SEMI-REGULARITY OF PAIRS OF BOOLEAN
POLYNOMIALS

TIMOTHY J. HODGES AND HARI R. IYER

ABSTRACT. Semi-regular sequences over Fy are sequences of homoge-
neous elements of the algebra B™ = F, [X1,..., Xn]/(XE, ..., X2), which
have a given Hilbert series and can be thought of as having as few re-
lations between them as possible. It is believed that most such systems
are semi-regular and this property has important consequences for un-
derstanding the complexity of Grobner basis algorithms such as F4 and
F5 for solving such systems. We investigate the case where the sequence
has length two and give an almost complete description of the number
of semi-regular sequences for each n.

1. INTRODUCTION

The concept of Fy-semi-regularity was introduced in [1, 2] in order to as-
sess the complexity of certain Grobner basis algorithms applied to solving
systems of equations over the Galois field Fa. For Fa-semi-regular systems
one can determine explicitly the highest degree of polynomials that will arise
in the application of these Grobner basis algorithms and this information
enables one to predict with some accuracy the length of time taken by such
an algorithm to solve a semi-regular system of equations in any given imple-
mentation. Systems of polynomial equations over Fy arise naturally in many
diverse settings but in particular they have arisen recently in cryptography
with respect to the analysis of the Hidden Field Equations cryptosystems
and to the solution of the discrete logarithm problem.

Set B = Fa[Xy,...,X,]/(X%,...,X2). Let V be an m-dimensional sub-
space of the space By of quadratic elements of B. The space V is semi-
regular if the Hilbert series of the graded quotient ring B/BV is given by

the polynomial
(I+2)" ]

Thm(z) = | ——
o) = 5
where [ 2%, a;2'] denotes the series Y o0 a;z* truncated at the first i for
which a; < 0.

The question we would like to answer in general is: What proportion of
such spaces are semi-reqular? The total number of subspaces of dimension
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m is well-known - it is the cardinality of the Grassmanian Gr(m, Ba). Let
sr(n,m) = |{V € Gr(m, By) | V is semi-regular}|
and let
_ sr(n,m)
Frem = Gr(m, BY)
It is conjectured that for m sufficiently large compared to n, this proportion
tends to 1 as n tends to infinity. Very little is known about this conjecture.
In particular, it is not even known whether there are infinitely many n for
which p(n,n) # 0.It was shown in [8] that for any fixed m, we must have
that p, ., = 0 for sufficiently large n. The case when m = 1 is fairly easy
and has been understood for a while. We give a brief review of this case in
Section 4.

The purpose of this paper is to describe in detail the case when m = 2 and
to give a fairly exact description of which 2-dimensional subspaces are semi-
regular for all possible values of n. The hope is that by understanding the
behavior in this situation we will gain insight on the more general problem.
In Section 3 we show that no semi-regular two dimensional subspaces exist
for n > 9; and in more generality that no semi-regular two dimensional
subspaces exist for n > 4m + 1. In Section 5 we deal with the easy cases
when n = 3,4,5 and 7. In the last two sections we consider the more
complicated situations when n = 6 and 8.

This work complements recent work by Semaev and Tenti which de-
scribes the behavior in the overdetermined case when m is sufficiently large
compared to n. In the case of a proper subspace V' C By, of dimension
m > (n — 1)(n — 2)/6, Theorem 1.1 of [10] gives a lower bound for the
proportion of such spaces which are semi-regular and the authors show that
this bound tends to 1 as n tends to infinity.

2. BACKGROUND AND BASICS
Let F = F9 be the field with two elements. Set
B=B"=F[Xy,...,X,]/(X},...,X?)

(we shall drop the superscript when there is no need to emphasize the num-
ber n); and let x; denote the image of X; in B. This ring inherits the
structure of a strongly graded ring from the polynomial ring F[X1, ..., X,].
That is, if we denote by B}’ the span of the monomials z1, ...z; of de-
gree k, then B" = @,_, By and BB}, = By ., It is easy to see that
dim B} = (Z) and that dim B" = 2". The monomials x; = 1, ...x;, form
a basis for B™ so an arbitrary element of B can be written as b = ) ; a;x;.
We define the support of b to be

Supp(b) = {i | a; # 0}
In [2], the concept of a semi-regular sequence of elements of B was defined
in the following iterative fashion.
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Definition 2.1. Let f1,..., fi, € B be a sequence of homogeneous polyno-
mials with deg f; = d;. Let

m
Dyy,....fr = min {’f 1Y Brafi = Bk}

i=1
The sequence fi,..., fm € B is semi-reqular if for all © = 1,2,...,m and
homogeneous g € B

gfi € (f1,..., fi-1) and deg(g) +deg(fi) < Dnm
implies g € (f1,..., fi)-

For any series Y, a;2", we denote by [>°; a;z"] the truncated series Y, b;z*

where b; = a; if a;j > 0 for 7 =0,...,% and b; = 0 otherwise.
Proposition 2.2. Let fy,..., fm € B be a sequence of homogeneous polyno-
mials with deg f; = d;. The sequence f1,..., fm is semi-reqular if and only

if the Hilbert series of the graded ring B/(f1,..., fm) is given by

1+2)"
i) = |y o0

This shows that the number Dy, ¢ is the same for any semi-regular
sequence of degree d. We call this number the degree of regularity of a
semi-regular sequence of degree d.

We are interested here in the case where all the f; are quadratic (that is
d; = 2 for all 7). In this case, Proposition 2.2 implies that if we restrict our
attention to linearly independent sequences, then the semi-regularity of the
sequence depends only on the subspace V' of Bs that they generate and not
on the choice of f; (note that if the sequence is linearly dependent, then it is
never semi-regular so we may disregard this situation). For this reason, we
find it more natural to discuss the semi-regularity of subspaces, rather than
of sequences. Thus a quadratic subspace V' of dimension m is semi-regular

if

> (142 (142"
+ z + z
Trnn(z) = [(1 n 22)7”} , and Dy, , = deg [(1 n 22)7”]
S0 Dy, 1, is the degree of regularity of an m-dimensional semi-regular space
of quadratic elements.

Another way of characterizing semi-regularity is that the only relation
between the f;’s are the trivial ones in degrees less than D,,,,. Consider
the linear maps ¢;: Bj_o ® V' — B; given by ¢;(>,b; ® v;) = >, bjv;. Let
R;(V) = ker ¢;. Inside R;(V') there is a subspace of “trivial relations” T};(V)
spanned by the elements

(1) b(v ®w — w®v) where v,w € V and b € Bj_u;
(2) b(v®v) where v € V and b € Bj_4.
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Theorem 2.3. [7, Theorem 3.8] Let V' be an m-dimensional subspace of B
and let D = Dy, ,,. Then V' is semi-reqular if and only if

(1) R;j(V) =1T;(V) for all j < D.

(2) Bp—2V = Bp

If {v1,...,v} is a basis for V, then it can be easily shown that
Tj(V) = Z Bj,4(vi QV; —v; @ v;) + Z Bj,4(vi ® v;)
i#] i

We are interesting in understanding the proportion of such spaces which
are semi-regular. Note that the set of all m-dimensional subspaces is the
Grassmannian Gr(m, B) and that the size of this set is well-known to be
given by the formula

(2t —1)(2¢ —2)... (2t —2m~ 1)
(2m —1)(2m —2)...(2m —2m—1)

| Gr(m, F')| =

Let
sr(n,m) = |{V € Gr(m, By) | V is semi-regular}
and let
B sr(n,m)
Frn = [ Gr(m, By)|
be the proportion of m-dimensional subspaces which are semi-regular. It is
generally believed for m sufficiently large relative to n that lim,, o ppm = 0.
For instance, one can conjecture that for c¢ sufficiently large,

lim Pn,en = 1
n—o00

We show here that for ¢ < 1/4, this limit is 0.

The general linear group GL(B7) acts naturally as graded automorphisms
of the algebra B. It therefore acts as permutations of Gr(m, By). Thus we
can decompose the Grassmannian as a union of GL(Bj)-orbits and semi-
regularity is an invariant of these orbits. Under the action of GL(B;) every
element of By is equivalent to an element of the form z1xzo + - 4+ Tpm_12Tm.
We call the number m the rank of b. There is an important connection
between the rank and failure of semi-regularity due to the following result.

