
Cryptonite: A Framework for Flexible Time-Series Secure
Aggregation with Online Fault Tolerance

Ryan Karl

University of Notre Dame

rkarl@nd.edu

Jonathan Takeshita

University of Notre Dame

jtakeshi@nd.edu

Taeho Jung

University of Notre Dame

tjung@nd.edu

Abstract
Private stream aggregation (PSA) allows an untrusted data aggre-

gator to compute statistics over a set of multiple participants’ data

while ensuring the data remains private. Existing works rely on a

trusted party to enable an aggregator to achieve offline fault toler-

ance, but in the real world this may not be practical. We develop

a new framework that supports PSA in a way that is robust to

online user faults, while still supporting a strong guarantee on each

individual’s privacy. We first must define a new level of security in

the presence of online faults and malicious adversaries because the

existing definition does not account for online faults. After this we

describe a general framework that allows existing work to reach

this new level of security. Furthermore, we develop the first proto-

col that provably reaches this level of security by leveraging trusted

hardware. After we develop a methodology to outsource computa-

tionally intensive work to higher performance devices, while still

allowing for strong privacy, we reach new levels of scalability and

communication efficiency over existing work seeking to support

offline fault tolerance, and achieve differential privacy.

Keywords
Secure aggregation, Time-series aggregation, Fault tolerance

1 Introduction
Third-party analysis on private records is becomingmore important

due to widespread data collection for various analysis purposes in

business, government, academia, etc.. This can be observed in many

real life applications, such as the Smart Grid, Social Network Ser-

vices, Location Based Services, etc.[15]. Given the great abundance

of data in modern times, the publication, sharing, and analysis of

user-generated data has become common, and data analysis frame-

works must be capable of processing queries over millions and

sometimes billions of devices with little to no latency. While exist-

ing service providers support this over unencrypted data, data in its

plaintext form often contains private information about individuals,

and the publication of such data may violate legal agreements such

as HIPPA, GDPR, etc.. Current best practices generally advocate

for the sanitization of the sensitive information in the publication

[21] (which may bring distortion to the data which leads to accu-

racy loss), or regulations to allow for the restriction of the usage of

the published data [28] (which solely relies on legal or voluntary

agreements, but does not provide any technical safeguards).

With such approaches, even if data recipients do not misbehave,

they can still be vulnerable to third party attacks, and the utility

of the data may be limited. A number of previous works focus on

anonymizing the data [33] to protect data owners’ identities, but

this approach cannot provably guarantee individual privacy. In this

paper, we focus on protecting the confidentiality of the data itself.

Our secure aggregation scheme allows a third-party aggregator

to receive encrypted values from multiple parties and compute an

aggregate function without learning anything else, except what is

learnable from the aggregate value. It is well known that existing

work has proposed to support such privacy preserving computation

(secure multi-party computation, functional encryption, perturba-

tion, etc.), but existing solutions fail to achieve one or more goals:

1) allowing for dynamically updating user groups between each

aggregation, 2) low communication and computation overhead, 3)

allowing for zero accuracy loss in secure aggregation, 4) tolerance

against online faults during the aggregation without placing trust

on the aggregators. Within the context of many applications (A/B

Testing, Crowd Sensing, Smart Metering, Federated Learning, etc.),

all four of these requirements must be satisfied, because 1) user

groups change frequently in real-world applications (e.g., market-

ing analysts often need to run tests over multiple varying user

groups), 2) the analysis may need to be run over millions or even

billions of users efficiently to discover trends within big data, 3) any

amount of noise or accuracy loss in the secure aggregation (except

what may be needed for differential privacy) can greatly harm the

predictive power of market research, and 4) failure of one or more

participants during the aggregation (i.e., online faults), which will

occur in large-scale studies, should not prevent analysts from con-

ducting the analysis. In this paper, we present a novel framework,

which allows a third-party to obliviously compute an aggregate

analysis on private records provided by a group of users. While

there are many existing works that build ad-hoc solutions for this

purpose that generally focus on providing only one or a few of the

goals above, such as privacy, efficiency, or practical benefits such

as permitting a user to drop in and out, our framework generalizes

data aggregation without sacrificing speed or security, and more

importantly, it introduces tolerance against online faults to existing

secure aggregation primitives without trusting the aggregator.

This is a challenging problem to solve in the context of non-

interactive protocols with just one round of online communication,

as correct function output must be guaranteed with only one round

without sending additional messages to support recovery. As a

result, these protocols are by their nature vulnerable to the residual

function attack in the standard model, because a party that does not

receive all of the users’ encrypted inputs must be able to simulate

acquiring such inputs, in order to complete the calculation. They

must not have the opportunity to repeatedly evaluate the function

locally, while varying some inputs and fixing the inputs of others,

to deduce the values entered by the participants. Existing works

that support offline fault tolerance simply allow the aggregator to

evaluate aggregation multiple times, and this presents a privacy

risk if the data is not sufficiently protected with privacy preserving

noise.

XXXX, XX 202Y, ZZZZ Karl et al.

We meet all of the above requirements, as our overall goal is to

achieve a protocol that supports theoretic guarantees, while still be-

ing useful to market analysts. Our framework was designed with a

special emphasis on deployability in the real world, and as such we

are the first to design a system that allows for online fault tolerance

but still supports the full privacy of users’ data without relying

on a trusted aggregator or trusted entity to allow for recovery. In

this context, online fault tolerance refers to the ability to recover

from faults dynamically “on the fly", whereas offline fault tolerance

requires that additional messages must be sent to support recov-

ery. Existing work allows an aggregator to recover some partial

data from the function they were to compute, but does so by re-

lying on sending a message to a trusted entity or aggregator to

provide sensitive information that could harm an individual user’s

privacy if released publicly [9, 34]. Our scheme does not rely on

any trusted entities or aggregators to support online fault tolerance,

thus cutting down on communication, while also supporting partial

aggregation among the surviving participants (and thus achieving

the online fault tolerance), to maximize utility for the aggregator.

Our scheme can support secure data aggregation over millions or

even billions of devices without suffering from the high overhead

traditionally associated with computing cryptographic operations

over large numbers of devices by relying on a Trusted Execution

Environment (TEE) [15]. Our experiments show the computational

performance of our framework is comparable to existing works,

and can remove up to two communication rounds over existing

works [10, 14] seeking to support offline fault tolerance, while pro-

viding semantic security in the presence of stronger adversaries.

Our contributions for this paper are as follows:

(1) We identify the trust issues of aggregators when online fault

tolerance needs to be achieved in the secure aggregation

without extra interactions, and define a new, stronger level

of privacy in the presence of online faults and malicious

aggregators – fault-tolerable aggregator obliviousness.
(2) We describe a general framework that allows existing work

to reach this stronger level of security, by leveraging trusted

hardware in the context of secure aggregation.

(3) We develop the first protocol that provably reaches this level

of privacy using trusted hardware. Later we minimize the

performance impact from trusted hardware, which is neces-

sary for this level of security, by developing a methodology

to outsource computationally intensive work to high per-

formance hardware, while still allowing for strong privacy

guarantees.

(4) We demonstrate new levels of scalability and communication

efficiency over existing work that supports offline fault toler-

ance. Our code is public and available at: https://anonymous.

4open.science/r/053b49b8-8e83-4a39-ba78-8a0453feca2e/.

Note that this scheme can be easily extended to support a wider

variety of functions, such as min, max, average, etc. [14, 36].

2 Related Work
Early Work: The first work on aggregating encrypted data was

done in the early 2000s [29] and further refined later [8]. The au-

thors propose to use homomorphic encryption schemes to enable

arithmetic operations over ciphertexts that need to be transmitted

in a multi-hop manner. Although interesting from an application

standpoint, it has restricted usability, due to its weak security level.

Our own work is most similar to the problem of private stream

aggregation, introduced by Shi et al. and Rastogi et al. [20, 21].

Dynamic User Groups: More recently, researchers have built

on their work [4, 13, 27, 31, 34], as there has been an interest in

constructing systems that allow for dynamic user groups and/or

offline fault tolerance. One of the first works explicitly interested in

supporting offline fault tolerance [9] used a novel approach based on

a binary interval tree technique to reduce the communication cost

for joins and leaves. However, their scheme has a high aggregation

error, which leads to the poor utility of the aggregate. Later work

[34] leveraged a ring based construction to improve efficiency, but

had to rely on interacting with a trusted entity to recover from

faults, which can lead to high communication overhead. Similar

work explored outsourcing expensive computations to the cloud

[14], within the context of secure health analytics, to support a

wider variety of functions instead of just sum, such as min, average,

etc.. However, they still rely on trusted entities to achieve offline

fault tolerance.

Improved Fault Tolerance: Following this, a technique [24]

for buffering future ciphertexts was used to reduce communication

overhead, which was later made more efficient and scalable [5, 12].

A security-enhanced data aggregation scheme [10] with offline

fault tolerance based on Paillier’s encryption scheme has been

proposed. Unfortunately, internal attacks are not considered in the

above data aggregation schemes thereby allowing internal attackers

to access the consumers’ data. This was later improved [19] by

leveraging lifted El-Gamal encryption to improve performance, and

authentication methods were added for message integrity, although

the vulnerability to internal attackers was left as an open problem.

Other work [2, 3] explored using Elliptic curve cryptography to

improve the overhead of communication and computation, while

still supporting offline fault tolerance, but this requires that some

trusted, independent entities be communicated with each round to

recover from faults. Note that there has been some orthogonal work

investigating the online fault tolerance of users, where privacy

is not the main focus of the research effort [1, 16]. All of these

schemes fail to achieve one or more of our four goals stated above.

We summarize our findings in work supporting offline/online fault

tolerance in Table 1.

3 Background

Our goals in designing this protocol are to 1) enable computations

at aggregate levels while still protecting any individual level data,

2) maximizing user’s trust in the protocol by requiring that any

servers used to facilitate the aggregation not be trusted by the users.

