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Abstract. Several Central Bank Digital Currency (CBDC) projects are
considering the development of a digital currency that is managed on
a permissioned blockchain, i.e. only authorized entities are involved in
transactions verification. In this paper, we explore the best possible bal-
ance between privacy and accountability in such a traceable digital cur-
rency. Indeed, in case of suspicion of fraud or money laundering activity,
it is important to enable the retrieval of the identity of a payer or a
payee involved in a specific transaction. Based on a preliminary analysis
of achievable anonymity properties in a transferable, divisible and trace-
able digital currency systems, we first present a digital currency frame-
work along with the corresponding security and privacy model. Then, we
propose a pairing-free traceable digital currency system that reconciles
user’s privacy protection and accountability. Our system is proven secure
in the random oracle model.
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1 Introduction

Central Bank Digital Currency projects1 and Facebook Libra are actively con-
sidering the possibility to issue and manage digital currencies through the use
of a permisionned blockchain, i.e. only authorized entities can verify the trans-
actions in a decentralized manner whereas the digital currency is issued by one
or several digital currency issuers. Such a digital currency fosters transparency
by enabling the traceability of a specific digital currency unit. This property is
useful for identifying suspicious activities through the use of artificial intelligence
algorithms for instance. However, traceability does not provide on its own a way
to retrieve the identity of a transaction payer or payee.

Let us assume that the digital currency system requires all the involved users
to be clearly identified during a transaction. This would enable the identification
of the payer and/or payee in the case of fraud or money laundering suspicion.
However, this would also strongly jeopardize end-users’ privacy.

1 https://publications.banque-france.fr/sites/default/files/medias/documents/wp-
732.pdf; https://consensys.net/blog/enterprise-blockchain/everything-you-need-to-
know-about-central-bank-digital-currencies/
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In this paper, we investigate to what extent users’ privacy can be preserved
while providing accountability in traceable digital currency systems. Thereby,
in case of fraud or money laundering suspicious activity, it is still possible to
identify the transaction payer and/or payee. To do so, we rely on a Revocation
Authority that is outside of the blockchain consortium. Moreover, we consider
that the following properties are essential in a practical digital currency system:
(i) transferability, which allows a transaction payee to re-transfer received digital
currency without the involvement of a digital currency issuer; (ii) divisibility,
enabling the owner of a digital currency to split its amount in order to transfer
only part of the digital currency to another user; and (iii) traceability, allowing
to link transactions associated to the same issued digital currency.

Anonymity properties in a transferable, divisible and traceable dig-
ital currency system. Anonymity properties of transferable electronic cash
(eCash) that are not based on blockchain technology have already been well stud-
ied. Canard and Gouget [5] formally define four2 levels of anonymity for transfer-
able eCash systems, namely weak anonymity (WA), strong anonymity (SA), full
anonymity (FA) and perfect anonymity (PA) such that PA→ FA→ SA→WA.
WA is fulfilled if an adversary A is unable to link a payment to a withdrawal.
SA is fulfilled if WA is satisfied and A cannot figure out whether two payments
were performed by the same user or not. FA is fulfilled if SA is satisfied and A is
unable to recognize a digital currency that was used during previous payments
between two honest users. PA is fulfilled if FA is satisfied and A is unable to
figure out whether he has already owned the digital currency he is receiving, or
not. It has been shown that a transferable eCash system cannot achieve perfect
anonymity (PA) either against unbounded [7] or bounded [5] adversaries.

To the best of our knowledge, the anonymity properties of a digital currency
system that is both transferable and traceable have not been formally studied.
For such system, both FA and PA anonymity properties no longer make sense
as, by design, anyone should be able to recognize a digital currency that was
used during previous payments. Besides, any observer is always able to tell that
the same anonymous user was involved in two subsequent payment transactions
associated to the same digital currency, first as a payee then as a payer. Thus,
the highest level of anonymity that a transferable and traceable digital currency
system may achieve is a slightly weaker variant of strong anonymity (SA) since
an adversary is able to link some transactions.

Also, for practical reasons, it is usually desirable that the digital currency
be divisible in order to support payments of flexible amounts. If we consider
a transferable and traceable digital currency system that is also divisible, then
some additional payment transactions can be linked to the same user. Indeed,
in such a system, the user will perform two concurrent transactions at each
transfer: (1) a real transfer transaction worth the amount to be transferred to
a given payee, and (2) an auto-transfer transaction of the remaining amount to
himself. Therefore, any observer of such system is able to tell that two concurrent

2 [5] and [3] define other anonymity notions unachievable by traceable digital currency.
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transactions associated to the same previous transaction Tt,j are performed by
the same user, who is the payee of the previous transaction Tt,j . Moreover, the
payee of a real transfer transaction is also able to tell that the two subsequent and
concurrent transactions that follow the auto-transfer transaction were carried out
by the same user who performed the real and auto transfers.

Thus, a transferable digital currency system that provides the traceability
and divisibility properties cannot achieve strong anonymity since an adversary
may leverage transactions’ history to link some particular transactions to the
same user. To our knowledge, the anonymity property that such system can
achieve has not been formally studied in the state-of-the-art on digital currency.

Our Contribution. Security models of state-of-the-art divisible and transfer-
able electronic cash systems did not consider the traceability feature which is
defined as the ability to trace, in an anonymous way, an issued digital currency
from its first transfer during a payment until its deposit at the digital currency
issuer. Such traceability feature may be particularly interesting for the detection
of suspicious transactions even though transactions are anonymous and unlink-
able, i.e. one cannot decide whether two transactions were performed by the
same user or not. In this work, we target the highest level of anonymity and
unlinkability that a transferable, traceable and divisible digital currency system
may achieve while providing accountability. That is, a slightly weaker variant
of the strong anonymity property as few payments may be linked to the same
user, which we refer to as end-user’s privacy. First, we define a digital cur-
rency framework along with a security and privacy model. Then, we propose a
digital currency system that achieves the expected properties of transferability,
divisibility, traceability and accountability whilst solely relying on conventional
cryptographic primitives, e.g. no pairing computations are required.

Organization. In Section 2, we introduce the cryptographic tools required to
build our Digital Currency System (DCS). Then, in Section 3, we present the
framework for a DCS. In Section 4, we describe the security and privacy model.
Next, in Section 5, we detail our DCS construction. Due to lack of space, the
description of the adaptation of ACL scheme [4] that we use to build our DCS
system is provided in Appendix A, and the security analysis of our DCS system
is provided in Appendix B.

2 Preliminaries

In this paper, we use the notation r ∈R R to state that a value r is chosen
uniformly at random from the set R, and {ci}ni=1 denotes the set {c1, c2, . . . , cn}.

2.1 Computational hardness assumptions

Discrete Logarithm (DL) assumption. Let G be a cyclic group of prime
order q and g be a generator of G, the Discrete Logarithm assumption states
that, given y ∈ G, it is hard to find the integer x ∈ Zq such that y = gx.
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Decisional Diffie Hellman (DDH) assumption. Let G be a cyclic group
of prime order q, the Decisional Diffie-Hellman assumption states that, given a
generator g ∈ G, two elements ga, gb ∈ G and a candidate X ∈ G, it is hard to
decide whether X = gab or not.

