
A complete study of two classes of Boolean functions for
homomorphic-friendly stream ciphers?

Claude Carlet1 and Pierrick Méaux2,
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Abstract. In this paper, we completely study two classes of Boolean functions that are suited for hybrid symmetric-
FHE encryption with stream ciphers like FiLIP. These functions (which we call homomorphic-friendly) need
to satisfy contradictory constraints: 1) allow a fast homomorphic evaluation, and have then necessarily a very
elementary structure, 2) be secure, that is, allow the cipher to resist all classical attacks (and even more, since guess
and determine attacks are facilitated in such framework). Because of constraint 2, these functions need to have a
large number of variables (often more than 1000), and this makes even more difficult to satisfy constraint 1 (hence
the interest of these two classes). We determine exactly all the main cryptographic parameters (algebraic degree,
resiliency order, nonlinearity, algebraic immunity) for all functions in these two classes and we give close bounds
for the others (fast algebraic immunity, dimension of the space of annihilators of minimal degree). This is the first
time that this is done for all functions in classes of a sufficient cryptographic interest.

1 Introduction.

In the recent years, the cloud has become an indispensable complement to a diversity of embedded devices
such as smart-phones, smart-cards, smart-watches, since these cannot locally perform all the storage and
computation needed by their use. This raises a new privacy concern: the functionality of the object should
be preserved while preventing the cloud servers to learn about the data of the users. The breakthrough work
of Gentry [Gen09] gave the first scheme of Fully Homomorphic Encryption (FHE), a public key primitive
allowing to perform computations on data by implementing operations on the encrypted data only. FHE
enables, given an encrypted version of some data, to publicly compute the encrypted version of the image
of this data by any function, without learning neither the value of the data nor that of the result. It gives then
a theoretical solution to the privacy-preserving issue when outsourcing computation.

Since 2009, a variety of works improved or developed new FHE schemes, allowing to understand better
its implications and limitations. But outsourcing computation efficiently is not a present outcome of FHE.
Nevertheless, in [LNV11], the authors introduced a hybrid framework combining symmetric encryption and
FHE, which allows this application, even from limited devices. Outsourcing computation is then possible
through expressing the computations as functions easy to perform homomorphically, and finding symmetric
encryption schemes as adapted as possible to the FHE scheme used. It led to build new symmetric encryption
schemes optimized for this purpose such as [ARS+16, MJSC16, CCF+16, DEG+18, MCJS19b], where the
decryption algorithm is designed to be efficiently evaluated by an homomorphic encryption scheme. This is
crucial since the cloud, that receives from the user: 1) his/her homomorphic public key, 2) the homomorphic
ciphertext of his/her symmetric key, 3) the symmetric ciphertext of the data, needs after encrypting the latter
by the FHE scheme, to perform the symmetric decryption on it.

? Some results of the present paper have been presented at the Conference on Algebra, Codes and Cryptology (A2C), held in
Dakar, Senegal, in December 2019; they were published without proof in the proceedings of this conference.



The stream cipher paradigm of the filter permutator [MJSC16] (and of its successor, the improved filter
permutator [MCJS19b]), pushes the design to the extreme point where the homomorphic evaluation consists
only of the evaluation of a single Boolean function. For the ciphers based of the improved filter permutator
model, the main steps to compute a bit of ciphertext are the choice of a part of the key, a permutation of its
bits, and the application of a filtering function to this permuted part of the key. The choice of the part of the
key and of the permutation are publicly derivable information. The filtering function, that is also public, is
the main component to be optimized for the FHE efficiency and for the security of the symmetric scheme.
For the design of concrete stream cipher instances, an important difference with the classical filtered model,
is in the number of variables, that is very large in the case of the filter permutator (about 1000) while it is
much smaller for the classical filtered model (say, at most 20). This, together with the constraints due to
FHE, leads to studying types of Boolean functions having structures that were considered as probably too
extreme for being used in the classical filtered model: with less than 20 variables, such structures would
allow high speed but would not provide optimal security. This uncommon design framework has similarities
with Goldreich’s Pseudo-random generator [Gol00] and local PRG.

The constraints from the homomorphic perspective on the filtering function oblige indeed to use
relatively simple functions, easy to evaluate in a specific calculation model. Depending on the FHE scheme
considered, good performances will be obtained from functions evaluated as extremely sparse polynomial, or
as a succession of multiplexers. These constraints are compatible with a function acting on a large number of
variables (which can go from some hundreds to thousands [MJSC16]), which is the first security requirement
coming from this extreme design, differing largely from filtered register constructions, as we mentioned.
The security analysis of (improved) filter permutators [MCJS19b] requires not only to determine or bound
the cryptographic parameters (corresponding to criteria) of the filtering function, but also to determine these
parameters for a family of function containing it. More specifically, assessing the security of these paradigms
against guess and determine strategies needs to determine the cryptographic parameters of all bit-fixing
descendants of the filtering function, that is, of the functions obtained from it by fixing some of its input
bits.

As these observations show, the new framework of (improved) filter permutators such as FLIP [MJSC16]
and FiLIP [MCJS19b] motivates to study new Boolean functions, and in a different context. As we can
see, determining the properties of the families of functions suitable for homomorphic evaluation is more
demanding than just adapting known constructions, since the known constructions do not fit with the new
framework. Moreover, the study of the well-chosen classes of functions is also more demanding since, for
each function to be chosen that fits with the new constraints coming from hybrid FHE framework, a whole
class of functions must be studied, and precise timings for cloud-based outsourcing must be investigated.
In this article, we shall completely determine the main cryptographic parameters of all Boolean functions
in two families adapted to homomorphic evaluation. We shall see that some proofs pose delicate problems.
We note that no paper in the literature has ever determined the parameters of all the functions in whole
classes of interest. Some simple classes contain functions whose cryptographic parameters are all known,
but these classes are too elementary for containing functions presenting cryptographic interest. We detail
our contributions in the following sub-section. More technical details on the context (fully homomorphic
encryption, hybrid framework and [improved] filter permutators) will be given in Section 5, that is not
indispensable for understanding our contribution.

1.1 Our Contributions.

We investigate the main cryptographic properties of the two families of Direct Sums of Monomials (DSM),
and XOR-Threshold functions. These two classes have the advantage of being stable under the operation of
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fixing some bits in the input to the functions, and this simplifies the necessary study, mentioned above, of the
parameters of what we called the “bit-fixing descendants” of the functions belonging to these classes. The
first family is obtained by iteratively applying to those functions having the simplest algebraic normal forms
(i.e., monomials) the secondary construction called direct sum, consisting in adding two Boolean functions
which depend on different variables. By construction, the functions from this class can be represented as
extremely sparse polynomials, since their algebraic normal forms are sums of products of disjoint sets of
variables. We determine the cryptographic parameters for all DSM. This is the first time that the parameters
of all functions in a large class of functions are exhibited 3. The functions of the second family, XOR-
Threshold functions, are defined as the direct sums of an affine function and a symmetric function giving
1 if and only if the Hamming weight of the input is at least equal to a fixed threshold value. The threshold
functions can be evaluated simply with multiplexers, and this makes XOR-threshold functions appealing in
our context. Despite symmetric functions have been the focus of different studies in cryptography, the main
parameters have been determined only for the majority functions, or symmetric functions in less than 20
variables. The majority functions correspond to the particular case of threshold functions where the threshold
value is half of the number of variables (n even or odd). We exhibit the main cryptographic parameters of
the whole class of threshold functions, showing that the parameters of majority functions cannot be used to
estimate those of other threshold functions. This allows to determine the parameters of all XOR-Threshold
functions.

The criteria we study on these functions coincide with the common cryptographic criteria for Boolean
functions used in the filter register model. [MCJS19b] shows how to bound the complexity of the attacks
known to apply on (improved) filter permutators from the corresponding parameters of the filter function.
Hence, we focus on the resiliency and nonlinearity, which classically quantify the complexity of correlation-
like attacks. Then, to study the complexity of algebraic-like attacks, we investigate the algebraic immunity
AI(f) of the functions f in the two families, the dimension dAN(f) of the vector space of annihilators of
algebraic degree AI(f), and the fast algebraic immunity. The security analysis of improved filter permutators
requires to know the parameters of functions obtainable by fixing a bounded number of variables in the
filtering function. As we already mentioned, for the two considered families of functions, fixing variables
always gives functions from the same family, in less variables, and this is one of the main motivations
why we chose to characterize the parameters for these two families. For the class of DSM, we determine
exactly the resiliency order, the nonlinearity and the algebraic immunity for all functions. The fast algebraic
immunity and dAN are exactly proven for a large proportion of the functions, and a close bound is given
for the other cases. For all XOR-threshold functions we determine the exact value of the resiliency order,
the nonlinearity, the algebraic immunity and dAN, and we give a close upper bound for the fast algebraic
immunity.

To determine the parameters of these entire families of functions, we develop new tools for analyzing
the properties of Boolean functions, and in some cases, we apply known tools in different ways. We
highlight more specifically the interest of two techniques here. First, using the connections between the
numerical normal form and the Walsh transform of a Boolean function, we provide the nonlinearity of all
threshold functions. The properties of the numerical normal form are often under-utilized, whereas here
it allows to get a proof simpler than when using the approach through Krawtchouk polynomials (as done
in [DMS06] for determining the nonlinearity of majority functions). The techniques used could also apply
for the nonlinearity of other symmetric functions. Second, since the common tools do not allow to determine

3 The functions in the Maiorana-McFarland class (that are affine on parallel affine subspaces of Fn
2 ) are also well understood,

see [Car21], but their parameters can be exactly determined only when these affine spaces have very large dimension, and the
functions present then little interest; moreover, the functions in this class do not have quite good algebraic immunity

3



the exact algebraic properties of functions obtained by direct sums (even for the algebraic immunity, they
usually only provide a small range of possible values), we develop a new representation of functions, which
we call Partitioned Algebraic Normal Form (PANF), that generalizes the algebraic normal form for direct
sums. Studying the PANF, we exhibit sufficient conditions for the Algebraic Immunity (AI) of a direct sum
to exceed the maximum of the AI of its components. We also show how to determine the different algebraic
properties of DSM and XOR-threshold functions by combining results on the PANF, on monomials and
on threshold functions. Finally, we use this new tool to exhibit different families of functions with optimal
algebraic immunity. The PANF representation and the techniques developed allow a precise study of the
algebraic properties of direct sums, a further outcome could be the characterization when direct sums have
optimal algebraic immunity.

1.2 Organization.

In Section 2 we give the necessary preliminaries on Boolean functions, cryptographic criteria and families
of functions we study. The parameters and proofs related to the resiliency order, nonlinearity, algebraic
immunity and fast algebraic immunity of DSM and threshold functions are presented in Section 3. In
Section 4 we introduce the partitioned algebraic normal form and the results derived with this tool: the
remaining parameters of DSM and XOR-threshold functions, and more precise results on the algebraic
properties of direct sum constructions. Section 5 is a complementary introduction on the context of
homomorphic-friendly stream-ciphers, meant for the readers who wish to know more about the framework
of our results.

1.3 Relation With The Invited Paper at Algebra Codes and Cryptology 2019

Some results of this paper have been presented by the first author as an invited speaker at the conference
Algebra Codes and Cryptology (A2C) 2019, which was held in Dakar, Senegal, in December 2019. Both
authors have written the invited paper [CM19] for the proceedings of this conference. In this invited paper
are given the parameters of DSM and XOR-threshold functions, without any proof. The similar parts (with
however some differences) between [CM19] and the present paper are: the section on preliminaries, the
statements of the lemmas and theorems giving the main criteria of DSM and XOR-threshold functions,
and Section 5, which was more or less the introduction of [CM19]. The parts which are new are the
present introduction, the explanations about the new tools we developed, the general results on the algebraic
properties of direct sums, and last but not least, the proofs of all results.

2 Preliminaries.

For readability we use the notation + instead of ⊕ to denote addition in F2, and {1, . . . , n} to denote [n].

2.1 Boolean Functions.

We recall here some core notions on Boolean functions in cryptography, restricting our study to the single-
output Boolean functions.

Definition 1 (Boolean Function). A Boolean function f in n variables (an n-variable Boolean function)
is a function from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn. We call
pseudo-Boolean function a function with input space Fn2 but output space different from F2 (e.g. R).
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The following representation is commonly used, and its basic properties also.

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f
its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1+x1, . . . , x

2
n+xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f equals the global degree of its ANF: deg(f) = max{I | aI=1} |I| (with the
convention that deg(0) = 0).

– Any term
∏
i∈I xi in such an ANF is called a monomial and its degree equals |I|. A function with only

one non-zero coefficient aI , where I is non-empty, is called a monomial function.
– The function f is affine if and only if its algebraic degree is at most 1, the function is linear if in addition
a∅ = 0.

2.2 Cryptographic Criteria

In this part, we recall the main cryptographic properties of Boolean functions (for more details, see
e.g. [Car21]): balancedness, resiliency, nonlinearity, algebraic immunity, fast algebraic immunity, and
minimal degree annihilator space’s dimension.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its output is uniformly
distributed over F2.

Definition 4 (Resiliency). A Boolean function f ∈ Bn is calledm-resilient if any of its restrictions obtained
by fixing at most m of its coordinates is balanced. We denote by res(f) the resiliency order of f , that is, the
maximal value of m such that f is m-resilient, and we set res(f) = −1 if f is unbalanced.

Note that the notion of resiliency includes that of balancedness, since “f is balanced” is equivalent to “f
is 0-resilient”.

We now recall the definition of the Fourier-Hadamard transform, since it is an important tool to study
the resiliency of a Boolean function.

Definition 5 (Fourier-Hadamard Transform). The Fourier-Hadamard transform is the linear mapping
which maps any pseudo-Boolean function f on Fn2 (that is, any function from Fn2 to Z) to the function f̂
defined on Fn2 as:

f̂(a) =
∑
x∈Fn

2

f(x)(−1)a·x,

where a · x denotes the inner product in Fn2 , and the sum is performed in Z.

Given a Boolean function f , the Fourier-Hadamard transform can be applied to f itself (viewed as a
function valued in {0, 1} ⊂ Z), and the resulting function is then denoted by f̂ , or to the sign function
fχ(x) = (−1)f(x), and the resulting function is then called the Walsh transform of f :
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Definition 6 (Walsh Transform). Let f ∈ Bn be a Boolean function. Its Walsh transformWf is the function
that maps any vector a ∈ Fn2 to the integer:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x.

We have:
Wf (a) = −2f̂(a),∀a 6= 0; Wf (0) = 2n − 2f̂(0). (1)

Note that the Walsh transform is strongly connected to the nonlinearity:

Definition 7 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where dH(f, g) denotes the Hamming distance #{x ∈ Fn2 | f(x) 6= g(x)} between f and g; and g(x) =
a · x+ ε, a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner product will give the
same value of NL(f)). We have:

NL(f) = 2n−1 −
1

2
max
a∈Fn

2

|Wf (a)|. (2)

The n-variable Boolean functions maximizing the nonlinearity for n even are called bent; their
nonlinearity equals 2n−1 − 2

n
2
−1. Many families of bent functions are known (see surveys in [Car21,

CM16, Mes16]). The nonlinearity can be generalized to the notion of higher-order nonlinearity: the rth-
order nonlinearity of a Boolean function f , where r is some positive integer, equals the Hamming distance
between f and all functions of algebraic degree less than or equal to r (the nonlinearity corresponds to the
case r = 1).

Definition 8 (Algebraic Immunity and Annihilators). The algebraic immunity of a Boolean function f ∈
Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1). We
additionally use the notation AN(f) for the minimum algebraic degree of nonzero annihilators of f :

AN(f) = min
g 6=0
{deg(g) | fg = 0}.

We also use the notation dAN(f) for the dimension of the vector space made of the annihilators of f of
algebraic degree AI(f) and the zero function. Note that, for every function f we have dAN(f) ≤

(
n

AI(f)

)
,

because two distinct annihilators of algebraic degree AI(f) cannot have in their ANF the same part of
degree AI(f) (their difference being itself an annihilator).