Any system seeking to support such goals should provide a formal

privacy analysis to demonstrate that the mechanism achieves the

above privacy goals. For our adversary model, we assume that the

users and the aggregator are untrusted and may behave in a fully

malicious manner. Also, the aggregator and/or any subset of users

may collude with eachother to attempt to infer information about

other users’ private data. Note that malicious participants can lie

about their values to pollute the final output. Although these attacks

are outside the scope of the paper, it should be said that one possible

https://anonymous.4open.science/r/053b49b8-8e83-4a39-ba78-8a0453feca2e/
https://anonymous.4open.science/r/053b49b8-8e83-4a39-ba78-8a0453feca2e/

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Online Fault Tolerance XXXX, XX 202Y, ZZZZ

Table 1: Table of Related Work; 𝑛: the total number of participants, 𝑑: a parameter smaller than 100 in most practical settings
in the scheme, 𝑘: a security parameter, 𝐵: the size of the future ciphertext buffer,𝑤 : the number of participant failures,𝑚: the
correct message, �̂�: the noisy message

Scheme Dynamic

join/leave

Fault tol-

erance

Secure against resid-

ual function attack

Trusted entity not

needed for recovery

Noninteractive

recovery

Comm. cost for

join and leave

Comm. cost per

period

Aggregation error

RN [20] No - Yes - No − 𝑂 (1) 𝑂 (1)
SCRCS [21] No No Yes - - 𝑂 (𝑛),𝑂 (𝑛) 𝑂 (1) 𝑂 (1)
AC [13] Yes Partially No No No 𝑂 (𝑛),𝑂 (1) 𝑂 (1) 𝑂 (1)
Binary [9] Yes No No No Yes 𝑂 (𝑛),𝑂 (𝑛) 𝑂 (log𝑛) �̃�

(
(log𝑛)1.5 ·

√
𝑤 + 1

)
LC [34] Yes No Yes - - 𝑂 (𝑑),𝑂 (𝑑) 𝑂 (1) 𝑂 (1)
WMYR [24] Yes No No No Yes 𝑂 (𝑘𝐵),𝑂 (𝑘𝐵) 𝑂 (1) 𝑂 (

√
𝑤 + 1)

CMZ [12] Yes Yes No No Yes 𝑂 (𝐵),𝑂 (𝐵) 𝑂 (1) 𝑂 (
√
𝑤 + 1)

PDAFT [10] Yes Yes No No No 𝑂 (𝑘𝐵),𝑂 (𝑘𝐵) 𝑂 ((2𝑛)𝑑) 𝑂 (1)
BL [5] No Yes No No No 𝑂 (𝑛),𝑂 (𝑛) 𝑂 (𝑘𝑑) 𝑂 (

√
𝑤 + 1)

Ni et al. [19] No Yes No No Yes 𝑂 (𝑛),𝑂 (𝑛) 𝑂 (𝑘𝑑) 𝑂 (1)
Han et al. [14] Yes Yes No No No 𝑂 (𝑛),𝑂 (𝑛) 𝑂 (2𝑘 (𝑝 + 1)) 𝑂 (1)
BL [3] Yes Yes No No No 𝑂 (𝑘𝐵),𝑂 (𝑘) 𝑂 (𝑘𝑑) 𝑂 (

√
1

𝑑

∑𝑑
𝑡=1
(�̂� −𝑚)2)

DDPFT [2] No Yes No No No 𝑂 (𝑛),𝑂 (𝑛) 𝑂 ((2𝑛)𝑑) 𝑂 (1)
Ours Yes Yes Yes Yes Yes 𝑂 (𝑑) ,𝑂 (1) 𝑂 (1) 𝑂 (1)

defense is for each user to use a non-interactive zero-knowledge

proof to prove the encrypted data is within a valid range.

3.1 Applications
There are many useful applications of our work. For private A/B

testing, to support better privacy guarantees for users, our system

is designed so that when the reporting origin wants to learn ag-

gregate, cross-site information, it receives encrypted reports from

multiple browsers. After receiving the encrypted reports, the re-

porting origin can use the encrypted reports to learn the private

aggregate results for the data. Consumers of this service’s output

might include ad-tech, analytics, and other companies with similar

use cases. Our method could be used by new web platform APIs

that wish to expose some amount of cross-site data in a privacy-safe

way without using persistent tracking IDs like third party cookies.

In the context of crowd sensing, many common real-life appli-

cations in the big data industry can be posed as a problem of the

third-party aggregation of time-series data, i.e. stream aggregation.

Specifically, applications based on statistical analysis, especially

in marketing and healthcare analysis, often involve the collection

of user-generated data periodically for calculating aggregate func-

tions such as average, standard deviation, sum, etc.. Protecting data

privacy during aggregation is of paramount importance.

Within Deep Learning (DL) our work can be extended to calcu-

late the average function, which has become a core component of

federated learning, a distributed paradigm of DL, where a series

of parameters need to be aggregated. Due to the data security and

individual privacy concerns involved in the collection of consumer

datasets, it is desirable to apply privacy-preserving techniques to

allow third-party aggregators to only learn aggregation outcomes.

3.2 Private Aggregation
The field of Private Stream Aggregation seeks to solve the following

problem. Suppose an aggregator wishes to calculate the sum of 𝑛

users periodically. Let 𝑥
(𝑡)
𝑖
(where 𝑥 (𝑡)

𝑖
∈ {0, 1, . . . ,Δ}) denote the

data of user 𝑖 in aggregation period 𝑡 (where 𝑡 = 1, 2, 3, . . .). Then,
the sum for time period 𝑡 is

∑𝑛
𝑖=1

𝑥
(𝑡)
𝑖

. In some scenarios, in each

time period 𝑡, each user 𝑖 adds noise 𝑟
(𝑡)
𝑖

to their data 𝑥
(𝑡)
𝑖
, encrypts

the noisy data 𝑥
(𝑡)
𝑖

= 𝑥
(𝑡)
𝑖
+ 𝑟 (𝑡)

𝑖
with their key 𝑘

(𝑡)
𝑖

and sends the

ciphertext to the aggregator. The aggregator can then use their

own key, 𝑘
(𝑡)
0

to decrypt the noisy sum

∑𝑛
𝑖=1

(
𝑥
(𝑡)
𝑖
+ 𝑟 (𝑡)

𝑖

)
. In this

scenario, 𝑘
(𝑡)
𝑖

and 𝑘
(𝑡)
0

change in every time period. Note that we

focus on the aggregation scheme over the same time period and

omit the 𝑡 to save space when the context is clear. We also do not

add noise 𝑟
(𝑡)
𝑖

for simplicity of presentation. We assume that every

user communicates with the aggregator via a wireless connection,

but note that in our setup there is no need for users to communicate

with each other. We assume that time is synchronized among nodes.

Generally speaking, for a private aggregation protocol to be secure,

it must achieve three properties: 1) the aggregator cannot achieve

any meaningful intermediate results (i.e. they learn the final noisy

sum but nothing else), 2) the scheme is aggregator oblivious (a

party without the aggregator learns nothing), and 3) the scheme

achieves differential privacy. Note that requirement 3 is needed in

some contexts where it is assumed the accurate sum may leak user

privacy in presence of side information. Thus, the aggregator is

only allowed to obtain a noisy sum (the accurate sum plus noise).

3.3 Fault Tolerance

Offline fault tolerance in this context is the property that in the

event that a user or group of users do not send data to the aggrega-

tor, either due to a natural failure or a malicious act, the aggregator

can still recover a partial sum over the remaining users’ messages

successfully sent. There are primarily two existing paradigms to

achieve this property. In the first, the aggregator communicates

with a trusted entity (note that we are not referring to schemes

that rely on one-time access to a trusted key dealer during setup,

but refer to those that require communicating with a trusted entity

each round to recover from a fault) to notify them of the fault, and

the trusted entity provides the inputs to the aggregator to allow for

the successful completion of the protocol. Since the trusted entity

knows the secrets assigned to every node, if some nodes fail to

submit data, the aggregator asks the dealer to submit synthetic data

XXXX, XX 202Y, ZZZZ Karl et al.

on behalf of those failed nodes. This method incurs a round trip

communication overhead between the key dealer and the aggrega-

tor. In the second paradigm, users buffer their inputs that they send

to the aggregator. Essentially, in this method users send a set of

ciphertexts corresponding to several timestamps to the aggregator

(generally the ciphertexts correspond to encryptions of zero). In

this way, if a user fails to communicate in the future, the aggregator

can utilize these ciphertexts to complete the aggregation and can-

cel out the noise needed to recover the partial sum. This method

increases the overall message size by a factor of how many rounds

the user buffers their input (to buffer for 2 rounds, the size of the

message is twice as large, etc.). There has been some work that tries

to solve this problem by allowing users to communicate with each

other if a fault is detected to “reset" [25, 26], but we are interested

in developing better approaches that do not require interaction

among users, as this can lead to significant overhead and scalability

issues. Note, we can trivially apply their techniques if necessary to

our own work.

4 New Notion of Security
Current aggregation schemes generally follow the 𝜋 framework

[21], shown in Figure 1. To achieve a meaningful level of secu-

rity, current aggregation schemes strive to guarantee aggregator
obliviousness which is informally defined as follows:

Definition 1 (Aggregator Obliviousness). Assuming that
each honest participant 𝑝𝑖 only encrypts once in each time period, a
secure aggregation scheme achieves aggregator obliviousness if: 1) the
aggregator can only learn the final aggregate for each time period,
2) without knowing the aggregator key, no one can learn anything
about the encrypted data, even if several users collude, and 3) if the
aggregator colludes with a subset of the users, or if a subset of the
encrypted data has been leaked, the aggregator learns no additional
information about the honest participants’ individual data.

While this definition is useful in schemes that do not consider

online fault tolerance, from a practical standpoint, it becomes less

useful once faults are introduced to a system. By definition, to

recover from a fault, an aggregator must have some mechanism to

generate synthetic input from any user to complete the calculation.

Clearly in the event a user fails to respond, if the aggregator wants

to calculate a partial sum, they must have some way to simulate

receiving the user’s response. This is because secure aggregation

schemes must encode data in a way such that no partial information

can be gained unless every participant’s key is used to decrypt the

partial aggregation. However, this directly violates the first criterion

of aggregator obliviousness, since to satisfy online fault tolerance,

an aggregator must then utilize this mechanism to recover the

information needed to compute the partial aggregate.