In the sequel, G denotes a cyclic group of prime order q where the DDH
problem is assumed to be hard, and gE and gI are random generators of G.

2.2 Digital signature scheme

A digital signature scheme is a triplet of algorithms (SKeyGen, SSign, SVerif)
where SKeygen takes as input the system parameters and outputs a signature
key pair (sk, pk), SSign takes as input a secret signature key sk and a message
m, and outputs a signature σ = SSign[sk](m), and SVerif takes as input a
public signature key pk, a message m and a signature σ and outputs 1 or 0. In
the sequel, we assume the existence of a secure digital signature scheme S.

2.3 ElGamal encryption scheme

ElGamal cryptosystem [9] is a the triplet of algorithms (EGKeyGen, EGEnc, EGDec)
where EGKeyGen takes as input the system parameters and outputs an encryption
key pair (skE , pkE) with skE ∈ Z∗q and pkE = gskEE , EGEnc takes as input a
message m ∈ G and pkE , and outputs the pair (e1 = grE , e2 = m · pkrE) with

r ∈R Z∗q , and EGDec takes as input (e1, e2) and skE , and outputs m = e2/e
skE
1 .

ElGamal cryptosystem is secure under the DDH assumption, and it has a
threshold variant known as threshold ElGamal [11].

2.4 End-user’s identity and related key pair

The identity of an end-user is defined as an identifier Idi associated to an official
document, e.g. a passport, enabling to verify user’s identity. An identity key pair
consists of the pair (ui, g

ui
I ) where the secret ui ∈ Z∗q is selected at random.

2.5 Zero Knowledge Proof of Knowledge

A Zero Knowledge Proof of Knowledge (ZKPK) is an interactive protocol that
allows a prover P to convince a verifier V that he knows some secrets verify-
ing some statement(s) without revealing anything else. It is denoted by π =
PoK{α, β : statements about α, β} where Greek letters refer to P’s knowledge.

A ZKPK must ensure three security properties, namely (1) completeness: a
valid prover is accepted with overwhelming probability; (2) soundness: a cheat-
ing prover is rejected with overwhelming probability; and (3) zero-knowledge:
no information about the secrets is revealed beyond the fact that the statements
are true. Interactive ZKPKs can be transformed into non-interactive ZKPKs,
denoted by NIZK, using the Fiat-Shamir technique [8].

In our digital currency system (c.f. Section 5), we use the following ZKPKs3 :

3 In addition to the ZKPKs of the adapted ACL scheme detailed in Appendix A.
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- a NIZK proof of Discrete Logarithm (DL) knowledge π1 = PoK{α : x = gαI }
where the identity public key x is revealed;

- a NIZK proof of equality of secrets, DL and representation knowledge com-
bined with an OR proof π2 = PoK{α, β, γ, δ : e1 = gαE ∧ e2 = gβI · pkαE ∧ e2 ·
C−1 = pkγE ∧ pkδE = C · g−u1

I ∨ · · · ∨ pkδE = C · g−unI } where an ElGamal
ciphertext (e1, e2) = (gr1E , g

ui
I · pk

r1
E ) and a value C = guiI pk

r2
E are revealed;

- a NIZK proof of equality of DLs π3 = PoK{α : e2 · g−uiI = eα1 ∧ pkE = gαE}
where an ElGamal ciphertext (e1, e2) = (gr1E , g

ui
I ·pk

r1
E ) and guiI are revealed.

2.6 (Partially) blind signatures

Blind signature schemes, first introduced by Chaum [6], are a variant of digital
signature schemes that allow a receiver to get a signature without giving the
signer any information about the actual message m or the resulting signature σ.

In digital currency use cases, the signer usually needs to add some com-
mon information to the blind signature such as an amount. To this end, Abe
et al. [1] introduced an extension of blind signatures referred to as partially
blind signatures, which enable the receiver and the signer to agree on a com-
mon information info to be added in the blind signature of a message m. More
recently, Baldimtsi and Lysyanskaya [4] proposed an efficient and provably se-
cure construction of blind signatures with attributes. It is inspired from Abe’s
blind signature scheme [2] in which blinding preserves some structural elements
into which attributes can be embedded. If one of the attributes is known to
both the receiver and the signer, then their scheme can be seen as a partially
blind signature where the common information is the known attribute. Their
scheme is quite efficient and practical as it only requires few exponentiations in
a prime-order group in which the DDH problem is hard. Based on it, they built
a single-use anonymous credential system called Anonymous Credential Light
(ACL) [4] that is both provably secure and does not require the use of expensive
bilinear pairings. The ACL scheme can also be used as eCash with attributes [10].

In Appendix A, we describe an adaptation of ACL attribute-based blind
signature scheme that we use to issue digital currencies in our Digital Currency
System DCS. Indeed, to build our DCS system, we need a (partially) blind
signature with two specific attributes: (1) an attribute that is known by both
the signer and the user and which corresponds to the amount of digital currency
withdrawn by the user; and (2) an attribute that is jointly computed by both
the user and the signer but whose value is only known to the user, and which
corresponds to the digital currency serial number sn. As for the message m,
which is only known to the user, it corresponds to a user’s public key pkt,0. Both
m and sn need to be kept secret from the signer to ensure the blindness property.

3 Digital currency framework

In this section, we first introduce the entities involved in the digital currency
system. Then, we define the algorithms and protocols that the system relies on.
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3.1 Entities

There are n digital currency issuers CI1, . . . , CIn forming the initial consortium.
They are responsible for setting up and maintaining a permissioned distributed
ledger used to share information about all transactions related to issued digital
currencies. An external certification authority PCA is selected by the consortium.

End-users with a banking account, called banked users, can withdraw digital
currencies from CI1, . . . , CIn, transfer/receive digital currencies to/from banked
or unbanked users, and deposit owned digital currencies to CI1, . . . , CIn. Un-
banked users can only receive digital currencies from other users and re-transfer
the received digital currencies. Banked and unbanked users are denoted by
U1, . . .Um and we specify if it is a banked or unbanked user when needed.

In order to support transactions’ anonymity revocation, the system involves
two entities: an ID registration authority denoted by IDR and a revocation
authority denoted byRA. To prevent a malicious IDR orRA from illegitimately
retrieving the identity of the users involved in a given transaction, both IDR
and RA will not be part of the distributed ledger and RA only receives the
transactions whose anonymity need to be lifted.

3.2 System framework

Let λ be a security parameter. A Digital Currency System DCS can be modeled
using the following set of algorithms and protocols:

- ParamGen(1λ) is a probabilistic algorithms that outputs the system param-
eters sp.

- SKeyGen(sp), ACLKeyGen(sp) and EGKeyGen(sp) are probabilistic algorithm
that output a signature key pair.

- RequestCertificate
(
∗,PCA) is an interactive protocol between a requester

holding a private/public key pair and the certification authority PCA which
either outputs a certificate on the public key or the output is ⊥.

- IDKeyGen(sp) is a probabilistic algorithm that outputs an identity key pair
(ui, g

ui
I ).

- IDRegister(U , IDR) is an interactive protocol between a user U and the ID
registration authority IDR where U either receives an identity attestation
Att(Idi, g

ui
I ) or the output is ⊥.

