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Abstract—We propose HERMES a scalable, secure, and
privacy-enhancing system, which allows users to share and access
vehicles. HERMES outsources the vehicle access token generation
to a set of untrusted servers, utilizing several cryptographic
primitives with secure multi-party computation efficiently. It
conceals the vehicle secret keys and transaction details from the
servers such as vehicle booking details, access token information,
and user-vehicle identities. It also provides user accountability in
case of disputes. We prove that HERMES meets its security and
privacy requirements. Moreover, we demonstrate that HERMES
scales for a large number of users and vehicles, making it prac-
tical for real-world deployments. To achieve high-performance
computations, we evaluate HERMES over two different multi-
party computation protocols for Boolean and arithmetic circuits.
We provide a detailed comparison of their performance, together
with other state-of-the-art access provision protocols. Through
a proof-of-concept implementation, our performance analysis
demonstrates that HERMES requires only ≈ 61ms for a single-
vehicle access provision. At the same time, it handles 546 and 84
access token generations per second from a single-vehicle owner
and large branches of rental companies with over a thousand
vehicles, respectively.

I. INTRODUCTION

Vehicle-sharing is an emerging smart mobility service lever-
aging modern technology to enable users to share their vehi-
cles with others or access shared vehicles. The service has been
gaining popularity in recent years. Statistics demonstrate an
increase of the worldwide number of users of vehicle-sharing
services from 2012 to 2014 by 170% (total 5 million) [1],
with a tendency to reach a total of 26 million by 20211 [2].
Moreover, several companies, including Volvo [3], BMW [4],
Toyota [5], and Apple [6], have been already investing in
vehicle-sharing services. For instance, Apple announced the
“CarKey” API in the first quarter of 2020. The API allows
users to (un)lock and start a vehicle using an iPhone or Apple
Watch. “CarKey” can also be shared with other people, such
as family members, enabling vehicle-sharing [7], [8]. With
the use of in-vehicle telematics and omnipresent portable
devices, such as smartphones, vehicle owners can distribute
temporary digital keys, a.k.a. Access Tokens (ATs), to other
users [9]. Vehicle Sharing Systems (VSSs) enable dynamic
and occasional use of multiple types of vehicles (e.g., car,
motorbike, scooter), catering to consumers’ diverse needs
and preferences [10], [11], [12]. Beyond user convenience,

1Note that these predictions were made in pre-COVID-19 times.

VSS provides better utilization of available vehicles, thus
contributing towards sustainable smart cities. This, in turn,
leads to positive effects such as a reduction of emissions [13],
a decrease of city congestion [14], and more economical use
of parking space [15].

Despite these advantages, a major concern is that informa-
tion collected in VSS can jeopardize the system’s security.
An adversary may eavesdrop and attempt to tamper with the
vehicle sharing details, extract the key of a vehicle stored
in untrusted devices, generate a rogue AT to access or deny
having accessed a vehicle maliciously. These are significant
concerns that require VSS to deploy security mechanisms to
ensure that vehicle-sharing details cannot be tampered with by
unauthorized entities, digital vehicle-keys are stored securely
and attempts to use rogue ATs are blocked. In addition,
VSSs also introduce various other concerns ranging from
connectivity issues [16], [17], key revocation when a user’s
device is stolen [18], and dispute resolution. Considering dis-
putes resolution, the VSS needs to support user accountability
while keeping their private information protected. Existing
efforts [16] on these security issues rely on a centralized
Trusted Provider (TP) which has access to the master key of
vehicles, and collects and stores all the information exchanged
between the vehicle provider and their users for every vehicle
access provision.

However, the privacy of VSS is equally important to se-
curity. A major concern with VSS is collecting personal
and potentially sensitive data regarding users and their ve-
hicles. An adversary may eavesdrop on data exchanges to
infer sensitive information about its users. For example, Enev
et al. [19] demonstrated that it is possible to reach high
identification rates of drivers, with 87% to 99% accuracy,
based on data collected by the sensors of a vehicle over 15
minutes of open-road driving. An adversary can try linking
two vehicle-sharing requests of the same user or vehicle,
identify vehicle usage patterns, and deduce users’ sharing
preferences. These preferences can be established by collecting
data about sharing patterns, such as time of use, duration,
pickup location, when, where, and with whom someone is
sharing a vehicle [19]. The adversary can also infer sensitive
information about users’ race and religious beliefs [20] or
their health status by identifying vehicles for special-need
passengers. Such user profiling is a direct violation of the
General Data Protection Regulation (GDPR) [21]. Thus, a
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VSS system needs to preserve the unlinkability of any two
requests of a consumer, keep the consumer’s identity and
the vehicle anonymous, and indistinguishable between sharing
operations as the generation, update, or revocation. Towards
addressing these privacy challenges, a state-of-the-art VSS
solution, named SePCAR [22], proposes to deploy Multiparty
Computation (MPC). It focuses on privacy-preserving access
token provision, deploying multiple non-colluding servers for
the generation and distribution of vehicle ATs.

Considering scalability in a real-world setting, VSS needs
to support a large number of users with multiple vehicles
per user. A variance in the number of vehicles could range
from a few vehicles for private individuals to thousands of
vehicles for large branches of companies [1], such as in car-
rental scenarios [23]. However, achieving scalability in VSSs,
in addition to providing security and privacy safeguards, is
not straightforward, as these safeguards can significantly affect
the performance of a VSS with a large number of users and
vehicles. For example, SePCAR [22], although efficient (1.55
seconds for a car access provision), is limited to a single
evaluation of the protocol. It has not been tested on how it
scales in a real-world setting with a large number of users
and vehicles per user. Hence, to the best of our knowledge,
there is no VSS solution in the literature that provides security
and privacy guarantees while at the same time being scalable.
This work aims to fill this gap.

We present HERMES, an efficient, secure, and privacy-
enhancing system for vehicle access provision that supports
dispute resolution while protecting users’ privacy. HERMES
is based on SePCAR [22], but fundamentally differs in certain
design choices to make it scalable and more efficient. Specif-
ically, the contributions of this work are:

1) HERMES deploys multiparty computation primitives to
ensure that ATs are generated without the VSS learning
vehicle-sharing details and vehicle secret keys. With the
use of a public ledger, it also ensures the unlinkability of
any consumer’s two requests, keeps the consumer’s iden-
tity and the vehicle anonymous, and indistinguishable
between sharing operations while generation, update, or
revocation. Besides that, HERMES also supports dispute
resolution without compromising users’ private informa-
tion while keeping users accountable. We also prove
that the HERMES is secure and meets its appropriate
security and privacy requirement.

2) We demonstrate that HERMES is highly efficient under
real-world settings of VSSs. Our design and implemen-
tation is tailored to supporting a VSS with users ranging
from private individuals with only a few vehicles to large
branches in car-rental scenarios with over a thousand ve-
hicles per branch. Our implementation and performance
evaluation demonstrates that HERMES requires only
≈ 61ms for a single-vehicle access provision while it
can handle multiple access token generations per second
for individuals and branches of rental companies. We
also tested and evaluated our results using two MPC
instantiations for Boolean and arithmetic circuits, and
we provide a comparison. We also analyze the com-
plexity of these two protocols independently, provide a
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Fig. 1: Vehicle Sharing System (VSS) model with its entities
and interactions.

comparison, and motivate the two choices.
The rest of the paper is organized as follows: Section II

provides the system model and preliminary information of
HERMES. Section III describes the cryptographic building
blocks used in the design of HERMES, and Section IV
describes the system in detail. Section V provides the security
and privacy analysis of HERMES, and Section VI evaluates
its theoretical complexity and practical efficiency. Section VII
gives an overview of the state-of-the-art related work. Sec-
tion VIII concludes our work.

II. SYSTEM, ADVERSARIAL MODELS AND REQUIREMENTS

We describe the system model of VSS and specify the
adversarial model and assumptions we use in our design,
as well as, the functional, security, privacy and performance
requirements which the system needs to satisfy.

1) System model: The VSS infrastructure, that comprises
users, vehicles, their manufacturers, and authorities, is illus-
trated in Fig. 1. It considers two types of users: owners
(uo), individuals or vehicle rental companies willing to share
(rent out) their vehicles, and consumers (uc), individuals
using vehicles available for sharing; both use portable Devices
(PDs), such as smartphones to interact with VSS entities and
each other. The On-Board Unit (OBU) is a hardware/software
component that enables vehicle connectivity [24]. It has a
wireless interface such as Bluetooth, NFC, or LTE and is part
of the secure access management system of a vehicle [25]. The
Vehicle Manufacturer (VM) is responsible for managing the
digital keys that enable access into each vehicle. These keys
are used for enabling vehicle sharing in VSS as well. The Ve-
hicle Sharing Service Provider (VSSP) is a cloud infrastructure
that facilitates the vehicle AT generation, distribution, update
and revocation. It consists of servers that collaboratively
generate ATs and publish them on the Public Ledger (PL). PL
serves as a public bulletin board that guarantees the integrity of
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the data [26]. The booking details are typically agreed upon by
the owner and consumer prior to each vehicle-sharing session
commences. We denote MB , AT vehicleo , and Kvehicleo as
Booking Details (BD), an Access Token (AT) for a vehicle,
and for the vehicle secret key, respectively.

2) Adversarial Model: For our system design, we use the
following adversary model. The communication channels are
secure and authenticated among entities such as using SSL-
TLS and NFC. The authorities are trusted entities. The VSSP,
the VM and the PL are considered honest-but-curious entities.
They execute the protocol correctly, but they may attempt to
extract private information about users. Owners can be passive
adversaries, as they hold information booking but they will
not aim to alter the protocol. Consumers and outsiders can be
active adversaries aiming to illegally access a vehicle, alter
the booking information and hide on incidents. The vehicle,
more specifically its OBU, is trusted and designed to resist
deliberate or accidental physical destruction (i.e., it serves as
black box). User PDs are untrusted as they can get stolen, lost,
or broken.