Theorem 2.4. [4, Corollary 2.2] If u € By has rank k, then
dim Ann(p) N By _(n—k ok/2
Biap d—k/2
In particular, Ann(p) N Bg 2 Bg—op when k/2 < d <n—Fk/2.

This immediately yields the following condition on the ranks of elements
of a semi-regular space.

Corollary 2.5. If V is a semi-reqular subspace of BY, then V contains no
elements of rank k if k/2 + 2 < Dy, . In particular, in order for there to
exist semi-reqular subspaces of dimension m, we must have Dy, p, < n/2+2.
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3. AN UPPER BOUND ON n

We begin by giving an explicit bound on n above which there are no m-
dimensional semi-regular subspaces of Bj. This improves upon the result
in [8, Theorem 5.1] which established that such a bound always existed. A
version of this result which fully extends [8, Theorem 5.1] is given in the
Appendix.

Lemma 3.1. Given any 0 # a € B, there exists b € B such that ab =
T1...Tp.

Proof. Take a monomial m of smallest length in Suppa. Say after renum-
bering, that m = z1...2,. Then m’ = xj41 ... 2, must annihilate all the
other elements of Suppa. So am’ = mm’ = x1...x,. O

Lemma 3.2. Ift +j < n, then B; N Ann B; = 0. Equivalently, Ann B; N
Yt Bi=0.
Proof. Let a € BjNAnn B; where j < n—t. Then by the lemma there exists
an element b € B,,_; such that ab = z1...2,. But b € B,,_; = BiBj,_j_4,
SO

ab € aB,_j = aBiB,_j_+ =0
contradicting ab # 0. O

Theorem 3.3. Let V be a subspace of By of dimensionm and let D = Dy, p,.
If n > D 4 2m, then Bp_oV # Bp; in particular V is not semi-regular.

Proof. Let B = {u1,..., m} beabasis for V. Choose a subset {1, ..., .}
which is maximal with respect to

Mll i .Mis # 0
Then for any ¢ = 1,...,m, fi ... pipti = 0, S0 p, ... i,V = 0. Suppose
that Bp_oV = Bp. Then

Migeeen MiSBD:,uil...,LLZ-SBD,QV:BD,Q,uil...,uiSV:O
This implies that g, ...ui, € Bas N AnnBp = 0. So Lemma 3.2 implies

that n < D +2s < D+ 2m. Thus if n > D + 2m, then Bp sV # Bp and
V' is not semi-regular. O

Unfortunately the behavior of D,, ,, is too erratic for this result to give
us an upper bound (for instance, even though D,, ,,, grows slower than n for
any fixed m, the difference n — Dy, ,,, is not an increasing function). This
can be rectified somewhat using the following result.

Theorem 3.4. There are no semi-regular m-dimensional subspaces of By
when n > 4(m + 1)

Proof. Suppose that n > 4(m+1); this implies that n/2+2 < n—2m. Sup-
pose that there exist semi-regular subspaces of dimension m. By Corollary
2.5, we must have that D, ,,, < n/2+2. So D, < n — 2m contradicting
Theorem 3.3. (|
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For small n one can always backfill the difference to get more exact an-
swers.

Corollary 3.5. There are no semi-reqular subspaces of By :

e of dimension one for n >7
e of dimension two for n > 9
e of dimension three forn > 12
e of dimension four for n > 14

Proof. For instance when m = 2, Theorem 3.4 tells us that there are no semi-
regular 2-dimensional subspaces for n > 12. For the cases n = 9,10, 11, one
can directly check that D, 9 < n — 4 so there are no 2-dimensional semi-
regular subspaces in these cases. ([l

This leads to the following interesting conjecture:

Conjecture 3.6. For m # 2, there exist m-dimensional semi-regular sub-
spaces of By if and only if n < D, ,,, + 2m.

As we shall see, this conjecture is not true for m = 2. However, this would
seem to be an exceptional case.

Theorem 3.4 also confirms the need for the condition on ¢ in the Conjec-
ture that lim, oo pp.cn = 1.

Corollary 3.7. If ¢ < 1/4, then lim,_ o0 Pp,cn = 0.

Proof. 1If ¢ < 1/4 then there exists an N such that for n > N, ecn <n/4—1.
So Theorem 3.4 implies that py cp, = 0 for n > V. O

4. THE CASE m =1

Let us start by briefly reviewing the case when m = 1. In this case the
Hilbert series and degree of regularity of a semi-regular space for small n
are given by the following table

n Tn71(z) Dn,l
3|1+32+222 3
41144z + 522 3
5114524922 +523 4
6| 1+46z+ 1422 + 1423 + 24 5
71147242022 + 2823 4+ 1524 5

TABLE 1. The Hilbert series and degree of regularity of a
semi-regular 1-dimensional subspace
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Lemma 4.1. Suppose n > 2 and let u € Ba. Then

n—2 ifrkp=2

dim Bijy =
oL {n if tku>4

and
(";2) if tkp =2
dim Bop = (g‘)—S if tkpy=4
(5) =1 if tkp>6

Proof. Note that dim By = dim By, — dim Ann(u) N Bg. The result then
follows directly from Theorem 2.4. O

Whether or not V' = {0, u} is semi-regular depends purely on the rank of
1.
Theorem 4.2. Let V = {0, u} be a one dimensional subspace of Ba.

(1) When n =3, all one dimensional spaces are semi-reqular. So p31 =
1.

(2) When n =4, V is semi-reqular if and only if tkpp = 4. So py1 =
28/63 ~ 0.44.

(3) When n =5, V is semi-reqular if and only if tkpp = 4. So ps1 =
868/1023 ~ 0.85

(4) When n = 6, V is semi-reqular if and only if tkpp = 6. So ps1 =
13888/32767 ~ 0.42

(5) Whenn > 17, no one dimensional spaces is semi-reqular. Thus p, 1 =

0 forn>T1.

Proof. In the cases n = 3,4, we have D,, 1 = 3, so it suffices to verify the
equality B1V = Bs. Since dim Bg = 1 and dim B§ = 4, the result follows
immediately from Lemma 4.1. In the case n = 5, we have D51 = 4, so we
need to verify that the map ¢5 : B} @ V. — B3 is injective and the map
¢4 : BS ® V — B is surjective. Lemma 4.1 implies that these conditions
hold precisely when rk y = 4. Finally, for n = 6, we need that dim BV = 6,
dim B§V = 14 and BSV = B3. Lemma 4.1 implies that first two conditions
hold only when rk u = 6. The last condition is easily verified directly when
rkp = 6.

The figures for the proportions follow from the numbers of elements of
each rank given in the following table

r\n|3| 4] 5 6
2 | 7135|155 | 651
4 10|28 868 | 18228
6 |0 0| O |13888

TABLE 2. The number of elements of rank r in By
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5. THE CASE m = 2 - PRELIMINARIES

5.1. Background and Notation. We now consider two dimensional spaces.
If dimV = 2, then V' = {0, p, o/, pu + '} for some p.p/ € BY. An important
invariant of this space is the triple

Rk(V) = [tk p, k', vk p+ '] € N /533

(that is, the equivalence class of the triple under the action of the symmetric
group S3). The number of spaces of the different rank types is given by a
formula of Pott, Schmidt, and Zhou [9, Theorem 5]. Unfortunately the rank
type of a space V' does not determine its equivalence class under the action
of GL(Bj1). However it does provide an important and useful decomposition
of the Grassmanian Gr(2, Ba).

5.2. The cases n = 3,4,5 and 7. From the table below we see that for
n = 3,4, and 5 the degree of regularity is 3.

11%2(2)

1432+ 22

144z + 422

1+ 52z + 822

1+ 62+ 1322 + 823
147241922 4+ 2123

1482 + 2622 + 4023 + 1724
1492 + 3422 + 6623 4+ 5724

)
3

© 00 O U W3
U UL s W W W

TABLE 3. The Hilbert series and degree of regularity of a
semi-regular 2-dimensional subspace

Thus, in these cases, if V is a two dimensional subspace of Bs, then V is
semi-regular if and only if the map ¢3 : By ® V — Bj is surjective; that is,
if and only if B3 = B1V.