- DBUpdate(U ,RA) is an interactive protocol between a user U and the revo-
cation authority RA where both databases DBPriv and DBPub are updated
by adding respectively {Idi, guiI , Att(Idi, g

ui
I )} and {guiI }, or the output is ⊥.

- Withdrawal(U , CIi) is an interactive protocol between a banked user Ui and
a digital currency issuer CIi where CIi computes a partially blind signature
on (i) a user public key pkt,0, (ii) a unique identifier snt, and (iii) amountt
such that it does not know the values of both snt and pkt,0. The protocol
either outputs a new digital currency DCt or ⊥.

- Insert(U) is a protocol executed by a banked user Ui to insert a digital
currency DCt into the ledger. Ui computes an encryption of guiI using pkRA
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to get Et,1 and builds a related NIZK proof π2,t,1 that Et,1 was correctly
computed and that he knows ui such that guiI ∈ DBPub. Both Et,1 and π2,t,1
are included in the transaction Tt,0. The protocol either outputs Tt,0 or ⊥.

- Transfer(Ui,Ur) is an interactive protocol between a user Ui currently own-
ing the digital currency of a transaction Tt,j−1 with j ≥ 1 and a receiver Ur.
Both Ui and Ur agree on the transfer amount amountt,j with 0 < amountt,j ≤
amountt,j−1. The transfer protocol requires two transactions:

• A transaction Tt,j from Ui to Ur of amount amountt,j that includes the
encryption Et,j+1 of gurI using pkRA along with a NIZK proof π2,t,j+1.

• A transaction T ∗t,j from Ui to Ui of the remaining amount that includes
the encryption E∗t,j+1 of guiI using pkRA along with a NIZK proof π∗2,t,j+1.

Either both the real transfer Tt,j and the auto-transfer T ∗t,j transactions are
inserted into the distributed ledger in a random order or the output is ⊥.

- Deposit(Ui, CIi) is an interactive protocol between a banked user Ui owning
a digital currency related to a validated transaction Tt,j−1 with j ≥ 1 and
a digital currency issuer CIi. It either outputs the deposit transaction Tt,j
and the banking account of Ui is updated with amountt,j−1, or ⊥.

- IDRetrieve(RA) is a deterministic algorithm performed by the revocation
authority RA. Given Tt,j , DBPriv and RA’s private key as input, it outputs
{Idi, guiI , Att(Idi, g

ui
I )} along with a proof π3,t,j+1 proving this claim, or ⊥.

4 Security and Privacy model

In this section, we first formalize the global variables and oracles before for-
mally defining the security properties through a set of experiments involving a
challenger C and a probabilistic polynomial time (PPT) adversary A.

4.1 Global variables

The set of honest users whose private keys and secret ui are unknown to A is
denoted by HU , and the set of corrupted users is denoted by CU .

DL denotes the set of transactions included in the distributed ledger. For
every user Ui, we maintain a specific set T SUi of the transactions involving Ui.
We also maintain a set T SCU including all transactions involving a corrupted
payee. RT denotes the set of transactions whose anonymity was lifted.

Two databasesDBPriv andDBPub that respectively contain {Idi, guiI , Att(Idi,
guiI )} and {guiI } entries are maintained. DBPriv is only known by the revocation
authority RA whilst DBPub is known by RA and digital currency issuers CIi.

4.2 Oracles

We model A’s capabilities by giving it access to several oracles defined as follows,
where ⊥ denotes a random choice of a user or digital currency unit.
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Entities creation and end-users corruption. The oracle OSKeyGen(PCA)
creates a certification authority by generating a signature key pair (skPCA , pkPCA)
which is the root of trust. The oracle OSKeyGen(IDR) creates an ID registration
authority by generating a signature key pair (skIDR, pkIDR) and requesting the
associated certificate. The oracle OSKeyGen(RA) creates a revocation authority
by generating an ElGamal key pair (skegRA, pk

eg
RA) and requesting the associated

certificate. The oracle OSKeyGen(CIi) creates a new honest digital currency is-
suer CIi by generating (i) an ACL [4] signature key pair (skaclCIi , pk

acl
CIi), (ii) a

signature key pair (skCIi , pkCIi), and (iii) requesting their certification.
The oracle OIDKeyGen(Ui) creates a new honest user Ui, generates his iden-

tity key pair and executes the identity verification as well as the registration
process at the revocation authority. The honest user Ui is added to the set HU .
The oracle OUCorrupt(Ui) corrupts the user Ui. Upon its execution, A gets the
secret ui and private keys of user Ui. Concurrently, Ui is moved from HU to CU .

Withdrawal protocol. The oracle OWithdrawalU (Ui) executes the user’s side
of the Withdrawal protocol whereas A is acting as a digital currency issuer CIi.

The oracle OWithdrawalCI(CIi) executes CI’s side of the Withdrawal pro-
tocol. It is used by A acting as a corrupted user Ui.

The oracleOWithdrawalU&CI(Ui, CIi) executes both sides of the Withdrawal
protocol. It is used by A to simulate the protocol execution between an honest
Ui and an honest CIi. The issued digital currency DCt will not be known to A.

Transfer protocol. The oracle OTransferS executes the sender’s side of the
Transfer4 protocol with A acting as the receiver. A can only call it with ei-
ther (Ui,⊥) or (⊥, DCt) as argument. Anyway, the sender randomly selects the
amount to be transferred. The resulting transfer transaction Tt,j is appended to
the sets T SCU and T SUi .

The oracle OTransferR(Ui) executes the receiver’s side of the Transfer

protocol. The resulting transaction Tt,j is appended to the set T SUi .
The oracle OTransferS&R executes both sides of the Transfer protocol. The

adversary A can call it with either (Ui,Uj ,⊥), (Ui,⊥,⊥), (⊥,Uj ,⊥), (⊥,Uj , DCt)
or (⊥,⊥, DCt) as argument. The resulting transaction Tt,j is appended to the
sets T SUi and T SUj .

Deposit protocol. The oracle ODepositU executes the user’s side of the
Deposit protocol. A can only call it with either (Ui,⊥) or (⊥, DCt) as argu-
ment. The resulting transaction Tt,j is appended to the set T SUi .

The oracle ODepositCI(CIi) executes CI’s side of the Deposit protocol. It
is used by A acting as a malicious user.

The oracle ODepositU&CI executes both sides of the Deposit protocol.
A can call it with either (Ui, CIi,⊥), (Ui,⊥,⊥), (⊥, CIi,⊥), (⊥, CIi, DCt) or
(⊥,⊥, DCt) as argument. The transaction Tt,j is appended to the set T SUi .
4 For the first transfer of a withdrawn digital currency, this oracle executes both the
Insert and Transfer protocols.
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User Identification. The oracle OIDRetrieve(Tt,j) executes the IDRetrieve

algorithm. It outputs the tuple (Idi, g
ui
I , Att(Idi, g

ui
I )) along with a proof π3,t,j+1

proving this claim. If Tt,j is a Transfer transaction, then Idi is the identity of
Tt,j ’s payee. Otherwise, Idi is the identity of the user who performed the Insert
or Deposit transaction Tt,j . Tt,j is added to the set of revoked transactions RT .

4.3 Security properties

Hereinafter, we provide both formal and informal definitions of the security and
privacy properties that a digital currency system DCS must satisfy.