3) Assumptions: For HERMES, we make the following
assumptions. There is a Public Key Infrastructure (PKI) infras-
tructure [27] in place and each entity has its private/public-key
pair with their corresponding digital certificates. The OBU
is equipped with a Hardware Security Module (HSM) [27],
[28] that supports secure key storage and cryptographic op-
erations such as symmetric and public-key operations2. The
VSSP servers are managed by non-colluding organizations,
i.e., organizations with conflicting interests such as authorities,
user unions, and VM. Before each evaluation, the Booking
Details (BD) are agreed upon by the owner and consumer.
Both keep the BD confidential against external parties. In BD,
the identities of vehicle, owner and consumer, the location and
time duration of the reservation can be specified. HERMES is
agnostic to the specificities of BD drawing from the analogy
of VSS.

4) System Design Requirements: The VSS should satisfy
the following functional, security, privacy, and performance
requirements [9], denoted as FR, SR, PR, and PSR, respec-
tively.

Functional requirements:
• FR1 – Offline access provision. Access provision should

be provided for locations where vehicles have limited (or
no) network connectivity.

• FR2 – Access token update and revocation by uo. No one
but uo can initiate AT update and revocation.

Security requirements:
• SR1 – Confidentiality of MB . No one but the shared

vehicle, uo and uc should have access to MB .
• SR2 – Authenticity of MB . The shared vehicle should

verify the origin and integrity of MB from uo.
• SR3 – Confidentiality of AT vehicleo . No one but the

shared vehicle and uc should have access to AT vehicleo .
• SR4 – Confidentiality of Kvehicleo . No one but vehicleo

and VM should hold a copy of Kvehicleo .

2As specified in the secure vehicle specifications such as EVITA [29] and
PRESERVE [27].

• SR5 – Backward and forward secrecy of AT vehicleo .
Compromise of a key used to encrypt any AT vehicleo

should not compromise other tokens (future and past)
published on the PL for any honest uc.

• SR6 – Non-repudiation of origin of AT vehicleo . uo should
not be able to deny it agreed to the terms of MB , and
initiated the generation of the corresponding AT vehicleo .

• SR7 – Non-repudiation of delivery of AT vehicleo . uc
should not be able to deny it has obtained and used
AT vehicleo to open the vehicle (once it has done so).

• SR8 – Accountability of users (i.e., owners and con-
sumers). The VSSP should be able to provide authorities
with the transaction details of an access provision to
a vehicle at the request of law enforcement without
violating the privacy of other users.

Privacy requirements:
• PR1 – Unlinkability of any two requests of uc for any
vehicleo(s). No one but the shared vehicleo, uo and uc
should be able to link two booking requests of any uc
for any vehicleo linking their identities, i.e., IDuc , and
IDvehicleo .

• PR2 – Anonymity of uc and the vehicleo. No one but the
shared vehicle, uo and uc should learn the identity of uc
and the vehicle.

• PR3 – Indistinguishability of AT vehicleo operation. No
one but the shared vehicle, uo and uc (if necessary)
should be able to distinguish between AT vehicleo gen-
eration, update and revocation.

Performance requirement:
• PSR1 – Scalability. The VSS should maintain its effi-

ciency even when it grows to support a large number of
vehicles and users.

III. CRYPTOGRAPHIC BUILDING BLOCKS

1) Cryptographic Primitives: HERMES uses the following
cryptographic building blocks. The suggested instantiations are
used in our proof-of-concept implementation.
• σ ← sign(Sk,m) and true/false ← verify(Pk,m, σ)

are public-key operations for signing and verification
respectively. These can be implemented using RSA as
defined in the PKCS #1 v2.0 specification [30].

• K ← kdf(K, counter) is a key derivation function using
a master key and a counter as inputs. It can be based on a
Pseudo-Random Function (PRF) and implemented using
CTR mode with AES [31].3

• c ← enc(Pk,m) and m ← dec(Sk, c) are public-
key encryption and decryption functions. These can be
implemented using RSA as defined in the RSA-KEM
specifications [33].

• c ← E(K,m) and m ← D(K, c) are symmetric key
encryption and decryption functions. These can be im-
plemented using CTR mode with AES.

• z ← hash(m) is a cryptographic hash function. This
function can be implemented using SHA-2 or SHA-3.

3In our case, the message input is small, i.e., � 264 blocks for AES in
CTR, and the generation is performed with side channel attacks not to be a
concern [32].
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• t ← mac(k,m) is a cryptographic Message Authen-
tication Code (MAC) which outputs an authentication
tag t given a key k and a message m. These can be
implemented using CBC-MAC-AES or HtMAC-MiMC
(see below).

Furthermore, we use z ← query(x, y) to denote the retrieval
of the xth value from the yth database DB (to be defined in
Sect. IV), and z ← query an(y) to denote the retrieval of the
yth value from the PL through an anonymous communication
channel such as Tor [34], aiming to anonymously retrieve a
published record submitted using the publish(y) function.

2) Multiparty Computation: MPC allows a set of parties
to compute a function over their inputs without revealing
them. Following the seminal papers of Yao for the two-party
case [35] and by Goldreich, Micali and Wigderson in the mul-
tiple parties setting [36], secure MPC has gained much traction
in the past years with many open-source frameworks [37].

To reason about the MPC protocol that fits our setting, one
has to pinpoint various parameters such as network settings,
security model, or a number of parties. For more details on
adversary capabilities, the reader can refer to the survey by
Lindell [38]. In order to keep the protocol simple, we consider
a fast network (10 Gbps LAN) and a passive adversary
for three-party replicated secret sharing scheme [39], [40].
However, if one wants to upgrade to other MPC protocols
secure against malicious parties, this can be done fairly simple
by changing the way external parties provide inputs or get
outputs using known techniques [41]. To evaluate a function
on secret inputs using MPC, one needs to unroll the function
to a series of additions and multiplications in a field. A core
contribution of the paper is the integration of two different
modes of operations for the secrecy of AT generation con-
sidering honest-but-curious set of servers in VSSP: one mode
that uses HtMAC which works over a large field [40], while
the other mode uses CBC-MAC-AES over a binary field [39].

Our algorithms use building blocks whose instantiation
depends on the protocol type. However, they can be treated
generically. This is also called an arithmetic black-box func-
tionality [42] .The functionality mainly in use consists of:
• [x]← share(x) secret shares an input x to all parties. The

underlying secret sharing scheme is described in detail in
Araki et al. [39].

• c ← E([k], [m]) An encryption function, i.e., E, takes
as inputs a secret shared key [K] and a vector of 128 bit
blocks [m]. For the F2 case, E is implemented using AES
in counter mode. Concretely, the AES circuit description
is the one from SCALE-MAMBA [43], which has 6400
AND gates. For the Fp case, MiMC is used as a PRF in
counter mode as presented in [44] to take advantage of
PRF invocations done in parallel.

• t← mac([k], [m]) is a tag generation function for secret
shared key [k] and message [m]. For the case when
inputs are in a large field, we will not compute the
MAC as above, but rather as mac([k],E([k′], [m])). The
reason is that, according to [44], we can obtain a more
efficient cryptographic MAC in MPC by first computing
E([k′], [m]) in parallel with a secret shared key [k′],
opening the result, and evaluate the MAC function in

the clear. Their optimizations hold only for arithmetic
circuits although they could likely be extended to boolean
circuits as well. In the Boolean case, the mac function
is implemented as CBC-MAC-AES. Note that for the F2

case there are more efficient ways to do this, but we keep
CBC-MAC as a comparison baseline to previous work
such as SePCAR [22].

• [z] ← ([x]
?
= [y]) outputs a secret bit [z] where

z ∈ {0, 1}. If x is equal to y then set z ← 1 otherwise
set z ← 0. Note that for the large field case there is a
statistical security parameter sec, whereas for the F2 case
the comparison is done with perfect security (i.e. no sec
parameter). The equality operator is implemented using
the latest protocols of Escudero et al. [45].

• x← open([x]) which takes a secret shared value [x] and
opens it, making x known to all parties.

IV. HERMES

A. Overview of HERMES

We provide a brief overview of HERMES, which is also
illustrated in Fig. 2. We consider a single owner, consumer, and
a shared vehicle for simplicity and without loss of generality.

Before HERMES commences, there are vehicle key dis-
tribution and establishing the details for the vehicle booking
prerequisite steps. Considering VM as a TP for VSS, it holds
all the secret keys of vehicles that produce. By vehicle owners
registering their vehicles, the VSSP using the owner’s identity
retrieves the vehicle’s identity and the corresponding key. Both
the identity and vehicle key are transferred from VM to VSSP
in a secret shared form, and thus preserving the secrecy of
both towards the VSSP. For each commences of HERMES,
the BD is established between the owner and the consumer,
specifying information for vehicle sharing, such as the duration
of the vehicle’s reservation and location.