Theorem 5.1. If n = 3, then all two dimensional subspaces are semi-
reqular.

Proof. In this case dim By = 1 and B1V # 0, so we must always have
Bs; = B1V. O

Theorem 5.2. Let n = 4 and let V C Bs be a two dimensional subspace.
Then V is semi-regular if and only if V' contains an element of rank 4.
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Proof. Note that in this case dim By = 4. If rk yu = 4, then by Lemma 4.1,
dim Bipu = 4, so if V contains an element of rank 4, we must have B;V = Bj.
On the other hand, suppose that V is of type [2,2,2] and let p, 1’ be a basis
for V. Then pu = A2 and ¢/ = N, for some A\, Ao, N|, N\, € By. Let
A = Span(Aq, A2, N, Ay). If dim A = 4, then the \’s are linearly independent
and u + p/ would have rank 4; on the other hand, if dimA = 2, then
dim A% = 1and V C A2, a contradiction. Therefore we must have dim A = 3.
Hence we can find a subspace V) C Bj such that B; = A®Vj and dim V = 1.
But then

BV =AV+V,V CA+VyV

Hence dim B,V < dimA? + dimVpV < 1+ 2 = 3 and therefore B,V #
Bs. O

Corollary 5.3. In the case n = 4, the proportion of subspaces of Bg that
are semi-regular is ps2 = 546/651 ~ 0.84.

Proof. The total number of two-dimensional subspaces is | Gr(m, B3)| = 651.
From [9, Theorem 5], we have the number of subspaces of type [2,2,2] is
105. So pas = (651 — 105)/651. O

Now consider the case when n = 5. Note that dim Bg =10 so B1V = B3
if and only if the map ¢3: B ® V — Bg is an isomorphism.

Theorem 5.4. The map ¢3 : B} @ V — Bg s not surjective for any two
dimensional subspace V. C BS. Hence there are no semi-regular two dimen-
sional subspaces of BS.

Proof. We may assume, after appropriate change of variables, that V =
{0, p, gt/ s o+ p'} where p € B3 and p’ = po + Axs for ug € B3 and \ € By,
Then

B\V = Biu+ By = (B} + Fa5)u+ (Bf + Fas) (o + Azs)
= (Bip + Biuo) + (Fu +Fuo + BiN)zs
Now B = B§ + B§m5, so for this map to be surjective we must have Bfu +
Biuo = Bj and Fu + Fug + B{A = B3. However dim Bf\ < 3, so
dimFpu + Fu' + B\ <5 < 6 = dim Bj
Thus B,V # B3 and V is not semi-regular. O

Next we jump ahead to consider the case when n = 7. Here the degree
of regularity is four. So in order for the space V' to be semi-regular we need
the map ¢4 : B} ® V — B] to be surjective.

Theorem 5.5. The map ¢4 : B} @ V. — B is not surjective for any 2-
dimensional subspace V. C Bj. Hence there are no semi-reqular two dimen-
sional subspaces of B3 .
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Proof. Pick a basis for V, say {u, '}. After a suitable choice of generators
we can assume that

pw€ BS,  u = po+ Ay, where pg € BS, A € BS
Then
B3V = Biu+ By
= (B + Biwr)p + (BS + Biwr)(po + Aar)
= (B3n+ B3po) + (BYu+ Bipo + BIN)ar
In order for ¢4 to be surjective we must have
Bip+ BYpo + BSA = B

If A = 0, then we would have BSu+ BSpp = BS which is impossible because
the left hand side has dimension at most 12 and dim B§ = 20. So A # 0.
Consider the map B® — B = BS/()\) = B°. Denote the images of u and g
by & and fip. Then we would have

Bifi + Bijio = Bs
But this contradicts Theorem 5.4. O

This yields an exact value for p, o in all cases except n = 6 or 8. In the
next two sections we consider these two remaining cases which are consid-
erably more complicated.

6. THE CASEm =2, n=26
6.1. Introduction. Since Do = 4, a two-dimensional space V C BS is
semi-regular if
(1) the map ¢3: BY ® V — BS is injective; and
(2) the map ¢4 : BS ® V. — B is surjective
Note that dim B¢ = 6, dim BS = 15, dim BS = 20, and dim B} = 15.
Proposition 6.1. If V contains an element of rank 2, then V' is not semi-

reqular. In particular if V. has rank type [2,2,2],[2,2,4],[2,4,4] or [2,4,6],
then V' is not semi-regular.

Proof. Corollary 2.5. U

This leaves the cases where V has rank type [4,4,4],[4,4,6],[4,6,6] and
[6,6,6]. In the case where V' contains an element of rank 6 the surjectivity
condition is easily established.

Lemma 6.2. If V contains an element of rank 6, then the map ¢4 : BS ®
V — BY is surjective.
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Proof. We may assume that the element of rank 6 is y = x12x2 + 2324 + T576.
Then BSu contains all the monomials of B except

T1T2X3X4,T1X2T5X6, L3XALT5L6
In addition it contains
(x129 + T324)T5T6, (X122 + T5X6)T3T4, (T3T4 + T5X6)T1 X2

Let i/ be another non-zero element of V. Suppose that we have a monomial
;T € Supp(') which is not one of zyx9, x324, x526. Without loss of gener-
ality suppose it is z1z3. Then z1292324 € Supp(zoz4’). Since BSM contains
all the other monomials involving zox, BSV must contain z1x9x3z4 and so
BSV = BS. Now suppose that Supp(/) C {122, 1374, 7576} and ' # p so
i’ is the sum of one or two of these terms. It is easily verified that in this
case again BSV = B. O

Lemma 6.3. Suppose that n > 6 and let V' be a 2-dimensional subspace of
B3. If V contains an element of rank at least 6, then AnnV N By = 0. If,
in addition, V has no elements of rank 2, then the map ¢3 : B} @ V. — B}
1S tnjective.

Proof. Suppose that V = (u, /) where rku > 6 and ' # p. Since rk u > 6,
we know from Lemma 4.1 that Ann N By = {0, u}. Therefore p/p # 0 and
& Ann p' N By, Hence

AnnV N By = (Annp N By) N (Ann i/ N By)
= {0, 1} N (Anny' N Bs) = {0}

Now assume that rk g’ and rk(u + p') are both at least 4. An element of
Ker ¢3 is of the form a ® p + b ® ' where a,b € By and

ap +by' =0

But then abpy = 0 and aby’ = 0 so ab € AnnV N By = {0}. Hence a €
AnnbN By ={0,b}. Iif a =0, then b’ = 0,80 b=0since tky’ > 4. Ifa =5
then a(p+ ') =0, so a = b= 0 since rk(u + ') > 4. Thus Ker ¢35 =0. O

Theorem 6.4. If V is a a 2-dimensional subspace of BS of rank type
[4,4,6],[4,6,6] or [6,6,6] then V is semi-reqular.

Proof. The injectivity condition follows from Lemma 6.3. The surjectivity
condition follows from Lemma 6.2. O

6.2. Spaces of rank type [4,4,4]. If V contains a rank four element we
can assume this element is of the form p = zixe + x3x4. Thus we may
assume that V = (u, u') = {0, u, ', u + '} where

W= 2122 + 324
W= po + Axs + Aoxe + €x5T6
and pg € B3, A\, Ao € B} and € € {0,1}.
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Example 1. If € = pg = 0, A\ = 21, A2 = x3, we get
U= x1T2 + T324
,u/ = T1%5 + T3T6
p+p =z (w2 + x5) + 3(T4 + T6)
One can easily verify that in this case V is not semi-regular because ByV
does not contain xoz4rsx6. Note that in this example V' C (x1,z3)Bj.
Example 2. If yg = 122, \1 = Ao = 0, we get
M= T1T2 + T3T4
p =129 + T526
o+ /Jl = X3%4 + T5T6
One can verify directly in this case that V is semi-regular.

Lemma 6.5. Let V' be a two-dimensional subspace of rank type [4,4,4]. If
either

(1) V is induced (there is a proper subspace W C By such that V. .C W?);
or
(2) there is a two-dimensional subspace A C By such that V C BiA,

then V is not semi-reqular.