Unforgeability. Informally, unforgeability requires that no entity, even a set of
colluding users collaborating with the ID registration and revocation authorities,
can transfer and/or deposit more digital currencies than what it has honestly
got, i.e. transfer and/or deposit an amount that is greater than the total amount
of what colluding users have withdrawn from currency issuers and received from
other users minus already transferred and deposited digital currencies. More
formally, the unforgeability experiment ExpunforgA (1λ) is defined in Figure 1. The

advantage Adv
unforg
A (1λ) of the adversary is defined as Pr[ExpunforgA (1λ) = 1].

A digital currency system DCS satisfies the unforgeability property if this
advantage is negligible for any PPT adversary A.

Exp
unforg
A (1λ)

1. HU ← ∅, CU ← ∅, DL ← ∅, DBPriv ← ∅, DBPub ← ∅, T ← ∅
2.
(
sp, (skPCA , pkPCA ), (skIDR, pkIDR), (skegRA, pk

eg
RA), (sk

acl
CIi

, pkaclCIi
), (skCIi , pkCIi )

)
← Setup(1λ)

3. {Tr}`r=1 ←− A
O(skIDR, sk

eg
RA,DBPriv) where O = all oracles

4. ∀r ∈ {1, . . . , `}, if Tr is valid, Tr /∈ DL and Tr /∈ T , then T ← T ∪ {Tr}.
5. If

∑#T
r=1 AmountTr >

∑#CU
i=1 AmountWithdrawni+Receivedi−Transferredi−Depositedi ,

then return 1.
6. Return 0.

Fig. 1. Unforgeability Security Experiment

Exculpability. Roughly speaking, exculpability requires that no entity, includ-
ing the revocation authority and even with the help of malicious users and digital
currency issuers, can generate a valid transaction Tt,j that wrongly accuse an
honest user either of performing a given Insert or Deposit transaction, or of
being the payee or payer of a given Transfer transaction, while it is not the
case. Hence, users cannot insert new digital currencies by pretending to be an-
other honest user, or add in the distributed ledger a transaction that is falsely
associated to an honest user that was not involved in that transaction. More
formally, the exculpability experiment ExpexculA (1λ) is defined in Figure 2. The
advantage AdvexculA (1λ) of the adversary is defined as Pr[ExpexculA (1λ) = 1].

A digital currency system DCS satisfies the exculpability property if this
advantage is negligible for any PPT adversary A.
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Expexcul
A (1λ)

1. HU ← ∅, CU ← ∅, DL ← ∅, DBPub ← ∅, DBPriv ← ∅, T SUi ← ∅
2.
(
sp, (skPCA , pkPCA ), (skIDR, pkIDR), (skegRA, pk

eg
RA), (sk

acl
CIi

, pkaclCIi
), (skCIi , pkCIi )

)
← Setup(1λ)

3. Tt,j , π3,t,j+1 ←− AO(skegRA, sk
acl
CIi

, skCIi ,DBPriv) where O = all oracles.

4. If Tt,j /∈ DL or π3,t,j+1 is not valid or IDRetrieve(Tt,j ,DBPriv, skRA) = ⊥, then
return 0.

5. If IDRetrieve(Tt,j ,DBPriv, skegRA) = (Idi, π3,t,j+1) where Idi is associated to Ui ∈ HU
and Tt,j /∈ T SUi , then return 1.

6. Return 0

Fig. 2. Exculpability Security Experiment

Accountability. Informally, the accountability property requires that no adver-
sary, even a set of colluding users collaborating with the digital currency issuers,
should be able to produce a valid transaction Tt,j which cannot be traced by
an honest revocation authority RA to the identity Idi of the payer and/or the
payee who was involved in it, i.e. to the value guiI provided by one of the legiti-
mate users during an execution of the IDRegister protocol. More formally, the
accountability experiment ExpaccountA (1λ) is defined in Figure 3. The adversary’s
advantage AdvaccountA (1λ) is defined as Pr[ExpaccountA (1λ) = 1].

A digital currency system DCS satisfies the accountability property if this
advantage is negligible for any PPT adversary A.

Expaccount
A (1λ)

1. HU ← ∅, CU ← ∅, DL ← ∅, DBPriv ← ∅, DBPub ← ∅
2.
(
sp, (skPCA , pkPCA ), (skIDR, pkIDR), (skegRA, pk

eg
RA), (sk

acl
CIi

, pkaclCIi
), (skCIi , pkCIi )

)
← Setup(1λ)

3. Tt,j ←− AO(skaclCIi
, skCIi ,DBPriv) where O = all oracles.

4. If Tt,j /∈ DL, then return 0.

5. If IDRetrieve(Tt,j ,DBPriv, skegRA) = ⊥ or IDRetrieve(Tt,j ,DBPriv, skegRA) = Ĩdi where

Ĩdi is a fake identity, then return 1.
6. Return 0

Fig. 3. Accountability Security Experiment

End-user’s Privacy. Roughly speaking, end-user’s privacy requires that, aside
from the revocation authority and even with the help of malicious users, dig-
ital currency issuers and the ID registration authority, no entity can (1) link
a given Transfer5 or Deposit transaction to an execution of the Withdrawal

protocol; or (2) figure out whether two Transfer transactions, or a Transfer

5 We consider that the Insert transaction is combined with the first Transfer trans-
action associated with the new withdrawn digital currency.
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Exp
UPrivacy
A (1λ)

1. HU ← ∅, CU ← ∅, DL ← ∅, DBPub ← ∅, DBPriv ← ∅, T SCU ← ∅, RT ← ∅
2.
(
sp, (skPCA , pkPCA ), (skIDR, pkIDR), (skegRA, pk

eg
RA), (sk

acl
CIi

, pkaclCIi
), (skCIi , pkCIi )

)
← Setup(1λ)

3. U0,U1,UR ← AO(skaclCIi
, skCIi , skIDR,DBPub) where O = all oracles except the

following oracles: OTransferS(Ui,⊥), OTransferR(Ui), OTransferS&R(Ui,Uj ,⊥),
OTransferS&R(⊥,Uj ,⊥) and OTransferS&R(⊥,Uj , DCt).

4. If U0 ∈ CU or U1 ∈ CU , then output ⊥.
5. If U0 and U1 do not own at least one digital currency of the same size and worth the same

amount and such that, for that digital currency, the two concurrent latest transactions
T∗,j−1 and T∗∗,j−1 /∈ T SCU and all the transactions in its history /∈ RT , then output ⊥.

6. Select two digital currencies DCt and DCt′ respectively belonging to U0 and U1, and
satisfying conditions of step 5. For b ∈ {0, 1}, run:
(Tb, T

∗
b )← Transfer

(
DCt, amountc, 0,U0,UR

)
,

(T1−b, T
∗
1−b)← Transfer

(
DCt′ , amountc, 0,U1,UR

)
which correspond to the transfer of the full amount amountc of digital currencies DCt
and DCt′ from Ub to UR.

7. b′ ← AO(skaclCIi
, skCIi , skIDR,DBPub) where O = all oracles except OIDRetrieve and

with a restricted access to OUCorrupt.
8. If OUCorrupt(U0) or OUCorrupt(U1), then output ⊥.
9. If Tb, T

∗
b , T1−b or T∗1−b ∈ RT , then output ⊥.