It is important to note that schemes that incorporate differential

privacy into their construction are only minimally impacted by this

attack. Essentially, since the informal goal of differential privacy

is to guarantee that an adversary viewing the output of a function

cannot tell if a particular individual’s information was used in the

computation, if this attack is executed, the most an attacker can

learn is the noisy plaintext value the user submitted that has already

been masked with differentially private noise. Although the amount

of privacy afforded to the user is heavily dependent on the sampling

techniques used and the privacy budget allocated [11], we are more

interested in the case where users do not apply differentially private

noise to their inputs. Many applications cannot afford to allow users

to add such noise, as the significant loss in data accuracy prevents

the subsequent data analysis from having any utility to analysts.

We are primarily interested in investigating how to design a system

where users can still achieve a high level of security guarantees with

their data, even if no differentially private noise is added. In such a

scenario, existing schemes generally lose their security guarantees

once the differentially private noise is removed from the scheme.

This is because, after an adversary completes the residual function

attack, they can learn the users’ plaintext input in the clear.

Existing works try to avoid this issue by introducing a trusted

entity that can assist the untrusted aggregator with completing the

protocol. This is facilitated by allowing the aggregator to request

the trusted entity provide the keys or encrypted ciphertexts the

user was supposed to send (of 0) to the aggergator so that they

can complete the calculation and determine the partial sum. While

there may be scenarios where this adversary model is acceptable,

in the real world, it may be difficult or even impossible to find such

a trusted entity (arguably, if such an entity exists it may be easier

for users to send their plaintexts directly to this entity to speed

up processing). More specifically, we are interested in supporting

privacy in a scenario where there are no trusted entities (except

during the one time setup phase with a trusted key dealer). In

this setting, the two existing methods of achieving offline fault

tolerance are ineffective, and are vulnerable to the residual function

attack. In this attack, an aggregator can compute the same function

over different inputs, and compute the difference between the final

outputs, to infer individual values inputted by different users.

For instance, consider the first family of fault tolerant protocols,

which allow the aggregator to ask a trusted entity to provide the

information needed to recover the output. If such an entity is not

trusted, the aggregator can request all of the private information

from this entity and recover every party’s individual input via the

residual function attack. We also note that even if this entity is

trusted, in existing work, it is unclear how to prevent the untrusted

aggregator from lying about users faulting, even if they complete

their part of the protocol, to recover the synthetic inputs they

need to launch the residual function attack. The second family of

fault tolerant protocols, where users buffer future inputs to the

aggregator is similarly vulnerable. Again, if there is no trusted

entity, the aggregator can simply request the buffered inputs, even

if a user does not fault, to execute the residual function attack.

Similarly, even if the entity that stores the buffer is trusted, the

security guarantee is somewhat unclear, as the aggregator can

lie about the fault status of users to recover the synthetic input

needed to execute the residual function attack. Clearly, we need a

new formalized definition of aggregator obliviousness within the

context of fault tolerant systems, that accounts for such scenarios.

By extending the existing definitions [21, 32], we formally define

the fault-tolerable aggregator obliviousness as follows.

Definition 2 (Fault-Tolerable Aggregator Obliviousness).

Define a set of users 𝑖 ∈ 𝑁 , where 0 ≤ 𝑖 ≤ |𝑁 |, where the subset of
users that fault is denoted 𝑈 and the set of users that do not fault
is denoted 𝐽 , were 𝑁 = 𝑈 ∪ 𝐽 . A set of users 𝑁 participating in a

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Online Fault Tolerance XXXX, XX 202Y, ZZZZ

Protocol 𝜋

Setup(1𝜆) : Takes in a security parameter 𝜆, and outputs public parameters 𝑝𝑎𝑟𝑎𝑚, a private key 𝑠𝑘𝑖 for each participant, as well as a

aggregator key 𝑠𝑘0 needed for decryption of aggregate statistics in each time period. Each participant 𝑖 obtains the private key 𝑠𝑘𝑖 , and

the data aggregator obtains the key 𝑠𝑘0 at the end of this algorithm.

Enc(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘𝑖 , 𝑡, 𝑥𝑖) : During time step 𝑡, each participant calls the Enc algorithm to encode its data 𝑥𝑖 via 𝑠𝑘𝑖 . The result is an

encryption of 𝑥𝑖 using an additvely homomorphic cryptosystem, denoted 𝐸𝑁𝐶 (𝑥𝑖) or 𝑐𝑖 .
AggrDec(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘0, 𝑡, 𝑐1, 𝑐2, . . . , 𝑐𝑛) : Takes in the public parameters 𝑝𝑎𝑟𝑎𝑚, a key 𝑠𝑘0, and ciphertexts 𝑐1, 𝑐2, . . . , 𝑐𝑛 for the same time

period 𝑡 . For each 𝑖 ∈ 𝑁 let 𝑐𝑖 = 𝐸𝑛𝑐 (𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘𝑖 , 𝑡, 𝑥𝑖). Let x := (𝑥1, . . . , 𝑥𝑛). The decryption algorithm outputs 𝑓 (x).

Figure 1: Existing Framework

secure aggregation scheme 𝛽 , with public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , during
timestep 𝑡 , whose inputs and secret keys are denoted 𝑥𝑖 and 𝑠𝑘𝑖 respec-
tively, achieve aggregator obliviousness with online fault tolerance if
no probabilistic polynomial-time adversary has more than negligible
advantage in winning the below security game:

Setup : Challenger runs a Setup algorithm, and returns the

public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 to the adversary.

Queries: The adversary makes the following types of queries:

•Encrypt: The adversary may specify (𝑖, 𝑡, 𝑥) and ask for the

ciphertext. The challenger returns the ciphertext associated with

Enc(𝑠𝑘𝑖 , 𝑡, 𝑥𝑖) to the adversary.

•Compromise: The adversary specifies an integer 𝑖 ∈ {0, . . . , |𝑁 |}
If 𝑖 = 0, the challenger returns the aggregator key 𝑠𝑘0 to the adver-

sary. If 𝑖 ≠ 0, the challenger returns 𝑠𝑘𝑖 the secret key for the 𝑖th

participant, to the adversary.

•Challenge: This query can be made only once throughout the

game. The adversary specifies a set of participants 𝑄 and a time

𝑡∗ Any 𝑞 ∈ 𝑄 must not have been compromised at the end of

the game. The adversary also specifies a subset of 𝑄 denoted 𝑌

of users they claim faulted, where 𝐽 = 𝑌 for the duration of the

game. For each user 𝑞 ∈ 𝑄 the adversary chooses four plaintexts

(𝑥𝑞), (𝑥 ′𝑞), (𝑥𝑦), (𝑥 ′𝑦). The challenger flips a random bit 𝑏. If 𝑏 = 0,

the challenger computes ∀𝑞 ∈ 𝑄\𝑌 : Enc

(
𝑠𝑘𝑞, 𝑡, 𝑥𝑞

)
, ∀𝑦 ∈ 𝑌 :

Enc

(
𝑠𝑘𝑦, 𝑡, 𝑥𝑦

)
and returns the ciphertexts to the adversary. If𝑏 = 1,

the challenger computes and returns the ciphertexts ∀𝑞 ∈ 𝑄\𝑌 :

Enc

(
𝑠𝑘𝑞, 𝑡, 𝑥

′
𝑞

)
, ∀𝑦 ∈ 𝑌 : Enc

(
𝑠𝑘𝑦, 𝑡, 𝑥

′
𝑦

)
instead.

Guess: The adversary outputs a guess of whether 𝑎 is 0 or 1.

We say that the adversary wins the game if they correctly guess

𝑎 and the following condition holds. Let 𝐾 ⊆ 𝑁 denote the set

of compromised participants at the end of the game. Let 𝑀 ⊆ 𝑁
denote the set of participants for whom an Encrypt query has been

made on time 𝑡∗ by the end of the game. Let 𝑄 ⊆ 𝑁 denote the

set of (uncompromised) participants specified in the Challenge

phase. If 𝑄 = 𝐾 ∪𝑀 := 𝑁 \(𝐾 ∪𝑀), 𝐽 = 𝑌 , and the adversary has

compromised the aggregator key, the following condition must be

met:

∑
𝑞∈𝑄 𝑥𝑞 +

∑
𝑦∈𝑌 𝑥𝑦 =

∑
𝑞∈𝑄 𝑥

′
𝑞 +

∑
𝑦∈𝑌 𝑥

′
𝑦 .

Essentially we say that a secure aggregation scheme achieves

fault-tolerable aggregator obliviousness if: 1) the aggregator can

only learn one sum for each time period, even if a subset of users

fault, 2) without knowing the aggregator key, no one can learn any-

thing about the encrypted data, even if several users collude, and 3)

if the aggregator colludes with a subset of the users, or if a subset

of the encrypted data has been leaked, the aggregator learns no ad-

ditional information about the honest participants’ individual data.

This better captures the requirements needed to protect against

the residual function attack, since at least two separate function

evaluations must be completed by an adversary for the attack to

be successful. In the previous definition, multiple sums could still

be calculated by an attacker, while still fulfilling the requirements

of the definition. Also, to be fault tolerant, multiple ciphertexts

associated with one user need to be available to the aggregator, so

making an assumption that a user will only encrypt once may limit

the utility of the previous definition.

5 New Constructions

5.1 Our Framework
To achieve the definition of privacy we put forth above, we design

a new secure aggregation framework 𝛽 in Figure 2 that supports

online fault tolerance. Note that this framework supports the same

general functionality as the previous framework, but allows for the

aggregator to recover the needed information regarding users who

fault to complete the protocol in a privacy preserving manner as

described in Definition 2.

5.2 Achieving Aggregator Oblivious Security
with Online Fault Tolerance

The greatest challenge we face when designing this mechanism

is how to guarantee that the aggregator cannot collude with or

dupe the entity it must interact with to acquire the synthetic data

it needs to allow for fault recovery. Since both of these parties

are untrusted in our adversary model, and must have tightly con-

trolled interaction, a natural choice to support this functionality

is leveraging trusted hardware, such as a Trusted Execution Envi-

ronment (TEE). Specifically, we utilize the Intel SGX, perhaps the

most widely deployed form of modern trusted hardware, which is

rapidly becoming a major part of the digital security and privacy

ecosystem. However, any TEE such as ARM TrustZone, AMD PSP,

etc. can be used to implement our protocol. We note that there has

been some controversy over the use of Intel SGX, and some notable

side-channel attacks against it have been published [35]. Defending

against these attacks is beyond the scope of this work, but Intel has

made numerous statements regarding its commitment to patching

such unintended weaknesses, making SGX a credible choice for

deploying trusted hardware based protocols in the real world [35].