Note that, for every Boolean function f , we have that f and f + 1 are mutual annihilators, and:

Property 1 (Algebraic Immunity Properties).
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– The null and the all-one functions are the only functions such that AI(f) = 0.
– All monomial (non constant) functions f are such that AI(f) = 1.
– For all non constant f it holds: AI(f) ≤ AN(f) ≤ deg(f).

Definition 9 (Fast Algebraic Immunity). The fast algebraic immunity of a Boolean function f ∈ Bn,
denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

deg(g) + deg(fg)}.

Balancedness, algebraic degree, nonlinearity, algebraic immunity, dimension of the vector space of
annihilators and fast algebraic immunity are affine invariant parameters: for every affine permutation L
of Fn2 and every Boolean function f , function f ◦ L has parameters with the same values.

2.3 Families of Boolean Functions.

In this part, we highlight three families of functions: those of direct sums of monomials, of threshold
functions, and of XOR-Threshold functions. We start by introducing a secondary construction called direct
sum, enabling to construct the first family.

Definition 10 (Direct sum). Let f be a Boolean function of n variables and g a Boolean function of m
variables, f and g depending on distinct variables, the direct sum h of f and g is defined by:

h(x, y) = f(x) + g(y), where x ∈ Fn2 and y ∈ Fm2 .

Families of functions obtained by direct sums can be of particular interest when looking for functions
simple to evaluate. Note that the direct sum has been generalized into the so-called indirect sum
(see [Car21]), but this latter construction leads to functions which are already too complex for being
homomorphic-friendly. We shall focus on direct sums of monomials, the simplest functions from the
viewpoint of their representation by the ANF.

Definition 11 (Direct Sum of Monomials). Let f be a non constant n-variable Boolean function. We call
f a Direct Sum of Monomials (or DSM) if the following holds for its ANF:

∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

In other words, in the ANF of such functions, each variable appears at most once.

Definition 12 (Direct Sum Vector [MJSC16]). Let f be a DSM, we define its direct sum vector (DSV):

mf = [m1,m2, . . . ,mk],

of length k = deg(f), where mi is the number of monomials of degree i, i > 0, in the ANF of f :

mi = |{I ⊂ {1, . . . , n}; aI = 1 and |I| = i}|.

All DSM admitting [m1,m2, . . . ,mk] for direct sum vector and having no ineffective variable are
equivalent to each others, under permutation of their input coordinates and addition of a constant. Their
ANFs contain M =

∑k
i=1mi monomials, and have N =

∑k
i=1 imi variables. We shall always view in the
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sequel DSM as functions having no ineffective variable. A DSM f and its complementary to 1 ( i.e.f + 1)
admit the same direct sum vector. This is coherent with the fact that the parameters of resiliency, nonlinearity,
algebraic immunity, and fast algebraic immunity are invariant under the addition of constant function 1 to
f . On the contrary, the parameter of dAN can be different for f and f + 1; therefore we shall also consider
the constant coefficient (represented as m0) when we study this parameter.

A sub-family of particular interest of DSM is the family of triangular functions:

Definition 13 (Triangular Functions [MJSC16]). Let k be a strictly positive integer. The k-th triangular
function Tk is the following direct sum of monomials of k(k + 1)/2 variables:

Tk(x1, . . . , xk(k+1)/2) =

k∑
i=1

i∏
j=1

xj+i(i−1)/2.

It can also be defined from its direct sum vector which is the all-1 vector of length k: mTk = [1, 1, . . . , 1].

Let us now define the family of threshold functions:

Definition 14 (Threshold function). For any positive integers d ≤ n + 1 we define the Boolean function
Td,n as follows:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Of course, a sub-family of particular interest of threshold functions is the family of majority functions:

Definition 15 (Majority function). For any positive odd integer n we define the Boolean function MAJn
as:

∀x = (x1, . . . , xn) ∈ Fn2 , MAJn(x) = Tdn+1
2
e,n =

{
0 if wH(x) ≤ bn2 c,
1 otherwise.

Note that threshold functions are symmetric functions (changing the order of the input bits does not
change the output), which have been the focus of many studies e.g. [Car04, CV05, DMS06, QLF07, SM07,
QFLW09]. These functions can be described more succinctly through the simplified value vector.

Definition 16 (Simplified value vector). Let f be a symmetric function in n variables, we define its
simplified value vector:

s=[w0, w1, . . . , wn]

of length n + 1, where for each k ∈ {0, . . . , n}, wk = f(x) where wH(x) = k, i.e. wk is the value of f on
all inputs of Hamming weight k.

Note that for a threshold function, we have wk = 0 for k < d and 1 otherwise, so the simplified value
vector of a threshold function Td,n is the length n+1 vector of d consecutive 0’s and n+1− d consecutive
1’s.

Remark 1 (Constant Functions). The two n-variable constant functions 0 and 1 correspond to the threshold
functions Tn+1,n and T0,n respectively. Since the cryptographic parameters of these functions are already
known, we will not include these functions in our study. We recall their parameters: deg = AI = FAI =
NL = 0, and res = −1.
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We will also be interested in functions obtained by the direct sum of the linear symmetric function and
a threshold function, called XOR-THR (or XOR-MAJ when the threshold function happens to be a majority
function). The main advantage of these functions is to provide a high resiliency in contrast to threshold
functions.

Definition 17 (XOR-THR Function). For any positive integers k, d and n such that d ≤ n + 1 we define
XORk + Td,n for all z = (x1, . . . , xk, y1, . . . , yn) ∈ Fk+n2 as follows:

(XORk + Td,n)(z) = x1 + · · ·+ xk + Td,n(y1, . . . , yn) = XORk(x) + Td,n(y).

2.4 Boolean Functions and Bit-Fixing.

In this part, we give the necessary vocabulary relatively to bit-fixing (as defined in [AL16]), the action on
Boolean functions consisting in fixing the values of some of their input variables, and then considering the
resulting Boolean function. These notions are important when guess-and-determine attacks are investigated.

Definition 18 (Bit-fixing descendant). Let f be a Boolean function in n variables x1, . . . , xn, let ` be an
integer such that 0 ≤ ` < n, let I ⊂ [n] be of size ` (i.e. I = {i1, . . . , i`} with ij < ij+1 for all j ∈ [`− 1]),
and let b ∈ F`2. We denote then by fI,b the so-called `-bit fixing descendant of f on subset I with binary
vector b the Boolean function in n− ` variables:

fI,b(x
′) = f(x) | ∀j ∈ [`], xij = bj , where x′ = (xi, for i ∈ [n]\I).

Definition 19 (Bit-fixing stability). Let F be a family of Boolean functions, F is called bit-fixing stable, or
stable relatively to guessing and determining, if for all functions f ∈ F such that f is a n-variable function
with n > 1, the following holds:

– for every number of variables ` such that 0 ≤ ` < n,
– for every choice of the variables 1 ≤ i1 < i2 < · · · < i` ≤ n,
– for every value of the guess (b1, . . . , b`) ∈ F`2,

at least one of the following properties is fulfilled: fI,b ∈ F , or fI,b + 1 ∈ F , or deg(fI,b) = 0.

Remark 2. Both DSM and XOR-THR functions are bit-fixing stable families. More precisely, for a DSM,
considering the behavior on its ANF, fixing a variable to 0 cancels a monomial, fixing a variable to 1 reduces
the degree of one of the monomials. Then, the property on the ANF coefficients defining a DSM is still
complied by the descendant function. Fixing variables recursively does not change this property, and when `
is greater than the number of monomials, it is possible to have only the constant coefficient nonzero, adding
the constant functions to the list of descendants.
For the family of XOR-THR functions, first note that fixing variables maintains the direct sum structure. If a
variable is fixed to 0 in the XOR part, the descendant has a XOR part with one variable less and the threshold
part is the same. If the variable is fixed to 1, the descendant has a XOR part with one variable less and the
threshold part is the complement of the initial one, therefore 1 + f ′ is a XOR-THR function. If a variable
is fixed in the threshold part, it gives a threshold function. Indeed, for n > 1 using Definition 14, fixing
a variable to 1 for Td,n gives the function Td−1,n−1, and fixing a variable to 0 gives the function Td,n−1.
Therefore, these descendants are also XOR-THR functions. Then, recursively fixing ` < n variables gives
descendants which are XOR-THR functions or their complements (note that the constant functions are in
this family too).
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3 Parameters of Direct Sums of Monomials and XOR-Threshold Functions.

In this section and in the following, we determine the relevant parameters relative to the main Boolean
cryptographic criteria for the two families of DSM and XOR-THR functions. The results relative to
balancedness, resiliency and nonlinearity and the first part of the algebraic properties are proven in this
section. The second part of the algebraic properties requiring new techniques based on the so-called
partitioned algebraic normal form (PANF) coefficients, we give them in the next section where this new
tool is developed.

In sub-section 3.1 we give the parameters and proofs related to the resiliency, nonlinearity, algebraic
immunity and fast algebraic immunity of DSM functions. In sub-section 3.2 we give the parameters and
proofs of threshold functions. Combining it with results on direct sums (Lemma 1) gives the resiliency order
and nonlinearity of XOR-THR.

3.1 Direct Sum of Monomials.

First we recall some properties on direct sums (see e.g. [MJSC16]).

Lemma 1 (Direct sum properties ( [MJSC16] Lemma 3)). Let h be the direct sum of two functions f , in
n variables, and g, in m variables. Then h has the following cryptographic properties:

1. Resiliency: res(h) = res(f) + res(g) + 1.
2. Walsh transform: Wh(a, b) =Wh(a)Wg(b).
3. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).
4. Algebraic Immunity: max(AI(f),AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).
5. Fast Algebraic Immunity: FAI(h) ≥ max(FAI(f),FAI(g)).

Resiliency and Nonlinearity Lemma 1 directly provides the resiliency order and the nonlinearity of any
direct sum of monomials (which are already well known).

Lemma 2 (Resiliency of direct sum of monomials). Let f ∈ Bn be a direct sum of monomials with
associated direct sum vector = [m1, . . . ,mk]. The resiliency order of f equals:

res(f) = m1 − 1

Proof. A monomial function of algebraic degree larger than 1 has resiliency order −1, as it is unbalanced.
A monomial function of algebraic degree 1 has resiliency 0. Then, applying the first item of Lemma 1
recursively (adding one by one the monomial functions) gives the result.

Lemma 3 (Nonlinearity of direct sum of monomials). Let f ∈ Bn be a direct sum of monomials with
associated direct sum vector [m1, . . . ,mk]. The nonlinearity of f equals:

NL(f) = 2n−1 −
1

2

(
2(n−

∑k
i=2 imi)

k∏
i=2

(
2i − 2

)mi

)

Proof. This is a straightforward consequence of Relation (2), of item 2 of Lemma 1 and of the fact that, for
a monomial function g of algebraic degree d ≥ 1 in m variables, maxa∈Fm

2
|Wg(a)| equals 2m if d = 1 and

2m − 2m−d if d > 1.

10



Algebraic Immunity The exact value of the algebraic immunity of general direct sums of monomials has
never been determined in the literature. Particular cases have been addressed, in particular that of triangular
functions in [MJSC16, Lemma 6]); in the general case, only bounds are known. To determine this exact
value, we shall use this very result on triangular functions, recalled in Lemma 4, and an inequality shown
in [CMR17] and recalled in Lemma 5, between the algebraic immunity of some functions satisfying a
particular property and their restrictions obtained by fixing one of their input bit.

Lemma 4 (Algebraic immunity of triangular functions (adapted from [MJSC16], Lemma 6)). Let k
be a strictly positive integer and let Tk be the k-th triangular function, then AI(Tk) = k.

Lemma 5 ( [CMR17] Proposition 11). Let f(x1, x2, x3, . . . , xn) be a Boolean function in n variables such
that there exist two variables (x1 and x2 without loss of generality) satisfying:

∀x ∈ Fn−22 f(0, 0, x) = f(0, 1, x) = f(1, 0, x)

Let g(x0, x3, . . . , xn) be the Boolean function in n− 1 variables defined by :

∀x ∈ Fn−22 g(1, x) = f(1, 1, x) and g(0, x) = f(0, 0, x).

Then AI(g) ≤ AI(f).

Note that any non-affine direct sum of monomials has such property, the two variables being those
present in some monomial of degree at least 2. Using these two lemmata we can determine the exact
algebraic immunity of any direct sum of monomials:

Theorem 1 (Algebraic Immunity of Direct Sums of Monomials). Let f ∈ Fn2 be a Boolean function
obtained by direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk], its algebraic
immunity is:

AI(f) = min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Proof. First, we prove the inequality:

AI(f) ≤ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

We know that the algebraic immunity of a direct sum of functions is bounded above by the sum of the
algebraic immunities of the functions (as recalled in Lemma 1), that the algebraic immunity of any function
is bounded above by its algebraic degree, and that the algebraic immunity of a monomial equals 1 (as
recalled with Property 1). We fix d, and express f as a direct sum of two functions f1 and f2, with direct
sum vectors:

mf1 = [m1, . . . ,md], and mf2 = [0, . . . , 0,md+1, . . . ,mk].

From mf1 , we have deg(f1) ≤ d and we deduce the inequality4.

4 Note that this inequality shows that the algebraic immunity of a direct sum of monomials is upper bounded by both the number
of monomials (case d = 0) and the algebraic degree of the function (case d = k).
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Then, we prove the inequality in the other sense:

AI(f) ≥ min
0≤d≤k

(
d+

k∑
i=d+1

mi

)
.

Let us denote by e one of the values of d at which the minimum is taken, and let E = e +
∑k

i=e+1mi

be this minimum. The principle of the proof is to repetitively use Lemma 5, to go from the function f
to a function g, whose algebraic immunity is not larger than that of f , thanks to Lemma 5, and satisfies
AI(h) ≥ E. For a DSM f , we can apply Lemma 5 on any pair of variables appearing in a monomial of
degree at least 2. This monomial is then contracted into a monomial, the degree of which is reduced by one
unit. Applying this on a degree d ≥ 2 monomial in the ANF of f gives a DSM whose direct sum vector is
obtained from that of f by increasing by 1 its (d−1)-th element and decreasing by 1 its d-th element. We will
apply such ”monomial contractions” until reaching the function g which is the direct sum of the triangular
function TE and another function, therefore having algebraic immunity at least E. Note that during all this
process, the value of e will not change.

We first handle the monomials of degrees at most e. Let us show that, by contracting monomials, we can
obtain from f a DSM f ′ having the same direct sum vector values for the indices (i.e. degrees) strictly larger
than e, and having direct sum vector values which are nonzero for the index 1 and equal to 1 for the indices
between 1 and e. When e = 0, the condition on f ′ is empty and we can take f ′ = f . We assume then that
e ≥ 1. For all integers d such that 0 ≤ d < e, we have the following property, that we denote by (P):

(P ) e+
k∑

i=e+1

mi ≤ d+
k∑

i=d+1

mi, or equivalently: e− d ≤
e∑

i=d+1

mi.

Property (P) will allow us to contract monomials until obtaining the function f ′. In the following, we show
that applying Lemma 5 on a monomial of degree ` = max2≤d≤e{d |md > 1} in a DSM with direct sum
vector [m1, · · · ,mk] satisfying (P) gives a DSM having the same number of monomials and also satisfying
(P). By definition of `:

– for ` ≤ d ≤ e:
∑e

i=d+1mi = e− d, because the value d+
∑k

i=d+1mi cannot decrease when d moves
from ` to e since the mi’s are smaller than or equal to 1, and this same value cannot increase either since
the value at e is minimal,

– for d = `− 1:
∑e

i=d+1mi = m` + e− ` > e− d, since m` > 1,
– for 0 ≤ d ≤ `− 2:

∑e
i=d+1mi ≥ e− d.

