
Prime Proof Protocol
Anna M. Johnston, Rathna Ramesh

amj at juniper dot net
Juniper Networks

December 14, 2020

Abstract

Prime integers form the basis for finite field and elliptic curve cryptography, as well
as many other applications. Provable prime generation guarantees primality and is
more efficient than probabilistic generation, and provides components for an efficient
primality proof. This paper details a protocol which takes in the proof components
from the generation process, proves primality, and as an added benefit, supplies the
user with a subgroup generator.

1 The Need for a Prime Proof Protocol

Primes form the bases for many existing asymmetric cryptographic systems. Attacks
against these systems often focus on primes themselves, introducing the idea of crypto-
graphically strong, weak, secure, or even broken prime integers. If primes can be broken,
then they are similar to cryptographic keys. It is essential to the security of the systems
to change this parameter regularly. We propose that cryptographic primes have life cycle,
just as other cryptographic parameters.

Current cryptographic systems using primes have not had the ability to change primes
regularly. Fixed primes are the norm in most asymmetric systems based off the discrete
logarithm problem. One of the main reasons for this glaring security hole is that updating
a prime isn’t quite as easy as updating most cryptographic parameters. We can generate
new primes easily enough, but exchanging new prime integers has some special challenges.
A user who receives a new (possibly) prime integer P for use in finite field based asymmetric
system must be sure:

1

• P is actually prime;

• P has a cryptographically suitably sized subgroup, of order r[7];

• r is prime;

• the generator integer used, g, has order r;

The protocol described in this paper does exactly this. It allows the proof of a prime
to be transmitted and its primality and structure easily checked. The proof process also
results in a known generator of the the order required.

2 Prime Generation Basics

There are two general categories of prime generation techniques: probabilistic and prov-
able. Let P be the integer we want to test for primality. Both categories are based on the
subgroup structure of multiplicative groups modulo P (i.e., modP), and use exponentia-
tion to gain information about this structure.

Probabilistic techniques are fairly simple, theoretically, but require many large modulo
P exponentiations to reduce the probability of P being composite. Even then, there is
no guarantee that the number generated is prime. For cryptographic uses, the threat
is compounded by the need for a second prime: if a prime P is needed for finite field
cryptography, then a second large prime r must divide (P − 1) [7][8] to prevent group
order based attacks. If either prime (P or r) is actually composite, the cryptographic
algorithms may be compromised[11].

Provable prime generation[5], [10], [4], on the other hand, is theoretically more com-
plex, but requires only a small number of exponentiations — generally only two. Based
off Pocklington’s theorem1 (see appendix A, as well as [6] and [3]), provable primes are
generated by bootstrapping from smaller known primes.

The purpose of a prime tree (figure 1) is to prove that its root is prime. The leaves
of the tree are all small primes whose primality is known. Working up from the leaves,
proving nodes along the way results in an efficient prime proving algorithm.

1Testing random numbers for primality can be done using AKS, but it is not computationally practical.

2

p = 1103, t = 2, g = 3

p = 29, t = 1, g = 2 p = 19, t = 1, g = 2

p = 7, t = 0 p = 3, t = 0

Figure 1: Simple, concrete prime proof tree with p is the prime for the node, t is the
number of children, and g is an integer modulo p used to prove primality

In our algorithm, the prime proof tree is converted to a linear list. The algorithm
works through this list of unproven primes (input list), converting them into a list of
proven primes (output list). As the algorithm continues, primes from the output list are
used (and removed) to prove primality on the input list integers, which are then added
to the output list. The end result (assuming a properly formed prime proof tree) is an
empty input list and a single remaining prime (the root) on the output list.

See examples (section B) for examples of how the proof progresses.

3 Prime Proof Algorithm

The prime proof protocol stores potential primes and the data for proving in a tree struc-
ture. To prove an integer P is prime, one or more prime divisors of (P −1) and an element
(integer) of a passable order.

Two structure are used to organize the prime proof. For simplicity, a structures ele-
ments will be written as a:b where a is a structure variable or a pointer to the variable
and b is the element being referenced. The shorthand MPI is used to indicate a multiple
precision integer.

1. PossiblePrime is used to store the prime proof information;

2. prime is used to store a list of previously proved primes needed to proof future

3

primes.

Data Structure: PossiblePrime

Purpose: Linked list of primes and information which enables the prime
proof protocol

Data: ▷ p: MPI, holds the prime being tested for primality;
▷ numChild: integer, holds count of the number of prime children

required to prove primality;
▷ gen: MPI, holds the integer element which passes the prime test

for prime;
▷ next: pointer to a PossiblePrime, holds the next prime element

in the list.