Proof. (1) Without loss of generality, we can assume that V C Bj. In this
case,

BSV = (B} + BYxg)V C B3V + B}V C B + B}Vag
Since BY = B} + B3z and B}V C B3 by Theorem 5.4, we cannot have

BSV = BS.
(2) In this case, as in Example 1, BoV C BsA C By so V is not semi-
regular. ([

Theorem 6.6. Let V' be a two-dimensional subspace of rank type [4,4,4].
Then V 1is semi-regular if an only if it is equivalent to a space of the form
given in Example 2

Proof. Suppose that V is not of the sort described in Lemma 6.5. We may
assume that V is generated by p and p’ of the form

W= 2122 + 324
,U/ = o + M5 + Aaxe + €x56
where i, j1g € B, M1, A\2 € B} and € € {0,1}. Let A = (A1, \2)
First consider the case where ¢ = 0. In this case we must have dim A = 2,
otherwise we would be in case (1) of Lemma 6.5. Extend {\1, A2} to a basis

{\1, A2, A3, \g} for Bf. Note that By = A\ B} + M\aBj + FA3A4. Therefore,
since V. ¢ ABjp, we must have that either pg or pug + p is of the form
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A1a1+ Agas+ A3y for some aq, a0 € Bil. Assuming without loss of generality
that it is pg, we have that

o= Aar + Aaag + Ashg + Axs + Aoxg
= )\1($5 + al) + )\2(1’6 + CLQ) + AzN\g

which is of rank 6 because A1, A2, Az, A4, (x5 + a1), (x6 + az) form a basis for
Bf. This contradicts the assumption that rk u/' = 4.

Thus we must have € # 0. In this case after an appropriate change of
basis, we may assume that \; = Ao = 0 and g/ = pg + z57¢. In this case
rk p' = rk pp+2, so vk g = 2; similarly rk(u+p) = 2. Thus p = o+ (p+po)
and up to a linear change of variables we are in the case of Example 2. [

6.3. The Number of Semi-Regular Subspaces. The table below gives
the numbers of subspaces of the different rank types using the results of [9,
Theorem 5]

Type Number
(2,2,2] 9,765
[2,2,4] 182,280
(2,4, 4] 3,417,750
(2,4, 6] 4,666,368
(2,6, 6] 2,187,360
[4,4,4] | 30,902,536
[4,4,6] | 69,995,520
[4,6,6] | 54,246,528
[6,6,6] | 13,332,480
Total | 178,940,587

TABLE 4. Decomposition of the Grassmanian Gr(2, BS) by
Rank Type

Theorem 6.7. There are 153,129, 088 semi-regular 2-dimensional subspaces
of BS. Thus the proportion of such subspaces that are semi-reqular is
153,129,088
178,940, 587
Proof. From Proposition 6.1 and Theorem 6.4 it suffices to calculate the
number of spaces of rank type [4,4,4] that are semi-regular. By Theorem
6.6, such spaces are precisely the orbit of the space given in Example 2.
The stabilizer of this space in GLg(F) is isomorphic to (GLa(F) x GLa(F) x
G Ly(F)) x ¥3 which has order 6*. Hence the size of the orbit is
20,158,709, 760
1,296
Adding this number to the total number of subspaces of type [4, 4, 6], [4, 6, 6]
or [6,6,6] given in the table, yields the claimed conclusion. O

D6,2 ~ 86%

= 15, 554, 560
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7. THE CASE n = 8§

In this case Dga = 5, so semi-regularity of a two-dimensional quadratic
subspace V is equivalent to the following properties
e The map ¢3: By ® V — Bs is injective
e The kernel of ¢4 : By ® V' — By is the trivial kernel Ty (V).
e The map ¢5 : B3 ® V — By is surjective.
Note that dim By = 28, dim B = 56, dim By = 70, and dim B5 = 56.
Throughout this section, unless stated otherwise, V will denote a two-
dimensional subspace of BS.

Lemma 7.1. Let V be a semi-reqular two-dimensional subspace of B§ Then
V' contains no non-zero elements of rank less than or equal to 4.

Proof. Corollary 2.5 O

Thus it remains to investigate semi-regularity when the rank of V is
[6,6,6],6,6,8],[6,8,8] or [8,8,8]. Note that the injectivity of the map
¢3 : By ® V — Bj holds in all such cases by Lemma 6.3. We can easily
eliminate the following special case.

Theorem 7.2. Suppose that there exists a proper subspace W C By such
that V.C W2. Then the map ¢5 : B3 @ V. — By is not surjective. Hence V
is not semi-reqular.

Proof. Without loss of generality, we may assume W = B] and V C W2,
Now B3 = Bg @ Bg:cg, SO

B3V = BIV + BIVug

By Theorem 5.5, BSV C B]. Since B; = B! B]xg we must have B3V C B;
and the map is not surjective. ([

In this situation (there exists a proper subspace W C Bj such that V' C
W?), we shall say that the space V is induced from W (or just induced if W
is not specified).

Lemma 7.3. Suppose that V = (u,u'). The map ¢4 : Bo @ V — By has
trivial kernel if and only if vk u and vk i/ are at least 6 and

Bop N Bopt' = {0, '}
Proof. The trivial kernel of the map m : Bo ® V' — By is three dimensional
with basis {u ® p, ' @ p— p @ ', ' @ p'}. Thus the kernel is trivial if and
only if dim BoV =dim Bs ® V' — 3 = 53.

If rk u < 4, then by Lemma 4.1 the kernel of the map By @ Fu — Bap has
dimension at least 5 and so ker m cannot be trivial. So suppose that p and
i’ both have rank at least 6. Then dim By = dim Byy/ = 27 by Lemma
4.1. On the other hand BaV = Bau + Bap' so the kernel is trivial if and
only if dim BoV = 54 — dim Bop N Boy/ = 53; that is, dim Bop N Boy/ = 1.
Since puu' # 0 (by Lemma 4.1 again), this is equivalent to Bou N Bop' =
{0, '} O
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We now look in detail at the situation where V contains an element of
rank 6.

Lemma 7.4. Let i = y1ys + - + Ym—1Ym be an element of rank m in
BY. Then the space U(u) = Span(yi, ..., ym) is independent of the choice

of Y1, -+ - Ym-
Proof. Suppose that

p=1192+ o Ym1Ym = Y15+ Yo 1Y,
for some y1,...,ym and y,...,y,, in By. Since tkpu = m, the y1,...,ym
and y!,...,y,, must be linearly independent; hence it suffices to show that
Yly- oy Ym € Span(yl, ..., Y,)-
Without loss of generality, we can assume that n = m + 1. Extend
Yis.- oy, to abasis i, ..., y.,, y, for BY. Write

n
/
Yi = E Qijy;
J=1
/.

for some a;; € F. The coefficient of the monomial y; Y i y1ya+- - Ym—1Ym
is

0 = aijagn + arpagj + -+ + Am—1,0mn + Gn—1n0m;
If the conclusion is false there exists a k such that yi & Span(y),...,y),);
that is, ap, # 0. After renumbering the y; we may assume k£ = 1. Thus
a1, = 1 and

m/2
a2 = A1502n + Z (@2k—1,jA2%k,n + A2k—1,n02% ;)
k=2
Hence
n
_ !
Y2 = a2;Y;
j=1
n m/2
/
= Z a1502n + Z (@2k—1,j02kn + 2k—1n02k ;) Y
j=1 k=2
n m/2 n n
/ / /
= Z a1a2nY; + Z E a2k—1,j02k,nY; + Z A2k—1,n02k,jY;
j=1 k=2 \j=1 j=1
m/2 m/2
= azpy1 + Z A2k nY2k—1 + E a2k—1,nY2k
k=2 k=2
contradicting the linear independence of the y;. Hence we must have all
/ / :
Yly .-y Ym € Span(yy, ..., yn,), as required. O

Definition 7.5. Let V be a non-induced 2-dimensional subspace of BS
containing an element p of rank 6. We say that V is of
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(A) Type A with respect to p if V¢ U(u)Bj.
(B) Type B with respect to p if V-C U(u)By

Proposition 7.6. Let V be a non-induced two dimensional subspace of Bs
containing an element p of rank six.
(1) IfV is of Type A with respect to p then there exists a basis {y1,y2,-..,ys}
of By such that V' = Span(u, 1) where p = y1y2 + ysys + ysys and
1 = po + yrys for some po € BS.
(2) IfV is of Type B with respect to p then there exists a basis {y1,y2,...,ys}
of By such that V' = Span(u, 1') where p = y1y2 + ysys + ysys and
W = po+Ayr+Nys for some g € BS and some linearly independent
AN € BS.