Applying Lemma 5, denoting by m′i the elements of the direct sum vector of the obtained function, we
get m′` = m` − 1, m′`−1 = m`−1 + 1 and the other elements are unchanged. Therefore, the number of
monomials remains the same, the sums

∑e
i=d+1m

′
i and

∑e
i=d+1mi differ only for d ∈ {` − 1, ` − 2}.

Indeed, for d = ` − 1, we have
∑e

i=`m
′
i = (

∑e
i=`mi) − 1 ≥ e − d, and for d = ` − 2, we have∑e

i=`−1m
′
i = (

∑e
i=`−1mi) + 1 ≥ e− d+1. Hence, the function obtained satisfies Property (P). Note that

e is then still such that e+
∑k

i=e+1m
′
i is minimal.

We can apply the transformation of Lemma 5 repetitively, until the elements of indices e, . . . , 2 in the
resulting direct sum vector are all smaller than or equal to 1, and they are then all equal to 1, since Property
(P) for d = 1 shows that the sum of these elements equals e − 1. The resulting function f ′ (in terms of the
initial elements mi of mf ) has for direct sum vector:

mf ′ =

[(
e∑
i=1

mi

)
− e+ 1, 1, . . . , 1,me+1, . . . ,mk

]
.
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Now, let us consider the monomials of degrees larger than e. Let us show that, by contracting monomials
similarly, we can obtain from f ′ a DSM g having the same direct sum vector values of indices at most e,
having value 1 for the indices between e + 1 and E, and having value 0 for the indices strictly larger than
E. When e = k (equivalently, when e = E), we have f ′ = g; we assume then that e < k and we focus on
the elements of the direct sum vector between e + 1 and k. By definition of e, for all integers d such that
e+ 1 ≤ d ≤ k, we have the following property that we denote by (P’):

(P ′) d+

k∑
i=d+1

mi ≥ e+
k∑

i=e+1

mi, or equivalently: d ≥ e+
d∑

i=e+1

mi.

Similarly as above, we repetitively apply Lemma 5 on DSM functions from f ′ until obtaining g. Recall
that contracting this way a monomial of degree ` decreases the `-th direct sum vector’s element by one and
increases the (`−1)-th element by one, and that it keeps constant the other elements and the total number of
monomials. Let us show that we can do this with ` = max(max{d > E ; md > 0},max{d > e ; md > 1})
and that it transforms a DSM satisfying (P’) into a DSM also satisfying (P’). Note that, according to what
we recalled above, the only position where Property (P’) could become unsatisfied is for d = ` − 1. Let us
denote again by mi the elements of the direct sum vector of the function before contraction and by m′i those
of the function after contraction. By definition of `, two cases are possible: ` > E or ` ∈ [e+ 1, E].
- In the first case, since we have ` − 1 ≥ E ≥ e +

∑`
i=e+1mi ≥ e +

∑`−1
i=e+1mi + 1 = e +

∑`−1
i=e+1m

′
i,

Property (P’) is still satisfied.
- In the second case, for all i > E, we have mi = 0 and for all i ∈ [`+ 1, E], we have mi ≤ 1. Let us show
that this implies thatmi = 1 for all i ∈ [`+1, E]: before the contraction, we had, according to Property (P’),
that ` ≥ e +

∑`
i=e+1mi, and there were then at most ` − e monomials of indices in the interval [e + 1, `],

and therefore at least E − ` of indices in the interval [` + 1, E]. Since all the mi’s for i ∈ [` + 1, E] are
bounded above by 1 and their sum is bounded below by their number, they are all equal to 1. We have then∑k

i=`+1m
′
i =

∑E
i=`+1m

′
i = E − `, and then, since the global number of monomials has not changed,

` = e+
∑`

i=e+1m
′
i and therefore

∑`−1
i=e+1m

′
i ≤ `− e− 1 and Property (P’) is then satisfied for d = `− 1

and therefore for every d.
We can apply such contractions repetitively (but never contracting a monomial of degree e + 1), until

the elements of the resulting direct sum vector of indices in the interval [e + 1, E] are all at most equal to
1 and the elements of higher indices are all equal to 0. Since the number of monomials of indices in the
interval [e + 1, k] remained constantly equal to E − e, the elements of indices e + 1, . . . , E are equal to 1,
and the resulting function g (in terms of the initial elements mi of mf ) is a DSM with direct sum vector
mg = [m′′1, · · · ,m′′E ] such that:

m′′1 =

(
e∑
i=1

mi

)
− e+ 1, and m′′i = 1 for i ∈ [2, E].

By the repetitive application of Lemma 5, we have AI(f) ≥ AI(f ′) ≥ AI(g), and since g is the direct sum of
TE and a function of degree at most 1, we have then AI(g) ≥ E, thanks to Lemmas 1 and 4. This completes
the proof.

Note that to estimate accurately the time complexity of the algebraic attack (mounted on f ), it is better
to additionally know the number of annihilators of f or f + 1 of degree AI(f). As determining this number
requires additional concepts on algebraic immunity and direct sums, we defer its study to Section 4.
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Fast Algebraic Immunity Concerning the fast algebraic immunity criterion, its definition (recalled in
Subsection 2.2) leads to the bound FAI(f) ≥ AI(f) + 1 for any f , since for any g such that 1 ≤ deg(g) <
AI(f), fg is a nonzero annihilator of f + 1. In the case of those direct sums of monomials whose algebraic
immunity equals the algebraic degree (and is then optimal, given the degree), we can show that the FAI is
reaching this bound in some cases and exceeds it by 1 in the other cases (hence, when AI(f) = deg(f),
the fast algebraic immunity is not good, given the algebraic immunity5). Note that, because of Theorem 1,
having a direct sum vector mf = [m1, . . . ,mk] such thatmk > 1, where k = deg(f), increases the chances
that AI(f) = deg(f), but there are examples where we have mk = 1 and AI(f) = deg(f) (take a triangular
function).

Proposition 1 (Fast algebraic immunity of direct sums of monomials). Let f ∈ Fn2 be a Boolean function
obtained by the direct sum of monomials with associated direct sum vector mf = [m1, . . . ,mk] such that
AI(f) = deg(f) = k > 1, its fast algebraic immunity is:

FAI(f) =

{
AI(f) + 1 if mk = 1,

AI(f) + 2 otherwise.

Proof. We first consider the case wheremk = 1. As AI(f) = deg(f) = k, we havemk−1 ≥ 1 by Theorem 1
(indeed, ifmk−1 = 0, then d+

∑k
i=d+1mi is smaller for d = k−2 than for d = k). Let us denote by x1 one

of the variables of the monomial of degree k, then we consider the degree of the product of f and 1+x1; this
function has degree k (as the only monomial of degree k of f is canceled, and themk−1 monomials of degree
k − 1 do not contain x1). Then, by definition of the FAI (see Definition 9), we have FAI(f) ≤ AI(f) + 1,
and then FAI(f) = AI(f) + 1.

We consider now the case mk > 1. Multiplying f by a linear function g we study the degree of fg. As f
is a DSM, denoting without loss of generality by x1 a variable present in the ANF of g, x1 appears in either
zero or one of the higher degree monomials of f . If it does not appear then fg produces mk monomials of
degree k + 1 containing x1, as k > 1, all these monomials are different, so deg(fg) = k + 1. If x1 appears
in a degree k monomial, the same reasoning applies for the mk−1 others, leading to deg(fg) = k+1. This
gives:

FAI(f) ≤ min(2AI(f),AI(f) + 2).

And therefore FAI(f) ≤ AI+ 2. Then, as for all nonzero function g such that deg(g) < AI(f) we have
deg(fg) ≥ AI(f) (property of the AI), any nonlinear function g leads to consider a maximum greater than or
equal to AI(f)+2 leading to an equal or higher upper bound. It enables to conclude: FAI(f) = AI(f)+2.

Note that this lemma does not consider the case AI(f) = 1 (linear or monomial functions), for this case
the fast algebraic immunity is not very relevant as the algebraic attack already targets a linear system.

3.2 Threshold Functions.

In order to obtain the parameters of XOR-THR functions we first need to determine those of threshold
functions, and then to use the properties of direct sum constructions.

Threshold functions are symmetric functions, and symmetric functions have been much studied for their
cryptographic criteria (e.g. [CV05]). But the exact values of the parameters of symmetric functions could

5 Nevertheless, the algebraic immunity is here assumed optimal, given the algebraic degree, and the fast algebraic immunity, even
if not much larger, may not be that bad, in our context. Recall that we must deal with functions of a very elementary structure but
having many variables. The context is different from the usual one, and comparing with the optimum is more or less pointless.
What we need with homomorphic-friendly functions is only to have a fast algebraic immunity larger than some threshold.
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seldom be determined. Threshold functions make no exception. Here, we determine the exact values of
their parameters. We first observe an obvious relation between Td,n and Tn−d+1,n, which will simplify the
number of cases to be considered in some proofs.

Property 2. Let n ∈ N∗ and d ∈ [0, n+1]. For all x ∈ Fn2 , let 1+x denote the element (1+x1, . . . , 1+xn) ∈
Fn2 . Then:

∀x ∈ Fn2 , 1 + Td,n(1 + x) = Tn−d+1,n(x).

Indeed, we have wH(1 + x) = n− wH(x) and then wH(1 + x) < d⇔ wH(x) > n− d.
We now study the main criteria of threshold functions, note that the particular cases d = 0 and d = n+1

are already taken care of in Remark 1.

Resiliency

Proposition 2 (Resiliency of threshold functions). Let n ∈ N∗ and d ∈ [n]. Let f be the threshold function
Td,n, then we have:

res(Td,n) =

{
0 if n = 2d− 1,

−1 otherwise.

Proof. The Hamming weight of a symmetric function is equal to
∑n

i=0wi
(
n
i

)
. We deduce:

wH (Td,n) =
n∑
i=d

(
n

i

)
=

n−d∑
i=0

(
n

i

)
.

This sum equals 2n−1 if and only if d = (n+1)/2, that is, when the function is the majority functions in odd
dimension. To complete the proof, let us recall why the majority functions is not 1-resilient. As the family of
XOR-MAJ functions is bit-fixing stable, fixing one variable of a majority function gives a threshold function
in n− 1 variables, which cannot be balanced, as shown in the previous part, since n− 1 is even.

Nonlinearity In [DMS06] is determined the nonlinearity of the majority functions Tn+1
2
,n (n odd) and

Tn
2
+1,n (n even), by expressing their Walsh transform by means of Krawtchouk polynomials and using

relations on these polynomials to obtain the maximal absolute value. But the resulting proof, when written
for all threshold functions, needs to consider several particular cases, and is 5 page long (preliminaries on
Krawtchouk polynomials excluded). There is a better way to obtain the nonlinearity by using an efficient
representation of Boolean functions called the numerical normal form (see e.g. [Car21]).

Definition 20 (Numerical normal form). For every n-variable Boolean function f , we call numerical
normal form (NNF) of f the unique polynomialNf (x) =

∑
I⊆[n] λIx

I ∈ Z[x1, . . . , xn]/(x21−x1, . . . , x2n−
xn), where xI stands for

∏
i∈I xi, such that f(x) = Nf (x) for every x ∈ Fn2 .

Note that the ANF (see Definition 2) is simply the reduction modulo 2 of the NNF. Both representations
determine uniquely the Boolean function, and the NNF needs more storage space than the ANF and has the
drawback that not all polynomials in Z[x1, . . . , xn]/(x21 − x1, . . . , x2n − xn) can be the NNF of Boolean
functions, but it gives more direct information on the function. First we recall some useful properties of
the NNF, then using them we prove a lemma linking the Walsh transform of threshold functions to already
studied functions, and we conclude by giving the exact nonlinearity of all threshold functions.
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Lemma 6 (Properties of NNF and Walsh transform, adapted from [Car21]).

1. Let f be any Boolean function in n variables and any I ⊆ [n], then we have:

λI = (−1)|I|
∑

x∈Fn
2 ; supp(x)⊆I

(−1)wH(x)f(x),

where supp(x) denotes the support {i ∈ [n] | xi 6= 0} of vector x, this sum being calculated in Z.
2. Let f be the indicator function 1En,r of the set En,r of all vectors of Hamming weight r and length n,

then for any I ⊆ [n], we have:

λI = (−1)|I|
∑

x∈Fn2 ; wH (x)=r

supp(x)⊆I

(−1)wH(x) = (−1)|I|−r
(
|I|
r

)
.

3. Let f be any Boolean function in n variables, then

Wf (0) = 2n − 2
∑

I⊆{1,...,n}

2n−|I|λI ,

and for u 6= 0, then:
Wf (u) = 2(−1)wH(u)+1

∑
I⊆[n]; supp(u)⊆I

2n−|I|λI .

Lemma 7. For every n and d ∈ [n] and every nonzero u ∈ Fn2 , we have W1En,d
(u) = −WTd+1,n+1

(u, 1)

(where (u, 1) is the concatenation of u and the length one vector (1)) and for u = 0, we have W1En,d
(u) =

2n −WTd+1,n+1
(u, 1).

Proof. Using the second item of Lemma 6, since Td,n =
∑n

r=d 1En,r (this sum being calculated in Z), the
coefficient of xI , for I 6= ∅, in the NNF of Td,n(x) equals:

(−1)|I|
|I|∑
r=d

(−1)r
(
|I|
r

)
= (−1)|I|−1

d−1∑
r=0

(−1)r
(
|I|
r

)
= (−1)|I|−d

(
|I| − 1

d− 1

)
,

where the first equality comes from
∑|I|

r=0(−1)r
(|I|
r

)
= 0, and the latter equality is obtained by

induction on d ≥ 1, using Pascal’s identity, with induction step: (−1)|I|−d
(|I|−1
d−1

)
+ (−1)|I|−1−d

(|I|
d

)
=

(−1)|I|−1−d
(|I|−1

d

)
. For I = ∅, the coefficient of xI also equals (−1)|I|−d

(|I|−1
d−1

)
= 0.

Using the third item of Lemma 6, we deduce that the Walsh transform of the threshold function satisfies
for u 6= 0:

WTd,n
(u) = 2(−1)wH(u)+1

∑
I⊆[n]

supp(u)⊆I

2n−|I|(−1)|I|−d
(
|I| − 1

d− 1

)
.

Using the second and third items of Lemma 6, we obtain for 1En,r that for u 6= 0:

W1En,r
(u) = 2(−1)wH(u)+1

∑
I⊆[n]; supp(u)⊆I

2n−|I|(−1)|I|−r
(
|I|
r

)
.

For u = 0, we have W1En,r
(0) = 2n − 2

∑
I⊆[n] 2

n−|I|(−1)|I|−r
(|I|
r

)
and WTd,n

(0, . . . , 0, 1) =

2
∑

n∈I⊆[n] 2
n−|I|(−1)|I|−d

(|I|−1
d−1

)
. This completes the proof.
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Remark 3. Given an n-variable (resp. (n+ 1)-variable) Boolean function g (resp. f ), we have Wf (u, 1) =
−Wg(u) for every nonzero u ∈ Fn2 andWf (u, 1) = 2n−Wg(u) for u = 0 if and only if, by the bijectivity of
the Fourier transform, for every x ∈ Fn2 , we have

∑
u∈Fn

2
Wf (u, 1)(−1)u·x = 2n −

∑
u∈Fn

2
Wg(u)(−1)u·x,

that is,
∑

u,y∈Fn
2 ,ε∈F2

(−1)f(y,ε)+u·y+ε+u·x = 2n −
∑

u,y∈Fn
2
(−1)g(y)+u·y+u·x, or equivalently, using that∑

u∈Fn
2
(−1)u·(y+x) equals 2n if y = x and equals 0 otherwise, and dividing by 2n:∑

ε∈F2

(−1)f(x,ε)+ε = 1− (−1)g(x), that is, f(x, 1)− f(x, 0) = g(x).

It is easily checked that this property is true for f = Td+1,n+1 and g = 1En,d
.