We also leverage elliptic curve based cryptography, in order to min-

imize the total number of bytes sent by each user to the aggregator

to improve efficiency. We discuss the necessary background below:

XXXX, XX 202Y, ZZZZ Karl et al.

Protocol 𝛽

Setup(1𝜆) : This is exactly the same as above.

Enc(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘𝑖 , 𝑡, 𝑥𝑖) : This is exactly the same as above.

FaultRecover(𝐽 ,𝑈 , 𝑡): The fault recovery algorithm takes in the set of all the IDs of all the users that the aggregator reports as having

faulted, denoted 𝐽 , during time period 𝑡 , along with the IDs of all of the users that successfully sent their encrypted data 𝑈 . The

algorithm then verifies that the two sets of users are disjoint. If the sets are not disjoint the algorithm outputs nothing and the protocol

aborts. If the two sets are disjoint, the algorithm outputs for all 𝑗 ∈ 𝐽 the ciphertexts corresponding to an encryption of 0 as 𝑐 𝑗 . This

algorithm can only be called once for each time period.

AggrDec (𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘0, 𝑡, 𝑐𝑢∀𝑢 ∈ 𝑈 , 𝑐 𝑗∀𝑗 ∈ 𝐽) Takes in the public parameters 𝑝𝑎𝑟𝑎𝑚, a key 𝑠𝑘0, the ciphertexts for all users in the set of

users that did not fault 𝑢 ∈ 𝑈 as 𝑐𝑢 , and the ciphertexts for all users in the set of users that did fault 𝑗 ∈ 𝐽 as 𝑐 𝑗 , for the same time period

𝑡 . For each 𝑖 ∈ 𝑁 where 𝑁 is the union of𝑈 and 𝐽 let 𝑐𝑖 = Enc (𝑠𝑘𝑖 , 𝑡, 𝑥𝑖). Let x := (𝑥1, . . . , 𝑥𝑛). The decryption algorithm outputs 𝑓 (x).

Figure 2: Our Framework

5.2.1 Trusted Hardware Note that our framework can work with

any form of TEE in the domain of trusted hardware, but we chose

the Intel SGX for our concrete instantiation. Trusted hardware is a

broad term used to describe any hardware that can be certified to

perform according to a specific set of requirements, often in an ad-

versarial scenario. One of the most prevalent in modern computing

is Intel SGX. Intel SGX is a set of new CPU instructions that can be

used by applications to set aside private regions of code and data.

It allows developers to (among other things) protect sensitive data

from unauthorized access or modification by malicious software

running at superior privilege levels. To allow this, the CPU protects

an isolated region of memory called Processor Reserved Memory

(PRM) against other non-enclave memory accesses, including the

kernel, hypervisor, etc.. Sensitive code and data is encrypted and

stored as 4KB pages in the Enclave Page Cache (EPC), a region

inside the PRM. Even though EPC pages are allocated and mapped

to frames by the OS kernel, page-level encryption guarantees con-

fidentiality and integrity. In addition, to provide access protection

to the EPC pages, the CPU maintains an Enclave Page Cache Map

(EPCM) that stores security attributes and metadata associated with

EPC pages. This allows for strong privacy and integrity guarantees

if applications can be written in a two part model.

Applications must be split into a secure part and a non-secure

part. The application can then launch an enclave, that is placed in

protected memory, which allows user-level code to define private

segments of memory, whose contents are protected and unable to

be either read or saved by any process outside the enclave. Enclave

entry points are defined during compilation. The secure execution

environment is part of the host process, and the application contains

its own code, data, and the enclave, but the enclave contains its own

code and data too. An enclave can access its application’s memory,

but not vice versa, due to a combination of software and hardware

cryptographic primitives. Only the code within the enclave can

access its data, and external accesses are always denied. When it

returns, enclave data stays in the protected memory. In some oper-

ating systems, enclaves must be less than 128 MB, which presents a

constraint on the size of SGX dependent programs. The enclave is

decrypted “on the fly" only within the CPU itself, and only for code

and data running from within the enclave itself. This is enabled

by an autonomous hardware unit called the Memory Encryption

Engine (MEE) that protects the confidentiality and integrity of the

CPU-DRAM traffic over a specified memory range.

Before performing computation on a remote platform, a user

can verify the authenticity of the trusted environment. Via the at-

testation mechanism, a third party can establish that software is

running on an Intel SGX enabled device and within an enclave. To

preserve secrets after an enclave is destroyed, both as part of its

normal operation and unplanned termination, Intel SGX provides

data sealing and unsealing functions to protect data outside the

boundary of an enclave. To handle this, sealing and unsealing func-

tions retrieve unique keys based on the physical enclave platform.

The enclave uses this key to encrypt data to the platform (“sealing”),

or to decrypt data already on the platform (“unsealing”).

5.2.2 Elliptic Curves Note that our framework can work with any

form of additively homomorphic cryptography, but we chose elliptic

curve cryptography for our concrete instantiation. Elliptic Curve

Cryptography (ECC) provides the same level of security as RSA,

Pallier, or discrete logarithm systems over 𝑍𝑝 with considerably

shorter operands (approximately 160–256 bit vs. 1024–3072 bit),

which results in shorter ciphertexts and signatures. As a result, in

many cases, ECC has performance advantages over other public-key

algorithms. More formally:

Definition 3. The elliptic curve over Z𝑝 , 𝑝 > 3, is the set of all
pairs (𝑥,𝑦) ∈ Z𝑝 which fulfill 𝑦2 ≡ 𝑥3 +𝑎 ·𝑥 +𝑏 mod 𝑝 together with
an imaginary point of infinity O, where 𝑎, 𝑏 ∈ Z𝑝 and the condition
4 · 𝑎3 + 27 · 𝑏2 ≠ 0 mod 𝑝 holds.

There are two important operations associated with points on

an elliptic curve: (1) Point Addition 𝐴 + 𝐵, and (2) Scalar Multi-
plication 𝑠 ×𝐴, where 𝑠 is a scalar. For (1), this is the case where
we compute𝐶 = 𝐴 + 𝐵 and 𝐴 ≠ 𝐵, for (2), this is the case where we
compute the addition group operation (𝐶 = 𝐴 +𝐴 + ... +𝐴) a total
of 𝑠 times where 𝐴 = 𝐴. We denote the group operation addition

with the symbol +. Here, addition means that given two points

and their coordinates, 𝐴 = (𝑥1, 𝑦1) and 𝐵 = (𝑥2, 𝑦2), we have to
compute the coordinates of a third point 𝑅 such that: 𝐴 + 𝐵 = 𝐶

where (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3). To compute these, we can use a

standard formula [30]. Note that it is known that:

Theorem 1. The points on an elliptic curve together with O have
cyclic subgroups. Under certain conditions all points on an elliptic
curve form a cyclic group.

To utilize elliptic curves in cryptography, we rely on the hardness

of the Elliptic Curve Discrete Logarithm Problem (ECDLP):

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Online Fault Tolerance XXXX, XX 202Y, ZZZZ

Definition 4. Given is an elliptic curve 𝐸. We consider an element
𝑃 and another element 𝑇 . The DL problem is finding the integer 𝑑 ,
where 1 ≤ 𝑑 ≤ 𝐸, such that:

𝑃 + 𝑃 + · · · + 𝑃︸ ︷︷ ︸
𝑑 times

= 𝑑𝑃 = 𝑇

Intuitively, cryptosystems are based on the idea that 𝑑 is large

and kept secret and attackers cannot compute it easily. Under the

same condition, the Decisional Diffie-Helman assumption states

that the ECDLP problem in 𝑍 ∗
𝑁

is believed to be intractable if 𝑑

is unknown. That is, for any probabilistic polynomial time adver-

sary 𝑃𝑃𝑇𝐴, denoted A, the advantage of the adversary in solving

the ECDLP problem, denoted 𝑎𝑑𝑣𝐸𝐶𝐷𝐿𝑃
A , is a negligible function

of the security pararmeter. In this paper, we rely on the above as-

sumption to define and prove the security. The original Elliptic

Curve (EC) encryption scheme, is not additively homomorphic.

However, the elliptic curve group is an additive group, which can

be used to build an additive homomorphic scheme (EC-ElGamal).

Algorithms 1 and 2 show the methods for EC encryption and de-

cryption, respectively, over the finite field𝐺𝐹 (𝑝) [22]. Note a finite
field 𝐺𝐹 (𝑝) is a set of finite numbers on which the operations of

multiplication, addition, subtraction and division are defined and

satisfy certain basic rules such as associativity, commutativity, the

existence of additive and multiplicative identities and inverses, etc..

The order of the curve 𝐸 is denoted 𝑜𝑟𝑑 (𝐸) and 𝑔 is the generator
point of the curve. The secret key is defined as integer number

𝑥 ∈ 𝐺𝐹 (𝑝), while the public key is determined as 𝑌 = 𝑥𝐺 . The func-

tion𝑚𝑎𝑝 () [22] is a deterministic mapping function used to map

values𝑚𝑖 ∈ 𝐺𝐹 (𝑝) to curve points𝑀𝑖 ∈ 𝐸 such that the following

holds: map (𝑚1 +𝑚2 + . . .) = map (𝑚1)︸ ︷︷ ︸
𝑀1

+map (𝑚2)︸ ︷︷ ︸
...