HERMES consists of four steps: session keys generation
and data distribution, access token generation, access token
distribution and verification, and vehicle access. During the
session key generation and data distribution, three-session keys
are generated by the consumer. One of these keys will be
used to encrypt the generated AT at the VSSP servers so
that only the consumer has access to it, while the other two
keys will be used to generate an authentication tag of the BD
such that the consumer can identify and retrieve the AT from
the PL as well as verify that the beforehand agreed BD are
included in the AT. Since the consumer considers the owner
and the VSSP as honest-but-curious entities, it will conceal
and forward the session keys towards the VSSP in secret
shared form. To protect its identity from being leaked to the
VSSP, the consumer avoids direct contact with the VSSP and
forwards the session keys’ shares the owner. Together with
the concealed session keys, the owner forwards to VSSP the
BD and its signature in a shared form to each Si server.
Upon the VSSP receiving the session keys and the booking
details, the access token generation step commences. The
vehicle key is retrieved from the database in each Si server
using an equality test over MPC, preserving the key’s secrecy.
The AT is generated under the vehicle’s encryption, such that
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TABLE I: Notation.

Symbol Description

Si, PL, VM Set of VSSP servers, the ith server for i ∈ {1 . . . l}, Public ledger, vehicle manufacturer
uo, uc, vehicleo The owner, consumer, and vehicle
IDB , IDuo , IDuc , IDvehicleo ID of booking, uo, uc, vehicle
CDuc /ACuc , Lvehicleo Set of conditions/access rights under which uc is allowed to access a vehicle, vehicle’s location
DBVM / DBSi Database that VM holds with (IDuo , IDvehicleuo , Kvehicleuo ) / that Si holds with (IDuo ,

[IDvehicleuo ], [Kvehicleuo ]) for all owners (uo’s) and their registered vehicles
~Duo Vehicle records (IDuo

x , [ID
vehicleuo
y ], [K

vehicleuo
y ]) of the xth uo for the yth vehicle extracted

(query) from DBSi , where |~Duo | = n

~[D]
vehicleo Matched, equality output (i.e., ?

=), yth vehicle key (
1

[0] · · · [0]
y

[1][0] · · ·
n

[0]), where |~Dvehicleo | = n
Pkx / Skx, Certuc Public/private key pair of the VSS entity x, certificate of uc

MB Booking details, i.e, {hash(Certuc ), IDvehicleo , Lvehicleo , CDuc , ACuc , IDB}
σuo , σvehicleo

Access Signature (sign output) of MB with Skuo , and {MB , TSvehicleo
Access } with Skvehicleo

Kvehicleo Symmetric key of the vehicle
Kuc

master uc’s master key
Kuc

enc uc’s session key used for encryption of the AT generated from Kuc and counter (kdf output)
~Kuc

tag uc’s session key Kuc
tagenc

, Kuc
tagmac

used for generating of the AuthTag generated from Kuc and
counter + 1/counter + 2 (kdf output)

AuthTagMB , [AuthTagMB ] The authentication tag of MB with ~Kuc
tag , and [MB ] with [ ~Kuc

tag ]

Muc , ATuc Concatenation of MB with σuo , AT as the encryption (E output) of Muc with Kvehicleo

CSi Ciphertext (enc output) of session keys {[Kuc
enc], [ ~K

uc
tag ]} with PkSi

[Cuc ] Ciphertext (E output) of {[ATuc ], [IDvehicleo ]} with [Kuc
enc]

TSPub
i , TSvehicleo

Access Time-stamp of uc accessing the shared vehicle, a record published (publish) on the PL submitted by Si

only the vehicle itself can retrieve the BD. Moreover, the
consumer session keys are used to encrypt the AT and create
an authentication tag, such that only the consumer can identify
and access the AT. Each of the servers Si then forwards
the encrypted AT and its authentication tag to the PL. The
PL serves as a bulletin board and notifies the VSSP upon
publishing the information. At the access token distribution
and verification step, the consumer can identify and retrieve
the corresponding AT. Since the consumer considers the PL
as honest-but-curious, it can hide its identity (i.e., IP address),
querying the PL using an anonymous communication channel.
It will also retrieve the AT, and the AT will be used by the
vehicle to verify and allow access to the consumer for the
predefined booking duration at the last step of vehicle access.

B. HERMES in detail

Below we discuss HERMES in detail, with a general
overview picture given in Fig. 9. We first describe the prerequi-
site steps, and we complete the section with an overview of the
possible additional operations after HERMES: access token
update and revocation and accountability of users. Table I lists
the notation used throughout the paper. A detailed overview
of HERMES, along with additional material, can be found at
the online full version [46].

1) Step 1 – Session key generation and data distribution:
While uo signs the booking details, i.e., MB , uc generates
session keys for encryption and data authentication, i.e., Kuc

enc

and ~Kuc
tag = (Kuc

tagmac
,Kuc

tagenc
), respectively. The generated

material by uc and uo are sent via uo to each Si, such that
the AT can be generated.

Prerequisite steps: Before HERMES commences, two pre-
requisite steps need to take place: vehicle key distribution and
establishing the details for the BD.

a) Vehicle key distribution: It takes place immedi-
ately after the xth owner, IDuo

x , has registered her yth
vehicle, IDvehicleuo

y , with the VSSP. The VSSP retrieves
from the VM database denoted by DBVM the secret sym-
metric key of the vehicle and the corresponding iden-
tity of the owner in secret shared form, denoted by
[K

vehicleuo
y ] and [ID

vehicleuo
y ], respectively. Then, it stores,

IDuo
x , [IDvehicleuo

y ] and [K
vehicleuo
y ] in its database denoted

DBSi . For simplicity, in some parts of HERMES we will use
IDuo , IDvehicleo and Kvehicleo instead of IDuo

x , IDvehicleuo
y

and Kvehicleuo
y .

b) Vehicle booking: It allows uo and uc to agree on
the booking details, i.e., MB = {hash(Certuc), IDvehicleo ,
Lvehicleo , CDuc , ACuc , IDB}, where hash(Certuc) is the
hash of the digital certificate of uc, Lvehicleo is the pick-up
location of the vehicle, CDuc is the set of conditions under
which uc is allowed to use the vehicle (e.g., restrictions on
locations, time period), ACuc are the access control rights
under which uc is allowed to access the vehicle and IDB is
the booking identifier. Recall that it is assumed that an owner
and a consumer agree on the booking details beforehand.

2) Step 1 – Session key generation and data distribution:
While uo signs the booking details, i.e., MB , uc generates
session keys for encryption and data authentication, i.e., Kuc

enc

and ~Kuc
tag , respectively. The generated material by uc and uo

are sent via uo to each Si, such that the AT can be generated.
In detail, as it is illustrated in Fig. 3, uo sends a session-

keys-generation request, SES K GEN REQ, along with IDB

to uc. Upon receipt of the request, uc generates the session
keys, Kuc

enc and ~Kuc
tag . Kuc

enc will be used by the VSSP servers,
Si, to encrypt the AT, such that only uc has access to it. Note
that each Si does encryption evaluations in a secret shared
way. ~Kuc

tag is used to generate an authentication tag which will
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Fig. 2: HERMES high level overview. Numbers correspond to the steps outlined in the text of Section IV. Figures 3, 4, 5 and
6 describe steps 1, 2, 3 and 4 in more detail.

Owner (uo) Consumer (uc) S1 . . . Si . . . Sl
msg{SES K GEN REQ, IDB}

1: {Kuc
enc, ~K

uc
tag} ← kdf(Kuc

master, counter)
2: [Kuc

enc]← share(Kuc
enc)

3: [ ~Kuc
tag]← share( ~Kuc

tag)
4: for i = 1 . . . l do
5: CSi ← enc(PkSi , {[Kuc

enc], [ ~K
uc
tag]})

6: end for

1: σuo ← sign(Skuo ,MB)
2: Muc ← {MB , σuo}
3: [Muc ]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}
msgi{AT GEN REQ, IDuo , CSi , [Muc ]}

Fig. 3: Step 1: session keys generation and data distribution.

allow uc to verify that the AT contains MB which was agreed
upon, during the vehicle booking. It utilizes a kdf() function
instantiated by uc’s master key, i.e., Kuc

master and a counter.
For ~Kuc

tag , two session keys are generated and stored: one for
encryption, Kuc

tagenc
(i.e., ~Kuc

tag[0] = Kuc
tagenc

), and one for
authentication, Kuc

tagmac
(i.e., ~Kuc

tag[1] = Kuc
tagmac

). Then, uc
transforms these keys into ` secret shares, [Kuc

enc] and [ ~Kuc
tag],

one for each Si in such a way that none of the servers will have
access to the keys but that they can jointly evaluate functions
using the shares of these keys securely.

The consumer encrypts [Kuc
enc] and [ ~Kuc

tag] with the public-
key of each Si, CSi = enc(PkSi , {[Kuc

enc], [
~Kuc
tag]}), such

that only the specific Si can access the corresponding shares.
Finally, uc forwards to uo an acknowledgment message,
SES K GEN ACK, along with IDB and {CS1 , . . . , CSl}.

The owner uo signs MB with her private key, i.e., σuo =
sign(Skuo ,MB). In a later stage, the vehicle will use σuo to
verify that MB has been approved by uo. Then uo transforms
Muc = {MB , σuo} into ` secret shares, i.e., [Muc ]. Upon
receipt of the response of uc, uo forwards to each Si an access-
token-generation request, AT GEN REQ, along with IDuo ,
the corresponding CSi and [Muc ].

3) Step 2 – Access Token Generation: The servers generate
an AT and publish it on the Public Ledger (PL).

In detail, as shown in Fig. 4, upon receipt of AT GEN REQ
from uo, the servers obtain the session keys in shared form,
{[Kuc

enc], [ ~K
uc
tag]}. Each Si decrypts CSi using its private key.