We can finally give the exact nonlinearity of all threshold functions through the following theorem:

Theorem 2 (Nonlinearity of threshold functions). Let n > 0 and 1 ≤ d ≤ n, then:

NL(Td,n) =



2n−1 −
(

n−1
(n−1)/2

)
if d = n+1

2 ,
n∑
k=d

(
n

k

)
= wH(Td,n) if d > n+1

2 ,

d−1∑
k=0

(
n

k

)
= 2n − wH(Td,n) if d < n+1

2 .

Proof. 1. The first case, corresponding to the majority function for n odd, is proved in [DMS06].
2. For the case d > (n+ 1)/2, we use Relation (1) and Lemma 7. For every nonzero u ∈ Fn−12 :

|WTd,n
(u, 1)| = |W1En−1,d−1

(u)| = 2 |
∑

x∈En−1,d−1

(−1)u·x| ≤ 2wH(1En−1,d−1
) = 2

(
n− 1

d− 1

)
.

For u = 0, we have |WTd,n
(u, 1)| = |2n −W1En−1,d−1

(0)| = 2
(
n−1
d−1
)
. Since Td,n is symmetric, for every

nonzero v ∈ Fn2 : |WTd,n
(v)| ≤ 2

(
n−1
d−1
)
. For the null vector:

|WTd,n
(0)| = 2n − 2

n∑
i=d

(
n

i

)
=

d−1∑
i=n−d+1

(
n

i

)
.

Let us show that |WTd,n
| takes its maximum at the 0 input.

When d = n/2 + 1, using Pascal’s identity, we have:

d−1∑
i=n−d+1

(
n

i

)
=

(
n
n
2

)
=

(
n− 1
n
2

)
+

(
n− 1
n
2 − 1

)
= 2

(
n− 1
n
2

)
= 2

(
n− 1

d− 1

)
.

When d > n/2 + 1, we have:

d−1∑
i=n−d+1

(
n

i

)
≥
(

n

n− d+ 1

)
+

(
n

d− 1

)
= 2

(
n

d− 1

)
≥ 2

(
n− 1

d− 1

)
.

3. The case d < (n + 1)/2 is then deduced from the case d > (n + 1)/2, since Property 2 states that,
for all x ∈ Fn2 , we have 1 + Td,n(x+ 1) = Tn−d+1,n(x) and this implies |WTd,n

| = |WTn−d+1,n
| and then

NL(Td,n) = NL(Tn−d+1,n), with n− d+ 1 > n+1
2 .
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3.3 Algebraic Immunity, dAN, and Fast Algebraic Immunity.

We now study the algebraic immunity of threshold functions. Recall that very few examples of infinite
classes of Boolean functions with optimal algebraic immunity are known and that the majority functions
T(n+1)/2,n and Tn/2+1,n provide one of them (see [BP05, DMS06]). As far as we know, the exact algebraic
immunity of general threshold functions has not been determined. We opt for the following proof strategy:
we consider as known the algebraic immunity of the majority function in an odd number of variables,
AI(T(n+1)/2,n) =

n+1
2 , and we use the connections between various threshold functions to get the algebraic

immunity of all functions of the family. A method for determining the algebraic immunity of threshold
functions consists in using the following known result on the algebraic immunity of restrictions of functions.

Lemma 8. Fixing ` ∈ [0, n] variables of an n-variable Boolean function f decreases it algebraic immunity
by at most `.

Indeed, given a nonzero annihilator g of the restriction of f (resp. of f + 1), obtained by fixing xi to ai
for any i ∈ I ⊆ {1, . . . , n}, a nonzero annihilator of f (resp. f + 1) equals g(x)

∏
i∈I(xi + ai + 1), which

has algebraic degree at most deg(g) + |I|.
This result could be used in conjunction with the fact that, if d ≤ n+1

2 , then Td,n can be obtained by
fixing n−2d+1 input bits to 1 in the (2n−2d+1)-variable majority function (indeed we saw in Remark 2
that fixing a variable to 1 in Td,n gives Td−1,n−1). But we can also give a direct proof of the algebraic
immunity of threshold functions (and also determine their annihilators of minimum algebraic degree):

Proposition 3 (Algebraic immunity of threshold functions). Let n > 0 and 1 ≤ d ≤ n. The threshold
function Td,n has the following algebraic immunity:

AI(Td,n) = min(d, n− d+ 1).

Moreover, the minimum algebraic degree of the nonzero annihilators of Td,n and 1 + Td,n satisfy
AN(Td,n) = n− d+ 1 and AN(1 + Td,n) = d.

Proof. Applying the transformation x 7→ x+1n, where 1n is the all-1 vector of length n, changes Td,n into
the indicator of the set of vectors of Hamming weight at most n − d; the relations relating the expressions
of the coefficients of the ANF

∑
I⊆{1,...,n} aIx

I by means of the values of the function, namely, aI =∑
supp(x)⊆I f(x) and f(x) =

∑
I⊆supp(x) aI , show that the annihilators of this indicator are all the linear

combinations over F2 of the monomials of degrees at least n − d + 1; hence, the annihilators of Td,n are
obtained from these latter linear combinations by the transformation x 7→ x + 1n, which preserves the
algebraic degree. They can then have every algebraic degree at least n − d + 1. And the annihilators of
1+Td,n are similarly the linear combinations over F2 of the monomials of degrees at least d. They can have
every algebraic degree at least d. Hence AI(Td,n) = min(d, n− d+ 1).

We finally study the dimension dAN of the space of annihilators of minimal degree of threshold
functions, and we derive a bound on the fast algebraic immunity.

Proposition 4 (dAN of threshold functions). Let n > 0 and 1 ≤ d ≤ n. The threshold function Td,n and
its complementary have the following dAN:

dAN(Td,n) =

{
0 if d < n+1

2 ,(
n
d−1
)

if d ≥ n+1
2 ,

and dAN(1 + Td,n) =

{(
n
d

)
if d ≤ n+1

2 ,

0 if d > n+1
2 .
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Proof. First, we investigate dAN(Td,n) for d ≥ n+1
2 . According to Property 2 and using that the dimension

of the annihilators of a fixed degree is affine invariant, this is equivalent to considering the annihilators of
degree d of 1 + Td,n with d ≤ n+1

2 .
When d ≤ n+1

2 , the function 1 + Td,n has simplified value vector [1, . . . , 1, 0, . . . , 0] where the first 0
corresponds to the Hamming weight d. All monomial functions of degree d are then annihilators since they
vanish on the support of 1+Td,n. Since d = AI(1+Td,n) from Proposition 3, we have then dAN(1+Td,n) =(
n
d

)
, since, of course, dAN(1+Td,n) cannot be larger than

(
n
d

)
. Therefore, denoting d′ = n−d+1, we have

dAN(Td′,n) = dAN(Tn−d+1,n) =
(
n
d

)
=
(

n
d′−1

)
.

For the function Td,n itself with d < n+1
2 , using Proposition 3 we know that AI(Td,n) = d and

AN(Td,n) = n − d + 1, in this case AN(Td,n) > AI(Td,n) which implies dAN(Td,n) = 0. Accordingly,
using Property 2, for d > n+1

2 it gives dAN(1 + Td,n) = 0.

We use the following property of the fast algebraic immunity to derive a bound for the threshold
functions.

Lemma 9. For every Boolean function f , FAI(f) ≥ min(2AI(f), 1 + AN(f + 1)).

Proof. This bound comes from the definition of FAI(f) (see Definition 9). If AI(f) ≤ 1, then we have
FAI(f) = 2AI(f) ≥ min(2AI(f), 1 + AN(f + 1)). If AI(f) ≥ 2, then let us denote h = fg; we have
(1 + f)h = 0. Since f is non constant (when f is constant AI(f) = 0 as seen in Property 1), and since g is
taken such that deg(g) < AI(f), h is nonzero, therefore h is a nonzero annihilator of 1+f , and by definition
deg(h) ≥ AN(f + 1).

Proposition 5 (Lower bound on the fast algebraic immunity of threshold functions). Let n > 0 and
1 ≤ d ≤ n. The fast algebraic immunity of the threshold function Td,n follows the following bound:

FAI(Td,n) ≥

{
min(2d, n− d+ 2) if d ≤ n+1

2 ,

min(2(n− d+ 1), d+ 1) if d > n+1
2 .

Proof. Since the fast algebraic immunity is invariant when we add 1 to f , using Lemma 9 on f and f + 1
we get:

FAI(f) = FAI(f + 1) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))).

Plugging the values of AI(Td,n) and AN(1 + Td,n) from Proposition 3 formula gives the result.

Remark 4. Note that this bound can be reached, as proven in [TLD16] for the majority functions T2m−1,2m

and T2m−1+1,2m+1 for all integers m ≥ 2.

3.4 Parameters of XOR-THR Functions.

The particular structure of XOR-THR functions, that are the direct sums of a linear function and a threshold
function, makes their parameters easy to deduce from those of these two components. For k > 1 the function
XORk + Td,n is affine equivalent to XOR1 + Td,n, hence these functions have the same nonlinearity, (fast)
algebraic immunity, and dAN. The resiliency and nonlinearity can be directly determined by combining
Lemma 1 with the parameters of the threshold functions for these criteria (Proposition 2 and Theorem 2).
For the exact algebraic immunity, the dimension of the vector space of annihilators of minimum degree and
the bound on the fast algebraic immunity, we need more advanced tools developed in Section 4.
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Proposition 6 (Resiliency of XOR-THR functions). Let n, k, d > 0 and d ≤ n. The resiliency order of
the XOR-THR function XORk + Td,n is given by:

res(XORk + Td,n) =

{
k if n = 2d− 1,

k − 1 otherwise.

Proof. The resiliency of XORk equals k − 1, then combining the first item of Lemma 1 and Proposition 2
gives the result.

Proposition 7 (Nonlinearity of XOR-THR functions). Let n, k, d > 0 and d ≤ n. The nonlinearity of the
XOR-THR function XORk + Td,n is given by:

NL(XORk + Td,n) =



2n+k−1 − 2k
(

n−1
(n−1)/2

)
if d = n+1

2 ,

2k
n∑
i=d

(
n

i

)
if d > n+1

2 ,

2k
d−1∑
i=0

(
n

i

)
if d < n+1

2 .

Indeed, adding a linear function to Td,n does not change its nonlinearity, that is given by Theorem 2.

Remark 5. Note that for the special cases not addressed in these two lemmas, the result is already known:
when k = 0, the XOR-THR function is simply a threshold function, with resiliency order and nonlinearity
addressed in Remark 1 for d ∈ {0, n + 1} and given by Proposition 2 and Theorem 2 for the other cases;
and when k 6= 0 and d ∈ {0, n + 1}, the XOR-THR function is a DSM associated to the DSV [k], hence
with resiliency order k − 1 (Lemma 2) and nonlinearity 0 (Lemma 3).

4 Partitioned Algebraic Normal Form Coefficients and Applications.

In this section we introduce the partitioned normal form coefficients, and we use this tool to prove different
results relatively to the algebraic properties of direct sums, that will be applied to XOR-THR functions. In
Subsection 4.1 we begin by defining the partitioned algebraic normal form, and we exhibit conditions for a
direct sum construction to exceed the maximum algebraic immunity of its 2 components. Then, we use it in
Subsection 4.2 to determine the exact algebraic immunity of all XOR-THR functions and a lower bound on
the fast algebraic immunity. Another application of the partitioned normal form is given in Subsection 4.3,
enabling to determine the dAN of XOR-THR functions. In Subsection 4.4 we determine and prove the dAN
of DSM functions. It finishes to prove all relevant cryptographic criteria on the two families of functions we
consider in this article. Finally, in Subsection 4.5 we exhibit families of direct sums with optimal algebraic
immunity.

4.1 Partitioned Algebraic Normal Form and Algebraic Immunity of Direct Sums.

We develop here some techniques to better estimate the algebraic immunity, or the dimension of the space of
annihilators of degree at most the algebraic immunity, in the case of direct sums. First recall from Lemma 1
that the algebraic immunity of a direct sum is always between the maximum of the algebraic immunities of
its components and their sum. The upper bound is reduced in [BP05] to:

AI(f1 + f2) ≤ min (max [deg(f1), deg(f2)],AI(f1) + AI(f2)). (3)
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This upper bound is obtained by considering specific annihilators of f1 and f2: f1 + f2 or 1 + f1 + f2
for the maximum on the degree, and the product of a function defining the algebraic immunity of f1 by
a function defining the algebraic immunity of f2 for the sum. In the following, we determine sufficient
conditions to refine these bounds, beginning with conditions under which the lower bound cannot be
achieved.

The ANF (see Definition 2) can be a useful tool to study the algebraic immunity of a function. Here,
in the particular case of direct sum, we will modify the form of this representation. Instead of considering
binary coefficients related to subsets of all variables, we represent a function in N variables as a function
in m variables with m ≤ N , but with coefficients which are functions in the N − m other variables. We
partition then the set of all variables into two sets of sizes m and (say) n = N −m. This modification of the
representation by ANF makes some concepts easier to study for functions obtained by direct sum (adapting
the variable partition to the direct sum).

Definition 21 (Partitioned Algebraic Normal Form). We call (n,m)-Partitioned Algebraic Normal Form
of an (n + m)-variable Boolean function f its polynomial representation over F2 (i.e. belonging to(
F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn)

)
[y1, . . . , ym]/(y

2
1 + y1, . . . , y

2
m + ym):

f(x, y) =
∑
I⊆[m]

aI(x1, . . . , xn)

(∏
i∈I

yi

)
=
∑
I⊆[m]

aI(x) y
I ,

where aI ∈ F2[x1, . . . , xn]/(x
2
1 + x1, . . . , x

2
n + xn) and x = (x1, . . . , xn).

We call partitioned-(n,m)-ANF coefficients the coefficients aI .

Note that when the partition into the n and m parts is clear, we shall refer to the (n,m)-partitioned ANF
coefficients as PANF coefficients. Note also that the uniqueness of the ANF representation guarantees the
uniqueness of the (n,m) partitioned algebraic form. The standard ANF corresponds to the (0, n)-partitioned
ANF. In the following we give a characterization of the annihilators of a direct sum based on the PANF
coefficients.

Lemma 10. Let f be a Boolean function in the variables x1, . . . xn and g be a Boolean function in the
variables y1, . . . ym. Let ϕ be the direct sum of f and g. Let ε ∈ {0, 1}, and let h be a function in
x1, . . . , xn, y1, . . . , ym with the (n,m)-partitioned algebraic normal form: h(x, y) =

∑
I⊆[m] hI(x) y

I .
We denote accordingly by gI the (standard) ANF coefficients of g. Then h is an annihilator of ϕ + ε if and
only if the following relation holds on its PANF coefficients:

∀I ⊆ [m], hI(x)

f(x) + ε+
∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J). (4)
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Proof. We first consider the case ε = 0. We have:

ϕh = 0⇔
∑
I⊆[m]

hI(x) y
I(f(x) + g(y)) = 0

⇔

∑
I⊆[m]

hI(x)f(x)y
I

+

 ∑
J⊆[m]

hJ(x)y
J
( ∑
K⊆[m]

gK y
K
) = 0,

⇔
∑
I⊆[m]

hI(x)f(x) + ∑
J⊆[m],K⊆[m]

J∪K=I

hJ(x) gK

 yI = 0

⇔ ∀I ⊆ [m], hI(x)f(x) +
∑

J⊆[m],K⊆[m]
J∪K=I

hJ(x) gK = 0.

Then, rewriting the last part as follows:∑
J⊆[m],K⊆[m]

J∪K=I

hJ(x) gK =
∑
J⊆I

hJ(x)
∑
K⊆J

gK∪(I\J) = hI(x)
∑
K⊆I

gK +
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J),

we obtain:

ϕh = 0⇔ ∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).

The general case follows by changing f into f + ε.

Now we can show a sufficient condition for obtaining AI(f + g) > max (AI(f),AI(g)):

Lemma 11. Let ϕ be the direct sum of two Boolean functions f and g in respectively n and m variables,
and such that (without loss of generality) AI(f) ≥ AI(g).