+

Note because addition over an elliptic curve is only possible with

points on that curve, integers must be mapped to corresponding

points. To accomplish this, each integer𝑚 is mapped to a curve

point 𝑀 where 𝑀 = 𝑚𝐺 . The reverse mapping function rmap()
extracts 𝑚 from a given point 𝑚𝐺 [22]. The mapping function

map :𝑚 →𝑚𝐺 with𝑚 ∈ 𝐺𝐹 (𝑝) supports additive homomorphism

since𝑀1 +𝑀2 + . . . = map (𝑚1 +𝑚2 + . . .) = (𝑚1 +𝑚2 + . . .) ×𝐺 =

𝑚1×𝐺 +𝑚2×𝐺 + . . . holds, where𝑚1,𝑚2, · · · ∈ 𝐺𝐹 (𝑝). Specifically,
we leverage the BGN variant devised by Boneh et al. [7] which was

the first to allow both additions and multiplications with a constant-

size ciphertext. Note that while the additive property is the same

as for the ElGamal variant described above, one multiplication is

permitted (i.e. the system is “somewhat homomorphic”).

Algorithm 1 EC-ElGamal Encryption

Require: public key 𝑌 plaintext𝑚

1: choose random k ∈ [1,ord(E) - 1]
2: M := map(m)

3: R := kG

4: S := M + kY

5: Return: ciphertext (𝑅, 𝑆)

5.3 Basic Protocol
To formally define the correctness and the security of our frame-

work, we first present a precise definition of Cryptonite. We first

Algorithm 2 EC-ElGamal Decryption

Require: secret key x, ciphertext (R, S)

1: M := -xR + S

2: m := rmap(M)

3: Return: m

present our basic approach, and we later overcome performance

limitations in our optimized version, which is presented in the fol-

lowing section. Note that when the context is clear, we sometimes

use standard addition and multiplication operators, as done in pre-

vious PSA papers [9, 21], instead of referencing the BGN scheme,

when operating over ciphertexts, for simplicity of presentation.

LetG denote a cyclic group of prime order 𝑝 for which Decisional

Diffie-Hellman is hard. Let 𝐻 : Z → G denote a hash function

modeled as a random oracle. We assume the aggregator is equipped

with an Intel SGX.

Setup(1𝜆) : Each user first performs attestation with the aggre-

gator’s Intel SGX, to verify it will faithfully execute the protocol

(this is a one time process). The Intel SGX runs BGN.Gen() and
chooses a random generator 𝑔 ∈ G, and 𝑛 + 1 random secrets

𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ Z𝑝 such that 𝑠0 + 𝑠1 + 𝑠2 + . . . + 𝑠𝑛 = 0. The public pa-

rameters 𝑝𝑎𝑟𝑎𝑚 := 𝑔. The aggregator obtains the key 𝑠𝑘0 := 𝑠0 and

participant 𝑖 obtains the secret key 𝑠𝑘𝑖 := 𝑠𝑖 . For practical purposes,

we can use Shamir secret shares that sum to zero as secret keys.

Enc(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘𝑖 , 𝑡, 𝑥𝑖) : For participant 𝑖 to encrypt a value 𝑥 ∈
Z𝑝 for time step 𝑡, they compute the following ciphertext 𝑐 ←
𝐸𝑁𝐶 (𝑥𝑖) + 𝐸𝑁𝐶 (𝐻 (𝑡) · 𝑠𝑘𝑖). Note, after this the user sends its ci-
phertext and unique id to the aggregator’s SGX.

FaultRecover(𝑐 𝑗 , 𝑐𝑢 , 𝑡): Here, after the time period has ended,

within the Intel SGX, we check each ciphertext that was received

against a hash table of all users who participated in the setup pro-

cess, and record which users failed to respond within the time

window. Note this process cannot be tampered with from outside

the enclave. Then, since the Intel SGX has each user’s secret key,

it can compute 𝑐 ← 𝐸𝑁𝐶 (0) + 𝐸𝑁𝐶 (𝐻 (𝑡) · 𝑠𝑘 𝑗) for all users 𝑗 ∈ 𝐽 .
Notice that a nice property of this setup is that if a user is late and

sends a ciphertext associated with time period 𝑡 after that time

period has passed, the Intel SGX can simply discard it and there is

no danger of it being leaked to the aggregator.

AggrDec(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘0, 𝑡, 𝑐 𝑗 , 𝑐𝑢): Computewithin the enclave (note

𝑁 = 𝑈 ∪ 𝐽)𝑉 ← 𝐸𝑁𝐶 (𝐻 (𝑡) ·𝑠𝑘0) +
∑𝑛
𝑖=1

𝑐𝑖 . To decrypt the sum, we

can leverage Pollard’s lambda method to compute the discrete log

of 𝑉 base 𝑔. This method requires decryption time roughly square

root in the plaintext space, although in general solving the discrete

log is highly parallelizable and can be done efficiently in practice

as long as the plaintext is small [9]. Note that this construction

is secure under Definition 2, and we can prove this via a security

game, using proof techniques from existing work [21]:

Theorem 2. Assuming that the Decisional Diffie-Hellman problem
is hard in the group G and that the hash function H is a random oracle,
then the above construction satisfies aggregator oblivious security with
online fault tolerance, as described in definition 2.

Proof. First, we prove that the following intermediate game is

difficult to win, given that Decisional Diffie-Hellman is hard. Let G
be a group of prime order 𝑝 .

XXXX, XX 202Y, ZZZZ Karl et al.

Figure 3: System Diagram
Setup: The challenger picks random generators 𝑔, ℎ ∈ G, and

random 𝛼0, 𝛼1, . . . , 𝛼𝑛 ∈ Z𝑝 such that

∑𝑛
𝑖=0

𝛼𝑖 = 0. The challenger

gives the adversary: 𝑔, ℎ, 𝑔𝛼0 , 𝑔𝛼2 , . . . , 𝑔𝛼𝑛 .

Queries: The adversary can compromise users adaptively and

ask for the value of 𝛼𝑖 . The challenger returns 𝛼𝑖 to the adversary

when queried.

Challenge: The adversary selects an uncompromised set 𝑄 ⊆
{0, . . . , 𝑁 }, and specifies a subset of 𝑄 denoted 𝑌 of users they

claim faulted, where 𝐽 = 𝑌 for the duration of the game. The

challenger flips a random bit 𝑎. If 𝑎 = 0, the challenger returns to the

adversary {ℎ𝛼𝑞 | 𝑞 ∈ 𝑄\𝑌 } , {ℎ𝛼𝑦 | 𝑦 ∈ 𝑌 }. If 𝑎 = 1, the challenger

picks |𝑄 |/|𝑌 | random elements ℎ′𝑞 , for 𝑞 ∈ 𝑄/𝑌 and |𝑌 | random
elements ℎ′𝑦 , for 𝑦 ∈ 𝑌 from the group G, such that

∑
𝑞∈𝑄 ℎ

′
𝑞 +∑

𝑦∈𝑌 ℎ
′
𝑦 =

∑
𝑞∈𝑄 ℎ

𝛼𝑞 +∑𝑦∈𝑌 ℎ
𝛼𝑦

. The challenger returns ℎ′𝑞 , for
𝑞 ∈ 𝑄/𝑌 and ℎ′𝑦 , for 𝑦 ∈ 𝑌 to the adversary. The adversary can

make additional compromise queries, as described in the above step

as they see fit.

Guess: The adversary guesses either 𝑎 = 0 or 𝑎 = 1. The adver-

sary wins the game if they have not asked for any 𝛼𝑞 for 𝑞 ∈ 𝑄,
𝑌 = 𝐽 , and if they successfully guess 𝑎.

Lemma 1. The above game is difficult for computationally bounded
adversaries assuming Decisional Diffie Hellman is hard for group G.

Proof. We define the following sequence of hybrid games, and

assume that the set 𝑄 specified by the adversary in the challenge

stage is 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑚} . For simplicity, we write (𝛽1, . . . , 𝛽𝑚)
:=

(
𝛼𝑞1

, . . . , 𝛼𝑞𝑚
)
, and include 𝑌 within𝑄 to save space. In𝐺𝑎𝑚𝑒𝑑 ,

the challenger sends the following to the adversary: 𝑅1, 𝑅2, . . . , 𝑅𝑑 ,

ℎ𝛽𝑑+1 , ..., ℎ𝛽𝑚 . Here, each 𝑅𝑞 (𝑞 ∈ [𝑑]) means an independent fresh

random number, and the following condition holds:

∏
1≤𝑞≤𝑑 𝑅𝑞 =∏

1≤𝑞≤𝑑 ℎ
𝛽𝑞
. Clearly 𝐺𝑎𝑚𝑒1 is equivalent to the case when 𝑏 = 0,

and 𝐺𝑎𝑚𝑒𝑚−1 is equivalent to the case when 𝑏 = 1. With the

hybrid argument we can show that games𝐺𝑎𝑚𝑒𝑑−1
and𝐺𝑎𝑚𝑒𝑑 are

computationally indistinguishable. To demonstrate this, we show

that if, for some 𝑑, there exists a polynomial-time adversary A
who can distinguish between 𝐺𝑎𝑚𝑒𝑑−1

and 𝐺𝑎𝑚𝑒𝑑 , we can then

construct an algorithm B which can solve the DDH problem.

Suppose B obtains a DDH tuple

(
𝑔,𝑔𝑥 , 𝑔𝑙 ,𝑇

)
. B’s task is to de-

cide whether 𝑇 = 𝑔𝑥𝑙 or whether 𝑇 is a random element from G.

Now B randomly guesses two indices 𝑒 and 𝑏 to be the 𝑑th
and the

(𝑑 + 1)th values of the set 𝑄 specified by the adversary in the chal-

lenge phase. The guess is correct with probability
1

𝑁 2
, and in case

the guess is wrong, the algorithm B aborts. Now B picks random

exponents

{
𝛼𝑞

}
𝑞≠𝑒,𝑞≠𝑏

and sets 𝛼𝑏 = 𝑥 and 𝛼𝑒 = −∑𝑞≠𝑒 𝛼𝑞 . No-

tice that B does not know the values of 𝛼𝑒 and 𝛼𝑏 , however, it can

compute the values of 𝑔𝛼𝑏 = 𝑔𝑥 and 𝑔𝛼𝑒 =

(∏
𝑞≠𝑒 𝑔

𝛼𝑞
)−1

= (𝑔𝑥)−1
.∏

𝑞≠𝑒,𝑞≠𝑏 𝑔
𝛼𝑞 · B gives A the tuple

(
𝑔, ℎ = 𝑔𝑙 , 𝑔𝛼1 , . . . , 𝑔𝛼𝑛

)
. If A

asks for any exponent except 𝛼𝑒 and 𝛼𝑏 ,B returns the correspond-

ing 𝛼𝑞 value to A, but if A asks for 𝛼𝑒 or 𝛼𝑏 , the algorithm B
aborts.