Proof. Since p has rank six we may choose y1, ..., ys such that p = y1y2 +
y3ya+ysye and the y; are linearly independent. Extend {y1,...,ys} to a basis
{y1....,ys} for Bi. Pick p' € VA{0, u}. Then ' = pig + Ayr + N'ys + nyrys
where pg € BS, A\, N € BS and n € F. If n = 1, then

p' = (po + AN) + (N +y7) (A + ys)

So replacing y7 with M + y7 and yg with X' + yg yields the required form. If
= 0 and dim(\, \') < 1, then V is induced. So if V' is non-induced and of
type B we must have dim(\, \') = 2. O

Notes that if V' is a Type A space, V has rank type [6, rk(uo) + 2, rk(u +
1o) + 2].
Theorem 7.7. Let V be a Type A subspace of rank type [6,6,6], [6,6,8] or
[6,8,8]. Then V is semi-regular.
Proof. By Proposition 7.6 we can assume that V = (u, i) where

W= x122 + x374 + x526 and ,u' = uo + T7x8

for some po € BS; the assumption on the rank type of V implies that the
rank of po and g+ g are both at least 4. We need to prove (i) BouN Bop' =
{0, up'} and (ii) B3V = Bs.

(i) BouN Boy' = {0, up'}. Suppose that ap = by’ € BopuN Bay!, for some
a,b € Bs. Let

b= 1+ Mx7 + doxs + exrxs, a = po + A3x7 + Mg + € rrrg
where pi1, 2 € BS, A1, A2, A3, A4 € BY and ¢,¢ € F. Then
0=ap+ by
= (pop1 + pap) + z7 (oA + Asp)
+ xg(poda + Aap) + z7as(poe + 1 + € 1)
So
€po + p1 = €'p,  propn = pigf,  Azpe = Aifio,  Aapt = Aofi

Then MAsp = Mo = 0. Therefore \jA\3 € Ann(u) N By = {0, u}. But
1 # AAg since tky = 6, so AjA3 = 0. Suppose A\ = A3 # 0. Then



SEMI-REGULARITY OF PAIRS OF BOOLEAN POLYNOMIALS 17

A1 (e + po) = 0; but this is impossible since rk(p + pg) > 4. If Ay # 0 and
A3 = 0 then we would have Ao = 0 which is again impossible because
rk(pp) > 4. A similar argument works for the case A\; = 0 and Az # 0. Thus
we must have A\; = A3 = 0. An analogous argument shows that Ao = Ay =0
also. Therefore, A1 = Ay = A3 =Xy = 0.

Now consider the first two constraints: eug + p1 = € p, popr = pof.
Consider the two cases:

¢ =1: Then epy + p1 = p. So pop = popr = pop. Hence p(po + p2) =0
and so po + pe € Ann(u) N By = {0, u}; that is, pe € {po, po + n}. So
a€ {y, '+ p}t and ap = (' 1 as required.

¢ = 0: Then pu; = eug, so usp = popr = 0. Hence pe € {0,u} and
ap = 0.

This proves that Baop N Bop' = {0, pp'}.

(ii) B3V = Bs. Recall that By = Bg ® BSz7 ® BSxs ® Bbz7ag so

Bsp = BSu ® BSpxr © BSuas ® B uzras
Also
Bs = B8 @ BSa; @ BSag @ BSaqrag
It is easily verified directly that B$u = BY (all degree 5 monomials can
easily be realized as multiples of p). Since x7u' = x7po,

B3V D 27 BSpu + x7BSy/ = (BSu 4 BSpo)xr = Bday

by Lemma 6.2. Similarly B3V D BSws.

Finally, if a € B then ay/ = apo + az7xs € BsV. But apg € BS C B3V,
so ax7xg € B3V also. Hence B§$7$8 C BsV. Putting all this together yields
Bs = Bg P ngy @ Bg.’Eg @ B§x7x8 C B3 ® YV, so B3V = Bj as claimed.
Hence, all such Type A spaces are semi-regular. [l

Theorem 7.8. Let p = x1x9 + x324 + x526. Then

(1) There are 11,796,480 Type A semi-regular subspaces of Bg contain-
ing p which are of type [6,8, 8].

(2) There are 31,997,952 Type A semi-reqular subspaces of Bg contain-
ing p which are of type [6,8, 6].

(8) There are 20,643,840 Type A semi-reqular subspaces of BS contain-
ing p which are of type [6,6,6].

Proof. (1) If V.5 p is of Type A, then there exist A\, N € (x1,...,x6) such
that V' = (u, p/) and
1= po + (N + 27) (A + 23)

for some pg € (z1,...,x6). If V is of rank type [6, 8, 8], then (u, po) must be
of rank type [6,6,6]. The number of [6, 6, 6] subspaces of BS is 13,332,480;
the number of elements of BS of rank 6 is 13,880. So the number of [6, 6, 6]
subspaces of BY containing y is

3% 13,332,480/13,888 = 2, 880
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For each such subspace there are 2'2 choices for A\; and \s, yielding a total
of

2,880 212 = 11,796, 480

[6,6,6] subspaces of Type A containing . The numbers in (2) and (3)
are found by a similar calculation using the number of [6,4,6] and [6,4,4]
subspaces (54,246,528 and 69,995,520 respectively). O

This completes our analysis of the Type A case. We now move to the
Type B case, which requires a little more work.

Lemma 7.9. Suppose A\, N, k,x’ € By and X\ and X are linearly independent.
If \e + XK' =0, then k,&" € (\,N).

Proof. We may assume that A\ = z1 and X = x9. The result is then clear by
considering the support of x1x + zok’. ([

Lemma 7.10. Suppose that ;' = po + Az + Nwg for some 0 # g € BS
and some linearly independent \,\' € BY. Then tky/ > 6 if and only if
po & BSA + B8N,

Proof. Choose a complementary subspace W such that BY = W @ (\, \)
and write o = aX + o'\ + v where a, o/ € BS and v € W?2. Then

W=v+MNa+axr)+ Mo+ xs)

Let W = (\, N, a+z7, o/ +x38). Since B = Wa W', 1k’ = rkv+4. Hence
rk i/ > 6 if and only if kv > 0; that is, if and only if o & BSA + BSN.
[l

Theorem 7.11. Suppose that V = (u, 1’ where
U= 2129 + 324 + 526 and ' = po + Av7 + Nag

for some 0 # o € BS and some linearly independent \,\' € BY. Then V is
semi-regular if and only if AN uo & BSp.

Proof. Suppose that A\ g € Bop. We want to show that V' is not semi-
regular. We may assume that p and p/ have rank at least 6 because otherwise
V' is not semi-regular by Theorem 7.1. Clearly A\'u' € Bou N Bop/. We
want to show that ANy & {0, up'}. Suppose that ANy = pp’. Then
M + € Ann(p') N BS = {0, 1/} by Lemma 4.1. Hence AN € {u, u+ u'},
contradicting the fact that both p and p + ¢’ have rank at least 6. If
M/ =0, then AN € Ann(p') N BS = {0, ¢/}, again yielding a contradiction
because the linear independence property of A and X\ implies that A\ # 0.
So Bopu N Boy' 2 {0, up'} and V' is not semi-regular by Lemma 7.3.