10. If b′ = b, then return 1.
11. Return 0.

Fig. 4. End-user’s Privacy Security Experiment

and a Deposit transactions Tt,j and Tt′,j′ , including different H(Tt,j−1) and
H(Tt′,j′−1) values6 and such that neither H(Tt,j−1) is in the history of Tt′,j′ nor
H(Tt′,j′−1) is in the history of Tt,j , were performed by the same payer7 (or not),
not necessarily identified.

It is well known that the size of a transferable digital currency incrementally
grows as the digital currency is transferred [7]. This characteristic may be lever-
aged by an adversary A to win the game and break end-user’s privacy property,
e.g. by selecting two users U0 and U1 that do not own digital currencies of the
same size, i.e. which has been transferred the same number of times. Thus, in
the defined game, we require that both users U0 and U1 own at least one digital
currency of the same size that will be used to output the challenge transactions.

Due to the traceability feature, an adversary A is able to recognize a digital
currency DCt that it has already observed during previous transactions, and
decide whether a given transaction is related to the same digital currency or
not. Consequently, the challenge transactions Tb and T1−b should correspond to
transfers of the full amount of the digital currency to the receiver UR that was
selected by A. Otherwise, an adversary A can for instance make oracle queries

6 Since two transactions including the same H(Tt,j−1) value are, by default, performed
by the same user.

7 As we want to trace issued digital currencies, any entity knows that the same user
is involved in two subsequent transactions associated to the same digital currency,
first as a payee then as a payer.
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to OTransferS(Ub,⊥) for b ∈ {0, 1} until it gets a transaction associated to the
same DCt as the challenge transaction, thus trivially winning the game.

Similarly, an adversary A can leverage transactions history that is available
in DL. Hence, A does not have access to some oracles as described in Figure 4.

Since an adversary A knows the amount associated to the challenge trans-
actions, then both used digital currencies should be worth the same amount
amountc. Otherwise, A may exploit amountc to win the game, e.g. by leveraging
the total amount of digital currencies owned by U0 and U1.

More formally, the end-user’s privacy experiment ExpUPrivacy
A (1λ) is detailed

in Figure 4. The adversary’s advantage Adv
UPrivacy
A (1λ) is defined as

Adv
UPrivacy
A (1λ) = |Pr[ExpUPrivacy

A (1λ) = 1]− 1/2|

A digital currency system DCS satisfies end-user’s privacy property if this
advantage is negligible for any PPT adversary A.

5 Our traceable, transferable and divisible digital
currency system

5.1 Overview

Our digital currency system DCS relies on the following crypto building blocks:
(i) a digital signature scheme (SKeyGen, SSign, SVerif) denoted by S, such as
an ECDSA signature, (ii) the adaptation of Anonymous Credential Light (ACL)
signature scheme (ACLKeyGen, ACLSign, ACLVerif) introduced in Appendix A,
(iii) the ElGamal encryption scheme (EGKeyGen, EGEnc, EGDec) introduced in
Section 2.3, and (iv) the three types of non-interactive zero-knowledge proof of
knowledge π1, π2 and π3 introduced in Section 2.5.

5.2 Our system description

Our DCS system involves five entities, namely a certification authority PCA, an
ID registration authority IDR, a revocation authority RA, n digital currency
issuers CI1, . . . , CIn, and a large number of banked and unbanked end-users Ui.
CI1, . . . , CIn setup and maintain a permissioned distributed ledger where all

digital currencies transactions are stored. The revocation authority RA main-
tains a private database DBPriv of triplets {Idi, guiI , att(Idi, g

ui
I )} and a corre-

sponding public database DBPub of {guiI }.

Setup. The system parameters are sp = (sps, speg, spacl, spid) where sps de-
notes the parameters of the signature scheme S, speg = (G, q, gE) denotes the
parameters of the El Gamal cryptosystem, spacl = (G, q, g, h, h0, h1) denotes the
parameters of our variant of the ACL signature scheme and spid = (G, q, gI).

During this phase, the certification authority PCA uses the SKeyGen algo-
rithm to generate a signature key pair (skPCA , pkPCA) that is used by PCA to
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issue certificates to the other system entities. Next, the ID registration authority
IDR uses the SKeyGen algorithm to generate a signature key pair (skIDR, pkIDR).
Using the EGKeyGen algorithm, the revocation authority RA generates an El-
Gamal encryption key pair (skegRA, pk

eg
RA). Then, both IDR and RA execute the

RequestCertificate protocol to respectively get the certificates cert(pkIDR) =
SSign[skPCA ](pkIDR, ID registration) and cert(pkRA) = SSign[skPCA ](pkegRA,
Revocation) that are issued by PCA.

Each CIi generates an ACL signature key pair (skaclCIi , pk
acl
CIi) for digital

currencies issuance and executes RequestCertificate protocol to get the cer-
tificate cert(pkaclCIi) = SSign[skPCA ](pkaclCIi , z, issuer,DC issuance) from PCA.
Each CIi also generates a signature key pair (skCIi , pkCIi) to be used for the
deposit of digital currencies and gets the associated certificate cert(pkCIi) =
SSign[skPCA ](pkCIi , z, issuer,Deposit) from PCA.

Join procedure. When a banked or unbanked end-user Ui wants to join the
digital currency system, he proceeds as follows.

1. End-user identity verification by IDR:
– Ui provides a proof of his identity Idi to IDR;
– Ui generates a pair (ui, g

ui
I ) using IDKeyGen(sp);

– Ui sends guiI to IDR along with a proof π1 proving the knowledge of ui;
– If all previous steps succeed, then IDR uses the signature scheme S to

issue an attestation att(Idi, g
ui
I ) = SSign[skIDR](Idi, g

ui
I ) to Ui.

2. End-user registration with RA:
– Ui sends (Idi, g

ui
I , att(Idi, g

ui
I )) to RA along with a proof π1 proving

the knowledge of ui;
– RA verifies att(Idi, g

ui
I ) validity and that Ui actually knows ui. If so,

RA updates both DBPriv by adding the triplet {Idi, guiI , att(Idi, g
ui
I )}

and DBPub by appending the singleton {guiI }.

Withdrawal protocol. The withdrawal protocol involves a banked user Ui and
a digital currency issuer CIi holding the key pair (skaclCIi , pk

acl
CIi). It relies on the

adaptation of Anonymous Credential Light (ACL) introduced in Appendix A.
First, mutual authentication is performed between Ui and CIi with usual

authentication means that are outside of the scope of this description. The digital
currency issuer CIi identifies the user Ui and checks the balance of his banking
account before both Ui and CIi agree on the amount amountt of the digital
currency DCt to be withdrawn by Ui.

In a nutshell, the user Ui generates a random nonce sn′t that is not known by
CIi whilst CIi generates a random nonce sn∗t so that the serial number of DCt
will be snt = sn′t + sn∗t . This value will only be known to Ui. Moreover, the user
Ui uses the SKeyGen algorithm to generate a one time use key pair (skt,0, pkt,0)
and sets pkt,0 as the message m to be blindly signed by CIi using ACLSign. The
protocol is played as described in Appendix A and it either outputs a digital
currency DCt = (snt, amountt, pkt,0, ACLSign[skaclCIi ](snt, amountt, pkt,0)) or 0.