If g is non-constant, and AN(f) 6= AN(f + 1) then AI(ϕ) > AI(f).

Proof. First we assume that h is a nonzero annihilator of ϕ, and we use Lemma 10 to obtain relations on its
PANF coefficients. Since h is nonzero, at least one of the functions hI(x) is nonzero. Let I0 be such that, for
all J ( I0, hJ = 0, and hI0 6= 0, then Equation (4) relatively to I0 gives: hI0(x)(f(x) +

∑
J⊆I0 gJ) = 0.

Thus, hI0(x) is a nonzero annihilator of f or f + 1, giving deg(hI0) ≥ AI(f) and therefore deg(h) ≥
|I0|+ AI(f). The unique possibility to get AI(ϕ) = AI(f) is that I0 = ∅, i.e. h∅ is a nonzero annihilator of
f + g∅ and deg(h∅) ≥ AI(f). Then we consider two cases:
- either h∅(x) is the unique non-zero (x-dependent) coefficient of h; then for all I 6= ∅, Equation (4) gives:
0 = h∅(x)gI , which is impossible as g is nonzero;
- or there is a least another nonzero coefficient; then there exists a subset I1 6= ∅ such that for all non-empty
J ( I1, we have hJ = 0, and hI1 6= 0. Relatively to I1, Equation (4) gives then:

hI1(x)

f(x) + ∑
J⊆I1

gJ

 = h∅(x)gI1 . (5)
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Note that, since h∅ is nonzero, for all non-empty I ( I1, Equation (4) gives: 0 = h∅(x)gI , forcing gI to be
0. Then from Equation (5) we get:

hI1(x) (f(x) + g∅ + gI1) = h∅(x)gI1 . (6)

If gI1 = 0, then hI1 is a nonzero annihilator of f + g∅, leading to deg(h) ≥ |I1|+ AI(f) > AI(f). Else,
gI1 = 1 and multiplying Equation (6) by (f(x) + g∅ + 1) implies then:

(hI1(x) + h∅(x)) (f(x) + g∅ + 1) = 0.

So, hI1 +h∅ is an annihilator of f + g∅+1, and we already know that h∅ is a nonzero annihilator of f + g∅.
If deg(hI1 + h∅) 6= deg(h∅) then either deg(hI1 + h∅) > deg(h∅), and then deg(hI1) > deg(h∅), or
deg(hI1 + h∅) < deg(h∅) and deg(hI1) = deg(h∅) implying in all cases deg(hI1) ≥ deg(h∅) ≥ AI(f) and
then deg(h) > AI(f). Otherwise, we have deg(hI1 + h∅) = deg(h∅), but recall that hI1 + h∅ is a nonzero
annihilator of f + g∅+1; hence deg(hI1 +h∅) ≥ AN(f + g∅+1), and h∅ is a nonzero annihilator of f + g∅
hence deg(h∅) ≥ AN(f + g∅). Since we assumed AN(f) 6= AN(f +1), the degree of h∅ being greater than
or equal to both of them implies deg(h∅) > AI(f) and therefore deg(h) > AI(f). This concludes this part.
The same reasoning applies to the annihilators of ϕ+1, replacing g by g+1, since we made no assumption
on the value of g∅ in the proof. Hence, for h 6= 0 the relation h(ϕ + 1) = 0 implies deg(h) > AI(f),
allowing to conclude AI(ϕ) > AI(f).

In the following we show how to use these lemmata to determine the remaining parameters of XOR-THR
Functions and DSM.

4.2 Algebraic Immunity of XOR-THR Functions.

We can now apply the results of the previous subsection to particular classes. The algebraic immunity
of direct sums of monomials has already been determined in Theorem 1. We consider then the family of
XOR-THR functions.

Proposition 8 (Algebraic immunity of XOR-THR functions). Let XORk+Td,n be a XOR-THR function
with k > 0 and d 6∈ {0, n+1

2 , n+ 1} then:

AI(XORk + Td,n) = min(d+ 1, n− d+ 2).

Let XORk + Td,n be a XOR-THR function with k > 0 and d = n+1
2 , n odd, then:

AI(XORk + Td,n) = (n+ 1)/2.

Proof. For d 6∈ {0, n+1
2 , n+1}, using Lemma 1 and decomposing XORk+Td,n as the direct sum of XORk

and Td,n, we get AI(XORk + Td,n) ≤ AI(Td,n) + 1. Then, we show that this decomposition complies
the requirements of Lemma 11 and achieves then this upper bound with equality. We take XORk as the
function g, which does not have null algebraic degree, since k > 0, and has algebraic immunity 1. Then,
we take the threshold function as the function f . Using Proposition 3 with d 6∈ {0, n+ 1} gives AI(Td,n) =
min(d, n − d + 1) ≥ 1. The condition AN(Td,n) 6= AN(1 + Td,n) is also verified since d 6= n − d + 1
(Proposition 3 gives the two values), which corresponds to d 6= n+1

2 . Finally applying Lemma 11 gives
AI(XORk+Td,n) > AI(Td,n), which enables to conclude with the first bound and Proposition 3: AI(XORk+
Td,n) = 1 + AI(Td,n) = min(d+ 1, n− d+ 2).
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For d = n+1
2 , the function is affinely equivalent to a XOR1+Td,n function with k−1 fictitious variables.

XOR1+Td,n has algebraic immunity (n+1)/2 thanks to Lemma 1 and to the upper bound on the algebraic
immunity of Boolean functions in even numbers of variables, and we know that adding fictitious variables
does not change the algebraic immunity. This completes the proof.

Note that some values of k, d and n are not tackled by Proposition 8. For the extreme cases k = 0, d = 0
or d = n+ 1, at least one of the two components is constant, therefore the algebraic immunity of the whole
function is determined by the other one (using Proposition 3 if k = 0, or Theorem 1).

Proposition 9 (Fast algebraic immunity of XOR-THR functions). For k > 0, we have:

FAI(XORk + Td,n) ≥

{
n+3
2 if d = n+1

2 ,

2 + min(d, n− d+ 1) otherwise.

Proof. Using Lemma 9 on f and f + 1 for all f : FAI(f) ≥ min(2AI(f), 1 + max(AN(f),AN(f + 1))).
For k > 0, AN(f) = AN(f +1) since the affine transformation xi 7→ xi+1 for xi one variable of the XOR
part does not change the degree of an annihilator, and changes f into 1 + f . Hence, for d = (n + 1)/2,
2AI(f) = n + 1 and AN(f) = (n + 1)/2, it leads to the bound of (n + 3)/2. For d 6= (n + 1)/2,
AI(f) = AN(f) = 1 +min(d, n− d+ 1), it gives the bound of 2 + min(d, n− d+ 1).

4.3 Determining the dAN of XOR-THR Functions.

We shall need the following proposition, where we denote by XORk Bn, with k > 0, the direct sum of the
function XORk and a n-variable Boolean function.

Proposition 10 ( [CDM+18]). Let f be a XORk Bn Boolean function with k > 0 then:

∀a ∈ [0, k + n], N0
a = N1

a ,

where N b
a for b ∈ {0, 1} denotes the number of independent annihilators of f + b of degree at most a.

When a = AN(f), this gives dAN(f) = dAN(f + 1).

Proposition 11 (dAN of XOR-THR Functions). Let XORk + Td,n be a XOR-THR function such that
k > 0, n ∈ N, and 1 ≤ d ≤ n, then:

dAN(XORk + Td,n) =



(
n
d

)
if d < n

2 ,(
n+1
d+1

)
if d = n

2 ,(
n
d

)
if d = n+1

2 ,(
n+1
d

)
if d = n

2 + 1,(
n
d−1
)

otherwise.

Furthermore dAN(XORk + Td,n) = dAN(1 + XORk + Td,n).

Proof. Using Proposition 10, we have dAN(XORk + Td,n) = dAN(1 + XORk + Td,n). Then, according to
Property 2, the affine transformation defined as: ∀(x, y) ∈ Fk+n2 , (x, y) 7→ (x, y + 1n), maps XORk + Td,n
to 1 + XORk + Tn−d+1,n, and the dimension of the annihilators of fixed degree being affine invariant, we
have dAN(XORk + Td,n) = dAN(1 + XORk + Tn−d+1,n). We deduce:

dAN(XORk+Td,n) = dAN(1+XORk+Td,n) = dAN(XORk+Tn−d+1,n) = dAN(1+XORk+Tn−d+1,n),
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which enables to determine the dAN only considering d ≤ (n+ 1)/2.
We will proceed then in three steps: first we will study the PANF coefficients of the annihilators of a

direct sum of two functions, one of which is a XOR function. Then, we will focus on the XOR-THR functions
where the threshold function is the majority function in odd dimension (i.e. d = (n + 1)/2)). Finally we
will determine the dAN of the other XOR-THR functions for which d < (n+ 1)/2 (case of Proposition 8).

Direct sum with a XOR function and PANF coefficients:
First, we focus on the behavior of the PANF coefficients of an annihilator h(x, y) of any direct sum

f(x)+g(y) where g is a XOR function ofm 6= 0 variables. We recall the equations on the PANF coefficients
given by Lemma 10:

∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).

Since g equals XORm, this gives: gJ = 1 ⇔ |J | = 1,
∑

J⊆I gJ = |I| mod 2, and ∀J (
I,
∑

K⊆J gK∪(I\J) = gI\J (since I\J being non-empty, K ∪ (I\J) has size stricttly larger than 1 for
every K 6= ∅). We obtain then the following equations (simpler than in the general case):

∀I ⊆ [m], hI(x) (f(x) + (|I| mod 2)) =
∑
J(I

hJ(x) gI\J =
∑
J(I
|I\J|=1

hJ(x). (7)

When the cardinality of the subset I is at most 2, this gives in particular:
If |I| = 0, then I = ∅, h∅f = 0,

if |I| = 1, then I = {i}, h{i}(f + 1) = h∅,

if |I| = 2, then I = {i, j}, hIf = h{i} + h{j}.

(8)

Case d = (n+ 1)/2:
In this case, we know that AI(XORk + Td,n) =

n+1
2 = d. Consequently, we have the following bound

on the PANF coefficients: deg(hI) ≤ deg(h)− |I| ≤ d− |I|. We consider the system of PANF coefficients
given by (8) with f = Td,n.

Then, based on Proposition 4 we know that for d = (n+1)/2 both Td,n and Td,n+1 do not have nonzero
annihilators of degree less than d. So, the first equation (|I| = 0) implies that h∅ is an annihilator of Td,n of
degree d or the null function. As we saw in the proof of Lemma 11, h∅ 6= 0 otherwise AI(f + g) > AI(f)
which is not the case here, hence deg(h∅) = d. Considering the second equation (|I| = 1) with any pair
(i, j) ∈ [m]2, i 6= j, gives (h{i}+h{j})(f +1) = 0, and since deg(hI) ≤ d−|I|, it means that h{i} = h{j}.
Hence, all PANF coefficients related to a subset of cardinal 1 are equal, and for all I ⊆ [m] such that |I| ≥ 2,
hI = 0 (by induction on the cardinal of the subset, taking |I| = 2 as initialization step).

Then, any degree d annihilator of XORk + Td,n in this case has the form h∅ + h{1}(XORk). We finish
this part by showing that when h∅ is chosen, it fixes h{1}, enabling to conclude on the dimension of vector
space of nonzero annihilators of minimum degree. Let us write h∅ as h∅,<d + h∅,d, where we separate the
function h∅ (in ANF representation) in two parts, one with all monomials of degree less than d and the other
part of degree exactly d.

Since h∅f = 0, deg(h∅) = d, and dAN(Td,n) =
(

n
(n−1)/2

)
by Proposition 4 we consider as h∅ any

nonzero element of this vector space. Then, we consider the following equation: (h{1}+ h∅)(1+Td,n) = 0
(obtained when XORk = 1). Since the product of any function with only monomials of degree d or more
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with 1 + Td,n gives 0, we obtain h{1} = h∅,<d. Therefore, any nonzero annihilator of minimal degree of
XORk + T(n+1)/2,n can be written as:

h∅ + h∅,<d · (XORk), where h∅ · Td,n = 0, and h∅ 6= 0.

Finally, since the null function is always an annihilator, we get:

dAN
(
XORk + Tn+1

2
,n

)
= dAN

(
Tn+1

2
,n

)
=

(
n
n−1
2

)
=

(
n
n+1
2

)
.

Case d < (n+ 1)/2):
In this case (note that we do not consider the case d = 0), from Proposition 8, we know that AI(XORk+

Td,n) = d + 1. Consequently it gives the following bound on the PANF coefficients:∀I ⊆ [m], deg(hI) ≤
d+1−|I|. We consider the system of PANF coefficients described in the first part with f = 1+Td,n, hence
with AN(f) = d and AN(1 + f) = n− d+ 1 accordingly to Proposition 3.

The first equation (|I| = 0) gives: h∅ = 0 or d ≤ deg(h∅) ≤ d+ 1. Similarly to the precedent part, the
second equation (|I| = 1) implies:

∀i ∈ [m], (h{i} + h∅)(f + 1) = 0. (9)

Since deg(h∅ + h{i}) ≤ d + 1 and AN(f + 1) = n − d + 1, two cases appear depending on d, giving a
different situation for d+ 1 = n− d+ 1 i.e. d = n/2 and for d+ 1 6= n− d+ 1.

We begin with the case d 6= n/2. Equation (9) gives that ∀i ∈ [m] we have h{i} = h∅, and by induction
hI = 0 for all I such that |I| ≥ 2. Since deg(h{i}) ≤ d, h∅ is a degree d annihilator of 1 + Td,n or the null
function. All annihilators of XORk + Td,n are then of the form h∅ + h∅ · (XORk), and using Proposition 4
we can conclude in this case:

dAN(1 + XORk + Td,n) = dAN(1 + Td,n) =

(
n

d

)
.

Finally, we consider the case d = n/2. In this case, Equation (9) gives that ∀i ∈ [m], the function
h{i} + h∅ of degree at most d + 1 annihilates Td,n, and since d = n/2 from Proposition 3 we know that
AN(Td,n) = d+1. So either h∅ = h{i} as in the precedent case, either h{i}+h∅ is a degree d+1 annihilator
of Td,n. Then, we determine the PANF coefficients for the subsets of bigger cardinality. From the system,
multiplying by f + 1, the equation for the case |I| = 2 implies that for any i ∈ [m] and j ∈ [m]\i, we get
(h{i} + h{j})Td,n = 0 whereas deg(h{i} + h{j}) ≤ d. Thereafter, h{i} = h{j} for all i and j both taken in
[m], and by induction all hI such that |I| ≥ 2 are null. Then, we choose h∅ in a particular vectorial space
and show that only one value for h{i} is possible, and we express it relatively to h∅, giving the expression of
all annihilator of XORk + Td,n of degree less than or equal to d+ 1 when d = n

2 .
Since AN(1+Td,n) = d, and since for all functions with all monomials (ANF representation) of degree

greater than or equal to d the product with 1+Td,n gives the null function, the vectorial space of annihilators
of 1 +Td,n of degree less than or equal to d+ 1 has dimension

(
n
d

)
+
(
n
d+1

)
. Note that it corresponds to the

null function and the functions with monomials of degree d and d + 1 only, we denote this vectorial space
S. Let h∅ ∈ S, we consider the affine transformation x 7→ x+ 1n, transforming Td,n(x) into Td,n(x+ 1n)
for all x ∈ Fn2 . Using Property 2, we know that Td,n(1n + x) = 1+Tn−d+1,n(x), then we can equivalently
write Equation 9 (for any i ∈ [m]):

∀x ∈ Fn2 , (h∅ + h{i})(x)Td,n(x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h∅ + h{i})(1n + x)Td,n(1n + x) = 0,

⇐⇒ ∀x ∈ Fn2 , (h̃∅ + h̃{i})(x)(1 + Td+1,n)(x) = 0,
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where h̃∅ denotes the function such that ∀x ∈ Fn2 , h̃∅(x) = h∅(1n + x), and similarly for h̃{i}.

