
Modified Cache Template Attack on AES

Mahdi Esfahani1, Hadi Soleimany2, and Mohammad Reza Aref3

1 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Cyberspace Research Institute, Shahid Beheshti University, Iran

Email: h soleimany@sbu.ac.ir
3 Department of Electrical Engineering, Sharif University of Technology, Tehran ,

Iran

Abstract. CPU caches are a powerful source of information leakage.
To develop practical cache-based attacks, there is an increasingly need
to automate the process of finding exploitable cache-based side-channels
in computer systems. Cache template attack is a generic technique that
utilizes Flush+Reload attack in order to automatically exploit cache vul-
nerability of Intel platforms. Cache template attack on T-table-based
AES implementation consists of two phases including the profiling phase
and the key exploitation phase. Profiling is a preprocessing phase to
monitor dependencies between the secret key and behavior of the cache
memory. In addition, the addresses of T-tables can be obtained auto-
matically. In the key exploitation phase, most significant bits (MSBs) of
the secret key bytes are retrieved by monitoring exploitable addresses. In
this paper, we propose a simple yet effective searching technique which
accelerates the profiling phase by a factor of at most 64. To verify the
theoretical model of our technique, we implement the described attack
on AES. The experimental results showed the profiling phase runtime of
the cache template attack is around 10 minutes while our method speeds
up the running of this phase to around 9 seconds.
Keywords: cache memory, Flush+Reload attack, inclusive memory, AES,
cache template attacks, automation

1 Introduction

Cryptographic algorithms and protocols alone do not provide data security, but
they require a digital platform to run securely and efficiently. Evaluation of
the security of cryptographic algorithms against side-channel attacks is one of
the most important challenges in the field of applied cryptography. Unlike the
mathematical analyses which use structural weaknesses in cryptographic primi-
tives, side-channel attacks exploit the data leaking from the implementation of
cryptographic algorithms.

Timing variations during the run-time program is one of the most important
sources for the leakage in the timing channels. Memory accesses and the presence
of branch in programs are costly at the runtime. Thus, modern processors use
cache memories and branch predictor to reduce this cost. Such an optimization
at runtime leads to timing variations. Easy measurement and the lack of need

for specific hardware tool for measuring are among the specific features of timing
side-channel attacks. The cache-based side channel attacks require distinguishing
between cache hit and cache miss events by measuring the execution time of the
target cryptographic algorithm. The execution time difference between a cache
hit and cache miss leads to information leakage. Cache-based side-channel at-
tacks are classified into three categories of time-driven, trace-driven, and access-
driven attacks. In time-driven attacks [1, 2], the attacker does not have access
to the cache and he knows the capacity of the cache memory lines. Also, the
attacker should retrieve the secret key by only measuring the cryptosystem run-
time. In access-driven attacks, the attacker is able to evict or reload data from
the cache memory [3, 4, 5]. Access-driven attacks are classified into synchronous
and asynchronous categories. In synchronous attacks, the attacker is able to
trigger encryption or decryption but in asynchronous attacks, the activities of
the non-privileged adversary are performed in parallel to the victim [6, 7, 8].
In trace-driven attacks, the attacker observes a series of cache misses and cache
hits during encryption [9].

The first covert channel based on cache memory was proposed by Hu [10].
Kelsey believed attacks based on cache hit ratio in ciphers with large S-boxes are
possible [11]. The cache-based side-channel attacks on the implementations of
the ciphers with large lookups were considered by Tsunoo and the first results of
experimental attacks on the block ciphers such as DES were obtained [12]. The
aggregate number of cache hits and misses through indirect measurements of the
total execution time of the encryption process was used by Bernstein in order
to attack AES for the first time [13]. After that, several practical time-driven
cache attacks on AES have been proposed [14, 15]. In the access-driven attacks,
Percival et al. were the pioneers in the access-driven attacks on RSA and AES
[16]. Yarom and Falkner [17] proposed the Flush+Reload attack and successfully
applied the attack on the implementation of RSA. Ronen, Gillham, Genkin and
et al. [18, 19] performed the Flush+Reload attack on the targets via the last level
cache in the virtualized environments. After that, the Flush+Reload technique
has been applied on AES in order to retrieve all 16 bytes of AES in the native
and cross-VM environments, respectively [20, 21]. In the next year, Golmezoglu,
Inci, Irazoqui and et al. [22] improved the attack [21] by guessing the possible
candidates for the last round of AES which leads decreasing the noise of the
attack.

