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Abstract

We initiate a study, when F is a general APN function, of the Boolean
function γF related to the differential spectrum of F (which is known to
be bent if and only if F is almost bent). We first list many open questions
about it. We study its algebraic normal form and its bivariate representa-
tion. We characterize its linear structures and specify nonexistence cases;
we show, for n even, their relation with bent components v · F , v 6= 0n,
of F . We pose three related open problems. We characterize further in
terms of γF the fact that a component function of F is bent and study if
the number of bent components can be optimal. We consider in particular
two classes, one of which is that of APN power functions. We study more
deeply the relation between the Walsh transform of γF and the Walsh
transform of F . By applying the Titsworth relation to the Walsh trans-
form WγF , we deduce a very simple new relation satisfied by W 2

F . From
this latter relation, we deduce, for a sub-class of APN functions, a lower
bound on the nonlinearity, that is significantly stronger than nl(F ) > 0
(the only general known bound). This sub-class of APN functions includes
all known APN functions. The question (which is another open problem
that we state) arises whether this sub-class equals that of all APN func-
tions, but our bound provides at least a beginning of explanation why all
known APN functions have non-weak nonlinearity. We finally show how
the nonlinearities of γF and F are related by a simple formula; this leads
to a last open problem.

1 Introduction

Almost perfect nonlinear functions [21] are those functions F : Fn2 7→ Fn2 (called
(n, n)-functions) such that

δF := max (|{x ∈ Fn2 ;F (x) + F (x+ a) = b}|; a ∈ Fn2 , b ∈ Fn2 , a 6= 0n)
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is equal to 2. They have been much studied since the 1990’s.
Characterizations of APN functions (and of more general differentially δ-uniform
functions) are known by the Walsh transform (see [15, 9]) and by other means
as well (see the surveys [3] and [11, Chapter 11]), but after thirty years, we must
admit that little is known on general APN functions.
It has been proved in [13] that, given F : Fn2 7→ Fn2 , the Boolean function
γF (a, b) over Fn2 × Fn2 taking value 1 if and only if a 6= 0 and the set {x ∈
Fn2 ;F (x) + F (x + a) = b} is non-empty, is bent (i.e. lies at the optimal Ham-
ming distance 22n−1−2n−1 from the vector space A of affine Boolean functions)
if and only if F is almost bent (that is, for every nonzero v ∈ Fn2 , the so-called
component function v ·F , where “·” is an inner product in Fn2 , lies at the Ham-

ming distance 2n−1 − 2
n−1
2 from A, n must then be odd). Recall that almost

bent functions are APN and that the converse is not true in general. Very little
is known on γF when F is APN without being almost bent. Since almost bent
functions are very peculiar functions in odd dimension n (and are shown in [7]
not to be good choices as substitution boxes in block ciphers - see also [10] -
even if they are bijective, while APN permutations would be very good choices
if some could be found for n = 8), it seems useful to determine more precisely
the characteristics of the γF functions associated to general APN functions.
Function γF has some known properties that we shall recall below, but it is
clearly not a general 2n-variable Boolean function having such properties, and
it seems then necessary to learn more about it, thanks to a systematic search
for new properties and a study of the consequences of the known relation be-
tween the Walsh transforms of F and γF . We shall deduce a new relation on
the Walsh transform of APN functions, which seems similar to the characteri-
zations obtained in [9], but is in fact quite different and will have an interesting
consequence.
A puzzling observation on APN functions is that no one is known with a bad
nonlinearity (that is, with a component function lying close to affine functions),
which leads to asking whether APN functions with low nonlinearity can exist.
The only known lower bound on the nonlinearity of APN functions is that it is
strictly positive [11]. Using the new relation found on the Walsh transform of
general APN functions, we derive a lower bound on the nonlinearity of a large
class of APN functions that includes all known APN functions. This does not
answer the question on the nonlinearity of general APN functions mentioned
above, but it gives at least an explanation why all known APN functions have
a not so bad nonlinearity (such explanation has been missing since the early
nineties for non-power functions; a lower bound is known from [9] for power

functions: nl(F ) ≥ 2n−1 − 2
3n−3

4 for n odd and nl(F ) ≥ 2n−1 − 2
3n−2

4 for n
even). The new lower bound tells us what kind of APN functions need to be
avoided when searching for APN functions with bad nonlinearity (whose discov-
ery would probably have little practical interest but would be quite illuminating,
theoretically).