Since the affine transformation x 7→ x+ 1n preserves the degree, we can write h̃∅ as h̃∅,<d+1 + h̃∅,d+1

(similarly to what we did with h∅ in the case d = (n+ 1)/2)). For all functions whose monomials (in ANF
representation) have all degree greater than or equal to d + 1, the product with 1 + Td+1,n gives the null
function, then:

(h̃∅,<d+1 + h̃{i})(1 + Td+1,n) = 0.

Since deg(h̃∅,<d+1+ h̃{i}) ≤ d, it implies that h̃∅,<d+1 = h̃{i}, and since the transformation x 7→ x+1n is a

bijection, h{i} is fixed by the choice of h∅. In conclusion, it gives that h∅+h′∅,<d+1 ·(XORk), where h̃′∅,<d+1

is the result of h̃∅,<d+1 through the transformation x 7→ x + 1n, is an annihilator of 1 + XORk + Td,n of
minimal degree (or null) for any h∅ ∈ S. Finally:

dAN(1 + XORk + Td,n) =

(
n

d

)
+

(
n

d+ 1

)
=

(
n+ 1

d+ 1

)
,

concluding the case d < (n+ 1)/2. The identity
(
n
k

)
=
(
n

n−k
)

enables to obtain the value of dAN(XORk +
Td,n) for the case d > (n+ 1)/2.

Note that this lemma does not give the dAN of XOR functions (the threshold part is constant, thus it
corresponds to a DSM, the dAN of such functions will be given in Section 4.4) nor threshold functions
which is already given in Proposition 4.

4.4 Determining the dAN of DSM.

We shall use again Lemma 10 to study now the dimension dAN of a DSM f (recall that this is the dimension
of the vector space whose nonzero elements are those annihilators of f whose algebraic degree is bounded
above by AI(f), and therefore equals AI(f)). We shall first study, in Lemma 12 below, the evolution of
the dAN when a new monomial is added to a DSM (and we shall need to address only the case where
the monomial has degree not smaller than the algebraic degree of f ). We shall then use this lemma to
prove Lemma 13, which studies the dAN of homogeneous polynomials, and Lemma 14, which studies the
evolution of the dAN when a homogeneous polynomial is added to a DSM. These two lemmas will allow us
to address the initialization and the generic step of a recursion proving finally Theorem 3, which determines
an upper bound on the dAN of any DSM, with a simple expression by means of the direct sum vector.

Lemma 12. Let f be a degree k > 0 DSM, we consider the direct sum of f and of the monomial yT such
that t = |T | ≥ k, then:

dAN(f + yT ) =


1 if AI(f) = t,

1 + t · dAN(f) if AI(f) = t− 1,

t · dAN(f) otherwise,

Proof. To study the annihilators of f + yT , we first apply Lemma 10 to the (n, t)-partitioned algebraic
normal form of f + yT . Since g is here a monomial function, for all I ( T we get gI = 0, and gT = 1. The
relation

∀I ⊆ [m], hI(x)

f(x) +∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪(I\J).
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gives: hIf = 0 for all I ( T,

hT (f + 1) =
∑
J(T

hJ for J = T . (10)

Since we are looking for nonzero annihilators h of minimal degree, we also use the following equation for
each subset I ⊆ T :

deg(hI) ≤ AI(f + yT )− |I|. (11)

We now decompose the rest of the proof in three parts:

1. Expression of the algebraic immunity of f + yT by means of that of f :
We have determined the algebraic immunity of DSM functions in Theorem 1. Here we want to find an

explicit expression of AI(f + yT ) by means of AI(f).
Since f + yT is a degree t function, its algebraic immunity is at most t. Let us show that, if AI(f) < t,

then AI(f + yT ) = AI(f) + 1, and that (otherwise) AI(f) = t (which supposes that t = k) implies
AI(f + yT ) = AI(f).
• Let us start with the case AI(f) = t. Then, since the function f + yT cannot have a higher AI than t

since its degree is equal to t, and since it is a direct sum and we know by Lemma 1 that its AI is then at least
AI(f) = t, we get AI(f + yT ) = AI(f).

• Let us now address the case AI(f) < t. We use the formalization of direct sum vector. Considering
mf = [m1, . . . ,mk], we have:

mf+yT =


[m1, . . . ,mk−1,mk + 1] if t = k,

[m1, . . . ,mk, 0, . . . , 0︸ ︷︷ ︸
t−k−1

, 1] if t > k.

We deduce the algebraic immunity of f + yT using the characterization of Theorem 1 on f + yT :
- If t = k, then the kth coefficient in mf+yT being mk + 1, we have according to Theorem 1:

AI(f + yT ) = min

(
min

0≤d<k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, k

)
. (12)

Since we are considering the case AI(f) < t, which corresponds here to AI(f) < k, we necessarily
have: AI(f) = min0≤d<k

(
d+

∑k
i=d+1mi

)
. Therefore, Relation (12) can be simplified as AI(f + yT ) =

min(AI(f) + 1, k). Since AI(f) < k, we deduce AI(f + yT ) = AI(f) + 1.
- If t > k, the characterization of Theorem 1 gives:

AI(f + yT ) = min

(
min

0≤d≤k

[
d+

(
k∑

i=d+1

mi

)
+ 1

]
, min
k+1≤d≤t−1

d+ 1, t

)
.

It can be simplified to AI(f + yT ) = min (AI(f) + 1, k + 2, t). Since f is a degree k function and t > k,
the minimum is always equal to AI(f) + 1. Summarizing: if AI(f) < t, then AI(f + yT ) = AI(f) + 1.
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2. Degrees of the PANF coefficients:
Now that we know the exact value of AI(f + yT ), we can apply Equation (11).
• In the case AI(f) = t, then we know that AI(f + yT ) = t and Equation (11) can be rewritten as:
deg(hI) ≤ t− |I|. We deduce, by also using (10), that:

deg(h∅) ≤ t and h∅f = 0 for the subset ∅,
hIf = 0 and deg(hI) < t = AI(f), hence hI = 0 for all I ( T, I 6= ∅,
deg(hT ) ≤ 0 and hT (f + 1) = h∅ for the substet T .

If hT = 0 then h∅ = 0, which gives that h = 0, and if hT = 1, then h∅ = 1 + f and h(x, y) =
(1 + f(x)) + yT . Note that this shows that dAN(f + yT ) = 1.
• In the case AI(f) < t, then we know that AI(f + yT ) = AI(f) + 1 and therefore we can rewrite
Equation (11) as: deg(hI) ≤ AI(f) + 1− |I|. We deduce, by also using (10), that:

deg(h∅) ≤ AI(f) + 1 and h∅f = 0 for the subset ∅,
deg(hI) ≤ AI(f) and hIf = 0 for all I ( T such that |I| = 1,

hIf = 0 and deg(hI) < AI(f), hence hI = 0 for all I ( T such that |I| > 1,

deg(hT ) ≤ AI(f) + 1− t and hT (f + 1) =
∑
I(T

|I|≤1

hI for the substet T .
(13)

Considering the last equation, the case hT = 0 is always possible and the only possibility for hT to be
nonzero is when AI(f) = t − 1 (since AI(f) < t). But we have AI(f) ≤ k ≤ t; hence this latter case can
occur only if t = k and AI(f) = k − 1, or t = k + 1 and AI(f) = k. In these two cases hT is constant and
if it equals 1, then we have:

f + 1 =
∑

I(T, |I|≤1

hI . (14)

3. Determining dAN(f + yT ):
• In the case AI(f) = t, we have shown that dAN(f + yT ) = 1.
• In the case AI(f) < t, we use the system of equations (13), and consider different subcases:

– Case AN(f) ≥ AI(f) + 2.
Since deg(h∅) ≤ AI(f)+1 < AN(f) and h∅f = 0, we necessarily have h∅ = 0. Similarly, all the PANF
coefficients hI (where by definition I ⊆ T ) such that |I| = 1 are null, since deg(hI) ≤ AI(f) < AN(f),
and hIf = 0.
We have seen above (after Relation (13)) that the only possibility for hT to be nonzero is t = k and
AI(f) = k − 1, or t = k + 1 and AI(f) = k, and f + 1 =

∑
I(T, |I|≤1

hI = 0, which is impossible,

therefore hT = 0, the null function is the only annihilator of f + yT of degree less than or equal to
AI(f + yT ), giving dAN(f + yT ) = 0.

– Case AN(f) = AI(f) + 1.
In this case, we still have hI = 0 for all I ( T such that |I| = 1, because hIf = 0 and deg(hI) <
AN(f).
- If h∅ = 0, then as in the previous case, h = 0 is the unique possibility and dAN(f + yT ) = 0.
- Otherwise, h∅ is a nonzero annihilator of f of algebraic degree AN(f), and the last line in (13) gives
hT (f + 1) = h∅. Then, hT = 0 is impossible. According to what we observed above after Relation
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(13), we have then hT = 1, h∅ = f + 1, and either t = k and AI(f) = k − 1, or t = k + 1 and
AI(f) = k. In the latter case, f +1 is then a minimum degree annihilator of f (and vice versa), implying
AN(f) = deg(f + 1) = deg(f) 6= AI(f) + 1, a contradiction. In the former case, the annihilators of
f + yT are 0 and 1 + f + yT , giving dAN(f + yT ) = 1.

– Case AN(f) = AI(f).
In this case, h∅ can be either zero or an annihilator of f of degree AN(f) or of degree AN(f) + 1. For
all I ( T such that |I| = 1, hI can be either zero or an annihilator of f of degree AN(f).
- If hT = 0, then

∑
I(T

|I|≤1

hI = 0. This implies that h∅ cannot be of degree AN(f) + 1. Then, among the

t+1 coefficients, exactly t can be chosen freely in the vectorial space of annihilators of f of degree less
than or equal to AN(f) and the last one is equal to the sum. We get dAN(f + yT ) = t · dAN(f).
- If hT = 1, we saw after Relation (13) that only two cases happen:
(i) If t = k and AI(f) = k − 1, then for all I ( T ; |I| = 1, the coefficients hI are such that

deg(hI) ≤ k − 1 whereas f + 1 has degree k. Therefore, according to (14), h∅ equals f + 1 + h′

where h′ is a function such that deg(h′) ≤ k − 1, and according to (13), h∅ annihilates f . Since
f + 1 is an annihilator of f , and since the annihilators form a vectorial space, h′ is an annihilator of
f of degree AN(f) or is null. Summarizing, building an annihilator of f + yT in such case consists
in choosing h′ and the t − 1 first coefficients hI ; |I| = 1, from the vector space of annihilators of
f of degree less than or equal to AN(f), the last coefficient being equal to the sum of the others in
order to fulfill Equation (14). Note that all the annihilators of f+yT created this way are of the form
f + 1 + yT + h′′, where h′′ is an annihilator of f + yT given by the case hT = 0 (indeed, h′ and
the hI such that |I| = 1 are chosen exactly under the same constraints as h∅ and the same hI in the
previously studied case). We get dAN(f + yT ) = 1 + t · dAN(f).

(ii) If t = k + 1 and AI(f) = k, then deg(h∅) ≤ k + 1 and for all I ( T ; |I| = 1, the coefficients
hI are such that deg(hI) ≤ k. Then, again according to (14) and since deg(f + 1) = k, h∅ cannot
be of degree k + 1. Hence, building an annihilator of f + yT in this case consists in choosing t
coefficients from the vectorial space of annihilators of f of degree less than or equal to AN(f), the
last one being equal to f + 1 plus this sum. This part (where hT = 1) gives 2t·dAN(f) annihilators,
adding the annihilators for hT = 0 enables to conclude: we get dAN(f + yT ) = 1 + t · dAN(f).

Putting all together:
Let summarize what we obtain for the different cases:
1. If AI(f) = t then dAN(f + yT ) = 1.
2. Else, AI(f) < t:

(a) If AN(f) ≥ AI(f) + 2, then dAN(f + yT ) = 0.
(b) If AN(f) = AI(f) + 1, then:

i. If t = k and AI(f) = k − 1 then dAN(f + yT ) = 1.
ii. Else, dAN(f + yT ) = 0.

(c) Else, AN(f) = AI(f):
i. If t = k and AI(f) = k − 1 then dAN(f + yT ) = 1 + t · dAN(f).

ii. If t = k + 1 and AI(f) = k then dAN(f + yT ) = 1 + t · dAN(f).
iii. Else, dAN(f + yT ) = t · dAN(f).

Then:
– if AI(f) = t, this corresponds to item 1 only, then dAN(f + yT ) = 1.
– if AI(f) = t− 1 then we are in item 2, as proven previously AI(f) = t− 1 corresponds to AI(f) = k and
t = k + 1, or AI(f) = k − 1 and t = k.
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– Case 2 (a) is impossible since it gives AN(f) > t whereas f +1 is an annihilator of f of degree t− 1 or t.
– Case 2 (b) is possible, since we have dAN(f) = 0 by definition, if t = k and AI(f) = k − 1 we are in the
case 2 (b) i. then dAN(f + yT ) = 1 = 1 + t · dAN(f), and the case t = k + 1 and AI(f) = k is impossible
(it corresponds to AN(f) > deg(f)).
– We are then reduced to Case 2 (c), AI(f) = k − 1 and t = k or AI(f) = k and t = k + 1 correspond to
cases 2 (c) i. or 2 (c) ii., then we have that dAN(f + yT ) = 1 + t · dAN(f).
- if AI(f) < t− 1 also enters in item 2.
– In Case 2 (a) and 2 (b) i. since dAN(f) = 0 by definition we get dAN(f + yT ) = 0 = t · dAN(f).
– Case 2 (c) iii. leads to dAN(f + yT ) = t · dAN(f).

Lemma 13. Let f be an homogeneous DSM of degree k > 0, or its complement, with direct sum vector
mf = [0, . . . , 0,mk], then: if mf = [1] then dAN(f) = 1, otherwise:

dAN(f) ≤


1 if mk > k,

1 + kmk if mk = k,

kmk if mk < k.

When m0 (the constant coefficient of f ) is equal to 0, this inequality becomes an equality.

Proof. First we address the case of a monomial function, that is, the case mk = 1. We have f = xT , with
|T | = k ∈ N∗. Without loss of generality we assume T = {1, . . . , k}. We have AN(xT ) = 1, since for
any i ∈ T , 1 + xi is an annihilator of xT , and the constant function 1 does not annihilate xT . Note that
exactly k independent annihilators can be created this way (1 for each variable indexed by T ), therefore
dAN(xT ) = k.
We address now the case of the complement of a monomial function 1 + xT . For k = 1, the constant
function 1 is not an annihilator and x1 is one. Then AN(1 + x1)=1 and dAN(1 + x1) = 1, since there
is no other nonzero annihilator of degree 1 than x1. For k > 1, note than 1 + xT cannot be annihilated
by a nonzero function of degree lesser than k. Indeed, let g be a nonzero function of degree lesser than k,
then g · (1 + xT ) = g or g · (1 + xT ) = g + xT , since each monomial xI in the ANF of g is such that
I ( T , implying that xI · xT = xT (and the same holds for the constant coefficient), then none of these
products is null. Therefore, it gives AN(1+xT ) = k, and there is no nonzero annihilator of 1+xT of degree
AI(xT ) = 1, and then we have dAN(1 + xT ) = 0.
Concluding this part, when f is a DSM whose associated direct sum vector has a unique nonzero coefficient
equal to 1, then dAN(f) ≤ k, and the upper bound is reached when the constant coefficient of f is null.