In most of the proposed attacks, the attacker needs to identify the vulnera-
bilities manually which can be a notable limitation. In response to this challenge,
Gross et al. proposed cache template attacks [23]. The attack makes use of the
Flush+Reload technique in order to automatically exploit cache-based vulner-
abilities in a program running on architecture with shared inclusive last-level
caches.

1.1 Our Contribution

The cache-template attack on the T-table based implementation of AES pro-
posed in [23] performs both profiling and exploitation phases automatically. The

2

high runtime of the profiling phase is an important limiting factor in the pro-
posed attack. Measuring the cache-hit ratio is the most expensive step in the
attack.

To increase the runtime speed of the profiling phase, we introduce a simple
yet efficient method in this paper. More precisely, we propose a more efficient
method to measure the cache-hit ratio for each address of the attacked binary
and construct the profile.

Outline. This paper is organized as follows. In Section 2, we provide background
information. We describe the cache template attacks in Section 3. In Section 4,
we give an overview of our technique and also discuss the experimental results.
Finally, we conclude in Section 5.

2 Background

2.1 CPU Caches

Cache is an essential feature of modern architecture and increases the speed of
memory access by keeping recently-accessed instructions and data. The cache
memory is organized as multiple cache sets, each consisting of a fixed number
of cache lines [24]. Each cache line is split into a tag, index and block offset.
The index is used to map specific memory locations to the sets of the cache
memory. The most significant bits of the address determine the tag which is
used to uniquely identify a specific cache line in a cache set. The block offset
identifies a particular location within a cache line.

In order to bridge the gap between data retrieval speed and processor speed,
modern processors exploit a hierarchy in the structure of the cache. Closest to
the core is the L1 cache which consists of separate parts for data and instructions
while other levels are unified. Down to the last-level cache (LLC), the cache level
gets larger and slower. the Last-level cache is generally shared between the cores.
In most of the Intel processors, the cache memory has three levels and LLC is
inclusive which means all data in the L1 and L2 caches are also present within
the L3 cache [25]. L3 cache is shared among all cores and the inclusive cache can
be utilized to apply Flush+Reload attack [22, 21, 26, 27] which will be described
in the next section.

2.2 Flush+Reload Attack

In Flush+Reload attack on the Intel system, an attacker flushes cache memory
using the clflush instruction. The Flush+Reload attack on cryptographic al-
gorithms makes use of the shared memory and libraries features in the L3 cache
between the attacker and the victim program. Flush+Reload works as follows:

1. The attacker maps shared library (or binary) into virtual address space and
accesses shared library for loading into the cache.

3

2. The attacker flushes shared library from the cache and waits for sufficient
time for the victim to use (or not use) the memory locations that he has
flushed.

3. After the victim has been scheduled, the attacker reloads the previously
flushed shared library and measuring the load time.

The main observation is that if the victim did not access to the data flushed in
the second step, the data is not available in the cache memory and consequently
the attacker measures high latency. There are two main reasons regarding that
the Flush + Reload method is more powerful than the previous access-driven
attacks. First, unlike previous attacks that based on the cache set, the attacker
has access to the cache line in the Flush+Reload attack which leads to increase
the accuracy. Second, the Flush + Reload attack is a cross-core attack as the L3
cache is shared between all processor cores. For this reason, in recent years, the
Flush+Reload method has been used in many cache-based attacks [28, 29, 30,
31, 32].

2.3 Memory Access in AES Implementations

Advanced Encryption Standard (AES) has been adopted as an encryption stan-
dard by the U.S. government [33]. AES has a substitution-permutation network
(SPN) structure with a fixed block size of 128 bits, and a key size of 128, 192
or 256 bits. In this paper, we consider an attack on AES-128. AES operates
on a 4 × 4 order array of bytes which termed the state matrix and most cal-
culations are done in GF (28). AES-128 has ten rounds. Each round composed
of four types of transformation namely, SubByte, ShiftRows, MixColumns and
AddRoundKey. Exceptionally, the last round does not have MixColumns.