Data Structure: prime

Purpose: Simple linked list of primes

Data: ▷ q : MPI, holding the known prime;
▷ next: pointer to prime, holding the next prime in the list.
▷ getNewPrime(p, list): allocates and returns a new prime for the

list, initializing it with a MPI (p) that is prime and a pointer (list)
to the existing list

Algorithm 3.1: Non-Recursive Prime Proof Protocol

Input:
proof: a pointer to the first PossiblePrime in the

proof list;

smallP: a list of small proven primes, generally pre-
generated with the sieve of Eratosthenes.

Output: a validation integer: status =


−1 bad PossiblePrime tree
0 prime proof failed
1 prime has been validated

prime pointer: containing validated prime or nil (failure)

4

I :

status =
1

: Contains success/failure code of proof

primes =
∅ : prime, pointer to a list of proven primes;

qDiv = 1 : MPI, stores the product of prime divisors of current prime
minus 1

qRem = 1 : MPI, stores the remaining integer after dividing the cur-
rent prime (minus 1) by qDiv

q = 1 : MPI, stores current known prime that is being used at
the current stage of the proof;

P = 1 : MPI, stores integer currently being tested for primality;
g = 1 : MPI, stores base used to test current prime;
num = 1 : integer, stores number of primes used to prove P is prime.

Internal variables and
initial settings:

II : while proof ̸= ∅ and status = 1: Continue while there are
primes left to check and
no errors occurred

A:


P=proof:p
g=proof:gen

num=proof:numChild
proof=proof:next

Get the next prime, gen-
erator, and number of
child primes from the
proof list, and remove
the first proof element.

B: If num = 0
Current possible prime
should be in the small
primes list

1: if P is in smallP: primes = getNewPrime(P, primes)

2: else: status = 0 failure – given prime is
not acceptable

C : else:

1:
{

qRem=P − 1
qDiv=1

Initialize remainder of
prime order and divisors

2: if gqRem ̸≡ 1 mod P: status = 0 Not prime; fails Fermat
test

3: j = 0

4: while j < num and status = 1
continue until all the
children needed to prove
primality are used or
failure

i: if primes = 0: status = −1
Failure: not enough
proven primes for this
stage of proof

5

ii: else:

⋄
{

q=primes:q
primes=primes:next

Get the next known
prime off the list and
update the known prime
list

⋄ if P ̸≡ 1 mod q: status = −1
Failure: child prime
does not divide the par-
ent minus one

⋄ else:

⋄ while qRem ≡ 0 mod q:
{

qRem=qRem/q
qDiv=qDiv · q

Divide out all copies of
q from the remainder,
multiply them to the di-
visors

⋄ if gcd
((

g(P−1)/q − 1 mod P
)
, P
)
̸= 1: status = 0 Failure: failed Pockling-

ton’s second test

iii: j = j + 1

5: If Algorithm 3.2 with qRem, qDiv returns false: status =
−1

The known prime divi-
sors were too small or
failed Pocklington’s ex-
tended test

6: else: primes = getNewPrime(P, primes) Prime is proved; Add to
known primes list.

III : Return status and Primes.

End of Algorithm 3.1

Algorithm 3.2: Pocklington’s Extension Test

Input: h Random portion of the prime
R Known portion of the prime

Output: true if prime, false otherwise

I :

Preliminary

Constants : A set of small primes {qj | 0 ≤ j < 1000},
with q0 = 5, q1 = 7 an so on.

Simple size: If h < R, return true
: else if h > R2, return false

Status : status = false

set constants, check ba-
sic size constraints, and
set status

6

II : Set b = (h mod R)2 b and a are multiple pre-
cision integers

III : Set a = 4 ·
⌊
h
R

⌋
IV : If b < a: neg= true

val=a− b

Computing b − a, keep-
ing track of the negative
sign

V : else neg= false
val=b− a

VI : set j = 0

VII : While j < 1000 and status = false

A: Compute v = val(qj−1)/2 mod qj

B: if neg is true:

1: if (qj − 1)/2 is odd and v = 1: status = true b−a is a quadratic non-
residue

2: else (qj − 1)/2 is even and v = qj − 1: status = true b−a is a quadratic non-
residue

C : else if v = (qj − 1): status = true

D: j = j + 1

End of Algorithm 3.2

7

A Pocklington’s Theorem

Theorem A.1 (Pocklington, 1914): Let P, h,R be integers with

P = hR+ 1

R =

t∏
k=1

rmk
k

(1)

where rk are distinct prime integers. If there exists an integer gk for each rk with

ghRk ≡ 1 mod P (2)

gcd
((

g
hR
rk
k mod P

)
− 1, P

)
= 1 for all 1 ≤ k ≤ t (3)

then all prime factors of P are congruent to one modulo R.