14 A. Barki and A. Gouget

Insertion protocol. The insertion protocol is performed by a banked user Ui
who is willing to insert a withdrawn digital currency DCt = (snt, amountt, pkt,0,
ACLSign [skaclCIi ](snt, amountt, pkt,0)) into the distributed ledger. The end-user
Ui knows the secret key skt,0 associated to the public key pkt,0 and a pair
(ui, g

ui
I ) such that guiI ∈ DBPub. To insert DCt, Ui computes an encryption

Et,1 = (gr1E , g
ui
I pk

r1
E ) of guiI using pkE = pkegRA, and Ct,1 = guipkr2E along with

a NIZK proof π2,t,1 that Et,1 was correctly computed and that he knowns ui
such that guiI ∈ DBPub. The challenge of π2,t,1 is defined as c = H(DCt). The
insertion transaction that is transmitted to the permissioned ledger is Tt,0 =
(insert,DCt, Et,1, π2,t,1, St,0) where St,0 = SSign[skt,0](insert,DCt, Et,1, π2,t,1).
Either the transaction Tt,0 is valid and inserted into the distributed ledger DL
or the output is 0.

Transfer protocol. The transfer protocol involves a banked or an unbanked
user Ui owning the digital currency related to a validated transaction Tt,j−1
which is either of the form Tt,0 = (insert,DCt, Et,1, π2,t,1, St,0) with DCt =
(snt, amountt, pkt,0, ACLSign[skaclCIi ](snt, amountt, pkt,0)) or Tt,j−1 = (transfer,
amountt,j−1,H(Tt,j−2), pkt,j , Et,j , π2,t,j , St,j−1) for j > 1. The user Ui knows the
private key skt,j associated to pkt,j and a pair (ui, g

ui
I ) such that guiI ∈ DBPub.

The transfer protocol also involves a banked or unbanked receiver of the dig-
ital currency transfer Ur who holds a pair (ur, g

ur
I ) such that gurI ∈ DBPub. Both

Ur and Ui agree on the amount of the transfer amountt,j with 0 < amountt,j ≤
amountt,j−1, and use the SkeyGen algorithm to respectively generate the signa-
ture key pairs (skt,j+1, pkt,j+1) and (sk∗t,j+1, pk

∗
t,j+1).

The transfer protocol requires two transactions. For the first transaction, Ur
computes the value Et,j+1 which is the encryption of gur using pkegRA and the
NIZK proof π2,t,j+1 ensuring that Et,j+1 was correctly computed and that he
knows ur such that gur ∈ DBPub. The challenge of π2,t,j+1 is c = H(amountt,j ,
H(Tt,j−1), pkt,j+1). Then, Ui computes the first transaction which corresponds
to a digital currency transfer from Ui to Ur:

Tt,j = (transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1, St,j)

where St,j = SSign[skt,j ](transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1).
The second transaction for this transfer is an auto-transfer of the remaining

amount amount∗t,j = amountt,j−1 − amountt,j from Ui to Ui:

T ∗t,j = (transfer, amount∗t,j ,H(Tt,j−1), pk∗t,j+1, E
∗
t,j+1, π

∗
2,t,j+1, S

∗
t,j)

where S∗t,j = SSign[skt,j ](transfer, amount
∗
t,j ,H(Tt,j−1), pk∗t,j+1, E∗t,j+1, π

∗
2,t,j+1),

E∗t,j+1 is the encryption using pkegRA of guiI and π∗2,t,j+1 is a NIZK proof ensuring
that E∗t,j+1 was correctly computed and that Ui knows ui such that guiI ∈ DBPub.
The challenge of π∗2,t,j+1 is c = H(amount∗t,j ,H(Tt,j−1), pk∗t,j+1). All these values
are computed by the user Ui.

Both transactions Tt,j and T ∗t,j are jointly transmitted in a random order to
the permissioned ledger. Either the two transactions Tt,j and T ∗t,j are valid and
inserted into the distributed ledger or the output is 0.
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Deposit protocol. The deposit protocol involves a banked user Ui owning the
digital currency related to Tt,j−1, i.e. holding the private key skt,j associated to
the public key pkt,j included in Tt,j−1, and a digital currency issuer CIi holding
the key pair (skCIi , pkCIi). It requires a single transaction computed by Ui and
transmitted to the permissioned ledger:

Tt,j = (deposit, amountt,j−1,H(Tt,j−1), pkCIi , St,j)

where St,j = SSign[skt,j ](deposit, amountt,j−1,H(Tt,j−1), pkCIi).

Either the transaction Tt,j is inserted into the ledger and the banking account
of Ui is updated with amountt,j−1 or the output is 0.

VerifyGuilt procedure. The VerifyGuilt procedure is performed by the re-
vocation authority RA upon a request to identify the payee of a specific trans-
action Tt,j of the form either Tt,0 = (insert,DCt, Et,1, π2,t,1, St,0) or Tt,j =
(transfer, amountt,j , H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1, St,j) with j ≥ 1.

Using the private key skegRA, RA decrypts Et,j+1 to get the value guiI and
builds a NIZK proof π3,t,j that the decryption was correctly performed. Then,
it looks for the corresponding entry {Idi, guiI , att(Idi, g

ui
I )} in DBPriv. Finally,

RA either outputs the identity Idi along with the NIZK proof π3,t,j+1 and the
triplet {Idi, guiI , att(Idi, g

ui
I )} enabling to prove this claim, or the output is 0.

5.3 Security Analysis

Theorem 1. Our digital currency system DCS satisfies the unforgeability, ex-
culpability and accountability properties under the discrete logarithm (DL) as-
sumption and the unforgeability of the used signature scheme S, and the end-
user’s privacy property is fulfilled under the Decisional Diffie Hellman (DDH)
assumption in the random oracle model 8.

6 Conclusion

In this paper, our contribution is threefold. First, we investigated the highest
level of anonymity and unlinkability that a traceable, transferable and divisible
digital currency system DCS may achieve. Then, we defined a framework for such
a DCS system along with the associated security and privacy model. Finally, we
proposed a traceable, transferable and divisible digital currency system that
protects user’s privacy while enabling the retrieval of user’s identity in case of
suspicious transactions, e.g. suspicion of fraud or money laundering activities.
Our DCS system is mainly based on a slight adaptation of ACL signature and
ElGamal encryption schemes as well as NIZK proofs, and it is proven secure in
the random oracle model.

8 Owing to the lack of space, the security proofs are provided in Appendix B.
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Appendix A: Adaptation of Anonymous Credential Light

As mentioned in Section 2.6, for our DCS system, we need a (partially) blind
signature with two specific attributes: (1) an attribute for the amount of with-
drawn digital currency that is known by both the signer and the user; and (2) an
attribute for the digital currency serial number sn that is jointly computed by
the user and the signer but that is only known to the user. The message m cor-
responds to the user’s public key pkt,0, and is only known to the user. Both m
and sn need to be kept secret from the signer to ensure the blindness property.

The Anonymous Credential Light (ACL) system, as described in [4], just
considers attributes that are only known to the user and it does not directly
define such particular attributes. We thus propose a couple of slight modifications
of ACL system so as to support these two specific attributes. In our context, we
only require these two attributes and we do not need any additional attribute
only defined and know by the user.