Then, we address the general case of homogeneous DSM. Let f be a homogeneous DSM of degree
k (or its complement), its associated vector is mf = [0, . . . , 0,mk], where mk > 0. Such function can
be constructed recursively by adding degree-k monomials to xT (or 1 + xT ), where |T | = k. To study the
parameters of these functions used in the recursion, we denote by fi the function such that the k-th coefficient
of mfi is equal to i, all the other coefficients being zeros. Using Theorem 1 we obtain AI(fi) = min{i, k}.
Let us combine this with Lemma 12 for various values of i > 0:

– Case 1 ≤ i < k − 1:
AI(fi) = i < k − 1, it corresponds to the third item of Lemma 12, giving dAN(fi+1) = k · dAN(fi).
Since dAN(f1) ≤ k by the previous part of the proof, an immediate recursion gives dAN(fi) ≤ ki for
i ∈ [k − 1]. When m0, the constant coefficient of f , is null, then we also know that dAN(f1) = k, and
therefore dAN(fi) = ki for i ∈ [k − 1].
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– Case i = k − 1:
AI(fi) = k− 1, it corresponds to the second item of Lemma 12, then dAN(fi+1) = 1+ k · dAN(fi), so
since i > 0, dAN(fk) ≤ 1 + kk for k > 1. When m0 = 0 since dAN(fk−1) = kk−1 then dAN(fk) =
1 + kk.

– Case i ≥ k:
AI(fi) = k, it corresponds to the first item of Lemma 12, then dAN(fi+1) = 1, hence dAN(fj) = 1 for
j ≥ k + 1.

Note that the special case i = 1 = k is not tackled by these cases, but it corresponds to the monomial
function x1 or its complement, treated in beginning of this proof: if mf = [1] then dAN(f) = 1. For the
other homogeneous functions (and there complements), summarizing the three cases gives dAN(f) ≤ kmk

if mk < k, dAN(f) ≤ 1 + kmk if mk = k and dAN(f) ≤ 1 if mk > k, with the inequality becoming an
equality when m0 = 0.

Lemma 14. Let f be a DSM of degree k > 0, and g be an homogeneous DSM of degree t such that t > k
with associated vector mg = [0, . . . , 0,mt], the direct sum f + g has the following property:

dAN(f + g) =


tmt · dAN(f) if AI(f) +mt < t,

1 + tmt · dAN(f) if AI(f) +mt = t,

1 if AI(f) +mt > t.

Proof. First, let us denote by gi the DSM function such that the t-th coefficient of mgi is equal to i, all the
other coefficients being zeros. For i > 0, we determine AI(f + gi) by using Theorem 1:

AI(f + gi) = min
0≤d≤t

d+∑
j>d

mj

 = min

 min
0≤d≤t−1

d+ k∑
j>d

mj + i

 , t

 = min(AI(f) + i, t).

Then, depending on the value of i, Lemma 12 enables to determine dAN(f + gi):

1. Case 1 ≤ i < t− 1− AI(f):
we have AI(f+gi) < t−1 and we are in the case of the third item of Lemma 12, giving dAN(f+gi+1) =
t · dAN(f + gi). Since AI(f) < t − 1, dAN(f + g1) = t · dAN(f), an immediate recursion gives:
dAN(f + gj) = tj · dAN(f) for j ∈ [t− 1− AI(f)].

2. Case i = t− 1− AI(f):
AI(f + gi) = t − 1, then we are in the case of the second item of Lemma 12, dAN(f + gi+1) =
1 + t · dAN(f + gi), so: dAN(f + gt−AI(f)) = 1 + tt−AI(f) · dAN(f),

3. Case i ≥ t− AI(f):
AI(f + gi) = t, then we are in the case of the first item of Lemma 12, and dAN(f + gi+1) = 1, hence:
dAN(f + gj) = 1 for j > t− AI(f).

Summing up, if the condition of Case 1 is satisfied for all i < mt, that is if mt ∈ {1, . . . , t− 1−AI(f)}, or
equivalently, AI(f)+mt < t, then we have dAN(f +g) = tmt ·dAN(f). If we reach Case 2 for i = mt−1,
that is if AI(f)+mt = t, then we have dAN(f + g) = 1+ tmt ·dAN(f), and if we reach Case 3 for i < mt,
that is if AI(f) +mt > t, then we have dAN(f + g) = 1.
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Given a DSM f , using Lemma 14 in the generic step of a recursion, and Lemma 13 in the initialization
step, we derive a tight bound on the dimension dAN(f) of the vector space whose nonzero elements are
those annihilators of f whose degree equals the algebraic immunity of f .

Theorem 3. Let f be a DSM with associated direct sum vector mf = [m1, . . . ,mk]. Let us define the
following set:

S(f) =

{
{0 < d ≤ k | d+

∑
i>dmi = AI(f)} if m1 = 1,

{0 ≤ d ≤ k | d+
∑

i>dmi = AI(f)} if m1 6= 1.

Then, we have the following relation:

dAN(f) ≤
∑
d∈S(f)

k+1∏
i>d

imi .

And when m0 (the constant coefficient of f ) is equal to 0, the inequality becomes an equality.

Proof. Let us denote by SD(f) the quantity
∑

d∈S(f)
∏k+1
i>d i

mi and prove by recursion on the number of
nonzero coefficients mi that dAN(f) ≤ SD(f), and that, when m0 = 0, dAN(f) = SD(f).
The initialization is when there is one nonzero coefficient mi, that is, for an homogeneous DSM or its
complement.
In the case mf = [1], Lemma 13 gives dAN(f) = 1. Let us check the assertion of the theorem in this case:
we have AI(f) = 1 = k = mk, so S(f) = {1}, and SD(f) =

∏2
i>1 i

mi = 20 = 1, which is consistent with
the hypothesis.
In all the other cases, we have a homogeneous DSM of degree at least 1 or its complement, with mf =
[0, . . . , 0,mk], mk > 0, and mk > 1 if k = 1. Note that for these functions we have:

d+
∑
i>d

mi =

{
d+mk if 0 ≤ d < k,

k if d = k.

According to Theorem 1, AI(f) (involved in the definition of S(f)) is the minimum of this value when d
ranges between 0 and k. Note that the minimum when d ranges between 0 and k − 1 equals mk; then we
have AI(f) = min(mk, k). Lemma 13 gives three possible cases for dAN(f), depending on the value of the
nonzero coefficient mk relatively to k:

– Case 1 ≤ mk ≤ k − 1:
In this case dAN(f) ≤ kmk , it corresponds to AI(f) = mk 6= k which implies S(f) = {0}. Here
SD(f) =

∏k+1
i>0 i

mi = kmk .
– Case mk = k:

This setting corresponds to dAN(f) ≤ 1 + kk (since k > 1), and AI(f) = mk = k. The condition on
the algebraic immunity gives S(f) = {0, k} Then:

SD(f) =
∑
d∈S(f)

k+1∏
i>d

imi =

k+1∏
i>0

imi +

k+1∏
i>k

imi = kk + 1.

– Case mk > k:
In this case dAN(f) ≤ 1, it corresponds to AI(f) = k 6= mk which implies S(f) = {k}, and then
SD =

∏k+1
i>k i

mi = 1
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For these three cases dAN(f) ≤ SD(f) and since when m0 the constant coefficient of f is equal to 0
the inequality becomes an equality (Lemma 13) it is consistent with the hypothesis, which concludes the
initialization of the recursion.

We consider the recursion step: let f be a DSM with ` + 1 nonzero mi coefficients, f can always be
written as a direct sum of g and h such that:

– g is a DSM with ` ≥ 1 nonzero direct sum vector coefficients, with mg = [m′1, . . . ,m
′
k] and same

constant coefficient as f ,
– h is an homogeneous DSM of degree t > k.

We denote mf = mg+h as [m1, . . . ,mt], note that by construction:

mi =


m′i for 1 ≤ i ≤ k,
0 for k < i < t,

mt > 0 for i = t.

Applying the recursion hypothesis on g we use Lemma 14 to study dAN(f). First, let consider the
potential sets S(f), using Theorem 1, we get:

AI(f) = min
0≤d≤t

{
d+

t∑
i>d

mi

}
= min

{
min

0≤d≤k

(
d+

(
k∑
i>d

m′i

)
+mt

)
, t

}
= min {AI(g) +mt, t} .

The values of d giving AI(f) +mt are the ones such that d +
∑k

i>dm
′
i = AI(f), which constitutes S(g)

when m1 6= 1, and withdrawing 1 it constitute S(g) when m1 = 1. By construction m1 = m′1, then the
potential sets for S(f) are S(g), S(g)∪{t}, or {t}, depending on the relation between AI(g)+mt and t. We
study the three cases for dAN(f) given by Lemma 14:

– Case AI(g) +mt < t:
In this case, Lemma 14 gives dAN(f) = dAN(g + h) = tmt · dAN(g). Since in this case AI(f) =
AI(g) +mt 6= t, it implies S(f) = S(g), and then:

∑
d∈S(f)

t+1∏
i>d

imi =
∑
d∈S(g)

t+1∏
i>d

imi = tmt

 ∑
d∈S(g)

k+1∏
i>d

im
′
i

 .

By the recursion hypothesis, this last sum is an upper bound of dAN(g) or the value of dAN(g) if
m0 = 0, hence the hypothesis is valid at this step.

– Case AI(g) +mt = t:
This setting corresponds to dAN(f) = dAN(g+h) = 1+tmt ·dAN(g), and to AI(f) = AI(g)+mt = t,
then S(f) = S(g) ∪ {t}. We consider the sum indexed by S(f):

SD(f) =

 ∑
d∈S(f)\t

t+1∏
i>d

imi

+

t+1∏
i>t

imi = tmt

 ∑
d∈S(g)

k+1∏
i>d

im
′
i

+ 1.

By the recursion hypothesis, the last sum upper bounds dAN(g) (and equals dAN(g) when m0 = 0),
hence the hypothesis is valid at this step.
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– Case AI(g) +mt > t:
In this case dAN(f) = dAN(g + h) = 1, it corresponds to AI(f) = t 6= AI(g) +mt, then S(f) = {t}.
Therefore: SD(f) =

∏t+1
i>t i

mi = 1.

In conclusion, for the three cases we proved dAN(f) ≤ SD(f) and dAN(f) = SD(f) when the constant
coefficient of f is null. It finishes the recursion step and therefore concludes the proof.

This formula gives a tight upper bound on the dimension of the annihilators of a DSM. In the following
remark we give some intuition on the shape of these annihilators.

Remark 6. The relation between dAN(f) and the set S(f) gives more intuition on these annihilators. We
consider the case here of f being a DSM such that the constant coefficient is null. From the proof of
Theorem 1 (lower bound part) we know that these functions are such that AN(f) = AI(f) since we can
construct nonzero annihilators of degree AI(f). These annihilators are built considering d ∈ S(f) and f as
f1 +f2 where f1 consists in the monomials of degree less than or equal to d of f , and f2 is the part with the
other monomials. 1+f1 is an annihilator of f1, and taking one variable of each monomial of f2, the product
of the complement of each of these variables is an annihilator of f2. Then,

∏k
i>d i

mi linearly independent
annihilators can be created this way.

Note that in the formula of Theorem 3 the products runs until k+1 where k is the degree of the considered
function, this extra term in the product aims to get the “+1” term occurring only when k ∈ S(f). The
variation of definition for S(f) depending on the value ofm1 can also been remarked with these annihilators.
Indeed, when m1 = 1, both 0 and 1 can fulfill the formula AI(f) = d +

∑
d>1mi, and in this case, the

same annihilators are produced, since the degree-exactly-1 component function of f is a monomial function
then annihilated by 1 + x1 both for d = 0 (canceling the monomial x1 in f2) and d = 1 (annihilating f1
with its complement). For all the other cases, by construction two different d lead to linearly independent
annihilators of f .

Finally, a counting argument shows directly that for these functions all the annihilators of degree less
than or equal to AI(f) are linear combination of the annihilators described in this remark, it characterize the
annihilators of minimal degree of all DSM with null constant coefficient.

4.5 Direct Sums and Optimal Algebraic Immunity.

In this part we study cases where the algebraic immunity of a direct sum reaches its upper bound. More
particularly, we are interested in the cases of direct sums h such that AI(h) = AI(f) + AI(g), which
corresponds to the upper bound of Equation 3 being tight.

Since the maximum value of the algebraic immunity of a n-variable Boolean function is d(n/2)e,
different cases are possibles depending on the parity of the number of variables of the two component
functions. If both are even, the only possibility is when both f and g have optimal AI. If n and m have
different parities, it is also necessary for f and g to be of optimal AI, otherwise the sum of their AI cannot
reach the maximal value for F . The situation is different when n and m have odd parity, if both functions
have optimal AI, then AI(f) + AI(g) > (n+m+ 1)/2 giving that the bound is not tight but functions with
optimal AI could be obtained in this case. The only other possibility is if one of the function has optimal
AI and the other one has almost optimal AI. We summarize it in the following proposition before giving
examples:
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Proposition 12. Let n,m ∈ N∗ be the number of variables of f and g respectively, the direct sum h having
maximal AI implies:

AI(f) = n
2 , AI(g) =

m
2 if n ≡ m ≡ 0 mod 2,

AI(f) = dn2 e, AI(g) = d
m
2 e if n 6≡ m mod 2,

AI(f) = n+(−1)a
2 , AI(g) = m+(−1)b

2 , a, b ∈ {0, 1} | a+ b ≤ 1 if n ≡ m ≡ 1 mod 2.

Some examples of direct sums having maximum algebraic immunity are given by direct sums of
monomials (the AI of DSM is stated in Theorem 1):

– x1 + x2 + x3x4 with direct sum vector [2, 1] is the direct sum of f = x1 + x2 and g = x3x4, both of
algebraic immunity 1 since f is linear and g is a monomial function (see Property 1). It is an example
with n ≡ m ≡ 0 mod 2.

– T2 = x1 + x2x3 is an example where n 6≡ m mod 2.
– x1 + x2 is an example where n ≡ m ≡ 1 mod 2, where f , g and h have optimal algebraic immunity.
– T3 = x1 + x2x3 + x4x5x6 where f = T2 is an example of a direct sum where n ≡ m ≡ 1 mod 2 and

one of the function has almost optimal AI.

More general families of functions having this property can be exhibited using the PANF coefficients.
For example Lemma 11 allows to build direct sums of optimal AI from a function optimal in an even number
of variables. Instead, the following lemma enables to build direct sums of optimal AI from a function almost
optimal in an odd number of variables.

Lemma 15. Let F be the direct sum of T2 and f ∈ Bn:

If AI(f) ≥ 1 and |AN(f)− AN(f + 1)| ≥ 2 then AI(F ) = AI(f) + 2.

Proof. For this proof we use the PANF coefficients introduced in Definition 21. Using Lemma 10 with
g = T2 we obtain the following system of equations:

∀I ⊆ [3], hI(f + ε+
∑
J⊆I

gJ) =
∑
J(I

hJ
∑
K⊆J

gK∪(I\J),

for h an annihilator of F + ε. Triangular functions have a sparse ANF, here T2 has only two nonzero ANF
coefficients: g{1} and g{2,3}. Therefore the system can be rewritten:

h∅(f + ε) = 0 for the subset ∅,
h{1}(f + ε+ 1) = h∅ for the subset {1},
h{i}(f + ε) = 0 for i ∈ {2, 3},
h{1,i}(f + ε+ 1) = h{i} for i ∈ {2, 3},
h{2,3}(f + ε+ 1) = h{2} + h{3} + h∅ for the subset{2, 3}
h[3](f + ε) = h{1,2} + h{1,3} + h{2,3} + h{1} for the substet {1, 2, 3}.