Session keys are for encrypting an AT used to access a vehicle
by uc and for generating an authentication tag used by uc to
verify the data authenticity of the booking details contained
in the AT, respectively. To generate the AT, i.e., [AT vehicle],
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Public Ledger (PL)) S1 . . . Si . . . Sl

1: {[Kuc
enc], [ ~K

uc
tag]} ← dec(SkSi , CSi)

2: ~Duo ← query(IDuo , DBSi)
3: for y = 1 . . . n do
4: ~[D]

uo

← ([IDvehicle]
?
= [ID

vehicleuo
y ])

5: end for
6: [Kvehicle]← ~Dvehicle × ~Duo

7: [AT vehicle]← E([Kvehicle], [Muc ])
8: [Cuc ]← E([Kuc

enc], {[AT vehicle], [IDvehicle]})
9: Cuc ← open([Cuc ])

10: [AuthTagMB ]← mac([Kuc
tagmac

], E(Kuc
tagenc

, [MB ]))
11: AuthTagMB ← open([AuthTagMB ])

msgi{AT PUB REQ,Cuc , AuthTagMB}

Fig. 4: Step 2: AT generation.

the key of the vehicle, i.e., [Kvehicle], is retrieved from DBSi

using query and equality check operations as proposed in [22].
The VSSP servers Si then collaboratively encrypt [Muc ]

using the retrieved [Kvehicle] to generate an AT for the vehicle
in shared form, [AT vehicle]. As AT vehicleo and IDvehicleo

need to be available only to uc, a second layer of encryption
is performed using Kuc

enc. Then, the servers encrypt [AT vehicle]
and [IDvehicle] with [Kuc

enc] to generate and retrieve Cuc using
open([Cuc ]), i.e.,

[AT vehicle]← E([Kvehicle], [Muc ]),

[Cuc ]← E([Kuc
enc], {[AT vehicle], [IDvehicle]}),

Cuc ← open([Cuc ]).

In addition, each Si generates an authentication tag, i.e.,
[AuthTagMB ], that can be later used to retrieve the asso-
ciated AT vehicleo from the PL by uc. Using mac() with
[ ~Kuc

tag] and [MB ] as inputs, each Si creates an authentica-
tion tag [AuthTagMB ]. Prior to posting on the PL, we use
open([AuthTagMB ]) to obtain AuthTagMB , i.e.,

[AuthTagMB ]← mac([Kuc
tagmac

], E(Kuc
tagenc

, [MB ])),

AuthTagMB ← open([AuthTagMB ]),

where we recall that ~Kuc
tag = (Kuc

tagmac
,Kuc

tagenc
). Here, we

note that for the efficiency over MPC, we perform Enc-then-
Hash-then-MAC. The reason is that, following [44] encryption,
i.e., E, can be done in parallel and separately (so efficient),
and then the hash does not need to be done in MPC and the
MPC parties can apply the hash function locally. Essentially,
we trade “parallel MPC encryption” for “having to evaluate a
hash function on large input in MPC”.4

Finally, each Si sends to PL an access-token-publication
request, AT PUB REQ, along with Cuc and AuthTagMB .

4) Step 3 – Access Token Distribution and Verification:
The PL publishes the encrypted AT which is then retrieved by
uc. Once retrieved, uc can obtain the AT and use it to access
the vehicle.

In detail, as shown in Fig. 5, upon receipt of AT PUB REQ,
PL publishes Cuc , AuthTagMB and TSPub, which is the

4In our implementation, we use CBC-MAC-AES and HtMAC-MiMC.

time-stamp of the publication of the encrypted token. User uc
monitors PL for concurrent and following TSPub to identify
the corresponding Cuc using AuthTagMB . Upon identifica-
tion, Cuc queries and anonymously retrieves Cuc from PL
using query an(), such that PL cannot identify uc. Then, uc
decrypts Cuc using Kuc

enc to obtain the AT and the vehicle
identity, {AT vehicle, IDvehicle}.

Note that, in a parallel manner and for synchronization
purposes, PL sends an acknowledgment of the publication,
AT PUB ACK, along with TSPubi to at least one Si which it
forwards it to uo who, in turn, forwards it to uc. Upon receipt
of AT PUB ACK, uc uses TSPubi to query PL. In the same
manner, it uses query an() to anonymously retrieve Cuc and
AuthTagMB . uc verifies the authentication tag CB locally
using the mac() function with Kuc

tagmac
and MB as inputs. In

the case of successful verification, uc is assured that the token
contains the same details as the ones agreed during vehicle
booking. Then, uc decrypts Cuc using Kuc

tagenc
to obtain the

access token and the vehicle identity, {AT vehicle, IDvehicle}.
5) Step 4 – Car Access: The consumer uses the AT

AT vehicleo , and IDvehicle,Certuc , to obtain access to the
vehicle using any challenge-response protocol based on public
key implementations [47], [16] (see Fig. 6). A detailed repre-
sentation of the last step can be found at the online full version
of HERMES [46] and in [22].

Functional requirements realization:
a) FR1 – Offline access provision: Note that steps 1-

3 of the protocol require a network connection, but step 4,
vehicle access, is performed using close-range communication
and with no need of a network connection. The decryption and
verification of the AT can be performed by the vehicle offline
(it has its key Kvehicleo and the owner’s public-key Pkuo

stored). Sending the confirmation signature σvehicleAccess can also
be done offline.

b) FR2 – Access token update and revocation by uo:
Upon an agreement between uo and uc to update or revoke
an AT, HERMES can perform as it is described in steps 1-
3. An update request can alter the booking values according
to a new booking request, M̂B . For revocation, each of the
parameters in M̂B can receive a predefined value indicating
the revocation action. There are occasions when uo may need
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Owner (uo) Consumer (uc) Public Ledger (PL) S1 . . . Si . . . Sl

publish(TSPubi , Cuc , AuthTagMB )

msg{AT PUB ACK,TSPubi }
msg{AT PUB ACK,TSPubi }

msg{AT PUB ACK,TSPubi }
TSPubi Cuc AuthTagMB

14774098 ersdf3tx0 fwefw234
. . . . . . . . .

query an(TSPubi )

msg{Cuc , AuthTagMB}

if AuthTagMB
?
= mac(Kuc

tagmac
, E(Kuc

tagenc
,MB)) then

{AT vehicle, IDvehicle} ← D(Kuc
enc, C

uc)
else

Break
end if

Fig. 5: Step 3: Access token distribution and verification.

Owner (uo) Vehicle Consumer (uc)

msg{AT vehicle, IDvehicle,Certuc}

1: {MB , σuo} ← D(Kvehicle, AT vehicle)
2: verify(Pkuo ,MB , σuo)

Challenge / Response

σvehicleAccess ← sign(Skvehicle, {MB , TSvehicleAccess })

msg{σvehicleAccess , TS
vehicle
Access }

verify(Pkvehicle, {MB , TSvehicleAccess }, σvehicleAccess )

Fig. 6: Step 4: vehicle access. Dashed lines represent close range wireless communication.

to enforce an update or revocation of an AT. For uc to prevent
blocking such requests and operations, HERMES should be
executed only by uo, without the involvement of uc. More
specifically, uo generates session keys, requests an AT, queries
the PL, and sends the token to the vehicle using a long-range
communication channel such as LTE.

V. SECURITY AND PRIVACY ANALYSIS

We prove that HERMES satisfies the security and pri-
vacy requirements of Sect. II, provided that its underlying
cryptographic primitives are sufficiently secure. The theorem
statement and the proof given below are informal, in a similar
sense by [22]. A complete formal description of the semantic
security models and the stand-alone proofs are given in the
online version of the system [46].

Theorem 1. Assume that communication takes place over
private channels. If:
• the MPC is statistically secure [44],
• the signature scheme sign is multi-key existentially un-

forgeable [48],

• the key derivation function kdf is multi-key secure [49],
• the public-key encryption scheme enc is multi-key seman-

tically secure [50],
• the symmetric key encryption scheme E is multi-key

chosen-plaintext secure [51],
• the hash function hash is collision resistant [52], and
• the MAC function mac is multi-key existentially unforge-

able [48],

then HERMES fulfills the security and privacy requirements
of Sect. II.

Note that, indeed, for each of the keyed cryptographic
primitives we require security in the multi-key setting, as these
are evaluated under different keys. For example, sign is used
by all owners, each with a different key; enc is used for
different keys, each for a different party in the VSSP, and
E and mac are used for independent keys (i.e., session keys)
for every fresh evaluation of the protocol. We refer to Bellare
et al. [50] for a discussion on generalizing semantic security
of public-key encryption to multi-key security; the adaptation
straightforwardly generalizes to the other security models.
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Proof sketch. We treat the security and privacy requirements,
and discuss how these are achieved from the cryptographic
primitives, separately. We recall that the consumer and owner
have agreed upon the booking details prior to evaluating
HERMES. Hence they know each other.

a) SR1 – Confidentiality of MB: In one evaluation of
the protocol, uc, uo, and the shared vehicle learn the booking
details by default or design. The VSSP servers only learn
shares of the booking data, and under the assumption that the
MPC is statistically secure, nothing about the booking data
is revealed during the MPC. The outcomes of the MPC are
AuthTagMB and Cuc satisfying

AuthTagMB = mac(Kuc
tagmac

,E(Kuc
tagenc

,MB)) , (1)