In order to increase the speed and efficiency of software implementation,
different methods have been used in hardware and software. As the SubBytes is
the most expensive to implement, in the software implementation, the look-up
table is ideal to implement this operation. However, a well-known method T-
table implementation [33] has been adopted by several crypto-libraries such as
OpenSSL which precomputes the round function. In the T-table implementation,
four look-up tables are considered as follow:

T0(z) =


02.S(z)
S(z)
S(z)

03.S(z)

 , T1(z) =


03.S(z)
02.S(z)
S(z)
S(z)

 , T2(z) =


S(z)

03.S(z)
02.S(z)
S(z)

 , T3(z) =


S(z)
S(z)

03.S(z)
03.S(z)


(1)

Each table maps a byte z to a 32-bit value. Consequently, the size of the each
T-table is 1024 bytes. If each cache line size is 64 bytes, 16-cache lines are required
in order to store one T-table. Using the T-tables presented in Equation 1, one
can express the the first nine rounds of AES as it is described in Equation 2.

T0[s
(r)
0]⊕ T1[s

(r)
5]⊕ T2[s

(r)
10]⊕ T3[s

(r)
15]⊕ [k

(r)
0 k

(r)
1 k

(r)
2 k

(r)
3]‖

4

T0[s
(r)
4]⊕ T1[s

(r)
9]⊕ T2[s

(r)
14]⊕ T3[s

(r)
3]⊕ [k

(r)
4 k

(r)
5 k

(r)
6 k

(r)
7]‖

T0[s
(r)
8]⊕ T1[s

(r)
13]⊕ T2[s

(r)
2]⊕ T3[s

(r)
7]⊕ [k

(r)
8 k

(r)
9 k

(r)
10 k

(r)
11]‖

T0[s
(r)
12]⊕ T1[s

(r)
1]⊕ T2[s

(r)
6]⊕ T3[s

(r)
11]⊕ [k

(r)
12 k

(r)
13 k

(r)
14 k

(r)
15] (2)

where s
(r)
i represents the i-th byte of the state in the r−th round in which

0 ≤ r ≤ 9, 0 ≤ i ≤ 15. The final round cannot use the tables presented in
Equation 2 due to the absence of the MixColumns operation [34]. In standard
implementations, there are two strategies for implementing the final round. One
method is defining another table for the last round. Another method is using the
tables presented in Equation 1 partially. Since the final round comprises only
two operations on the state: SubBytes and ShiftRows, the values S(s912), S(s98),
S(s94), and S(s90) can be calculated by accesses to table T0 and using the second
element of T0. Similarly, other bytes can be calculated by accesses to tables T1,
T2 and T3. The implementation of the final round in the OpenSSl library version
1.1.0f uses the second method.

3 Cache Template Attacks

Cache template attack on the first round of the AES cipher was proposed in [23].
The attack consists of two phases: 1) profiling phase, and 2) key exploitation
phase. In the profiling phase, dependencies between the processing of the secret
key of the AES and specific cache accesses are determined. Also, in this phase
the attacker can accurately determine the start and end of the T-table AES
in libcrypto.so file of the OpenSSL through the cache hit ratio. In the key
exploitation phase, the most significant bits (MSBs) of the key of each byte is
retrieved. In what follows we briefly describe both phases.

3.1 Profiling Phase

The profiling phase measures the cache-hit ratios on specific addresses during
the execution of the AES. The cache-hit ratios are stored in a matrix which
has one column per encryption and one row per address. The matrix is namely
called cache template matrix. In order to compute cache template matrix, first,
AES encryption is performed to encrypt a plaintext in which a specific byte is a
constant and fixed value while other bytes can be arbitrary bytes randomly.