Now assume that AN pg & Bap. This implies that g, u+po ¢ BSA+BSN,
and hence, by Lemma 7.10, the ranks of ' and p/ + p are at least 6. As
before, we need to prove (i) Bapu N Bop' = {0, up'} and (ii) B3V = Bs. Set
A= (\N).
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(i) Bop N Bop! = {0, pp'}: Suppose ap = by’ # 0 where
a = po + Mx7 + Aoz + € xrrg, b= p1 + A\rry + Agxs + exqas,

and ji2, 11 € BS, A1, Mo, A7, Mg € BY e, ¢ € F. Equating the coefficients of
x7xg on both sides of ay = by, yields
e/,u = €y + Mg + N7
So
€+ e = Nexr + Ag) + N (exs + A7).
Since the right hand side has rank at most 4 and the rank of p, 4/ and p+ p/
are all at least 6, this implies that € = ¢ = 0. Hence A\\g + N’ A7 = 0, so by
Lemma 7.9, A7, A\g € A.
Thus
a = p2 + A1x7 + Aows, b= p1+ Arx7 + Agws,
Comparing the coeflicients of x7,zg and the term that is purely contained
in BY yields
PAL = HoAT + A
pA2 = poAs + N
fop1 = fufiz
Since A7 € A, AA € A2 = {0, \\N'}. If A7\ = X\, then
HALA = poA7 A = o'\
contradicting our assumption that pugA\ ¢ BSu. Therefore A\ = 0 and
so A7 € {0, A\}. Similarly we obtain A\g € {0, \'} and A7 + Ag € {0, A + \'}.
Therefore
(A7, 28) = (0,0) or (A, \)

Since A;A = 0, we also have uA;1A = 0. Since rkpu = 6, this implies
A =0, and so A\; € {0, \}. Similarly we obtain Ay € {0, \'} and A\ + \s €
{0, A+ X'}. Thus

(A1, A2) = (0,0) or (A, \)

Suppose A} = A9 = 0. If A7 = A\g = 0, then A, N € Ann(uy), so p1 €
{0, A\'}. Since b # 0, we must have pu1 # 0, s0 AN g = p1po = ppo € BSp,
a contradiction.

Now suppose that (A7, Ag) = (A, \'). Then

(o + p1)A = poA7 + piA = 0 and (po + ,u1)/\/ = pors + N =0
so A, N € Ann(ug + 1) and po + 1 € {0, AN} If po + w1 = 0, then
b =y and by’ = 0, contradicting our assumption. Thus pg + g1 = AN so
b= + AN and AN g = (b+ p')i = ap € BSp, again a contradiction.
Hence we must have (A, A2) = (A, )'). In this case

PA = pioA7 + 1A

pX = pods + p N
If (A7,A8) = (0,0), then Ann(p + p1) contains A and therefore p + p; €
{0, WV} I+ g = AN, then pg = p+ AN and so ppe = po(p+ AN) which
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would imply ANy, € BSu, a contradiction. So u + p1 = 0, in which case
b= and by = up' as required.

If \; = X and A\g =\, then Ann(u + p1 + o) contains A and therefore
A p1 + o € {0, AN} I w4 g + po = AN, then pg = p+ po + AN and so
pitz = po(p + po + AN') which again implies A\, € BSp, a contradiction.
So p+ p1 + po =0, or p = po + p1. Hence

b = (p1 + Awr + Nag) (uo + Az7 + Nag)
= papio + A(po + p) 7 + N (o + pa)xs
= (po + p1)(po + Az7 + Nag)
= pp
Thus we have proved that Bou N Bop' = {0, up'}
In this case {\, \'} is linearly independent so we may extend {\, X'} to
a basis {\, N, y1,v2,93,y4} for BS. Let Y = Span(y1,y2,vs,%4). Then we
have that after a possible change of the x; basis, u’ = pg + Azy + N xg where
o €Y.
(ii) B3V = Bs: Recall, as in the previous proof, that By = Bg ® 78BS @
SL‘gBS @ x7ng?; that
Bs = Bg D BS.%W D ngg (5] B§$7.%'8
and that B = BSu C B3V. Now dim B§y = 14 = dim B§ — 1, so the
assumption that A\’ = AN g ¢ BSp implies that BSV O BS. So
B3V O (BSxy + BSxg)V = BSV iy + BSVag D BSay + Blus.
Thus it remains to show that B3V D Bgmazg. For b € BS we have that
b7’ = bugrr + b\ x7a8

Since bugxr7 € Byxy C B3V, this implies that bN x728 € BsV. A similar ar-
gument for A yields that B3V D (BSA+BSX)x7zs. Also B3V D Blxragu’ =
B?uoxmg, and B3V D B?xmgu. Hence

B3V D (Bipo + BsA + BoXN + Bip)wras

Thus it suffices to show that BSug + BSA + BSN + By = BS. Then we
may write y = v + Aa + A\a’ where v € Y and a,a’ € BY. Then Bjug +
BSX + BSN + B = B is equivalent to Yyup + Yv = Y3, Suppose that
Yo+ Yv # Y3, Then ug,v and g + v all have rank 2, so we may assume
that, after an appropriate change of basis, that uy = y1y2 and v = y1y3. In
this case

=193+ Aa+ Nd

and since p has rank 6, y1,y3,\,a,\,a’ must form a basis for BY. Let
A = Span(a,a’). Then

Ay = Ayr(da+ Nad') =y AN A
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Since A\ 1 = y1 A\ y3, this yields that
B D Ayipp+FAN i = g1 AN (A + Fys) = yn AN BY = (51 B)AN
Hence jioAN = y192AN € BSpu, contrary to assumption. O

Lemma 7.12. Let p = x1x2 + 324 + Tsxg € BS and let \,\ be linearly
independent elements of BS. Then there exists a p1 € BS such that A\ py &
Baopu.

Proof. Note first that dim BSy = 15 — 1 = 14 by Lemma 4.1 and dim B =
15, so BSp € BS. On the other hand if V' = (u, A\'), then by Lemma
6.2 we have that BSV = B§. Hence there must exist a yu; € BS with
AN & BSp. O

Theorem 7.13. Let p = x1x9 + 314 + T526 € BS. Let Tg be the set of all
non-induced two dimensional subspaces of BS that are Type B with respect

to u. For each pair of linearly independent elements A\, € BY choose a
p1 € BS such that A\N'py € Bou. Define ® : Tp — Tp by

({0, p,p0 + Az7 4+ Naws, p+ po + Axr + Nas})
= {0, i, pro + p1 + A7 + Nag, g+ po + p1 + Avy + Nag}

Then ®% = I and ®(V) is semi-reqular if and only if V is not semi-reqular.
Hence there is the same number of semi-reqular and non-semi-regular spaces
of Type B with respect to . In particular, there are 63x62%2'3 = 31,997,952
semi-reqular subspaces of Type B.

Proof. Since dim B$/BSy = 1, we have that Ao € BSyu if and only if
AN (po + p1) € BSp. In particular there are 31,997,952 semi-regular sub-
spaces of type B with respect to p. The number of choices for A and )\
is 63 * 62; the number of choices for pg is 2!° and these come in pairs,
{po, po + 1} which generate the same subspace. So the total number of type
B subspaces is 63 % 62 * 214, and half of these are semi-regular. O

Theorem 7.14. Let A\, N, €3, €4, €5, €6, 7, 28 be a basis for B% and let W =
(N, N €3,€4,€5,€66) . Let i/ = ezeq + ese6 + Awy + Nag and let p=v + al+
DN + AN € W2 be an element of rank 6 for some a,b € (e3, €4, €5,¢6) and
v € (e3,€4,€5,€6)2. Then the two dimensional vector space V = {u, ') is
semi-reqular if and only if v(eseq + €5€6) # 0.

Proof. Let g = eseq + e5€6. Suppose that V' is not semi-regular. then by an
earlier result, we know that A\ g = yu for some v = e+eA+dN +n/' AN € W.
Now
Y= (v +aX + b\ + AN ) (e + cA + dN + ' AN)
=ve+ (ae +vc)X + (dv + eb)N + (n'v + ne + cb + ad) AN
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Comparing coefficients yields
po=nv+ne+cb+ad

0=ve

0=ae+ cv

0=be+dv
So

vo = (W'v + ne + b + ad)v
= bev + adv = b(ae) + a(be) =0
Conversely assume that vug = 0. Suppose first that n = 1. Then A\ =
w~+ v+ aX+bN and so
Mo = (p+ v+ aX + b\ = pop + (aX + bXN ) g

Now p = (v+ab) + (A+b)(N +a) and so rk(v + ab) = 4, since rk u = 6. Let
U = (e3,...,€6). Since rk g = 4 also we have U(v + ab) = Upg. So there
exist ¢,d € U such that aug = c(v + ab) and bug = d(v + ab). But then

(A +b)c+ (N +a)dju = (A+b)e(v + ab) + (N + a)d(v + ab)
= (A +b)apo + (X' + a)buo
= (aX + b\ ) o
So AN g € Bop and V is not semi-regular.