Proof. The proof to this can be found in [6],[10], and others. The following is a short
sketch of the proof. Equations (2) and (3) imply that all factors of P have the form
(Rhj + 1), or that:

P =
∏
j

(Rhj + 1) , for some hj ≥ 1. (4)

If P is composite, it will have at least two factors and

P = (Rh+ 1) ≥ (Rh0 + 1) (Rh1 + 1)

≥ R2h0h1 +R (h0 + h1) + 1

h ≥ Rh0h1 + (h0 + h1)

If h ≤ R, then h0, h1 can not be greater than or equal to one. This implies only one factor
can exist, and P is prime.

Note that for simplicity, a single g which works for all small factors, rk, is generally
chosen (i.e., g = gk for all k).

A.1 Extending Pocklington’s Bound

Pocklington based prime generation test (theorem A.1) restricts the size of the random
portion of the prime h, to less than the known portion, R. While this test allows the prime

8

to double in size at each iteration, there is a simple extension which allows the prime to
triple in size at each iteration. Not only does this extension improve the growth rate of
primes, but it increases entropy and reduces computation costs.

The bound on Pocklington’s prime text can be extended ([2], theorem 5 and [4], lemma
2) with a simple computation.

Corollary A.2 (Extension to Pocklington’s): Let P,R, g be defined as in theorem A.1,
satisfying equations (2) and (3); define

β ≡ h mod R (5)

γ =

⌊
h

R

⌋
(6)

If P ≤ R3 (i.e., h ≤ R2) and
(
β2 − 4γ

)
is not a perfect square, then P is prime.

The extension (theorem A.2) changes the bound on h from h ≤ R to h ≤ R2. The
added test is simple to implement, and can be done using single precision arithmetic.
Assuming the integer passes the exponentiation tests and h < R2, then the only additional
test is to check that

(
(h mod R)2 − 4

⌊
h
R

⌋)
is not a perfect square.

While h, R are generally both multiple precision integers, the test for not being a
perfect square can be reduced to single precision arithmetic. If an integer x is a perfect
square, then it must be a quadratic residue modulo q for any prime q. If x is not a
quadratic residue for any prime q, then x is not a perfect square.

Algorithm 3.2 tests for quadratic residue modulo a set of small primes. If the integer
is not a quadratic residue for even a single prime, it is not a perfect square and it passes
the extension test.

B Primality Proving and Proof Trees
B.1 Prockington’s prime Prove Example

The tree (figure 1) proves primality of 1103 in the following way:

• 7, and 3 are small primes found/proved using the sieve of Eratosthenes.

• 29 has only one child (7) and is proved using Pocklington’s theorem:

9

1. 228 ≡ 1 mod 29;

2. gcd
(
228/7 − 1 mod 29, 29

)
= 1

3. (28/7) ≤ 7

proving that 29 is prime;

• 19 has only one child (3) and is proved using Pocklington’s theorem:

1. 218 ≡ 1 mod 19;

2. gcd
(
218/3 − 1 mod 19, 19

)
= 1;

3. 18/32 ≤ 32

proving that 19 is prime;

• Finally, 1103 has 2 children (19, 29):

1. 31102 ≡ 1 mod 1103;

2. gcd
(
31102/19 − 1 mod 1103, 1103

)
= 1;

3. gcd
(
31102/29 − 1 mod 1103, 1103

)
= 1;

4. 1102/(19 · 29) < 19 · 29

proving that 1103 is prime.

B.2 Pocklington’s example with the Prime Proof Protocol

The tree in figure 1 converts to the following list of primes (p) and the number of child
primes (n) needed to prove primality.[

p = 7
n = 0

]
→
[
p = 29
n = 1

]
→
[

p = 3
n = 0

]
→
[
p = 19
n = 1

]
→
[
p = 1103
n = 2

]
Here’s how the algorithm progresses, starting with |in| = 5, |out| = 0 nodes in each list.

1. The first node on the input list is a known prime2 as is indicated by n = 0. After
checking that this prime is in the small prime set, it is added to the output list.
|in| = 4, |out| = 1

2The known prime list are small primes generated up to a certain bound with the sieve of Eratosthenes.