In the challenge phase, A submits a set 𝑄 = {𝑞1, 𝑞2, . . . 𝑞𝑚}. If 𝑒
and𝑏 are not the𝑑th

and the (𝑑+1)th values of the set𝑄, i.e., if𝑞𝑑 ≠ 𝑒

or 𝑞𝑑+1 ≠ 𝑏, the algorithm B aborts. If 𝑞𝑑 = 𝑒 and 𝑞𝑑+1 = 𝑏, then

B returns toA: 𝑅1, 𝑅2, . . . , 𝑅𝑑−1
, (∏𝑞∉{𝑞1,...,𝑞𝑑+1 } (𝑔

𝑙)𝛼𝑞 ·∏𝑑−1

𝑞=1
𝑅𝑞 ·

𝑇)−1
, 𝑇 , and (𝑔𝑙)𝛼𝑞𝑑+2 ,...,(𝑔

𝑙)𝛼𝑞𝑚
. Clearly if 𝑇 = 𝑔𝑥𝑙 , then the above

game is equivalent to 𝐺𝑎𝑚𝑒𝑑−1
. Otherwise, if 𝑇 ∈𝑅 G, then the

above game is equivalent to𝐺𝑎𝑚𝑒𝑑 . Thus, ifA has a non-negligible

advantage in guessing whether it is playing𝐺𝑎𝑚𝑒𝑑−1
or𝐺𝑎𝑚𝑒𝑑 and

B could solve the DDH problem with non-negligible advantage.

□

Now to prove the theorem, we will modify the aggregator oblivi-

ous security game. In the Encrypt queries, if the adversary submits

a request for some tuple (𝑞, 𝑥, 𝑡∗) where 𝑡∗ is the time step specified

in the Challenge phase, the challenger treats this as a Compro-
mise query, and simply returns the 𝑠𝑘𝑞 to the adversary. Given 𝑠𝑘𝑞,

the adversary can compute the requested ciphertext. The adversary

has access to a the functionality, FaultRecover, that can only be

called once (since this is enforced via trusted hardware), which

takes in a set of users that have not been compromised (𝑗 ∈ 𝐽),
and returns the set of ciphertexts that correspond to those users

encrypting 0. Note that this modification actually gives more power

to the adversary. From now on, we will assume that the adversary

does not make any Encrypt queries for the time 𝑡∗.
Let 𝐾 ⊆ 𝑁 denote the set of compromised participants. Let

𝐾 := 𝑁 \𝐾 denote the set of uncompromised participants. Since

we assume the aggregator is untrusted, we are interested in the

case where 𝑄 = 𝐾 or the aggregator key has been compromised.

We must show that the adversary cannot distinguish whether the

challenger returns a true encryption of the plaintext submitted in

the challenge stage, or a random tuple with the same aggregation.

Given an adversary A who can break the PSA game with non-

negligible probability, we construct an algorithm B that can solve

the above intermediate problem with non-negligible probability.

B obtains from the challenger C the tuple 𝑔, ℎ, 𝑔𝛼0 , 𝑔𝛼1 , . . . , 𝑔𝛼𝑛 . B
sets 𝛼0 to be the aggregator’s key, and 𝛼1, . . . , 𝛼𝑛 to be the secret

keys of participants 1 through 𝑛 respectively. Note 𝑝𝑎𝑟𝑎𝑚 is 𝑔.

Let 𝑞𝐻 denote the total number of oracle queries made by the

adversaryA and by the algorithm B itself. B guesses at random an

index 𝑏 ∈ [𝑞𝐻]. Suppose the input to the 𝑏th random oracle query

is 𝑡∗. The algorithm B assumes that 𝑡∗ will be the challenge time

step. If the guess is found to be wrong later, B simply aborts.

Hash Function Simulation: The adversary submits a hash

query for the integer 𝑡 . B first checks the list L to see if 𝑡 has

appeared in any entry (𝑡, 𝑧) . If so, B returns 𝑔𝑧 to the adversary.

Otherwise, if this is not the 𝑏th query, B picks a random exponent

𝑧 and returns 𝑔𝑧 to the adversary, and saves (𝑡, 𝑧) to a list L . For
the 𝑏th query, B returns ℎ.

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Online Fault Tolerance XXXX, XX 202Y, ZZZZ

Then the following Queries can take place:

•Encrypt: The adversary A submits an Encrypt query for the

tuple (𝑞, 𝑥, 𝑡) . In the modified version of the game, we ensure that

𝑡 ≠ 𝑡∗, as otherwise, we simply treat it as a Compromise query.

B checks if a hash query has been made on 𝑡 , and if not, B makes

a hash oracle query on 𝑡 . Thus, B learns the discrete log of 𝐻 (𝑡).
Now 𝐻 (𝑡) = 𝑔𝑧 , so B knows 𝑧, and since B also knows 𝑔𝛼𝑞 ,B can

compute the ciphertext 𝑔𝑥 · (𝑔𝑧)𝛼𝑞 as 𝑔𝑥 · (𝑔𝛼𝑞)𝑧 .
•Compromise: B forwardsA’s query to its own challenger C,

and forwards the answer 𝛼𝑞 to A.

•FaultRecover: B forwards A’s query to its own challenger

C, and forwards the set of ciphertexts (i.e. ∀𝑗 ∈ 𝐽 , 𝑐 ← 𝐸𝑁𝐶 (0) ·
𝐸𝑁𝐶 (𝐻 (𝑡) · 𝑠𝑘 𝑗)) to A.

Challenge: The adversary A submits a set 𝑁 = 𝐽 ∪ 𝑄 and a

time 𝑡∗, as well as plaintexts
{
𝑥𝑞 | 𝑞 ∈ 𝑁

}
. If 𝑡∗ does not agree with

the value submitted in the 𝑏th hash query, then B aborts. B submits

the set𝑄 in aChallenge query to its own challenger, and it obtains

a tuple

{
𝑇𝑞

}
𝑞∈𝑁 . The challenger returns the following ciphertexts

to the adversary: ∀𝑞 ∈ 𝑄 : 𝑔𝑥𝑞 ·𝑇𝑞 (i.e. 𝐸𝑁𝐶 (𝑥𝑞) ·𝑇𝑞).
More queries: Same as the Query stage.

Guess: If the adversaryA guesses that B has returned a random

tuple then B guesses 𝑎′ = 1. Otherwise, B guesses that 𝑎′ = 0

If the challenger C returns B a faithful Diffie-Hellman tuple

∀𝑞 ∈ 𝑄 : 𝑇𝑞 = ℎ𝛼𝑞 , then the ciphertext returned to the adversary

A is a true encryption of the plaintext submitted by the adversary.

Otherwise, if the challenger returns to B a random tuple, then the

ciphertext returned to A is random under the product constraint.

□

5.3.1 Dynamic User Groups Similar to other protocols, by support-

ing fault tolerance, we inherit the ability to easily add and remove

users from the scheme, to support a dynamic user group. If a user

drops out of the protocol, we can treat them as permanently faulted

for every time period. If we want to add a user, since we already

have all of the keys stored in the Intel SGX, we can compute a new

polynomial of higher degree that fits the curve by leveraging a

polynomial interpolation algorithm. With Newton’s method, we

can precompute most of the computation recursively so that we can

later add users in 𝑂 (𝑙𝑜𝑔𝑁) time where 𝑁 is the number of users.

5.4 A More Efficient Protocol
Although the above protocol achieves security according to defini-

tion 2, it would be even better if we could further improve perfor-

mance by outsourcing some computation to the untrusted aggrega-

tor. It is well known that most TEEs, such as Intel SGX enclaves,

cannot access many OS features (e.g., sophisticated multi-threading,

disk and driver IO), and have been shown to run common func-

tionalities over an order of magnitude slower than what can be

achieved on comparable untrusted hardware, due to the overhead

of computing within the enclave [18]. Our goal is to find a secure

method to outsource expensive computations instead of running

the entire process in the enclave, without compromising security.

We can accomplish this by following the same set up procedure as

before, but instead having users send two messages simultaneously.

They can send one short message to the Intel SGX to indicate they

are participating in the protocol, and also send their ciphertext to

the untrusted aggregator. Intuitively, the aggregator can simultane-

ously begin the partial summation of the ciphertexts of the users

that did not fault, while the SGX iterates over the table of all users to

determine which users faulted and computes their synthetic cipher-

texts which are sent to the aggregator. In this way, the somewhat

expensive aggregation step can be done on more powerful, albeit

untrusted hardware. We note that this scheme is not secure if the

adversary can disrupt communication between the users and the

Intel SGX, but we can solve this by simply having all users send

their ciphertexts directly to the SGX first. Then the SGX can output

the users’ ciphertexts who did not fault to the aggregator, along

with the synthetic data used to overcome existing faults, which

can be more efficiently computed outside the enclave. We present

a more formal description of this protocol below:

Let G denote a cyclic group of prime order 𝑝 for which the Deci-

sional Diffie-Hellman problem is hard. Let𝐻 : Z→G denote a hash

function modeled as a random oracle. We assume the aggregator is

equipped with an Intel SGX.

Setup(1𝜆): Each user first performs remote attestation with the

aggregator’s Intel SGX, to verify it will faithfully execute the pro-

tocol (this is a one time process). The Intel SGX runs BGN.Gen()
and chooses a random generator 𝑔 ∈ G, and 𝑛 + 1 random secrets

𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ Z𝑝 such that 𝑠0 + 𝑠1 + 𝑠2 + . . . + 𝑠𝑛 = 0. The public pa-

rameters 𝑝𝑎𝑟𝑎𝑚 := 𝑔. The data aggregator obtains the key 𝑠𝑘0 := 𝑠0
and participant 𝑖 obtains the secret key 𝑠𝑘𝑖 := 𝑠𝑖 .