If each cache line size is 64 byte, then for each key byte ki, the upper 4
bits of ki can be profiled. We need to profile 16 addresses for each key byte ki.
For example, to determine the cache template matrix for each value of the key
byte k0, the attacker flush the content of the first address in the binary file and
perform AES with a fixed key k0. The first byte of plaintext p0 is chosen 0x00
and other bytes of plaintext, i.e (p1, · · · , p15) are randomly chosen. Then, the
content of the same address is accessed and the execution time is measured. If
the access time is less than the threshold can be interpreted as cache hit with
high probability. The attacker performs several times the process and compute

5

the cache-hit ratio on the same address. During the attack process, the cache-hit
ratio for each address of binary file libcrypto.so is computed. Also, the attack
process is repeated for different values {0x10, 0x20, ..., 0xF0} of the first byte of
plaintext p0.

Each column vector of the cache template matrix is called a profile. We denote
the j-th column vector of the matrix by −→pj which is a profile for a constant value
p0 = 16 · j where 0 ≤ j ≤ 15. Each row represents the address range of the
T-table. In other words, each matrix element represents the cache hit ratio for
a constant p0 and a T-table address.

We should remove all rows which contain redundant information from the
matrix. This can be done by pruning the rows which have a small difference
between the minimum and maximum cache-hit ratio. One should monitor all
addresses a64·i in the binary file libcrypto.so, during the execution of the
AES in order to find the start and end of the T-tables in libcrypto.so file and
create cache template matrix. For this reason, the runtime speed of the profiling
phase is slow.

3.2 Exploitation Phase

The attacker performs encryption several times for different chosen plaintexts
under an unknown key. 16-byte keys ki are attacked sequentially where 0 ≤ i ≤
15. For example to retrieve the upper 4 bits of k0, the plaintexts are chosen
randomly, except the 4 upper bits of p0 which are fixed to the same chosen value
used in the profiling phase.

For all addresses in the cache template matrix resulting from the profil-
ing phase, the cache activity is constantly monitored and cache hit ratio is

stored in a vector
−→
h . The attacker computes the similarity between

−→
h and

each profile −→pj from the cache template matrix using the mean square error

function S(
−→
h ,−→p j). Let us assume that for a profile j′, S(

−→
h ,−→p j′) has the min-

imum value. Then we can conclude that for the plaintexts with the fixed value
p0 ∈ {0x00, 0x10, 0x20, ..., 0xF0}, the corresponding address of T-table is ac-
cessed. The address of the T-table that is accessed and corresponding to p0 is
determined in the profiling phase. By considering the profile −→p j′ we can deter-
mine which cache line has most cache-hit ratio and consequently the four most
significant bits of <s0> can be computed. Finally, the four most significant bits
of k0 is exploited using Equation 3.

<k0> = <p0 ⊕ s0> (3)

The four most significant bits for other bytes of the secret key can similarly
be retrieved by utilizing the aforementioned method.

6

4 Our Attack Scenario

4.1 Modified Profiling Phase

In this section we present an effective method for monitoring the addresses of
binary file libcrypto.so which accelerates the profiling phase in the cache tem-
plate attack.

As it is described in Section 3.1, the distance between two addresses in the
monitoring step of profiling phase is considered as 64 bytes by the authors of
[23]. In the proposed approach, the attacker should consider all addresses in
the binary file with the distance of 64 bytes and repeat a described process for
each of them [23]. This approach requires a notable time. Increasing the distance
between the addresses during the search step can be an appropriate solution but
it is challenging as the address line of the first block of T0 cannot be found in
this way. On the one hand, restricting the distance between the addressed to 64
bytes slows down the speed. On the other hand, increasing the distance leads
to missing the start point as 4096 bytes are allocated for saving the lookups. In
order to overcome this challenge, we consider a combined approach.

Our approach consists of two steps. First, we trace addresses in which the
difference between two consecutive addresses is d bytes where d < 4096 and stop
the process when we could find an address in which the cache hit ratio is large
enough. In the second step, we trace the addresses in the backward direction
such that the distance between two consecutive addresses is 64 bytes and stop
the process when the cache hit ratio is small. The benefit of this approach is
obvious, as the process of finding the address of the first block of T0 can be
accelerated notably.

We assume a cache line size of 64 bytes. The process of modified profiling
phase for the upper 4 bits of k0 is described in Algorithm 1.