Cuc = E(Kuc
enc, {E(K

vehicleuo
y , {MB , σuo}), IDvehicleo}) ,

(2)

both of which reveal nothing about MB to a malicious
outsider due to the assumed security of mac, E, and the
independent uniform drawing of the keys Kuc

enc and ~Kuc
tag =

(Kuc
tagenc

,Kuc
tagmac

). The nested encryption E does not influ-
ence the analysis due to the mutual independence of the keys
Kuc
enc and Kvehicleuo

y .
b) SR2 – Authenticity of MB: An owner who initiates

the AT generation and distribution, first signs the booking
details using its private key before sending those to the VSSP
in shares. Therefore, once the vehicle receives the token and
obtains the booking details, it can verify the owner’s signature
on the booking details. In other words, the vehicle can verify
the source of the booking details, the owner, and their integrity.
Suppose, to the contrary, that a malicious consumer can get
access to a vehicle of an owner uo. This particularly means that
it created a tuple (MB , σuo) such that verify(Pkuo ,MB , σuo)
holds. If σuo is new, this means that uc forges a signature for
the secret signing key Skuo . This is impossible by the assump-
tion that the signature scheme is existentially unforgeable. On
the other hand, if (MB , σuo) is old but the evaluation is fresh,
this means a collision hash(Certuc) = hash(Certuc′), which
is computationally infeasible as hash is collision-resistant.

c) SR3 – Confidentiality of AT vehicleo : The AT is gen-
erated by the VSSP servers obliviously (as the MPC is statis-
tically secure), and only revealed to the public in encrypted
form, through Cuc of (7). Due to the uniform drawing of
the key Kuc

enc (and the security of the public-key encryption
scheme used to transmit this key), only the legitimate user can
decrypt and learn the AT. It shares it with the vehicle over a
secure and private channel.

d) SR4 – Confidentiality of Kvehicleo : Only the vehicle
manufacturer and the vehicle itself hold copies of the vehicle
key. Considering the VM as a Trusted Provider (TP), it holds
all the secret keys of vehicles that produce. The VSSP servers
learn these in shared form, hence learn nothing about it by
virtue of the statistical security of the MPC. Retrieving a
vehicle key from encryptions made under this key constitutes a
key recovery attack, which in turn allows breaking the chosen-
plaintext security of the symmetric key encryption scheme.

e) SR5 – Backward and forward secrecy of AT vehicleo :
The AT is published on the Public Ledger (PL) as Cuc of (7),
encrypted under symmetric key Kuc

enc. Every honest consumer
generates a fresh key Kuc

enc for every new evaluation. It uses
a key derivation function kdf utilizing a PRF for each key
generation and every new evaluation of the protocol, and
that is secure. This implies that all session keys are drawn
independently and uniformly at random. In addition, the sym-
metric encryption scheme E is multi-key secure. Concluding,
all encryptions Cuc are independent and reveal nothing of each
other. Note that nothing can be said about ATs for malicious
users who may deviate from the protocol and reuse one-time
keys.

f) SR6 – Non-repudiation of origin of AT vehicleo :
The vehicle, which is a trusted entity, verifies the origin
through verification of the signature, verify(Pkuo ,MB , σuo).
The consumer uc verifies the origin through the ver-
ification of the MAC function, i.e., AuthTagMB

?
=

mac(Kuc
tagmac

, E(Kuc
tagenc

,MB)). Note that uc does not ef-
fectively verify AT vehicleo , but rather AuthTagMB , which
suffices under the assumption that the MPC servers evaluate
their protocol correctly. In either case, security fails only if
the asymmetric signature scheme or the mac function are
forgeable.

g) SR7 – Non-repudiation of delivery of AT vehicleo :
The owner can verify the correct delivery of AT vehicleo with
the successful verification and message sent by the vehicle to
the owner, verify(Pkvehicleo , {MB , TSvehicleoAccess }, σ

vehicleo
Access ) at

the end of the protocol. Security breaks only if the signature
scheme is forgeable.

h) SR8 – Accountability of users (i.e., owners, and con-
sumers): In the case of disputes, the information related to
a specific transaction (and only this information) may need
to be reconstructed. Reconstruction can be done only if the
VSSP servers collude and reveal their shares. In our setting,
these servers have competing interests. Thus they would not
collude unless law authorities’ request. Due to threshold secret
sharing properties, the private inputs can be reconstructed by
a majority coalition. This is, if the VSSP consists of three
parties, it suffices two of party-shares required to reconstruct
the secret.

i) PR1 – Unlinkability of any two requests of uc for any
vehicleo(s): The only consumer-identifiable data is in the
consumer’s certificate included in the booking details. Note
that these are agreed upon and between the consumer and
the owner, so the owner learns the consumer’s identity by
default. Beyond that, the consumer only communicates with
the vehicle, which is supposed to learn the consumer’s identity
to perform proper access verification. The consumer consults
the PL over an anonymous communication channel [34]. The
booking details are transferred to and from the VSSP, but these
are encrypted and do not leak by virtue of their confidentiality
(security requirement SR1).

j) PR2 – Anonymity of uc and the vehicleo: The reason-
ing is identical to that of PR1.

k) PR3 – Indistinguishability of AT vehicleo operations:
Access token generation, update, or revocation is performed
using the same steps and the same type of messages sent to
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the VSSP and PL. Hence, outsiders and system entities cannot
distinguish which operation has been requested.

VI. PERFORMANCE EVALUATION

We take a different approach to [22] as we implement our
protocols in a fully-fledged open-sourced MPC framework,
i.e., MP-SPDZ [53]. The framework supports more than 30
MPC protocols carefully implemented in C++. In addition, a
Python front-end compiler allows the expression of circuits
in a relatively simple way. For MP-SPDZ, the compiler
reduces the high-level program description to bytecode or set
of instructions for which the parties then run an optimized
virtual machine written in C++ to execute the protocols. In
our case, two versions of HERMES were benchmarked: one
with CBC-MAC tailored for binary circuits, while the other
one uses HtMAC, which is tailored for arithmetic circuits.
For our benchmark we use the following settings: ||Muc || =
||AT vehicle|| = 10 · 128 bits, whereas IDvehicle ≤ 232, which
thus fits into one 128 bit-string, and ||MB || = 6 · 128 bits.

Environment Settings: We benchmarked our protocols of
VSSP servers using three distinct computers connected on a
LAN network equipped with Intel i7-7700K CPU and 32GB
of RAM over a 10Gb/s network switch and 0.5ms Round Trip
Time (RTT).5

1) Theoretical Complexity: Measuring the complexity of an
MPC protocol usually boils down to counting the number of
non-linear operations in the circuit and the circuit depth. We
consider the case where a protocol is split into two phases.
An input-independent (preprocessing) phase, where the goal
is to produce correlated randomness. Additionally, an input-
dependent (online) phase where parties provide their inputs
and start exchanging data using the correlated randomness
produced beforehand. One secret multiplication (or an AND
gate for the F2 case) requires one random Beaver triple
(correlated randomness) [54] from the preprocessing phase and
two open() operations in the online phase.

Note that, in our case, the two versions of HERMES are
benchmarked using the following two executables: replicated-
bin-party.x (F2 case, CBC-MAC) and replicated-field-party.x
(Fp case, HtMAC). The first executable is the implementation
of Araki et al.’s binary based protocol [39], while the latter is
for the field case. Next, we analyze the complexity of these
two separately and motivate the two choices.

2) CBC-MAC-AES – case for binary circuits: This so-
lution is implemented to have a baseline comparison with
SePCAR [22] using MP-SPDZ [53]. The equality check is
implemented using a binary tree of AND operations with a
log n depth where n is the number of vehicles (see Fig. 4).
Obtaining the corresponding vehicle key [Kvehicle] assuming
there are n vehicles per user has a cost of 159·n Beaver triples
assuming 32 bit length vehicle IDs.

When evaluating the operations depicted in Fig. 4 in MPC,
the most expensive part is computing [AT vehicle] since that
requires encrypting 10 ·128 bits, calling AES 10 times, which
has a cost of 6400·10 AND gates. In the next step, (in line 8 in

5The implementation can be obtained from: https://github.com/rdragos/MP-
SPDZ/tree/hermes

Fig. 4), AES is called 11 times, while the operation computing
CBC-MAC-AES (from line 10) takes only 6 AES calls. Given
the above breakdown, the theoretical cost for generating an
access token has a cost of 159 · n+ 6400 · 28 AND gates.

3) HtMAC-MiMC – case for arithmetic circuits: Recent
results of Rotaru et al. [44] showed that, when considering
MPC over arithmetic circuits, efficient modes of operation over
encrypted data are possible if the underlying PRF is MPC-
friendly. We integrate their approach into SePCAR, and results
from Table II show that it is at least 16 times faster than using
MPC over binary circuits with CBC-MAC-AES. This might
come as a surprise since comparisons are more expensive to do
in arithmetic circuits and although they weigh a good chunk of
the overall cost. Recent improvements using edaBits [45] made
comparisons much faster, which, in turn, improved the MPC
protocols used by HERMES. To summarize, we breakdown
the cost into the following:

• 10 calls to MiMC to encrypt Muc (excluding one call for
computing the tweak according to [44]),

• 11 more calls to compute Cuc - encrypting the concate-
nation of AT vehicleo and IDvehicleo . Note that since we
are using a different key than the first step we need to
compute another tweak (one extra PRF call),

• 6 calls to compute AuthTagMB , one more PRF call for
computing the tweak N = EKuc

tag [0]
(1) and a final PRF

call EKuc
tag [1]

(hash′(ct)) where ct are the opened cipher-
texts from encrypting MB and hash′(·)) is a truncated
version of a SHA-3 where we keep the first 128 bits
hash [44].

If we include the PRF calls to compute the tweaks, there
are 31 calls to a PRF, so one can think that the Boolean case
is more efficient than the arithmetic case. In practice, we see
that HtMAC construction is faster than CBC-MAC-AES, albeit
with a factor of two communication overhead (see Table II).
One reason for this is that HtMAC is fully parallelizable,
resulting in an MPC protocol with fewer rounds than CBC-
MAC-AES.