Enc(𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘𝑖 , 𝑡, 𝑥): For participant 𝑖 to encrypt a value 𝑥𝑖 ∈
Z𝑝 for time step 𝑡, they compute the following ciphertext 𝑐 ←
𝐸𝑁𝐶 (𝑥𝑖) + 𝐸𝑁𝐶 (𝐻 (𝑡) · 𝑠𝑘𝑖). Note that the user sends its ciphertext
to the untrusted aggregator and unique id to the aggregator’s SGX.

FaultRecover(𝑐 𝑗 , 𝑐𝑢 , 𝑡): Here, after the time period has ended,

within the Intel SGX, we check each unique id that was received

against a hash table of all users who participated in the setup pro-

cess, and record which users failed to respond within the time

window. Then, since the Intel SGX has each user’s secret key, it

can compute 𝑐 ← 𝐸𝑁𝐶 (0) + 𝐸𝑁𝐶 (𝐻 (𝑡) · 𝑠𝑘 𝑗) for all users 𝑗 ∈ 𝐽 .
Following this, all ciphertexts (i.e. those associated with 𝑗 ∈ 𝐽 and
𝑢 ∈ 𝑈) are output to the untrusted aggregator.

AggrDec (𝑝𝑎𝑟𝑎𝑚, 𝑠𝑘0, 𝑡, 𝑐 𝑗 , 𝑐𝑢): The untrusted aggregator com-

putes the following (i.e. it combines the ciphertexts from the users

with those from the SGX) 𝑉 ← 𝐻 (𝑡)sk0

∑𝑛
𝑖=1

𝑐𝑖 .

To decrypt the sum, we can leverage Pollard’s lambda method

as was done before. The proof of security for this protocol is very

similar to the earlier proof, and we omit it for the sake of space.

It should be said that although it may seem more efficient to

simply send plaintext data to an SGX enclave to be aggregated, it

is known that Intel SGX has difficulties exploiting multi-threading

[37] due to the lack of common synchronization primitive sup-

port often found on traditional operating systems. Also, leveraging

threading within the Intel SGX can introduce security vulnerabili-

ties [38]. Overall performance can be improved if the aggregation

step is outsourced to an untrusted space, which can leverage more

robust forms of parallel computing, especially on higher perfor-

mance hardware, such as GPUs, etc..

5.5 Differential Privacy
Achieving differential privacy is not the primary focus of this paper,

but we can easily adapt the methods of existing works to achieve

XXXX, XX 202Y, ZZZZ Karl et al.

this goal [9, 21]. We summarize these techniques here for complete-

ness. The aggregator and the users may generate randomness for

the protocol, and users can add this noise to their input. Therefore,

we can define a distribution on the transcripts. Formally, we use

the notation Λ to denote a randomized protocol. In addition to the

users’ data x, the protocol Λ takes a security parameter 𝜆 ∈ N.
We use the notation Λ(𝜆, x) to denote the distribution of the tran-

script when the security parameter is 𝜆 and the input configuration

is x. Similar to existing work, we consider computational differ-

ential privacy (CDP), as it supports security guarantees against

computationally-bounded adversaries. We now define CDP:

Definition 5. (Computational Differential Privacy): Suppose users
are compromised by a randomized process C, and we use Φ to denote
the information obtained by the adversary from compromised users.
Let 𝜖, 𝛿 > 0. A randomized protocol Λ preserves computational (𝜖, 𝛿)
-differential privacy if there exists a negligible function 𝜂 : N→ R+
such that for all 𝜆 ∈ N, for all 𝑖 ∈ 𝑁, for all vectors x and y in {0, 1}𝑛
that differ only at position 𝑖 , for all probabilistic polynomial-time
Turing machines A, for any output 𝑏 ∈ {0, 1} :

PrC𝑖 [A(Λ(𝜆, x),Φ) = 𝑏] ≤ 𝑒𝜖 ·PrC𝑖 [A(Λ(𝜆, y),Φ) = 𝑏]+𝛿+𝜂 (𝜆)
where the probability is taken over the randomness of A,Λ, and

C𝑖 , which denotes the underlying compromise process conditioning
on the event that user 𝑖 is uncompromised. A protocol Λ preserves
computational 𝜖-differential privacy if it preserves computational
(𝜖, 0)-differential privacy.

The geometric distribution is commonly used to perturb the data

and ensure differential privacy, because it allows us to work in the

integer domain. The geometric distribution is useful when used in

combination with cryptography, since most schemes operate over

discrete mathematical structures, and are not designed to work with

real numbers. We now define the symmetric geometric distribution.

Definition 6. (Geometric Distribution) Let 𝛼 > 1. We denote
by Geom(𝛼) the symmetric geometric distribution that takes integer
values such that the probability mass function at 𝑘 is 𝛼−1

𝛼+1 · 𝛼
−|𝑘 | .

It is known that if we let 𝜖 > 0, and denote𝑢 and 𝑣 as two integers

such that |𝑢 − 𝑣 | ≤ Δ, and if we let 𝑟 be a random variable having

distribution Geom

(
exp

(
𝜖
Δ

))
, then, for any integer 𝑘 , Pr[𝑢 + 𝑟 =

𝑘] ≤ exp(𝜖) ·Pr[𝑣 +𝑟 = 𝑘]. In our setting, it we can simply consider

Geom(𝛼) with 𝛼 = 𝑒𝜖 . Note that Geom(𝛼) has variance 2𝛼
(𝛼−1)2 , and

since

√
𝛼

𝛼−1
≤ 1

ln𝛼
= 1

𝜖 , the magnitude of the error added is 𝑂

(
1

𝜖

)
.

The following diluted geometric distribution is often used in the

context of private aggregation [9, 21], because it helps minimize

the distortion in accuracy caused by introducing DP noise:

Definition 7. (Diluted Geometric Distribution): Let 0 < Ψ ≤
1, 𝛼 > 1. A random variable has Ψ-diluted Geometric distribution
GeomΨ (𝛼) if with probability Ψ it is sampled from Geom(𝛼), and
with probability 1 − Ψ is set to 0.

We describe a simple scheme to achieve differential privacy,

although optimizations exist [9, 17] that we can trivially adapt if

tighter bounds on accuracy or other properties are required for an

application. We have each user generate an independent noise from

Geom(𝑒𝜖), which is added to their input. Each user sends this noisy

input to the aggregator, who computes the sum. As each user adds

Iter-

ation

CPU

Point

Addi-

tion

SGX

Point

Addi-

tion

CPU

Hash

SGX

Hash

CPU

Expo-

nent

SGX

Expo-

nent

1 0.000004 0.000191 0.000001 0.000144 0.000008 0.000176

10 0.000009 0.000609 0.000128 0.000162 0.000010 0.000183

10
2

0.000035 0.001071 0.000151 0.000198 0.000025 0.000179

10
3

0.000298 0.005947 0.000269 0.000183 0.000093 0.000234

10
4

0.002923 0.054511 0.001247 0.002560 0.000850 0.000591

10
5

0.007896 0.531627 0.005765 0.002960 0.004395 0.004114

10
6

0.053851 5.265254 0.023503 0.068600 0.017307 0.038647

10
7

0.507041 52.74683 0.202715 0.364000 0.142546 0.385640

Table 2: Microbenchmarks Time in Seconds

one copy of independent noise to their data, 𝑁 copies of noises

accumulate in the sum. As some positive and negative noises may

cancel out, the accumulated noise is 𝑂 (
√
𝑛
𝜖) with high probability.

6 Experiments

To better understand the practical performance of our protocol we

ran experiments using C that simulated having several million users

run our protocol. For these tests, we used a workstation running

Ubuntu 16.04 LTS equippedwith a Intel(R) Core(TM) i7-8700 CPU@

3.20GHz.We used time series data from the 3Wdataset from the UCI

machine learning data repository [23], and report the average time

for 50 trials for each experiment. Achieving accurate timings for

operations within the enclave is difficult, because the SGX primitive

sgx_get_trusted_time only supports second level precision,

but many operations can be computed at millisecond precision. To

measure microbenchmarks, we used the Unix clock primitive,

which supports millisecond precision, and timed the overall time to

compute ECALLs within the untrusted component of the program.

We compare these times to computing the same operations on

standard CPUs outside of the enclave in Table 2.

It is important to note that this comparison is somewhat un-

fair, as the times associated with the SGX also contain the time

required to marshal data into the enclave, in addition to the time

needed to perform the actual operation (due to the limitation of

sgx_get_trusted_time). This explains why it appears at first
that some SGX operations are at least two orders of magnitude

slower than their CPU counterparts, but the performance difference

is amortized over time as the total number of operations is increased.

However, it should be noted that although the time to perform most

simple operations in the SGX can amortized, when computing a

large number of operations in a pipeline, to take roughly the same

amount of time, there will always be overhead associated with com-

puting in an enclave, due to the additional operations required to

enforce strong isolation. Note, due to the cryptographic operations,

all the computations in our scheme are in closed integer groups,

and thus we need to use integers to represent real numbers. We can

exploit the homomorphism to represent real numbers via integers

using fixed point representation as done in earlier work [15].

Cryptonite: A Framework for Flexible Time-Series Secure Aggregation with Online Fault Tolerance XXXX, XX 202Y, ZZZZ

6.1 Basic Scheme
The results for our basic scheme, assuming no users fault, are shown

in Figures 4a,b. It is interesting to note that in all cases the overall

time is dominated by the overhead of paging into and out of the

enclave, and other important operations, such as performing the

aggregation, only minimally contribute to the overall runtime. This

makes sense, as it has been documented that these operations are

comparatively expensive, due to the expensive cryptographic oper-

ations involved and the time needed to marshal the data. However,

our results show that the overall time scales well in the presence

of a large number of users. For instance our protocol takes only a

few seconds to finish when there are 100,000 users, assuming the

setup step is precomputed. We report the additional time needed to

recover from faults in Figure 4c. We notice that since the dummy

ciphertexts can be precomputed, the amount of time needed to

recover is dominated by the time needed to traverse the hash table

to determine which users faulted. As a result, the more users that

are involved in the protocol, the longer this process takes. How-

ever, we note that even in the worst case, when many thousands

of users fault, the additional recovery time is under 30 seconds,

which is practical in our applications. Unlike existing work that

requires additional communication to support fault recovery, since

we leverage a co-located TEE, we can remove the time needed for

two communication rounds over existing works [10, 14], while still

supporting strong privacy guarantees, to improve communication

complexity.

