++)
23 {
24 /* Store 8 bits from tt to out */
25 out[2*i + j] = (tt � (8*j)) & 0xFF;
26 }
27 }
28 }

Figure 21: C code snippet of message decoding operation
in Frodo KEM

Refer Fig.21 for the C code snippet of the message
decoding operation where a given element of the encoded
message vector “in” is decoded into two bits, that are
aggregated in a temporary variable templong (line 16).
Subsequently, 16 message bits aggregated over eight such
iterations are then stored into the message byte array
“out” in memory (line 22 highlighted in red). We analyzed
the corresponding assembly implementation (Fig.22) and
observed that these 16 bits are stored using two successive
store instructions (line 7, 9 highlighted in red). Here again,
we observe Bytewise-Storage of the decrypted message in
memory, which can be targeting through our malleability
assisted message recovery attack. Please refer Appendix
D-A for the adaptation of our attack to Frodo KEM.

Appendix C
Cyclic Message Rotation in LWE/LWR-based

PKE/KEMs
Schemes such as NewHope, Kyber, Saber, LAC operate

over a anti-cyclic polynomial ring Rq = Zq[x]/(xn+ 1) and
some variants of Round5 operate over a cyclic polynomial
ring Rq = Zq[x]/(xn+1 − 1). The product of a polynomial
g with αi(x) = xi in the anti-cyclic polynomial ring results
in g′i = AntiRotr(g, i) which is an anti-cyclic rotation of



1 /* 16 message bits in tt computed in r3
*/

2 ORR.W r3 , r3 , r6 , lsl #12
3 ORR.W r3 , r3 , r2 , lsl #14
4 /* Push 8 bits of tt in r3 to r2 */
5 LSLS r2 , r3 , #8
6 /* Store r3 in Memory */
7 STRB.W r3, [r0, r4, lsl #1]
8 /* Store r2 in Memory */
9 STRB.W r2, [r5, r4, lsl #1]

Figure 22: Assembly code snippet of Bytewise-Storage of
decrypted message bits within message decoding operation
in Frodo KEM
the polynomial g by i positions. Thus, any given coefficient
g′i[k] = g[k′] where k′ = (n − i + k) mod n. Similarly,
cyclic rotation is observed when performing polynomial
multiplication in cyclic polynomial rings.
This rotation property can be used to construct hand-

crafted ciphertexts ct′i from a given ciphertext ct whose
corresponding messages m′i are cyclic rotations of the
original message m (i.e) m′i = Rotr(m, i). We refer to
it as the Rotate-Message property in this work. We illus-
trate this property using using the RLWE problem over
Rq = Zq[x]/(xn + 1), while the same can be adapted to
other similar rings as well.

The ciphertext ct contains two components - polynomials
u ∈ Rq and v ∈ Rq. The decryption procedure computes
x = (v − u × s) where s ∈ Rq is the long term secret
polynomial. The polynomial x is subsequently decoded to
retrieve the message m (i.e) m = P(x). Thus, the first
message bit m0 is computed as:

m0 = P(x[0])
= P(v[0]− us[0])

where us ∈ Rq is the product of polynomials u and s.
The decoding operation P() determines m0 based on the
distance of x[0] from the center C (i.e) |x[0]− C|. We can
create modified ciphertexts of the form ct′i = (v′i,u′i) where
u′i = (u×αi) = AntiRotr(u, i) and v′i = AntiRotr(v, i) with
αi = xi and subsequently, us′i = (u′i × s) = AntiRotr(us, i).
Thus, the resulting first bit m′0 is given as:

m′0 = P(v′i[0]− us′i[0])
= P(−v[k] + us[k]) (k = (n− i) mod n)
= P(−x[k])
= mk

Thus, bit mk is now present at the first position and
similarly other bits of the original message are rotated
accordingly. Thus, by changing the value of the rotational
constant i, one can perform arbitrary cyclic rotations of
the message. This property only applies to schemes such
as Kyber, Saber, NewHope, LAC and a few variants of
Round5 working over cyclic or anti-cyclic polynomial rings,
while Frodo KEM is not applicable since it is based on the
standard LWE problem.