We show by contradiction that AI(F ) = AI(f) + 2 (note that it cannot be more since AI(T2) = 2). We
denote AI(f) as d, from the hypothesis of the lemma, f and f + 1 are such that one has AN equal to d and
the other one at least d + 2. Let assume AI(F ) ≤ d + 1, it means that there exists ε ∈ {0, 1} such that h is
nonzero and for the coefficients of the system above: ∀I ⊆ [3] deg(hI) ≤ d + 1 − |I|. We will first study
the case where f + ε has AN at least d+ 2, then the case equal to d.
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Note that if AN(f + ε) ≥ d + 2, it implies that h∅ = h{2} = h{3} = 0 since they are annihilators of
f of degree at most d + 1 or at most d. Thereafter, all the PANF coefficients for I such that |I| = 2 are
annihilators of f + ε + 1 of degree at most d − 1, which implies their nullity. Hence, the last equation (for
I = [3]) implies (h[3]+h{1})(f+ε) = 0, which implies that (h[3]+h{1}) has degree at least d+2 or is null.
Due to the degree restriction the former case is impossible, the latter case implies h[3] = h{1}, and therefore
deg(h{1}) ≤ d− 2, forcing h{1} to be null (since it annihilates f + ε+1). Consequently, all coefficients are
null: the unique solution is the null function.

We handle the case AN(f + ε) = d and AN(f + ε + 1) ≥ d + 2. The latter implies that (h∅ + h{1})
annihilates f + ε + 1 and therefore h∅ = h{1}, with degree at most d. Similarly, for i ∈ {2, 3}, we obtain
(h{1,i} + h{i}) annihilates f + ε + 1 and therefore h{1,i} = h{i}, with degree at most d − 1, forcing these
coefficients to be null (since h{i} annihilates f +ε). Then (h{2,3}+h∅) is also null, forcing both coefficients
to be null by the same arguments. Hence, the last coefficient h[3] is an annihilator of f + ε, and its degree
is at most d − 2, implying its nullity. Again, only the null function is solution to this system, proving the
contradiction.

In the following lemma we give direct sums’ constructions reaching the optimal algebraic immunity
for the different possible parities of n and m. The four constructions correspond to the four cases of
Proposition 12, the last case corresponding to n and m both odd and one of the function having almost
optimal AI. We exhibit concrete functions in a corollary.

Lemma 16. Let us denote B(n, r, s) the set of n-variable Boolean functions f such that AI(f) = r and
|AN(f) − AN(f + 1)| = s. As usually, Bn stands for the set of n-variable Boolean functions, and we
additionally denote B∗n this set without the two constant functions.

For k ∈ N∗, the direct sum of the following pairs of functions has optimal algebraic immunity:

1. (f, g), where f ∈ B(2k, k, 1) and g ∈ B∗2 ,
2. (f, g), where f ∈ B(2k, k, 1) and g ∈ B∗1 ,
3. (f, g), where f ∈ B(2k − 1, k, 0) and g ∈ B1,
4. (f, T2), where f ∈ B(2k + 1, k, 2).

Proof. The two first cases come from applying Lemma 11 on f and g. Any non constant Boolean function
in 1 or 2 variables has AI equal to 1 since only constant functions are such that AI = 0 (Property 1), and
the maximal AI for these number of variables is 1. Hence, AI(g) = 1, AI(g) ≤ AI(f), AN(f) 6= AN(f + 1)
therefore we can apply Lemma 11, giving AI(F ) > k where we denote F the direct sum of f and g. We
obtain AI(F ) = k + 1, the maximal value for functions in 2k + 1 or 2k + 2 variables.

In the third case, the function f has optimal algebraic immunity, and since 2k − 1 is odd, it is possible
only when AN(f) = AN(f + 1) = k. Adding a function of B1 gives k ≤ AI(F ) ≤ k, the upper bound
coming form the number of variables and the lower one from the fourth item of Lemma 1. When g is not
constant, this construction is an example with f and g both with optimal AI. The last case is proven by
Lemma 15. AI(f) ≥ 1 and |AN(f)− AN(f + 1)| = 2, allowing to apply the lemma, then AI(F ) = k + 2:
the maximum for a function in 2k + 3 variables.

Corollary 1. Let d ∈ N∗, all the following direct sums have maximal algebraic immunity:

XOR2 + Td,2d, XOR1 + Td,2d, XOR1 + Td,2d−1, and T2 + Td,2d+1.

Proof. The 4 families correspond to the examples of Lemma 16. Recall from Proposition 3 that AN(Td,n) =
n− d+ 1 and AN(1 + Td,n) = d.
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5 Appendix: complements on the context.

The cloud has become nowadays an unavoidable complement to a variety of embedded devices such as
mobile phones, smart cards, smart-watches, as these cannot perform all the storage and computing needed
by their use. This raises a new privacy concern: it must be impossible to the cloud servers to learn about the
data of the users. The first scheme of fully homomorphic encryption (FHE) realized by Gentry [Gen09] gives
a solution to this problem by providing an encryption scheme CH preserving both operations of addition
and multiplication:

CH(m+m′) = CH(m)�CH(m′); CH(mm′) = CH(m)�CH(m′). (15)

Then, combining these two operations allows to evaluate any polynomial over the algebraic structure where
m and m′ live, allowing to perform any computation if this structure is a finite field, or even if it is a vector
space over a finite field, since we know that any function over such structure is (univariate, resp. multivariate)
polynomial (see [KLP06]). Let us recall how such scheme can be used if one wants to compute the image
of some data by some function, and needs the help of the cloud for that. We first represent the data by
elements mi of a finite field Fq (or a ring but we shall restrict ourselves to a field), where i ∈ I ⊆ N; the
function, transposed as a function over FIq , that we shall denote by F (mi, i ∈ I), becomes then a polynomial,
according to what we recalled above (or according to the fact that the vector space FIq can be identified with
the field Fq|I|). If one needs the help of the cloud for the computation, it is sufficient to send CH(mi) for
i ∈ I to the cloud server, which will compute F (CH(mi), i ∈ I). Thanks to (15), this value will equal
CH(F (mi, i ∈ I)) and decryption by the owner of the private decryption key will provide F (mi, i ∈ I),
and the server will have not learned anything about the mi nor about F (mi, i ∈ I). The computation to
perform is transposed as a function F over this field since the homomorphic operations allowed by a FHE
scheme are only defined for this field (or ring), and it does not allow to perform other operations using
different representation of the data. For example, a FHE scheme for plaintexts from (F2n ,+,×) cannot
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handle the plaintexts as elements from Fn2 , therefore in this case any computation is evaluated based on the
univariate representation.
But the theoretical solution we just described is not practical by itself, because the repetitive use of
homomorphic encryption (and even in most cases a single use!) requires itself too much computational
power and storage capacity than what can offer a device like those listed above. In practice, FHE schemes
come from noise-based cryptography such as schemes relying on the learning with errors assumption
[Reg05]. Each ciphertext contains an error part, also called noise, hiding the relation with the plaintext
and the secret key. When a plaintext is encrypted, the error corresponds to a vector of low norm, and a
ciphertext can be decrypted correctly until the amount of noise reaches a fixed bound. When homomorphic
operations are performed on ciphertexts, the noise increases. The cornerstone of FHE is a function called
bootstrapping, that allows to obtain a ciphertext for m with a low noise from a noisy ciphertext of m.
This function corresponds to homomorphically performing the decryption of the FHE scheme and requires
an extra key. Bootstrapping is the most costly algorithm of a FHE cryptosystem in terms of computation
and storage, and two different strategies are used to get around this bottleneck. The most spread strategy
consists in minimizing the number of bootstrappings during an evaluation; the parameters are taken to allow
a bounded number of operations (or levels) on fresh ciphertexts before bootstraping. The best performances
are obtained by expressing the functions to evaluate in a way minimizing the noise growth. A more
recent strategy initiated by [DM15], later referred as gate-bootstrapping, performs a bootstrapping at each
operation, amortizing the cost by combining the two functions (the operation and the bootstrapping) at once.
Such strategy can lead to good performances when function F can be evaluated as a circuit with a limited
number of gates. For both strategies, some functions F imply a low noise growth (and can be qualified
as homomorphic-friendly, but the functions qualified this way in the title of this paper are also functions
involved in the hybrid symmetric-FHE encryption itself; they need then extra properties, see below); these
functions depend on the particular FHE scheme chosen.
The main drawback of FHE constructions is the huge expansion factor, the ratio between the size of the
plaintext (in bits) and the size of the corresponding ciphertexts. The expansion factor can be as big as
1.000.000, and it implies the major constraints for small devices. Indeed, doing computations on small
devices with these ciphertexts is challenging, and only a limited number of homomorphic ciphertexts can
be handled at the same time. A solution to this problem for the user, traditionally called Alice, is to use a
hybrid symmetric-FHE encryption protocol:

1. Alice sends to the server her public key pkH associated to the chosen homomorphic encryption protocol
and the ciphertext CH(skS) corresponding to the homomorphic encryption of her key skS associated to
a chosen symmetric encryption scheme CS ,

2. she encrypts her data m with CS , and sends CS(m) to the server,
3. the server computes CH(CS(m)) and homomorphically evaluates the decryption of the symmetric

scheme on Alice’s data; it obtains CH(m),
4. the server homomorphically executes polynomial function F on Alice’s data, and obtains CH(F (m)),
5. the server sends CH(F (m)) to Alice who obtains F (m) by decrypting (whose operation is much less

costly than encrypting in FHE).

Such symmetric-FHE framework allows Alice to circumvent the huge costs implied by the expansion factor.
In this context she uses homomorphic encryption only in the first step (on a small data, the symmetric
key), and then she uses symmetric encryption and homomorphic decryption. Both of these algorithms
are operations that can be efficiently performed on limited devices. Consequently, the performance of
the whole hybrid framework is mainly determined by the third and fourth steps. Since the homomorphic
evaluation of the symmetric decryption algorithm is independent of the applications wanted by Alice, one
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natural goal consists in making its over-cost as low as possible. It would make correspond the time cost of
the framework to the computations of the fourth step only, linking the performances to the complexity
of computations delegated. As explained above, for reasons of efficiency, the choice of the symmetric
cipher itself CS is central in this matter, since its decryption should keep as low as possible the noise
of homomorphic ciphertexts. The error-growth given by the basic homomorphic operations is different for
each FHE scheme but some general trends can be exhibited, therefore giving guidelines to understand which
symmetric schemes are homomorphic-friendly. For the schemes often qualified as second generation such
as [BV11,BGV12,FV12], the sum corresponds to adding the noises whereas the error produced in a product
is way more important. Each level in the tree representing the multiplication corresponds to a level of noise
( [HS14]), hence the final noise is often well approximated by relating it to the multiplicative depth of
the circuit evaluated, or equivalently, dlog(d)2e where d is the degree of the (univariate, resp. multivariate)
polynomial evaluated (note that there is no ambiguity on the degree since the homomorphic operations are
valid over one field or ring only, therefore allowing only one representation). The homomorphic-friendly
functions for this generation are the ones with a low multiplicative depth (and a bounded number of
additions). For the schemes following the blueprint of [GSW13] such as [KGV14, CGGI16], referred as
third generation, the error-growth of a product is asymmetric in the input ciphertexts. This property allows
to obtain a small noise for the result of many products, with some limitations. More precisely, products
of ciphertexts where always one (of both) has a small noise results in a small noise. This more complex
error-growth gives access to other homomorphic-friendly functions, beyond the restrictions of very small
degree. Examples of homomorphic-friendly functions for this generation are given by the sums of successive
products, or combinations of multiplexers using a fresh variable.
When the decryption function of a symmetric scheme is evaluated as a polynomial in one field rather than
combining computations over different representations, such as alternating operations from Fn2 to Fn2 and
operations from F2n to F2n on a value from the same register, it often leads to a high degree and many
terms. For example, the multiplicative depth of AES is often too large, and its additive depth is still more, to
efficiently evaluate it homomorphically. Thus, other symmetric encryption schemes have been proposed in
the context of symmetric-FHE frameworks: a block cipher LowMC [ARS+16], and stream ciphers such as
Kreyvium [CCF+16], Rasta and Agrasta [DEG+18]. These solutions have drawbacks: Kreyvium becomes
more and more expensive during the encryption since the noise in the produced ciphertexts increases (or the
system has to be reboot often). The others provides low noise at each round, but the iteration of rounds makes
it unadapted, since the lower bound on the round number for security reverberates on the homomorphic
evaluation. We can observe this impact by studying how they can work with HElib [HS14] for instance,
where the number of homomorphic levels required is always at least the number of rounds. This is however
a minor drawback in this generation (HElib implements the FHE of [BGV12]) for Rasta and Agrasta, since
they allow a very small number of rounds. These schemes are also well adapted for multiparty computation,
but not for all FHE, for example their high number of sums are not well suited for the third generation. In
this paper, we focus our study on symmetric encryption schemes that could be tailored for any FHE scheme,
and more precisely on the functions used in these homomorphic-friendly constructions.

The FLIP cipher is an also very efficient encryption scheme, described in [MJSC16], which tries to
minimize the noise involved in homomorphic evaluation. More precisely it intents to optimize the parameters
mentioned above, targeting the most homomorphic-friendly functions which are sufficient to ensure security
(for example minimizing the multiplicative depth). This scheme is based on a new stream cipher model,
called the filter permutator (see Figure 5). It consists in updating at each clock cycle a key register by
a permutation of the coordinates. A pseudorandom number generator (PRNG) pilots the choice of the
permutation. The permuted key is then filtered, like in a classical stream cipher, by a Boolean function

41



f whose output provides the keystream. Note that the input to f is the whole key register and this is a
difference with the classical way of using filter functions. Applying the non-linear filtering function directly
on the key bits allows to greatly reduce the noise level in the framework of hybrid symmetric-FHE encryption
protocols. More precisely, the noise is given by the evaluation of one function only: the filtering function,
rather than by the combination of all the functions used in the decryption algorithm as for other schemes. In
theory, there are no big differences between the filter model and the filter permutator: the LFSR is simply
replaced by a permutator. Nevertheless, in practice there are huge differences since the filter function has
hundreds of input bits instead of about 20.
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Fig. 1. Filter permutator construction.

In the versions of the cipher proposed in [MJSC16], the function f has n = n1 + n2 + n3 ≥
500 variables, where n2 is even and n3 equals k(k+1)

2 t for some integers k and t. The functions
f(x0, . . . , xn1−1, y0, . . . , yn2−1, z0, . . . , zn3−1) is defined as:
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where the triangular function Tk is defined as:

Tk(z0, . . . , zj−1) = z0 + z1z2 + z3z4z5 + · · ·+ z k(k−1)
2

· · · z k(k+1)
2
−1.

The filter permutator has been improved in [MCJS19a] (see Figure 2). There are two modifications. Firstly,
at each clock cycle, the function is applied on a part of the key rather than on the whole key register and,
secondly, a public vector (called whitening) is added before the computation of f . The subset of the key
register used and the whitening are derived from the PRNG’s output at each clock cycle, like the permutation.
These modifications have no impact on the noise when the cipher decryption is homomorphically evaluated,
the final noise is the one given by the evaluation of f only. On the security side, the resulting register

42



extension allows to obtain the same security with simpler functions, and the whitening allows to temper the
attacks using guess-and-determine strategies. The combination of both makes possible to study the security
more easily, relating it with the Boolean cryptographic criteria of f , and those of the functions obtained by
fixing variables in the input to f .
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Fig. 2. Improved filter permutator construction.

The attacks which classically apply on the filter model, or slightly modified ones, can apply on the filter
permutator or its improved version. Then, the usual Boolean cryptographic criteria have to be taken into
consideration for the choice of f . More precisely, for algebraic attacks or variants, the parameters of
algebraic immunity, fast algebraic immunity, and number of annihilators of minimal algebraic degree are
important. Standard correlation attacks do not apply on these models, but some variations can; this motivates
to address the resiliency and nonlinearity of f . Since, unlike the filter model, the key register in the filter
permutator is not updated, guessing some key bits importantly simplifies the system of equations given by
the keystream. It makes attacks using guess-and-determine strategies more efficient [DLR16] than regular
ones. Bounding the complexity of these attacks necessitates to determine the cryptographic parameters of
the functions obtained by fixing various variables in f . These security considerations bring us to focus on
families of functions with more variables than usually and whose sub-function parameters can be determined
or at least be efficiently bounded.
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