One of the main benefits of HtMAC construction is that
it can be instantiated with the Legendre PRF, which can
make the number of communication even lower. We chose
the MiMC based PRF as that is demonstrated to be faster on
a LAN [44] and to have a lower communication overhead –
although a higher number of communication rounds than the
Legendre based PRF.

4) Benchmark results: We vary the number of vehicle
IDs (i.e., the numbers of vehicles registered per owner) and
compute the communication rounds, data sent between the
VSSP servers, and the total throughput meaning the total
number of ATs generated per second from Fig. 4. In Table II,
we report the performance for a low number of vehicle IDs
(i.e., 1, 2, 4), representing individuals, but also for a large
number (i.e., 256, 512, 1024), representing large branches of
vehicle-rental companies.
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TABLE II: HERMES performance, i.e., access token generation, per number of vehicles utilizing: CBC-MAC-AES and HtMAC-
MiMC. Throughput is evaluated for all servers and communication cost per server.

Type of Vehicle Owners Protocol Number of Vehicles
per Owner

Communication
Rounds

Communication
Data (kB)

Throughput (ops/s)

CBC-MAC-AES 1 568 64 33
HtMAC-MiMC 1 167 108 546

Individuals
CBC-MAC-AES 2 568 64 32
HtMAC-MiMC 2 167 108 546

CBC-MAC-AES 4 568 107.7 32
HtMAC-MiMC 4 167 117 544

CBC-MAC-AES 256 568 76 32
HtMAC-MiMC 256 167 150 260

Vehicle-rental company branches
CBC-MAC-AES 512 568 88 32
HtMAC-MiMC 512 167 194 151

CBC-MAC-AES 1024 568 112 32
HtMAC-MiMC 1024 167 280 84
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Fig. 7: Communication cost per server: access token genera-
tion cost (i.e., data sent-received) for a number of vehicles per
owner.
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Fig. 8: Throughput for all servers: access token generation
(i.e., ops) per second for a number of vehicles per owner.

We can see that the throughput of the AT generation when
instantiated using CBC-MAC-AES remains constant, whereas,
for HtMAC-MiMC, it is decreasing. The reason for this is
that when scaling the number of vehicles, the number of
comparisons is increasing as well. For the case of arithmetic
circuits, the comparisons become costly operations, whereas,
for Boolean circuits, comparisons can be made efficiently.
However, the throughput for HtMAC-MiMC is always better

than CBC-MAC-AES, and this is because MiMC-based PRF
is more lightweight – requiring fewer multiplications – and
has a smaller circuit depth. We report the full range of
experiments for varying the number of vehicle IDs regarding
the communication sent between the parties in Fig. 7 as well
the throughput in Fig. 8.

5) Comparison with SePCAR [22]: SePCAR reports 1.2
seconds for generating the access token, see Table 2 in [22].
Note that SePCAR uses a single-vehicle ID when report-
ing [22]. When benchmarked on similar hardware we get a
throughput of 33 access tokens per second, which demon-
strates the benefits of integrating our solution in a fully-
fledged MPC framework such as MP-SPDZ [53]. This makes
HERMES with the CBC-MAC-AES construction roughly 40
times faster than SePCAR. Switching from CBC-MAC-AES
to HtMAC offers a throughput of 546 ATs per second, which
makes it ≈ 16.5 times better than CBC-MAC, making it
around 600 times faster than original timings in SePCAR [22].
We stress that our implementation of SePCAR was faster due
to writing CBC-MAC-AES using a mature MPC framework
such as MP-SPDZ rather than using custom code as in [22].

6) Total time: SePCAR reports on Step 1 and Step 3
taking 0.22 seconds and 0.05 seconds, respectively, were the
major bottleneck produces the RSA signatures (50ms per
signing operation) [22]. However, when benchmarking the
OpenSSL [55] RSA signatures on our computer, one RSA
signature takes 0.5ms. Plugging in the RSA signature time to
the estimations done in SePCAR, Step 1 should take ≈ 4ms.
Step 3 could probably be improved by storing the data in
memory instead of fetching it from a database. Using our
RSA signature time, Step 1 and Step 3 from SePCAR should
take ≈ 59ms, while Step 2 of our protocol takes 1.83ms in
the batched setting (see Table II) as HtMAC-MiMC has a
throughout of 546 ops/s. This might look surprising, but in
our solution, the non-MPC part is the bottleneck, making the
approximated total time of 61ms being around 25 times faster
than [22].
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VII. RELATED WORK

Our work is closely related to the SePCAR protocol pro-
posed by [22]. They initially performed security and privacy
analysis on vehicular-sharing systems [9], and designed a
solution for privacy-preserving access provision protocol [22].
Their solution design considers untrusted servers for the
generation and distribution of ATs. They utilize MPC in
combination with several cryptographic primitives. With their
work, they also consider malicious users, and SePCAR con-
siders accountability revealing a user’s identity in case of
wrongdoings. However, the protocol is not tested on how it
scales to multiple evaluations of equality checks – essentially
to vehicular-fleet and multi-vehicle owners. Moreover, in terms
of efficiency, HERMES is proven to run significantly faster
than SePCAR due to optimized MPC constructions, making it
efficient enough to support a fleet of vehicles.

State of the art on vehicle-sharing also focuses on either
a trusted service provider, on complementary operations to
access provision, or fulfills a subset of properties for a solution
design. Initially, Dmitrienko and Plappert [16] were the first
to design a secure free-floating vehicle sharing system. In
contrast to HERMES, their protocol assumes a fully trusted
vehicle sharing provider who has access to the master key
of smart-vehicles and collects and stores all the information
exchanged between the vehicle provider and their users for
every vehicle access provision. Huang et al. [56] proposed
a privacy-preserving identity management protocol focusing
on authentication while verifying users’ misbehavior. They
utilize decentralized entities and a centralized vehicle sharing
service provider. However, the service provider is trusted
and can know who is sharing, which vehicle, with whom
raising questions regarding their adversarial model. Madhusu-
dan et al. [57] and De Troch [58] proposed privacy-preserving
protocols for booking and payments operations on vehicle
sharing systems. Their protocols utilize smart contracts on
the Ethereum blockchain. Trust is placed on cryptographic
primitives and blockchain instead of a centralized party. De
Troch [58] also considers accountability in case of misbehav-
ior, which malicious behavior is tracked and punished by the
loss of privacy and deposit.

Considering secure vehicular communications, Papadimi-
tratos [59] analyzed the security challenges in vehicular com-
munication systems while Jin et al. [60] extend the analysis
to the privacy landscape. Raya et al. [61] described the need
for a vehicular PKI to secure vehicular communications, and
Khodaei et al. [62] proposed a generic pseudonymization
approach to preserve the unlinkability of messages exchanged
between vehicles and PKI servers. Driven by [59], PRE-
SERVE [27] and EVITA [29] were designated projects on the
design and specification of the secure architecture of OBUs.
Secure access controls to the OBU from smartphones were
proposed by Groza et al. [63] to use smartphones as a vehicle
key. Huayi et al. [64] proposed an enhanced scheme of [65],
namely DUBI, a decentralized and privacy-preserving usage-
based insurance scheme built on the blockchain technology
to address privacy concerns for pay-as-you-drive insurances
using zero-knowledge proofs and smart contracts.

VIII. CONCLUSION

In this paper, we proposed HERMES – an efficient, scal-
able, secure, and privacy-enhancing system for vehicle access
provision. It allows users to dynamically instantiate, share, and
access vehicles in a secure and privacy-enhancing fashion. To
achieve its security and privacy-enhancing properties, HER-
MES deploys MPC-friendly primitives for access token gener-
ation and sharing while keeping the booking details confiden-
tial not only from malicious outsiders but also from untrusted
servers. To ensure efficiency and scalability, HERMES uses
two modes of operation, supporting various users and vehicles
per users. This makes HERMES suitable for individuals with
few vehicles and rental companies with potentially thousands
of vehicles per branch. We presented a formal analysis of our
system’s security and privacy requirements and designed a
prototype as a proof-of-concept. We benchmarked the MPC
evaluations with HtMAC-MiMC for the case of arithmetic
circuits and CBC-MAC-AES for the case of binary circuits.
HERMES demonstrates a significant increase in performance
of ≈ 61ms for a vehicle access provision, thus demonstrating
its efficiency to SePCAR (i.e., 25 times faster).