6.2 Improved Scheme
Since the amount of time needed to page into the enclave leads

to significant overhead, we designed an improved protocol to try

and minimize the performance impact by safely outsourcing more

computations to the untrusted adversary. We report our results,

assuming no users fault, in Figures 4d,e. It is interesting to note

that because we reduce the amount of enclave computation, we are

able to improve our overall performance by approximately 26% in

most cases. This makes sense, as we are able to reduce the amount

of expensive enclave operations. We report the recovery time in

Figure 4f. We note that the amount of time needed to recover is

comparatively more expensive than in the basic scheme, as we need

to marshal out of the enclave the dummy ciphertexts needed to

recover from faults to the untrusted aggregator. As a result, this

can sometimes increase the overall runtime by several seconds in

the worst case practical scenario when many users fault. This is

tolerable for our applications, but it does illustrate a tradeoff that

may inform which scheme should be used on a case by case basis.

It is well known that most PSA schemes are not implemented,

so it is somewhat difficult to compare our practical performance to

existing work. We do note that because we rely on elliptic curves

for the underlying encryption, similar to [9, 21], our performance

should roughly be about the same (on modern hardware with ellip-

tic curves such as 25519 encryption time is approximately 0.6ms and

decryption time is roughly 1.5s [21]). However, unlike their paper

we are able to support a stronger level of security and recover from

faults without either buffering ciphertexts, which causes increased

communication overhead, or requiring additional rounds of com-

munication overhead. It is worth noting that there is some existing

work [6] that leverages lattice based encryption, which is known to

be faster than elliptic curve based encryption. However, the authors

note that while certain operations, such as decryption are roughly

150 times faster than similar elliptic curve based operations (note

this comparison is against brute force decryption and not the opti-

mized Pollard’s rho method), their overall runtime is slower by a

factor of roughly 6. There is another paper that claims faster encryp-

tion and decryption time [34], and this makes sense because the

underlying cryptographic primitive they rely on is HMAC, which

is known to be faster than elliptic curves. While they do briefly

note possible fault recovery techniques, unlike their scheme, we

can recover from faults without either buffering ciphertexts, which

causes increased communication overhead, or requiring additional

rounds of communication overhead, while supporting a stronger

level of security overall. We emphasize that although our concrete

instantiation may be slower than these works, it is simply a quickly-

implemented instantiation to demonstrate the practical usefulness

of our framework. Our instantiation can be easily replaced with

faster cryptographic primitives (i.e. HMAC) to gain a similar per-

formance improvement, and for future work, we are interested in

adapting HMAC based techniques to improve our overall runtime.

7 Conclusion
We defined a new level of security for Private Stream Aggregation

in the presence of faults and malicious adversaries. After describing

a general framework that allows existing work to reach this level

of security, we developed the first protocol that provably reaches

this level of security. Furthermore, we developed a methodology

to outsource computationally intensive work to high performance

hardware while still allowing for a strong level of security. After im-

plementing our protocol, we experimentally demonstrated out work

reaches high levels of scalability and communication efficiency over

existing work while supporting a higher level of security. We hope

this work encourages other researchers to investigate combining

trusted hardware and cryptography to build more secure systems.

References
[1] HS Annapurna and M Siddappa. 2015. Secure data aggregation with fault toler-

ance for Wireless Sensor Networks. , 29–33 pages.

[2] Haiyong Bao and Rongxing Lu. 2015. Ddpft: Secure data aggregation scheme

with differential privacy and fault tolerance. , 7240–7245 pages.

[3] Haiyong Bao and Rongxing Lu. 2015. A new differentially private data aggrega-

tion with fault tolerance for smart grid communications. IEEE Internet of Things
Journal 2, 3 (2015), 248–258.

[4] Haiyong Bao and Rongxing Lu. 2015. "Privacy-Enhanced Data Aggregation

Scheme Against Internal Attackers in Smart Grid". IEEE Transactions on Industrial
Informatics 12 (01 2015), 1–1. https://doi.org/10.1109/TII.2015.2500882

[5] Haiyong Bao and Rongxing Lu. 2017. A lightweight data aggregation scheme

achieving privacy preservation and data integrity with differential privacy and

fault tolerance. , 106–121 pages.

[6] Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann. 2018. Revisiting

Private Stream Aggregation: Lattice-Based PSA.

[7] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005. Evaluating 2-DNF formulas on

ciphertexts. , 325–341 pages.

[8] Claude Castelluccia, EinarMykletun, andGene Tsudik. 2005. Efficient aggregation

of encrypted data in wireless sensor networks. In International conference on
mobile and ubiquitous systems: networking and services. IEEE, 109–117.

[9] T-H Hubert Chan, Elaine Shi, and Dawn Song. 2012. Privacy-preserving stream

aggregation with fault tolerance. , 200–214 pages.

[10] Le Chen, Rongxing Lu, and Zhenfu Cao. 2015. PDAFT: A privacy-preserving

data aggregation scheme with fault tolerance for smart grid communications.

Peer-to-Peer networking and applications 8, 6 (2015), 1122–1132.
[11] Cynthia Dwork. 2008. Differential privacy: A survey of results.

https://doi.org/10.1109/TII.2015.2500882

XXXX, XX 202Y, ZZZZ Karl et al.

(a) Overall Time of Basic Scheme (b) Overall Time of Basic Scheme (c) Recovery Time of Basic Scheme

(d) Overall Time of Improved Scheme (e) Overall Time of Improved Scheme (f) Recovery Time of Improved Scheme

Figure 4: Experimental Results

[12] Chen et al. 2017. Private data aggregation with integrity assurance and fault

tolerance for mobile crowd-sensing. Wireless Networks 23, 1 (2017), 131–144.
[13] Gergely et al. 2011. I have a dream!(differentially private smart metering). ,

118–132 pages.

[14] Han et al. 2015. PPM-HDA: privacy-preserving and multifunctional health data

aggregation with fault tolerance. IEEE Transactions on Information Forensics and
Security 11, 9 (2015), 1940–1955.

[15] Jung et al. 2016. PDA: semantically secure time-series data analytics with dynamic

user groups. IEEE TDSC 15, 2 (2016), 260–274.

[16] Li et al. 2012. Efficient authentication scheme for data aggregation in smart grid

with fault tolerance and fault diagnosis.

[17] Liu et al. 2017. Achieving privacy protection using distributed load scheduling:

A randomized approach. IEEE Transactions on Smart Grid 8, 5 (2017), 2460–2473.

[18] Mofrad et al. 2018. A comparison of Intel SGX and AMD memory encryption

technology.

[19] Ni et al. 2017. Differentially private smart metering with fault tolerance and

range-based filtering. IEEE Transactions on Smart Grid 8, 5 (2017), 2483–2493.

[20] Rastogi et al. 2010. Differentially private aggregation of distributed time-series

with transformation and encryption. , 735–746 pages.

[21] Shi et al. [n.d.]. Privacy-preserving aggregation of time-series data. Citeseer.

[22] Ugus et al. 2009. Optimized implementation of elliptic curve based additive

homomorphic encryption for wireless sensor networks.

[23] Vargas et al. 2019. A realistic and public dataset with rare undesirable real events

in oil wells. Journal of Petroleum Science and Engineering 181 (2019), 106223.

https://doi.org/10.1016/j.petrol.2019.106223

[24] Won et al. 2014. Proactive fault-tolerant aggregation protocol for privacy-assured

smart metering. , 2804–2812 pages.

[25] Wang et al. 2020. Fault Tolerant Multi-subset Aggregation for Smart Grid.

[26] Xue et al. 2018. PPSO: A privacy-preserving service outsourcing scheme for

real-time pricing demand response in smart grid. IEEE Internet of Things Journal
6, 2 (2018), 2486–2496.

[27] Chun-I Fan, Shi-Yuan Huang, and Yih-Loong Lai. 2013. Privacy-enhanced data

aggregation scheme against internal attackers in smart grid. IEEE Transactions
on Industrial informatics 10, 1 (2013), 666–675.

[28] Donna Gillin. 2000. The federal trade commission and Internet privacy. Marketing
Research 12, 3 (2000), 39.

[29] Joao Girao, Dirk Westhoff, and Markus Schneider. 2005. CDA: Concealed data

aggregation for reverse multicast traffic in wireless sensor networks. In IEEE
International Conference on Communications, ICC 2005., Vol. 5. IEEE, 3044–3049.

[30] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. 2006. Guide to elliptic

curve cryptography.

[31] Xingze He, Xinwen Zhang, and C-C Jay Kuo. 2013. A distortion-based approach

to privacy-preserving metering in smart grids. IEEE Access 1 (2013), 67–78.
[32] Marc Joye and Benoît Libert. 2013. A scalable scheme for privacy-preserving

aggregation of time-series data. In ICFCDS. Springer, Berlin, Germany, 111–125.

[33] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2009. Closeness: A

new privacy measure for data publishing. IEEE Transactions on Knowledge and
Data Engineering 22, 7 (2009), 943–956.

[34] Qinghua Li and Guohong Cao. 2013. Efficient privacy-preserving stream aggre-

gation in mobile sensing with low aggregation error. , 60–81 pages.

[35] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A Survey

of Published Attacks on Intel SGX.

[36] Jing Shi, Rui Zhang, Yunzhong Liu, and Yanchao Zhang. 2010. Prisense: privacy-

preserving data aggregation in people-centric urban sensing systems.

[37] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private execu-

tion of neural networks in trusted hardware.

[38] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-

Shock: Exploiting synchronisation bugs in Intel SGX enclaves. , 440–457 pages.

https://doi.org/10.1016/j.petrol.2019.106223

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Applications
	3.2 Private Aggregation
	3.3 Fault Tolerance

	4 New Notion of Security
	5 New Constructions
	5.1 Our Framework
	5.2 Achieving Aggregator Oblivious Security with Online Fault Tolerance
	5.3 Basic Protocol
	5.4 A More Efficient Protocol
	5.5 Differential Privacy

	6 Experiments
	6.1 Basic Scheme
	6.2 Improved Scheme

	7 Conclusion
	References