First we choose the byte p0 from the set {0x00, 0x10, 0x20, ..., 0xF0} and
generate other bytes of plaintext randomly. Then we consider addresses ai = d×i
for 0 ≤ i ≤ e/d where e denotes the address of the last byte in the binary file
B. We repeat the Flush+Reload process N times for each address ai and the
cache-hit ratio for ai is computed and saved as L[p0][ai]. The threshold used
in Algorithm 1 denotes the minimum cache miss cycles which depends on the
processor. We stop the process if the cache-hit ratio for a specific astart = ai is
larger than N/2.

In the second step, we consider the addresses âi = (astart − 1024)64× i. For
each address, we repeat the Flush+Reload process N times and compute the
cache-hit ratio L[p0][âi] and construct the cache template matrix M [p0][âi]. We
stop the process when the cache-hit ration for âi is less than N/2.

4.2 Experimental Results

The benefit of our method and cache template attack, compared to existing cache
attacks against AES [22, 21], is that they are fully automated. In addition, the
cache template attack requires extremely low data (only 16–160 encryptions).

7

Algorithm 1 Profiling Phase Algorithm for k0
Input: Binary file B, distance d where d < 4096
Output: Cache template matrix M for k0
Map libcrypto.so file into memory
foreach p0 ∈ {0x00, 0x10, 0x20, ..., 0xF0} do

for (i = 0, i + +, i ≤ e/d) do
ai = d× i
for (j = 1, j + +, j < N) do

p1 ‖ p2 ‖ ... ‖ p15=rand()
P ←− (p0 ‖ p1 ‖ p2 ‖ ... ‖ p15)
Flush (ai)
AESk(P)
t1 ←− start time
Reload (ai)
t2 ←− end time
tp0 = tp0 + t2 − t1
cp0 = cp0 + 1
dp0 = tp0/cp0
if (dp0 < threshold) then

L[p0][ai] + +
end

end

end
if L[p0][ai] ≥ N/2 then

astart = ai break
end

end
foreach (p0 ∈ {0x00, 0x10, 0x20, ..., 0xF0}) do

for (i = 0, i + +, i ≤ e) do
âi= (astart − d) + 64× i
for (j = 1, j + +, j ≤ N) do

p1 ‖ p2 ‖ ... ‖ p15=rand()
P ←− (p0 ‖ p1 ‖ p2 ‖ ... ‖ p15)
Flush (âi)
AESk(P)
t1 ←− start time
Reload (ai)
t2 ←− end time
tp0 = tp0 + t2 − t1
cp0 = cp0 + 1
dp0 = tp0/cp0
if dp0 > threshold then

L[p0][âi] + +
end

end

end
if L[p0][âi] < N/2 then

break
end
M [p0][âi] = L[p0][âi]

end

8

Once the binary is deployed on the target system, it performs both profiling
and exploitation phase automatically and returns the key byte candidates to
the attacker. Also in contrast with the attacks [22, 21], in profiling phase of the
cache template attack, the attacker does not need prior knowledge about the
addresses of the T-table elements and he can accurately determine the start and
end of the T-table implementation in the binary file.

In the profiling phase proposed in the original paper, to determine the cache
template matrix M one key byte, the attacker should construct 16 profiles. To
construct each profile, Flush+Reload technique is performed for the addresses ai
where 0 ≤ i ≤ d e+1

64 e and each time repeated under N encryptions. Consequently,
the the time complexity of the original method is 16 × d e+1

64 e × N where e
denotes the address of the last byte in the binary file and N denotes the number
of required encryptions. In our approach, the time complexity of the profiling
phase is approximately 16 · e+1

d ×N +16×N where d is the distance between two
consecutive addresses. The time complexity is dominated by the term 16· e+1

d ×N .
Consequently, we expect our approach performs faster than original proposal by
a factor of d

64 where d < 4096.
To verify the theoretical model, we implemented our approach and the origi-

nal method which was proposed in [23]. The experimental results are summarized
in Table 1. We tested our approach on the openSSL library (version 1.1.0f) under
the Ubuntu 16:04 operating system performed in the Intel corei5-2.50 GHz.