In the future, we plan to extend HERMES to support
additional operations such as booking and payment as well as
to protect against MPC servers as active adversaries. Moreover,
we aim to investigate whether CBC-MAC construction can be
more efficient with more lightweight block ciphers such as
Rasta.
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Owner (uo) Vehicle (vehicleo) Consumer (uc) Public Ledger (PL) Servers S1 . . . Si . . . Sl

MB = {hash(Certuc), IDvehicleo , Lvehicleo , CDuc , ACuc , IDB}

msg{SES K GEN REQ, IDB}

1: {Kuc
enc, ~K

uc
tag} ← kdf(Kuc

master, counter)
2: [Kuc

enc]← share(Kuc
enc)

3: [ ~Kuc
tag]← share( ~Kuc

tag)
4: for i = 1 . . . l do
5: CSi ← enc(PkSi , {[Kuc

enc], [ ~K
uc
tag]})

6: end for

1: σuo ← sign(Skuo ,MB)
2: Muc ← {MB , σuo}
3: [Muc ]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}

msgi{AT GEN REQ, IDuo , CSi , [Muc ]}

1: {[Kuc
enc], [

~Kuc
tag]} ← dec(SkSi , CSi)

2: ~Duo ← query(IDuo , DBSi)
3: for y = 1 . . . n do
4: ~[D]

uo

← ([IDvehicle]
?
= [ID

vehicleuo
y ])

5: end for
6: [Kvehicle]← ~Dvehicle × ~Duo

7: [AT vehicle]← E([Kvehicle], [Muc ])
8: [Cuc ]← E([Kuc

enc], {[AT vehicle], [IDvehicle]})
9: Cuc ← open([Cuc ])

10: [AuthTagMB ]← mac([Kuc
tagmac

], E(Kuc
tagenc

, [MB ]))
11: AuthTagMB ← open([AuthTagMB ])

msgi{AT PUB REQ,Cuc , AuthTagMB}

publish(TSPubi , Cuc , AuthTagMB )

msg{M PUB ACK,TSPubi }
msg{AT PUB ACK,TSPubi }

msg{AT PUB ACK,TSPubi }
TSPubi Cuc AuthTagMB

14774098 ersdf3tx0 fwefw234
. . . . . . . . .

query an(TSPubi )

msg{Cuc , AuthTagMB}

if AuthTagMB
?
= mac(Kuc

tagmac
, E(Kuc

tagenc
,MB)) then

{AT vehicleo , IDvehicleo} ← D(Kuc
enc, C

uc)
else

Break
end if

msg{AT vehicleo , IDvehicleo ,Certuc}

1: {MB , σuo} ← D(Kvehicle, AT vehicle)
2: verify(Pkuo ,MB , σuo)

Challenge / Response

σvehicleoAccess ← sign(Skvehicleo , {MB , TSvehicleoAccess })

msg{σvehicleoAccess , TSvehicleoAccess }

verify(Pkvehicleo , {MB , TSvehicleoAccess }, σ
vehicleo
Access )

Fig. 9: HERMES complete representation.
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APPENDIX A
EXTENDED SECURITY AND PRIVACY ANALYSIS

We prove that HERMES satisfies the security and privacy requirements of Section II, provided that its underlying
cryptographic primitives are sufficiently secure. In Section A-A we describe the security models of the cryptographic primitives.
Then, the formal reasoning is given in Section A-B.

A. Cryptographic Primitives
The security definitions for signature schemes and MAC functions are inspired by Goldwasser et al. [48], for key derivation

utilizing PRF by Goldreich et al. [49], for public key encryption by Bellare et al. [50], and for symmetric key encryption by
Bellare et al. [51].

We will, in fact, need security of the cryptographic primitives in the multi-key setting, as these are evaluated under different
keys. For example, sign is used by all owners uo, each with a different key; enc is used for different keys, each for a different
party in the VSSP, and E and mac are used for independent keys for every fresh evaluation of the protocol. We refer to Bellare
et al. [50] for a discussion on generalizing semantic security of public key encryption to multi-key security; the adaptation
straightforwardly generalizes to the other security models.

In below definitions, for a function f , we define by Func(f) the set of all functions with the exact same interface as fK .
We denote a random drawing by $←−.

Definition 1. Let µ ≥ 1. Consider a signature scheme sign = (keygen, sign, verify). For any adversary A, we define its
advantage in breaking the µ-multikey existential unforgeability as

Advµ-euf
sign (A) = Pr

(
(Pk1, Sk1), . . . , (Pkµ, Skµ)

$←− keygen : Asign(Ski,·)(Pki) forges
)
,

where “forges” means that A outputs a tuple (i,M, σ) such that verify(Pki,M, σ) = 1 and M has never been queried to the
i-th signing oracle. We define by Advµ-euf

sign (q, t) the supremum over all adversaries making at most q queries and running in
time at most t.

Definition 2. Let µ ≥ 1. Consider a key derivation function using a pseudorandom function prf = (keygen, prf). For any
adversary A, we define its advantage in breaking the µ-multikey pseudorandom function security as

Advµ-prf
prf (A) =

∣∣∣Pr(K1, . . . ,Kµ $←− keygen : Aprf(Ki,·) = 1
)
− Pr

(
$1, . . . , $µ

$←− Func(prf) : A$i = 1
)∣∣∣ .

We define by Advµ-prf
prf (q, t) the supremum over all adversaries making at most q queries and running in time at most t.

Definition 3. Let µ ≥ 1. Consider a public-key encryption scheme enc = (keygen, enc, dec). For any adversary A, we define
its advantage in breaking the µ-multikey semantic security as

Advµ-pke
enc (A) =

∣∣∣Pr((Pk1, Sk1), . . . , (Pkµ, Skµ) $←− keygen : AO0(Pki) = 1
)
−

Pr
(
(Pk1, Sk1), . . . , (Pkµ, Skµ)

$←− keygen : AO1(Pki) = 1
)∣∣∣ ,

where Ob for b ∈ {0, 1} gets as input a tuple (i,m0,m1) with i ∈ {1, . . . , µ} and |m0| = |m1| and outputs encPki(mb). We
define by Advµ-pke

enc (t) the supremum over all adversaries running in time at most t.

Definition 4. Let µ ≥ 1. Consider a symmetric-key encryption scheme E = (keygen,E,D). For any adversary A, we define
its advantage in breaking the µ-multikey chosen-plaintext security as

Advµ-ske
E (A) =

∣∣∣Pr(K1, . . . ,Kµ $←− keygen : AE(Ki,·) = 1
)
− Pr

(
$1, . . . , $µ

$←− Func(E) : A$i = 1
)∣∣∣ .

We define by Advµ-ske
E (q, t) the supremum over all adversaries making at most q queries and running in time at most t.

Definition 5. Let µ ≥ 1. Consider a MAC function mac = (keygen,mac). For any adversary A, we define its advantage in
breaking the µ-multikey existential unforgeability as

Advµ-mac
mac (A) = Pr

(
K1, . . . ,Kµ $←− keygen : Amac(Ki,·) forges

)
,

where “forges” means that A outputs a tuple (i,M, σ) such that mac(Ki,M) = σ and M has never been queried to the i-th
MAC function. We define by Advµ-mac

mac (q, t) the supremum over all adversaries making at most q queries and running in time
at most t.

Finally, we consider the hash function hash to be collision-resistant. We denote the supremal probability of any adversary
in finding a collision for hash in t time by Advcolhash(t). The definition is, acknowledgeably, debatable: for any hash function
there exists an adversary that can output a collision in constant time (namely one that has a collision hardwired in its code).
We ignore this technicality for simplicity and refer to [52], [66], [67] for further discussion.
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B. Analysis

We prove that HERMES satisfies the security and privacy requirements of Section II provided that its underlying cryptographic
primitives are sufficiently secure.

Theorem 2. Suppose that communication takes place over private channels, the MPC is statistically secure, hash is a random
oracle, and

Advµo+µvehicle-euf
sign (2q, t) + Advµc-prf

prf (2q, t) + Advl-pkeenc (t) + Adv2q+µvehicle-ske
E (3q, t) + Advq-mac

mac (q, t) + Advcolhash(t)� 1 ,

where µo denotes the maximum number of uos, µc the maximum number of ucs, µvehicleo the maximum number of vehicles, l
the number of servers in the VSSP, q the total times the system gets evaluated, and t the maximum time of any adversary.

Then, HERMES fulfills the security and privacy requirements of Section II.

Proof. Recall from Section II that uos and CM are honest-but-curious whereas ucs and outsiders may be malicious and actively
deviate from the protocol. Vehicles are trusted.

Via a hybrid argument, we replace the key derivation functions utilizing pseudorandom functions prf(Kuc , ·) by independent
random functions $uc . This step is performed at the cost of

Advµc-prf
prf (2q, t) , (3)

as in every of the q evaluations of HERMES there are two evaluations of a function prf, and there are at most µc instances
of these functions. As we assume that the MPC is performed statistically secure, we can replace the VSSP by a single trusted
authority (with l interfaces) that is trusted, perfectly evaluates the protocol, and does not reveal/leak any information. Assuming
that the public-key encryption reveals nothing, which can be done at the cost of

Advl-pkeenc (t) , (4)

we can for simplicity replace it with a perfectly secure public-key encryption ρVSSP to the VSSP directly (an encryption does not
reveal its origin and content, and only VSSP can magically decrypt), therewith eliminating the fact that VSSP has l interfaces
and has to perform multiparty computation. Now, as the pseudorandom functions are replaced by random functions, the keys to
the symmetric encryption scheme E are all independently and uniformly distributed, and as the public-key encryption scheme is
secure, these keys never leak. Therefore, we can replace the symmetric encryption functionalities by perfectly random invertible
functions, πvehicleuo for the vehicles, unique πuc

enc’s for every new encryption under uc’s session keys, and πuc
tagenc

’s for every
new encryption in the tag computation under uc’s session keys, at the cost of

Adv2q+µvehicle-ske
E (3q, t) , (5)

as there are 2q+µvehicleo different instances involved and at most 3q evaluations are made in total. Note that this means that,
instead of randomly drawing Kuc

enc ← $uc , we now randomly draw πuc
enc

$←− Func(E). Likewise, for Kuc
tagenc

← $uc we now
randomly draw πuc

tagenc

$←− Func(E).
We are left with a simplified version of HERMES, namely one where the VSSP is replaced by a single trusted authority, the

pseudorandom functions are replaced by independent random drawings (uc uses $uc which generates fresh outputs for every
call), public-key encryptions are replaced with a perfectly secure public-key encryption function ρVSSP, and symmetric-key
encryptions are replaced by perfectly random invertible functions πvehicleuo , πuc

enc, and πuc
tagenc

. The simplified system is given
in Figure 10. Here, the derivation of the vehicle key (or, formally, the random function corresponding to the encryption) from
the database is abbreviated to πvehicleuo ← query(IDuo , DBVSSP) for conciseness.