Now suppose n = 0. Then, p=v+a\+bN. lfa=b, u=v+alXA+X)
is expressible in five variables, but rk(u) = 6, so a # b. Then we can extend
a,b to a basis a,b,c,d for (e3,€4,€5,€). Since p is rank 6, it must have a
term not divisible by a or b, so c¢d € Supp(v) C Supp(u) in the a, b, ¢, d basis.
Depending on if ac, ad, be, bd, ab are in Supp(v), we have u = v+aX+ b\ =
(c+ e1a + €1b)(d + eaa + €4b) + eab + aX + b, for some €1,€),€2,¢5, ¢ € F.
Making a coordinate transformation ¢ — ¢+ e€1a+ €)b,d — d+ eaa + €4b, we
get u = cd + eab + aX + bN, where (a,b,c,d) = (€3, €4,€5,€6) and € € {0,1}
with v = cd + eab. Note that

(N + ea)ep = AN ac € Bap
Likewise,
AN (ac, ad, be,bd) € Bop
Also,
AN = AN (eab + cd) € Bou
In both cases, whether ¢ = 0 or 1, we see therefore that
Bop 2 AN {ac, ad, be, bd, eab+cd) = AN Ann(eab+cd) = A\ Ann(v) > AN g

The last inclusion is because vug = 0 implies po € Ann(v). Hence, A\ 19 €
Bop, and V is not semi-regular. ([

Lemma 7.15. Let a,b € Bil. Then the following are equivalent
(1) tk(z1x2 + axs + bxg) = 6
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(2) x1,22,a,b, 75,6 are a basis for BS
(3) w1,72,a,b are a basis for Bj
(4) tk(x1x2 + ab) =4
(5) tk(z1x2 + axs + bre + x526) = 6
Moreover there are 96 possible such choices for the pair a,b.

Proof. The equivalence of the first four conditions is straightforward. For
the last equivalence we note that

2172 + aws + brg + 15706 = 1102 + ab + (a + x6) (b + x5)

Clearly the number of choices of a and b satisfying (3) is (2* —4)(2* —8) =
96. ]

Lemma 7.16. Let i € B3 be an element of rank 4 and let N = {v € B3 |
viw # 0}. Then |[N| = 32 and N contains 12 elements of rank 4 and 20
elements of rank 2. Moreover, if v € N, then tkv = rkv + pu.

Proof. Let V = {(u,v). Then v € N if and only if V2 # 0. The two dimen-
sional subspaces of Bj of types [4,4,4], [4,4,2] and [4,2,2] are equivalent
up to change of basis to the spaces
[4,4,4] : {0, 2129 + 324, T1T2 + X173 + ToXy, T3T4 + T1T3 + ToTyg}
[(4,4,2] : {0,z129 + 324, X123, 173 + T1T2 + T34}
[4,2,2] : {0,129 + w324, 122, T34}
Thus V2 # 0 if and only if V is of type [4,4,4] or [4,2,2]. Tt follows
immediately that rkv = rkv 4+ u. There are 6 subspaces of type [4,4,4]

containing a given p and 10 of type [4,2,2]. Thus N contains 12 elements
of rank 4 and 20 elements of rank 2. (]

Lemma 7.17. Let u € BS have rank 6. Then there are 63 * 62 x 2% x 28
elements 1’ of rank 8 such that {(u, p') is of Type B with respect to .

Proof. We may suppose that u has the usual form and that
1= po 4+ vy + Nag

where \, X' are linearly independent. Now choose a subspace W C B? such
that B¢ = W@ (FA+F)). In this case we can write pp = vp+rA+K N +€eAN
where vg € W2 and k,x' € W. If € = 0, then

o=+ XNar+ k) + XN(xs + &)
and this element has rank 8 if and only if vy has rank 4. If e = 1,
w=vo+ Ny +r+N)+ N(xg + &)

Again this has rank 8 if and only if 1y has rank 4. In each case there are
63 % 62 choices for A, X/, 2% choices for x and ' and 28 choices for 1 yielding
a total of 63 * 62 x 27 x 28 choices for 4. O

Lemma 7.18. Let v be a rank j element of By such that v ¢ Bixzi + Bixs.
Then there exists a basis x1,T2,Yys3, Y4 of B% such that v = x1x2 + Y3y4.
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Theorem 7.19. Consider two dimensional subspaces of the form V =
{p, 'y where pu € BS has rank 6; y' = po + A\x7 + Nag for some o € BS
and linearly independent \, X' € BY and rk i/ = 8. Then there are

(1) 63 % 62 % 2% % 28 % 12  256/2 such subspaces of type [6,8,8].
(2) 63 % 62 % 2% % 28 20 * 192 such subspaces of type [6,6,8];

Proof. As in the proof of Lemma 7.17, after applying an automorphism
that fixes BY we may assume that there is a subspace W C BY such that
BY = W @ (FA+FX) and g € W2; so rk(ug) = 4. In this case u =
v+al+bN 4+ e\ where v € W2, a,b € W and € € F. By Theorem 7.14, V
is semi-regular if and only if vug # 0. By Lemma 7.16, there are 12 options
for v of rank 4 and 20 options of rank 2. Again by Lemma 7.16, we see
that if rkv = 4, then V is of type [6,8,8] and if rky = 2. then V is of
type [6, 6,8]. Now we use Lemma 7.15 to count the number of possible y for
which V' is semi-regular of each type for our fixed u/. We consider 4 cases

(i) tkvy =2, e =0. Thus 4 = v+ aX + b\ and by Lemma 7.15 there are
96 choices for a and b which yield rk p = 6.

(ii) tkv =2, e =1. Thus p = v+aX+bN + AN =v+ab+ (A+b)(N +a).
In this case rk p = 6 if and only if rkv 4+ ab = 4. Again by the Lemma there
are 96 choices for this.

Thus in the [6,6, 8] case, for any given p’ there are 20 choices for v and
192 choice for a,b and €, proving (2).

(iii) tkv = 4, e = 0. Again g = v + a\ + b\, Note that a and b must
be linearly independent or y is not of rank 6. Also v & (a,b) B}, otherwise
rkp < 6. So by Lemma 7.18 v = ab+ y3y4 where a, b, y3, y4 is a basis for W.
Thus (v, ab) is a [4,2,2] space containing v. There are ten such subspaces
for each v and 12 choices for v yielding a total of 120 choices for p.

(iv) rkv = 4, ¢ = 1. Here p = v+ ab+ (A +b)(N + a). In this case
rk = 6 if and only if rkv + ab = 4. If ab = 0, this is always true and there
are 46 ways to choose a and b such that ab = 0. If ab # 0, this holds if and
only if (v, ab) is of type [4,4,2]. There are 15 such spaces containing a given
rank for element, so 15 choices for ab, for which there are 6 different ways
of choosing a and b. This yields 136 possibilities for y in this case.

O

Corollary 7.20. Let u € BS have rank 6. Then

(1) There are 6,193,152 2D semi-regular subspaces of BS of type [6,8, 8]
which are Type B with respect to p.

(2) There are 15,482,880 2D semi-regular subspaces of BS of type [6,8, 6]
which are Type B with respect to p.

(8) There are 10,321,920 2D semi-regular subspaces of BS of type [6, 6, 6]
which are Type B with respect to p.

Proof. (1) Let V be the set of two dimensional subspaces of the form in
the Theorem which are of rank type [6,8,8]; that is, V' = (u, ) where
p € BS and pf = po + Az7 + Nag for some g € BS and linearly independent
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AN € BY. Let V.. be the subset of V consisting of spaces containing y. Since
GL(BY) acts transitively on the set of all rank 6 elements of BS, we have
that V = [ [Vy(,). Thus [V,| = [V[/13888, yielding the claimed number.
Similarly for part (2). For part (3), notice that the number of semi-regular
subspaces of Type B is 31,997,952 by Theorem 7.13. Since these have either
rank type [6,8,8],[6,6,8] or [6,6, 6], the number of the latter type is

31,997,952 — 6,193, 152 — 15,482, 880 = 10, 321, 920
O

Corollary 7.21. Let yp = 122 + 324 + x506. Then

(1) There are 17,989, 632 two-dimensional semi-regular subspaces of BS
of type [6,8,8] containing .