Table III: Unique distinguishability of every candidate for
the pair (m0,m1) based on the perturbation of the hamming
weight of K′ and K when adding a constant P to v[0] in
Frodo KEM

K
HWd = HW(K′)− HW(K)

P (v′[i] = v[i] + P )
C C/2

0 +1 +1
1 +1 0
2 -1 +1
3 -1 -2

Appendix D
Targeted Bit Flips in Frodo KEM

We observe that Frodo encodes multiple bits into a single
element in Zq and the number of encoded bits depends
upon the parameter set. For simplicity, we utilize Frodo640
for our analysis which encodes two coefficients into a single
element and the mapping is done as follows: k is mapped to
k · C/2 for k ∈ [0, 3]. Alternatively, the mapping from bits
(m2·i,m2·i+1)→ x[i] is done as follows: 00→ 0, 01→ C/2,
10 → C and 11 → 3C/2. Thus, modifying v[i] affects to
message bits (m2·i,m2·i+1) which we denote together as K.
There are four possible values for K and hence adding C/2
to v[i] modifies K to K′ = (K + 1) mod 4. Similarly, one
can simultaneously modify multiple pairs of message bits
by altering the corresponding element of v.

A. Exploiting Ciphertext Malleability in Frodo KEM
As shown in Appendix B-D, Frodo performs Bytewise−

Storage of the message in memory. We focus our analysis
on recovery of the first two bits K = (m0,m1) of m[0].
We utilize the HW classifier to recover HW(m[0]) through
decryption of the target ciphertext ct. We modify v[0] of ct
to v′[0] = v[0] + P which modifies K while the remaining
6 bits of m[0] stay the same. Let the resulting modified
message be denoted as m′ and we recover HW(m′). Please
refer Tab.III for the perturbation in HW(K) which can
uniquely recover the value of K only using two adapted
ciphertext queries. Since the message bytes are stored
independently, an attacker can simultaneously recover
two bits from each message byte using two queries or
side-channel traces. Thus, complete message recovery can
be performed only using nine side-channel traces (eight
adapted ciphertext queries and one original ciphertext
query) assuming the presence of a perfect side-channel
HW classifier.


	Introduction
	Lattice Preliminaries
	Notation
	Learning With Errors/Rounding Problem (LWE/LWR)
	A Generic Framework for LWE/LWR based PKE/KEMs
	Security in the Chosen-Ciphertext Model

	Tools for Feature Selection in Side-Channel Analysis
	Test Vector Leakage Assessment (TVLA) gilbert2011testing
	Normalized Inter-Class Variance (NICV) gilbert2011testing


	Prior Works and Motivation
	Key Recovery Attacks
	Direct Key Recovery
	Message Recovery leading to Key Recovery

	Message Recovery Attacks
	Analyzing Determiner-Leakage Vulnerability:
	Looking Beyond Determiner-Leakage Vulnerability

	Side-Channel Analysis of the Message Decoding Operation
	SCA Vulnerability of Message Decoding Operation:
	Vulnerability Analysis
	Attack Methodology


	Single Trace Message Recovery Attack
	Adversary Model
	Experimental Setup
	Leakage Detection
	Two Phase Message Recovery Attack
	Pre-Processing Phase
	Exploitation Phase
	Experimental Results


	Ciphertext Malleability in LWE/LWR-based PKE/KEMs
	Targeted Flip of Message Bits
	Cyclic Message Rotation


	Generic Message Recovery Attacks for LWE/LWR-based PKE/KEMs
	Eliminating the Incremental-Storage Vulnerability
	Exploiting Ciphertext Malleability for Message Recovery
	Targeting Other Operations


	Attacking Protected Implementations
	Attacking the Shuffling Countermeasure
	Breaking Asiacrypt'20 Countermeasure for Message Encoding
	Breaking Asiacrypt'20 Countermeasure for Message Decoding

	Attacking the Masking Countermeasure

	Key Recovery From Recovered Messages
	Constructing Chosen Ciphertexts:

	Countermeasures
	Conclusion
	References
	Appendix A: Experimental Setup for SCA
	Appendix B: Side-channel Analysis of Message Storage in several LWE/LWR-based PKE/KEMs
	NewHope KEM
	Round5 PKE
	Saber KEM
	Frodo KEM

	Appendix C: Cyclic Message Rotation in LWE/LWR-based PKE/KEMs
	Appendix D: Targeted Bit Flips in Frodo KEM
	Exploiting Ciphertext Malleability in Frodo KEM