We will now treat the security and privacy requirements, and discuss how these are achieved from the cryptographic primitives,
separately. We recall that uc and uo have agreed upon the booking details prior to the evaluation of HERMES, hence they
know each other by design.

a) SR1 – Confidentiality of MB: In one evaluation of the protocol, uc, uo, the trusted VSSP, and the shared vehicle learn
the booking details by default or design. The booking details only become public through the values CB and Cuc satisfying

AuthTagMB = mac(Kuc
tagmac

, πuc
tagenc

(MB)) , (6)

Cuc = πuc
enc({πvehicleuo ({MB , σuo}), IDvehicle}) . (7)

The latter value reveals nothing about MB as πuc
enc is randomly generated for every evaluation, whereas the former value

reveals nothing about MB as πuc
tagenc

and the key Kuc
tagmac

are randomly generated for every evaluation. The nested encryption
πuc
enc ◦ πvehicleuo does not influence the analysis due to the mutual independence of the two functions.
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b) SR2 – Authenticity of MB: An owner who initiates the AT generation and distribution, first signs the booking details
using its private key before sending those to the VSSP in shares. Therefore, once the vehicle receives the token and obtains the
booking details, it can verify uo’s signature on the booking details. In other words, the vehicle can verify the source of MB ,
uo, and its integrity. Suppose, to the contrary, that a malicious consumer can get access to a vehicle of an uo. This particularly
means that it created a tuple (MB , σuo) such that verify(Pkuo ,MB , σuo) holds. If σuo is new, this means that uc forges a
signature for the secret signing key Skuo . Denote the event that this happens by

E1 : A forges sign(Skuo , ·) for some Skuo . (8)

On the other hand, if (MB , σuo) is old but the evaluation is fresh, this means a collision hash(Certuc) = hash(Certuc′).
Denote the event that this happens by

E2 : A finds a collision for hash . (9)

We thus obtain that a violation of SR2 implies E1 ∨ E2.
c) SR3 – Confidentiality of AT vehicleo : The AT is generated by the VSSP obliviously (as it is trusted), and only revealed

to the public in encrypted form, through Cuc of (7). Due to the uniform drawing of πuc
enc (and the security of ρVSSP used to

transmit this function), only the legitimate user can decrypt and learn the AT. It shares it with the vehicle over a secure and
private channel.

d) SR4 – Confidentiality of Kvehicleo : By virtue of our hybrid argument on the use of the symmetric-key encryption
scheme, EKvehicle got replaced with πvehicleuo , which itself is a keyless random encryption scheme. As the key is now absent,
it cannot leak.

Moreover, considering the VM as a TP, it holds all the secret keys of vehicles that produce. By vehicle owners registering their
vehicles, the VM forwards the list of each vehicle IDvehicleo to VSSP. To retrieve the yth key from DBSi , i.e., [Kvehicleuo

y ],
each Si performs an equality check over MPC. The comparison outcomes 0 for mismatch and 1 for identifying the vehicle at
position y, i.e.,

~Dvehicle =
( 1

[0] · · · [0]
y

[1][0] · · ·
n

[0]
)
.

from which the share of the vehicle’s secret key, [Kvehicle], can be retrieved. Due to the properties of threshold secret sharing,
the secret vehicle keys stay secret to each Si. Thus, no one including the PD of the vehicle owner, but VM and the vehicle
holds the vehicle key.

e) SR5 – Backward and forward secrecy of AT vehicleo : The AT is published on PL as Cuc of (7), encrypted using πuc
enc.

Every honest uc generates a uniformly randomly drawn function πuc
enc for every new evaluation. Therefore, all encryptions

Cuc are independent and reveal nothing of each other. (Note that nothing can be said about ATs for malicious users who may
deviate from the protocol and reuse one-time keys.)

f) SR6 – Non-repudiation of origin of AT vehicleo : The vehicle, who is a trusted identity, verifies the origin through
verification of the signature, verify(Pkuo ,MB , σuo). The consumer uc verifies the origin through the verification of the
MAC function, AuthTagMB

?
= mac(Kuc

tagmac
, πuc
tagenc

(MB)). Note that uc does not effectively verify AT vehicleo , but rather
AuthTagMB . In either case, security fails only if the asymmetric signature scheme or the MAC function are forgeable. The
former is already captured by event E1 in (8). For the latter, denote the event that this happens by

E3 : A forges mac(Kuc
tagmac

, ·) for some Kuc
tagmac

. (10)

We thus obtain that a violation of SR6 implies E1 ∨ E3.
g) SR7 – Non-repudiation of delivery of AT vehicleo : uo can verify correct delivery through the verification of the message

sent by the vehicle to the him/her, verify(Pkvehicle, {MB , TSvehicleAccess }, σvehicleAccess ) at the end of the protocol. Security breaks
only if the signature scheme is forgeable. Denote the event that this happens by

E4 : A forges sign(Skvehicle, ·) for some Skvehicle . (11)

We thus obtain that a violation of SR7 implies E4.
h) SR8 – Accountability of users (i.e., owners, and consumers): In the case of disputes, the information related to a specific

transaction (and only this information) may need to be reconstructed. This reconstruction can be done only if the VSSP servers
collude and reveal their shares. In our setting, these servers have competing interests, thus they would not collude unless law
authorities enforce them to do so. Due to the properties of threshold secret sharing, the private inputs can be reconstructed by
a majority coalition. This is, if the VSSP consists of three parties, it suffices two of such parties to reconstruct the secrets (for
semi-honest and malicious cases).

i) PR1 – Unlinkability of uc and the vehicle: The only consumer-identifiable data is in uc’s certificate included in the
booking details. Note that these are agreed upon between uc and uo, so uo learns the identity of uc by default. Beyond that,
uc only communicates with the vehicle, which is supposed to learn uc’s identity so that it can perform proper access control.
uc consults PL over an anonymous communication channel. The booking details are transferred to and from the VSSP, but
these are encrypted and do not leak by virtue of their confidentiality (security requirement SR1).
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j) PR2 – Anonymity of uc and the vehicle: The reasoning is identical to that of PR1.
k) PR3 – Undetectability of AT vehicleo operation: Access token generation, update, or revocation is performed using the

same steps and the same type of messages sent to the VSSP and PL. Hence, outsiders and system entities can not distinguish
which operation has been requested.

l) Conclusion: In conclusion, HERMES operates securely as long as the costs of (3-5), together with the probability that
one of the events (8-11) occurs, are sufficiently small:

Advµc-prf
prf (2q, t) + Advl-pkeenc (t) + Adv2q+µvehicle-ske

E (3q, t) + Pr (E1 ∨ E2 ∨ E3 ∨ E4)� 1 .

By design, the probability that event E1 ∨ E4 occurs is upper bounded by Advµo+µvehicle-euf
sign (2q, t), the probability that event

E3 occurs is upper bounded by Advq-mac
mac (q, t), and the probability that E2 occurs is upper bounded by Advcolhash(t). We thus

obtain

Pr (E1 ∨ E2 ∨ E3 ∨ E4) ≤ Advµo+µvehicle-euf
sign (2q, t) + Advq-mac

mac (q, t) + Advcolhash(t) ,

which completes the proof.
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Owner (uo) Vehicle (vehicleo) Consumer (uc) Public Ledger (PL) VSSP (trusted)

MB = {hash(Certuc), IDvehicleo , Lvehicleo , CDuc , ACuc , IDB}

msg{SES K GEN REQ, IDB}

1: {πuc
enc, π

uc
tagenc

} $←− Func(E)
2: Kuc

tagmac
← $uc

3: CVSSP ← ρVSSP({πuc
enc, π

uc
tagenc

,Kuc
tagmac

})

1: σuo ← sign(Skuo ,MB)
2: Muc ← {MB , σuo}

msg{SES K GEN ACK, IDB , CVSSP}
msgi{AT GEN REQ, IDuo , CVSSP,Muc}

1: {πuc
enc, π

uc
tagenc

,Kuc
tagmac

} ← (ρVSSP)−1(CVSSP)
2: πvehicleuo ← query(IDuo , DBVSSP)
3: AT vehicle ← πvehicleuo (Muc)
4: Cuc ← πuc

enc({AT vehicle, IDvehicle})
5: AuthTagMB ← mac(Kuc

tagmac
, πuc
tagenc

(MB))

msgi{AT PUB REQ,Cuc , AuthTagMB}

publish(TSPubi , Cuc , AuthTagMB )

msg{M PUB ACK,TSPubi }
msg{AT PUB ACK,TSPubi }

msg{AT PUB ACK,TSPubi }
TSPubi Cuc AuthTagMB

14774098 ersdf3tx0 fwefw234
. . . . . . . . .

query an(TSPubi )

msg{Cuc , AuthTagMB}

if AuthTagMB
?
= mac(Kuc

tagmac
, E(Kuc

tagenc
,MB)) then

{AT vehicleo , IDvehicleo} ← (πuc
enc)

−1(Cuc)
else

Break
end if

msg{AT vehicleo , IDvehicleo ,Certuc}

1: {MB , σuo} ← (πvehicleuo )−1(AT vehicle)
2: verify(Pkuo ,MB , σuo)

Challenge / Response

σvehicleoAccess ← sign(Skvehicleo , {MB , TSvehicleoAccess })

msg{σvehicleoAccess , TSvehicleoAccess }

verify(Pkvehicleo , {MB , TSvehicleoAccess }, σ
vehicleo
Access )

Fig. 10: HERMES complete representation.