(2) There are 47,480,832 two-dimensional semi-regular subspaces of BS
of type [6,8,6] containing p.

(8) There are 30,965,760 two-dimensional semi-reqular subspaces of BS
of type [6,6,6] containing p.

Proof. The number of such spaces is just the sum of the numbers in Theorem
7.8, and Corollary 7.20. O

Corollary 7.22. There are

(1) 2,697,022,899,486, 720 two-dimensional semi-reqular subspaces of
B of type [6,8,8]

(2) 3,559,185,957,519,360 two-dimensional semi-reqular subspaces of
B of type [6,8, 6]

(8) 1,547,472,155,442,200 two-dimensional semi-reqular subspaces of
BS of type [6,6, 6]

Proof. For any element of BS of rank 6, there is an automorphism o €
GL(BY) such that o(fi) = p. This automorphism then induces a bijection
between the set of semi-regular subspaces of BS of type [6,8, 6] containing
fi and the set of semi-regular subspaces of B3 of type [6,8,6] containing p.
Since there are 149,920, 960 elements of BS of rank 6, the total number of
semi-regular subspaces of BS of type [6,8, 6] is
47,480, 832 x 149, 920, 960
2

The other cases are handled similarly. O

= 3,559, 185,957, 519, 360

7.1. Approximation of pgs. The case when RkV = [8,8, 8] seems to be
even more complex than the Type B case above. Thus we content ourselves
with an approximation of pg o in this case.

Theorem 7.23. Let pgo be the proportion of two dimensional subspaces of
BS which are semi-regular. Then

0.65 < pgo <0.72
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Proof. We are able to determine the semi-regularity of all but the
888,431,072,772,096 spaces of rank type [8,8,8]. Using Corollary 7.22 we
obtain that the number s7(8,2) of semi-regular 2 dimensional suspaces sat-
isfies

7,803,681,012,449,280 < sr(8,2) < 8,692,112,085, 221, 376

Dividing by the total number of 2 dimensional subspaces,
12,009, 598,872,103, 595 yields the claimed bounds. O

8. HILBERT POLYNOMIALS

An even more fine-grained understanding can be obtained by looking at
the possible Hilbert polynomials that can arise for B/BV. We list here
(without proof) a complete description of the Hilbert polynomials that can
arise in the cases n = 4,5 and 6. The main determining factor is the rank-
type and whether or not the space is induced.

Type | Number | Hy (z)

(2,2, 2] 105 | 1+ 4z + 422 + 23
2,2, 4] 280 | 1+ 4z + 422
2,4, 4] 210 | 1+ 4z + 422
[4,4,4] 56 | 1+ 4z + 422
Total 651

TABLE 5. Hilbert polynomials of B/BV by rank type when
n=4

Rank | Type | Number | Hy (z)

(2,2,2] 1,085 [ 1+ 52 + 822 + 523 + 24
2,2, 4] 8,680 | 1+ 5z + 822 + 423

, 4, 1 + 0z + 3827 + 4z
2,4,4] | i 6,510 | 1+ 52 + 822 + 423

, 4, ni + 0z + 82 + 22
2,4, 4] i 52,080 | 14 5z + 822 + 223

, 4, 1 , + oz + 3827 + 4z
[4,4,4] | i 1,736 | 1+ 5z + 822 + 423
[4,4,4] | ni | 104,160 | 1+ 52 + 822 + 23
Total 174,251

TABLE 6. Decomposition of the Grassmanian by Rank Type
forn=>5

When n = 4 the situation is simple. When n = 5 we begin to see the
distinction between the induced and non-induced cases. When n = 6, more
subtle distinctions begin to appear. In the types column we have

i4: V is induced from a 4 dimensional subspace
i5: V is induced from a 5 dimensional subspace
nin: V is not induced but not semi-regular

nis: V is not induced and is semi-regular
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Type Number | Hy (2)
9,765 | 1+ 6t + 13t> + 133 + 6t* +°
182,280 | 1 4 6t 4 13t + 13t3 + 4t*

OV R e R R NN NN NN
O O R O e e e NN
S OO OO N

.4, i4 136,710 | 1+ 6t + 13t + 13¢5 + 4¢4
.4, i5 3,281,040 | 1 + 6t + 13t + 1013 4 2t*
.4, 4,666,368 | 1+ 6t + 13t2 + 10t3
,6, 2,187,360 | 1 + 6t + 13t% + 10t

i4 36,456 | 1 + 6t + 13t% + 13¢3 + 4t
.4, i5 6,562,080 | 1 + 6t + 13t% + 9¢3 4 ¢4

nin 8,749,440 | 1 + 6t + 13t% + 813 + 4
nis | 15,554,560 | 1+ 6t + 13t2 + 83
69,995,520 | 1+ 6t + 13t + 8¢3
54,246,528 | 1 + 6t + 13t% + 8¢3
13,332,480 | 1 + 6t + 13t% + 8t3
Total 178,940,587

— e —— —— —— ——
St Wt B L VA W W VL VLA L R '

TABLE 7. Hilbert Series by Rank and Type when n =6

9. CONCLUSION

We conducted a detailed study of the semi-regularity of two dimensional
quadratic spaces. We found the following values for p,, 2, the proportion of
quadratic subspaces that were semi-regular.

n 3 4 5 6 7 8 >9
Pn,2 | 1.00 | 0.84 | 0.00 | 0.86 | 0.00 | [0.65,0.72] | 0.00

TABLE 8. The proportion p, 2 of 2-dimensiion subspaces of
B> that are semi-regular

Our hope was that this study would shed some light which would enable
progress towards two of the most glaring open questions concerning semi-
regularity: a) do there exist semi-regular sequences of quadratic element for
all n? and b) is lim,, 00 P, = 1; i.e., are most sequences of n quadratic
elements in n variables semi-regular? On the positive side, the rank type is
an invariant whihc can be used to establish certain results easily. It seems
possible that the answer to a) can be found by considering speciifc spaces
of high rank type. On the other hand the table of Hilbert series in the case
n = 6 suggest that getting the Hilbert series exactly right is a hard thing to
control. While most spaces seem to be close to being semi-regular (in the
sense that their Hilbert series are close to T}, (%)), it appears that it will
be a highly non-trivial problem to prove the exact match of dimensions in
each degree.

For most applications, it is sufficient to show that the degree of the Hilbert
polynomial is the same as that of a semi-regular system. Proving this should
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be significantly easier and would give a more useful result from the point of
view of applications. Thus a weaker but more accessible conjecture would
be that for “most” m-dimensional subspaces Bp_oV = By for D = D,, .
For instance we are able to prove this result in the one case that we were not
able to establish semi-regularity - spaces of rank type [8,8, 8] when n = 8.
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APPENDIX A. THE GENERAL UPPER BOUND

Let V be an m-dimensional graded subspace of B. Let {y1,...,um} be a
homogeneous basis for V' and set d; = p;. If we assume that d; < --- < d,,
then the vector d = (dy, ..., d,,) is independent of the choice of homogeneous
basis. For such a vector d = (di,...,dy,) we define

and

Toa(z) = [(HZ)”]

[T+ 2%)

D,, 4 = degT, 4()

Denote the Hilbert series of the quotient ring B/BV by HSy(z). We say
the space V' is semi-regular if HSy (2) =T}, 4(2).
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Theorem A.1. Let V be a graded subspace of B™ with degree vector d and
letd=7>,d;. If n> Dy q+d, then V is not semi-regular.

Proof. Let B = {p1,...,um} be a basis for V. Choose an element £ of BV
of maximal degree. Clearly deg{ < d and {u; = 0 for all i. Let D = D, 4.
If V is semi-regular, then

Bp = Z Bp_a; i

But then
¢Bi=£¢Y Bpapi= Y Bpaémi =0
A 7

This implies that § € Bgege N Ann Bp = 0. So Lemma 3.2 implies that
n<D+4+degé < D+d. Thusifn> D +d, V can not be semi-regular. [J
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