10

2. Next, p = 29 is read. It has one child, so one prime is read off (and removed) from
the output list – q = 7. After proving it is prime, 29 is added to the output list.
|in| = 3, |out| = 1

3. 3 is read in (zero children), and checked in the small prime set. After it is verified,
it is added to the output list. |in| = 2, |out| = 2

4. 19 is read in, with one child. 3 read from the output list (note the first-in-last-
out access), and used to prove 19 is prime. 19 is added to the output list. |in| =
2, |out| = 2

5. Finally, p = 1103 is read from the input list, with n = 2 children. 19 and 29 are read
off the output list, used to prove that 1103 is prime, then p = 1103 is put onto the
output list, and returning the output list. |in| = 0, |out| = 1

B.3 A more complex example

Figure 2 shows a more complex prime proof tree. Leaf primes are small known primes,
generally computed with the sieve of Eratosthenes up to some bound. From there, p(4)0

can be proved, then p
(3)
0 . We can’t prove p

(2)
0 is prime until p(3)1 is proved, so the next

primes read in will be

1. p
(4)
1 (small prime),

2. p
(6)
0 , p

(6)
1 (two more small primes),

3. p
(5)
1 (proved using the last two primes),

4. p
(4)
2 (proved using p

(5)
1),

5. p
(3)
1 (proved using p

(4)
1 , p

(4)
2),

and finally p
(2)
0 is proved, using p

(3)
0 and p

(3)
1 .

11

p
(0)
0

p
(0)
1

p
(0)
2 p

(1)
2

p
(0)
3 p

(1)
3 p

(2)
3 p

(3)
3 p

(4)
3

p
(0)
4 p

(1)
4 p

(2)
4 p

(3)
4 p

(4)
4

p
(0)
5 p

(1)
5 p

(2)
5 p

(3)
5

p
(0)
6 p

(1)
6 p

(2)
6

(p
(0)
5 , 0) → (p

(0)
4 , 1) → (p

(0)
3 , 1) → (p

(1)
4 , 0) → (p

(0)
6 , 0) → (p

(1)
6 , 0) → (p

(1)
5 , 1) → (p

(2)
4 , 1) → (p

(1)
3 , 2) → (p

(0)
2 , 2)

→ (p
(2)
6 , 0) → (p

(2)
5 , 1) → (p

(3)
5 , 0) → (p

(3)
4 , 2) → (p

(2)
3 , 1) → (p

(4)
4 , 0) → (p

(3)
3 , 1) → (p

(4)
3 , 0) → (p

(1)
2 3) → (p

(0)
1 , 2) → (p

(0)
0 , 1)

Figure 2: Sample prime proof tree, with the number of children given by the tree structure

12

References

[1] M. Agrawal, N. Kayal, and N. Saxena, Primes in p, Tech. report, In-
dian Institute of Technology Kanpur, 2002, Updated document on web:
http://www.cse.iitk.ac.in/users/manindra/primality_v6.pdf .

[2] John Brillhart, D.H. Lehmer, and J.L. Selfridge, New primality criteria and factor-
izations of 2m ± 1, Mathematics of Computation 29 (1975), no. 130, 620–647.

[3] R. Crandall and C. Pomerance, Prime numbers: A computational perspective, second
ed., ch. 4.1, p. 175, Springer-Verlag, 175 Fifth Avenue, New York, New York 10010,
U.S.A., 2005.

[4] Anna M. Johnston, Designer primes, Cryptology ePrint Archive, Report 2020/1535,
2020, https://eprint.iacr.org/2020/1535.

[5] Ueli M. Maurer, Fast generation of prime numbers and secure public?? key crypto-
graphic parameters, Journal of Cryptology 8 (1995), 123–155.

[6] William J. Miller and Nick G. Trbovich, Rsa public-key data encryption system having
large random prime number generating microprocessor or the like, 1982, US Patent
assigned to Racal-Milgo Inc; expired 2000.

[7] Henry C. Pocklington, The determination of the prime or composite nature of large
numbers by fermat’s theorem, Proceedings of the Cambridge Philosophical Society,
no. 18, University of Cambridge, 1914–1916, pp. 29–30.

[8] S.C. Pohlig and M.E. Hellman, An improved algorithm for computing logarithms over
gf(p) and its cryptographic significance, Transactions on Information Theory, no. 24,
IEEE, 1978, pp. 106–110.

[9] J.M. Pollard, Monte carlo methods for index computation (mod p), Mathematics of
Computation, no. 32, 1978, pp. 918–924.

[10] M.O. Rabin, Probabilistic algorithms for testing primality, Journal of Number Theory
12 (1980), 128–138.

13

https://eprint.iacr.org/2020/1535

[11] J. Shawe-Taylor, Generating strong primes, Electronics Letters 22 (1986), 875–877.

[12] Jake Massimo Steven D. Galbraith and Kenneth G. Paterson, Safety in numbers:
On the need for robust diffie-hellman parameter validation, Public-Key Cryptography
(PKC 2019) 11443 (2019), 379–407.

14

	The Need for a Prime Proof Protocol
	Prime Generation Basics
	Prime Proof Algorithm
	Pocklington's Theorem
	Extending Pocklington's Bound

	Primality Proving and Proof Trees
	Prockington's prime Prove Example
	Pocklington's example with the Prime Proof Protocol
	A more complex example