Signer User
Public Input: G, q, g, h, h0, h1, y, z

Common Input: amount
Private Input: x Private Input: m

Generate R, sn′ ∈R Z∗q
Compute C = hR0 g

sn′

Verify π1
C,π1←−−−−−−−−−−− Build π1 = PoK{θ, β : C = hθ0g

β}
Generate sn∗ ∈R Z∗q
Compute z1 = C · gsn

∗
hamount
1

and z2 = z/z1
Generate u, r′1, r

′
2, c
′ ∈R Zq

Compute a = gu

a′1 = gr
′
1zc
′

1 and a′2 = hr
′
2zc
′

2

sn∗,a,a′1,a
′
2−−−−−−−−−−−−→ Check that sn∗ 6= 0

Compute z1 = C · gsn
∗
hamount
1

Select γ ∈R Z∗q
Compute ζ = zγ , ζ1 = zγ1 and ζ2 = ζ/ζ1
Select τ ∈R Z∗q and compute η = zτ

Check that a, a′1, a
′
2 ∈ G

Generate t1, t2, t3, t4, t5 ∈R Z∗q
Compute α = agt1yt2

α′1 = a′γ1 g
t3ζ

t4
1 and α′2 = a′γ2 h

t5ζ
t4
2

ε = H(ζ, ζ1, α, α
′
1, α
′
2, η,m)

e←−−−−−−−−−−− e = ε− t2 − t4 mod q

Compute c = e− c′ mod q
r = u− cx mod q c, r, c′, r′1, r

′
2−−−−−−−−−−−→

Compute ρ = r + t1 mod q
w = c+ t2 mod q, ρ′1 = γr′1 + t3 mod q
ρ′2 = γr′2 + t5 mod q, ω′ = c′ + t4 mod q
µ = τ − ω′γ mod q

Check if ω + ω′
?
=

H(ζ, ζ1, g
ρyω, gρ

′
1ζω
′

1 , hρ
′
2ζω
′

2 , zµζω
′
,m) mod q

The signature is σ = (ζ, ζ1, ρ, ω, ρ
′
1, ρ
′
2, ω
′, µ).

Fig. 5. Adapted ACL - Credential issuance on message m and attributes sn and amount
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The ACL scheme consists of a the triplet of algorithms (ACLKeyGen, ACLSign,
ACLVerif) where ACLKeyGen takes as input the system parameters and outputs
a signature key pair (skacl, pkacl), ACLSign takes as input two attributes amount
and sn as well as a message m, and outputs the signature σ, whereas ACLVerif
takes as input σ, amount, sn and m, and outputs either 1 or 0. Hereinafter, we
do not provide the description of the original ACL system [4] but rather only
detail our adaptation, depicted in Figure 5, while pointing out the difference
with respect to the original scheme. The system public parameters consist of
the tuple (G, q, g, h, h0, h1,H) where G is a cyclic group of prime order q where
the DDH problem is assumed to be hard, g, h, h0, h1 are generators of G, and
H : {0, 1}∗ → Zq is a hash function. The signer secret key is x ∈R Zq. The
corresponding certified public key is (G, q, g, h, y, z) where y = gx mod q is the
real public key and z ∈R G is referred to as tag public key.

The obtained signature on message m and both attributes sn = sn′ + sn∗

which is only known to the user and amount which is known to both the user
and the signer is the tuple σ = (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ). The user needs to store

σ along with the values m, sn, amount, R and γ. To show the obtained signature
in an unlinkable way while revealing the message m and both attributes sn and
amount, the user follows the protocol described in Figure 6.

User Verifier
Public Input: G, q, g, h, h0, h1, y, z

Private Input: (m, sn, amount),
σ = (ζ, ζ1, ρ, ω, ρ

′
1, ρ
′
2, ω
′, µ),

γ and R

Select r0, r1, r2 ∈R Z∗q
Compute ζ̃1 = h

r0
0 h

r1
1 gr2

c = H(ζ1, ζ̃1, date & time)
s0 = r0 + cγ · R
s1 = r1 + cγ · amount

s2 = r2 + cγ · sn
m,σ,ζ̃1,s0,s1−−−−−−−−−→ Check if ζ 6= 1
s2,amount,sn−−−−−−−→ Compute c = H(ζ1, ζ̃1, date & time)

Check if ζ̃1ζ
c
1 = h

s0
0 h

s1
1 gs2 and ω + ω′

?
=

H(ζ, ζ1, g
ρyω, gρ

′
1ζω
′

1 , hρ
′
2ζω
′

2 , zµζω
′
,m) mod q

Fig. 6. Adapted ACL - Credential presentation

ACL system security is proven in the random oracle model. In particular,
blindness is ensured under the DDH assumption, and unforgeability is guaranteed
under the DL assumption for sequential composition. Our slight adaptation of
ACL does not impact the security proofs9. Indeed, it has no impact on the
unforgeability requirement. As long as the same amount attribute is encoded in
several signatures, then (partial)10 blindness would be ensured.

9 We refer the reader to [4] for the detailed security proofs of the ACL system.
10 Since the signer knows the value of the attribute amount.
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Appendix B: Security Proofs of Theorem 1

Proposition 1. Our digital currency system DCS is unforgeable under the dis-
crete logarithm assumption and the unforgeability of the S signature scheme.

Proof (sketch). Let us show that if an adversary A is able to break the unforge-
ability property of our construction, then it is possible to break the unforgeabil-
ity of either the ACL signature scheme [4] (which is unforgeable under the DL
assumption) or the signature scheme S.

Assume that the adversary A wins the game. This means that the amount of
digital currency held by A is strictly greater than the sum of the total amount
of digital currencies honestly withdrawn by A and honestly received in transfers
minus the total amount of digital currency honestly transferred to other users
and deposited to digital currency issuers. This is only possible if the adversary
A has successfully generated either:
(i) a valid digital currency without the knowledge of the key skaclCIi :

DCt = (snt, amountt, pkt,0, ACLSign[skaclCIi ](snt, amountt, pkt,0))

which implies that A has broken the unforgeability property of the ACL signa-
ture scheme, and thus the discrete logarithm assumption;

or (ii) a valid digital currency transfer without the knowledge of the key skt,j :

Tt,j = (transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1, St,j)

where St,j = SSign[skt,j ](transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1).
This implies thatA has broken the unforgeability property of signature scheme S;

or (iii) a valid digital currency deposit without the knowledge of the key skt,j :

Tt,j = (deposit, amountt,j−1,H(Tt,j−1), pkCIi , St,j)

where St,j = SSign[skt,j ](deposit, amountt,j−1,H(Tt,j−1), pkCIi). This also im-
plies that A has broken the unforgeability property of signature scheme S.

Note that the double-spending or double-deposit of a digital currency is not
possible since all transfer and deposit transactions are recorded in the distributed
ledger. Prior to the acceptance of a transfer or deposit transaction, a correspond-
ing check is done in the distributed ledger.

Thus, our DCS construction satisfies the unforgeability property under the
DL assumption and the unforgeability property of the used signature scheme S.

Proposition 2. Our digital currency system DCS fulfills the exculpability prop-
erty under the discrete logarithm assumption and the unforgeability of the used
signature scheme S.