In our experience, we consider different values for the distance between two
consecutive addresses which is denoted by d. As it can be seen from Table 1,
the profiling phase runtime of the cache template attack is around 10 minutes
while our method speeds up the running of this phase to around 39, 23, 13
and 9 seconds for d = 1024, 2048, 3072 and 4096 bytes, respectively. Therefore,
our approach is approximately 16, 32, 48 and 64 times faster than the original
proposal for d = 1024, 2048, 3072 and 4096 bytes, respectively.

Table 1. Comparison results for the runtime speed (second) of the attacks

Number of
the encryption

attack[23]
our attack
(d = 1024)

our attack
(d = 2048)

our attack
(d = 3072)

our attack
(d = 4096)

10 9.021 s 0.560 0.275 0.189 0.145

50 33.773 s 2.128 1.062 0.711 0.527

100 72.927 s 4.362 2.028 1.354 1.017

500 364.830 s = 6min 19.650 9.838 6.778 4.924

1000 681.916 s = 10min 39.343 23.090 13.216 9.832

5 Conclusion

Cache template attack is a method to automate the process of finding exploitable
cache vulnerabilities. In this paper, we revisited the cache template attack on

9

T-table based implementation of AES and propose an efficient technique to
speed up the process of profiling phase. Finally, we implemented our approach to
experimentally validate the theoretical model. The experimental results confirm
that our approach is faster than the original method.

Acknowledgments. This work was supported in part by the Iran National
Science Foundation under Grant 96-53979 and in part by the Iran Telecommu-
nication Research Center.

10

Bibliography

[1] Buch, D.H. and Bhatt, H.S. ”Trinetra: a solution to handle cross-VM time-
driven attack”, SN Applied Sciences., 2(4), pp. 1–12 (2020).

[2] Yarom, Y. Genkin, D. and Heninger, N. ”CacheBleed: a timing attack on
OpenSSL constant-time RSA”, Journal of Cryptographic Engineering., 7(2),
pp. 99–112 (2017).

[3] Götzfried, J. Eckert, M. Schinzel, S. and et al. ”Cache attacks on Intel SGX”,
Proceedings of the 10th European Workshop on Systems Security., pp. 1–6
(2017).

[4] Xinliang, M. Liehui, J. and Rui, C. ”Survey of Access-Driven Cache-Based
Side Channel Attack”, Journal of Computer Research and Development.,
57(4), pp. 824 (2020).

[5] Schwarz, M. ”Software-based Side-Channel Attacks and Defenses in Re-
stricted Environments”, (2019).

[6] Chen, S. Liu, F. Rui, C. and et al. ”Leveraging hardware transactional mem-
ory for cache side-channel defenses”, Proceedings of the 2018 on Asia Con-
ference on Computer and Communications Security., pp. 601–608 (2018).

[7] Chattopadhyay, S. Beck, M. Rezine, A. and et al. ”Quantifying the informa-
tion leakage in cache attacks via symbolic execution”, ACM Transactions on
Embedded Computing Systems (TECS)., 18(1), pp. 1–27 (2019).

[8] Lapid, B. and Wool, A. ”Navigating the Samsung TrustZone and Cache-
Attacks on the Keymaster Trustlet”, European Symposium on Research in
Computer Security., pp. 175–196 (2018).

[9] Ge, Q. Yarom, Y. Cock, D. and et al. ”A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware”, Journal of Cryp-
tographic Engineering., 8(1), pp. 1–27 (2018).

[10] Hu, W.M. ”Lattice scheduling and covert channels”, Proceedings 1992 IEEE
Computer Society Symposium on Research in Security and Privacy., pp. 52–
61 (1992).

[11] Kelsey, J. Schneier, B. Wagner, D. and et al. ”Side channel cryptanalysis of
product ciphers”, European Symposium on Research in Computer Security.,
pp. 97–110 (1998).

[12] Tsunoo, Y. Saito, T. Suzaki, T. and et al. ”Cryptanalysis of DES imple-
mented on computers with cache”, International Workshop on Cryptographic
Hardware and Embedded Systems., pp. 62–76 (2003).

[13] Bernstein, D.J. ”Cache-timing attacks on AES”, (2005).
[14] Acıiçmez, O. Schindler, W. and Koç, Ç.K ”Cache based remote timing

attack on the AES”, Cryptographers’ track at the RSA conference., pp. 271–
286 (2007).