Proof (sketch). Let us show that if an adversary A is able to break the exculpa-
bility property of our construction, then it is possible to break either:
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- the soundness property of a NIZK proof π2 or π3, that relies on the discrete
logarithm assumption, or

- the discrete logarithm assumption and compute the discrete logarithm ui of
guiI , or

- the unforgeability property of the signature scheme S and forge an attestation
att(Idi, g

ui
I ).

Assume that the adversary A wins the game. This means that A has out-
put a valid transaction Tt,j that is of the form either Tt,0 = (insert,DCt,
Et,1, π2,t,1, St,0) or Tt,j = (transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1,
St,j) with j ≥ 1, along with a proof π3 that wrongly accuse an honest user of
being involved in it. A can easily compute part of the transaction. However,
it cannot replay or misuse a previously computed NIZK proof π2 due to the
proof’s challenge which is computed for a specific digital currency DCt for a Tt,0
transaction, or for a given amount, transaction Tt,j−1 and public key pkt,j+1 for
a Tt,j with j ≥ 1. Similarly, a proof π3 can be neither replayed nor misused.
Consequently, three cases are possible to win the game, either:

- Case 1 : A has produced either (i) a valid NIZK proof π2,t,k related to a value
Et,k+1 such that guiI ∈ DBPub without knowing the value of ui, which implies
that the adversary has broken the soundness property of π2,t,k, or (ii) a valid
NIZK proof π3,t,k using an erroneous value ui associated to an honest user,
which implies that the adversary has broken the soundness property of π3,t,k.
Since π2 and π3 meet the soundness property under the discrete logarithm
(DL) assumption, this case implies that A has broken the DL assumption.

- Case 2 : A has computed the discrete logarithm of an honest user’s guiI value
and used the retrieved ui value to build a valid NIZK proof π2,t,k. This case
implies that A has broken the discrete logarithm (DL) assumption.

- Case 3 : A has selected a random ui ∈ Z∗q and has produced a valid attesta-
tion att(Idi, g

ui
I ) corresponding to the output of the signature scheme S on

the target identity Idi, without knowledge of the secret key skIDR. Then, A
has registered with RA using the forged attestation and used the associated
(ui, g

ui
I ) pair to compute the ElGamal encryption and NIZK proof π2. This

case implies that A has broken the unforgeability property of the signature
scheme S.

Thus, our DCS construction satisfies the exculpability property under the
DL assumption and the unforgeability property of the used signature scheme S.

Proposition 3. Our digital currency system DCS fulfills the accountability prop-
erty under the discrete logarithm assumption and the unforgeability of the used
signature scheme S.

Proof (sketch). Let us show that if an adversary A is able to break the account-
ability property of our construction, then it is possible to break either:

- the soundness property of a NIZK proof π2, that relies on the discrete loga-
rithm assumption, or
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- the unforgeability property of the signature scheme S and forge an attestation

att(Ĩdi, g
ui
I ).

Assume that the adversary A wins the game. This means that A has out-
put a valid transaction Tt,j that is of the form either Tt,0 = (insert,DCt,
Et,1, π2,t,1, St,0) or Tt,j = (transfer, amountt,j ,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1,
St,j) with j ≥ 1, such that it cannot be traced by RA to the identity Idi of the
payer and/or payee. A can easily compute part of the transaction. However, it
cannot replay or misuse a previously computed NIZK proof π2 due to the way
the proof’s challenge is computed. Consequently, two cases are possible to win
the game, either:

- Case 1 : A has produced a valid NIZK proof π2,t,k related to a value Et,k+1

such that guiI /∈ DBPriv (i.e. it has generated a false OR proof that is suc-
cessfully verified). This implies that the adversary has broken the soundness
property of π2,t,k. Since π2 is sound under the discrete logarithm (DL) as-
sumption, then this case means that A has broken the DL assumption.

- Case 2 : A has selected a random ui ∈R Z∗q and has produced a valid attes-

tation att(Ĩdi, g
ui
I ) corresponding to the output of the signature scheme S

on a fake identity Ĩdi, without knowledge of the secret key skIDR. Then, A
has registered with RA using the forged attestation and used the associated
(ui, g

ui
I ) pair to compute the ElGamal encryption and NIZK proof π2. This

case implies that A has broken the unforgeability property of the signature
scheme S.

Thus, our DCS construction satisfies the accountability property under the
DL assumption and the unforgeability property of the used signature scheme S.

Proposition 4. Our digital currency system DCS fulfills the end-user’s privacy
property under the Decisional Diffie-Hellman (DDH) assumption.

Proof (sketch). Let us show that if an adversary A is able to break the end-user’s
privacy property of our construction, then it is possible to break the Decisional
Diffie-Hellman (DDH) assumption.

Assume that the adversary A wins the game. This means that A has selected
two honest users U0 and U1 and a third user UR to run the challenge transactions
(Tb, T

∗
b ) and (T1−b, T

∗
1−b) for b ∈ {0, 1} which correspond to the transfers of the

full amount from Ub to UR and that A succeeded in linking at least one of the
transactions to the correct Ub. The challenge transactions are of the form:

- Tb = (transfer, amountc,H(Tt,j−1), pkt,j+1, Et,j+1, π2,t,j+1, St,j) which is a
transfer from U0 to UR where Et,j+1 and π2,t,j+1 are computed by UR;

- T ∗b = (transfer, 0,H(Tt,j−1), pk∗t,j+1, E
∗
t,j+1, π

∗
2,t,j+1, S

∗
t,j) which is an auto-

transfer from U0 to U0 where E∗t,j+1 and π∗2,t,j+1 are computed by U0;
- T1−b = (transfer, amountc,H(Tt′,j−1), pkt′,j+1, Et′,j+1, π2,t′,j+1, St′,j) which

is a transfer from U1 to UR where Et′,j+1 and π2,t′,j+1 are computed by U1;
- T ∗1−b = (transfer, 0,H(Tt′,j−1), pk∗t′,j+1, E

∗
t′,j+1, π

∗
2,t′,j+1, S

∗
t′,j) which is an

auto-transfer from U1 to U1 where E∗t′,j+1 and π∗2,t′,j+1 are computed by U1.
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Two cases are possible to win the game, either:

- Case 1 : A has linked a Transfer11 or Deposit transaction to a given execu-
tion of the Withdrawal protocol through either the digital currency unique
identifier snt or the public key pkt,0. This implies that the adversary has bro-
ken the blindness property of the ACL construction which is proven under
the DDH assumption in the random oracle model.

- Case 2 :A has linked a Transfer transaction to another Transfer or Deposit
transaction. Since the signatures included in Tb and T1−b are computed us-
ing one-time use key pairs, then they cannot be leveraged to win the game.
Thus, the only values that may enable A to win the game are the ElGamal
encryptions E∗t,j+1 and E∗t′,j+1, or the NIZK proofs π2,t′,j+1 and π∗2,t′,j+1.
Thus, this case implies that the adversary has broken either (i) the security
of the ElGamal cryptosystem which is proven under the DDH assumption,
or (ii) the zero-knowledge property of the proofs π2 which is ensured under
the DDH assumption.

Thus, our DCS construction satisfies the end-user’s privacy property under
the DDH assumption.

11 We recall that, for the sake of clarity, we consider that the Insert transaction is
combined with the first Transfer transaction in our security and privacy model.