[15] Neve, M. Seifert, J. and Wang, Z. ”A refined look at Bernstein’s AES side-
channel analysis”, Proceedings of the 2006 ACM Symposium on Information,
computer and communications security., pp. 369–369 (2006).

[16] Percival, C. ”Cache missing for fun and profit”, BSDCan., (2006).

[17] Yarom, Y. and Falkner K. ”FLUSH+ RELOAD: a high resolution, low
noise, L3 cache side-channel attack”, 23rd {USENIX} Security Symposium
({USENIX} Security 14)., pp. 719–732 (2014).

[18] Ronen, E. Paterson, k.G. and Shamir, A. ”Pseudo constant time imple-
mentations of TLS are only pseudo secure”, Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security., pp. 1397–
1414 (2018).

[19] Ronen, E. Gillham, R. Genkin, D. and et al. ”The 9 Lives of Bleichenbacher’s
CAT: New Cache ATtacks on TLS Implementations”, 2019 IEEE Symposium
on Security and Privacy (SP)., pp. 435–452 (2019).

[20] Inci, M.S. Gulmezoglu, B. Irazoqui, G. and et al. ”Cache attacks enable
bulk key recovery on the cloud”, International Conference on Cryptographic
Hardware and Embedded Systems., pp. 368–388 (2016).

[21] Irazoqui, G. Inci, M.S. Eisenbarth, T. and et al. ”Wait a minute! A fast,
Cross-VM attack on AES”, International Workshop on Recent Advances in
Intrusion Detection., pp. 299–319 (2014).

[22] Gülmezoğlu, B. Inci, M.S. Irazoqui, G. and et al. ”A faster and more realistic
flush+ reload attack on AES”, International Workshop on Constructive Side-
Channel Analysis and Secure Design., pp. 111–126 (2015).

[23] Gruss, D. Spreitzer, R. and Mangard, S. ”Cache template attacks: Au-
tomating attacks on inclusive last-level caches”, 24th {USENIX} Security
Symposium ({USENIX} Security 15)., pp. 897–912 (2015).

[24] Ge, Q. Yarom, Y. Li, F. and et al. ”Contemporary processors are leaky and
there is nothing you can do about it”, The Computing Research Repository.
arXiv., (2016).

[25] Gruss, D. Maurice, C. and Mangard, S. ”Rowhammer. js: A remote
software-induced fault attack in javascript”, International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment., pp. 300–
321 (2016).

[26] Irazoqui, G. and Guo, X. ”Cache Side Channel Attack: Exploitability and
Countermeasures”, Black Hat Asia., 2017(3), (2017).

[27] Saileshwar, G. and Qureshi, M.K. ”Lookout for Zombies: Mitigating Flush+
Reload Attack on Shared Caches by Monitoring Invalidated Lines”, arXiv
preprint arXiv:1906.02362., (2017).

[28] Lipp, M. Schwarz, M. Gruss, D. and et al. ”Meltdown”, arXiv preprint
arXiv:1801.01207., (2018).

[29] Schwarz, M. Schwarzl, M. Lipp, M. and et al. ”Netspectre: Read arbitrary
memory over network”, European Symposium on Research in Computer Se-
curity., pp. 279–299 (2019).

[30] Kocher, P. Horn, J. Fogh, A. and et al. ”Spectre attacks: Exploiting spec-
ulative execution”, 2019 IEEE Symposium on Security and Privacy (SP).,
pp. 1–19 (2019).

[31] Minkin, M. Moghimi, D. Lipp, M. and et al. ”Fallout: Reading kernel writes
from user space”, arXiv preprint arXiv:1905.12701., (2019).

[32] Seddigh, M. and Soleimany, H. ”Enhanced Flush+ Reload Attack on AES”,
ISeCure., 12(2), (2020).

12

[33] Daemen, J. and Rijmen, V. ”The design of Rijndael: AES-the advanced
encryption standard”, Springer Science & Business Media., (2013).

[34] Rebeiro, C. Mukhopadhyay, D. and Bhattacharya, S. ”Timing channels in
cryptography: a micro-architectural perspective”, Springer., (2014).

13