The paper is organized as follows. After preliminaries in Section 2, we make
in Section 3 some observations, some of which are new, about the Boolean func-
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tion γF (a, b), for general APN functions, and we mention many open questions.
We briefly study in Section 4 the ANF and the bivariate representation of γF ,
and in Section 5, we tackle the question of the (non)existence of its linear struc-
tures. We solve (negatively) the problem when n is odd and, for n even, when
the linear structure is 1-valued or of the form (α, β) with α 6= 0n. We character-
ize in terms of bent components v · F of F the 0-valued linear structures of the
form (0n, β), for n even, and we leave open the problem of their existence; we
address negatively some particular cases. We observe that a component function
of an APN function is bent if and only if, for every a ∈ Fn2 , the Boolean function
b 7→ γF (a, b) + v · b is balanced, we deduce that APN power functions cannot
have an optimal number of bent components. In Section 6, we recall the relation
between the Walsh transforms of γF and F and we study the relations on each,
which can be deduced from the classical relations on the other. By applying
the Titsworth relation to the Walsh transform of γF , we derive a new relation
satisfied by the Walsh transform of F , which is astonishingly simple. We deduce
a lower bound on the nonlinearity of the subclass of those APN functions F such
that the minimum Hamming distance between the component functions v ·F , v
nonzero, and affine Boolean functions is achieved more than once. We show that
all known APN functions belong to this subclass and leave open the questions
of determining whether all APN functions do too and of finding a better bound
which would completely explain why all known APN functions have rather good
nonlinearity. We eventually show a relation expressing the nonlinearity of γF
as a degree 2 strictly increasing function of the nonlinearity of F . This relation
shows again the equivalence between “F is almost bent” and “γF is bent”, but
it also extends the relation to APN functions that are not necessarily almost
bent. We state a last open problem which includes as a sub-problem an open
question posed in [5].

2 Preliminaries

For a given positive integer n, we shall denote by 0n (resp. 1n) the zero vector
(resp. the all-1 vector) of length n and by ei the i-th vector of Hamming weight
1, that is, of the canonical basis of the vector space Fn2 . We denote by wH(x)
the Hamming weight of an element x of Fn2 , that is, the size of its support
{i ∈ {1, . . . , n}; xi = 1}.

The vector space Fn2 will sometimes be endowed with the structure of the
field F2n (this field being an n-dimensional vector space over F2, each of its
elements can be identified with the binary vector of length n of its coordinates
relative to a fixed basis). We shall simply denote by 0 the null element in this
field (whose vector of coordinates is 0n).

We shall denote by Bn the 2n-dimensional F2-vector space of n-variable
Boolean functions (from Fn2 to F2). For a given n-variable pseudo-Boolean
function ϕ, that is, a function from Fn2 to R, the Fourier-Hadamard transform
of ϕ is the R-linear bijective mapping (see e.g. [11, Section 2.3]) which maps ϕ
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to the function ϕ̂ defined on Fn2 by:

ϕ̂(u) =
∑
x∈Fn

2

ϕ(x) (−1)u·x; u ∈ Fn2 , (1)

where “·” is some chosen inner product in Fn2 (for instance, the usual inner
product u · x =

∑n
i=1 uixi, or, if Fn2 is endowed with the structure of F2n , the

inner product u ·x = trn(ux), where trn(x) =
∑n−1
i=0 x

2i is the so-called absolute
trace function). The pseudo-Boolean function is identically null if and only if its
Fourier-Hadamard transform is identically null (see e.g. [11, Subsection 2.3.3]).

Given an n-variable Boolean function f , we can apply the Fourier-Hadamard
transform to f itself viewed as a pseudo-Boolean function, which gives f̂(u) =∑
x∈supp(f)(−1)u·x, where supp(f) = {x ∈ Fn2 ; f(x) = 1}, or to the so-called

sign function ϕ = (−1)f , which gives the Walsh transform of f : Wf (u) =∑
x∈Fn

2
(−1)f(x)+u·x. The two transforms are closely related by the formula:

Wf (u) = 2nδ0(u)− 2f̂(u), (2)

where δ0 is the Dirac (or Kronecker) symbol. Note that f is then balanced (that
is, has Hamming weight 2n−1) if and only if Wf (0n) = 0. The Walsh transform
satisfies the so-called inverse Walsh transform relation:∑

u∈Fn
2

Wf (u)(−1)u·v = 2n(−1)f(v),∀v ∈ Fn2 , (3)

the Parseval relation: ∑
u∈Fn

2

W 2
f (u) = 22n, (4)

the Titsworth relation:∑
u∈Fn

2

Wf (u)Wf (u+ v) = 0,∀v 6= 0n, (5)

and the Wiener-Khintchine formula which expresses that the Fourier-Hadamard
transform of W 2

f equals 2n times the autocorrelation function of f :∑
u∈Fn

2

W 2
f (u)(−1)u·a = 2n

∑
x∈Fn

2

(−1)Daf(x), (6)

where Daf(x) = f(x) + f(x+ a) is called a derivative of f .
In this paper, we shall be interested in the 2n-variable Boolean functions

γF related to (n, n)-functions F . Let us then specify what are the Fourier-
Hadamard and Walsh transforms for such a 2n-variable Boolean function, say γ:
the input can be viewed as a pair (a, b) of elements of Fn2 or of F2n , and we have
γ̂(u, v) =

∑
(a,b)∈supp(γ)(−1)u·a+v·b, and Wγ(u, v) =

∑
a,b∈Fn

2
(−1)γ(a,b)+u·a+v·b.

For a given (n,m)-function F , that is, a function from Fn2 to Fm2 , the value
WF (u, v) of the Walsh transform of F at (u, v) ∈ Fn2 × Fm2 equals by definition
that of the Walsh transform of the Boolean function v · F at u.
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The nonlinearity of a Boolean function f equals its minimum Hamming
distance to affine Boolean functions u · x+ ε, u ∈ Fn2 , ε ∈ F2. It equals then:

nl(f) = 2n−1 − 1

2
max
u∈Fn

2

|Wf (u)|. (7)

It is bounded above by 2n−1 − 2
n
2−1, according to the covering radius bound

which is a direct consequence of the Parseval relation (see e.g. [11, Section 2.3])
and f is called bent if it achieves this value with equality. Bent functions exist
for n even only, and they are characterized by the fact that Wf (u) ∈ {±2

n
2 }

for every u. The nonlinearity of an (n,m)-function F equals the minimum
nonlinearity of its component functions v · F , v ∈ Fm2 \ {0m}. It equals then

nl(F ) = 2n−1 − 1

2
max
u∈Fn2

v∈Fm2 ,v 6=0m

|WF (u, v)|. (8)

It is of course bounded above by 2n−1 − 2
n
2−1 as well and F is called bent if it

achieves this value with equality. As shown in [20], bent functions exist if and

only if m ≤ n
2 and n is even. For m = n, nl(F ) is bounded above by 2n−1−2

n−1
2 ,

according to the Sidelnikov-Chabaud-Vaudenay (SCV) bound (see [15], or see
[11, Theorem 6]) and F is called almost bent (AB) if it achieves this value with

equality (n must be then odd). Equivalently, F is AB if WF (u, v) ∈ {0,±2
n+1
2 },

for every u ∈ Fn2 and every nonzero v ∈ Fn2 .
Any (n,m)-function can be uniquely represented by its algebraic normal

form (ANF):

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I , (9)

where aI belongs to Fm2 . The global degree of the ANF is called the algebraic
degree of F and denoted by dalg(F ). It equals the maximum algebraic degree of
the component functions of F . Affine functions are those functions of algebraic
degree at most 1. We call quadratic those functions of algebraic degree at most
2. A quadratic n-variable Boolean function is bent if and only if it has Hamming
weight 2n−1 ± 2

n
2−1. The algebraic degree of an n-variable Boolean function f

equals n if and only if its Hamming weight is odd and, in the case the weight is
smaller than n, it equals n − 1 if and only if

∑
x∈Fn

2
xf(x) 6= 0. The algebraic

degree of an (n,m)-function F equals n if and only if
∑
x∈Fn

2
F (x) 6= 0m. For all

these results, we refer to the survey [11]. If Fn2 is endowed with the structure of
F2n , then any (n, n)-function (and then, every (n,m)-functions where m divides
n, in particular, any Boolean functions) can be uniquely represented by its
univariate representation:

F (x) =

2n−1∑
i=0

ui x
i ∈ F2n [x]/(x2

n

+ x). (10)
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The algebraic degree of F equals then the largest Hamming weight of the binary
expansion of those exponents i whose coefficients ui are nonzero. The functions
whose univariate expression is a monomial are called power functions.

An (n,m)-function F is called differentially δ-uniform, for a given positive
integer δ, if for every a ∈ Fn2 \ {0n} and every b ∈ Fm2 , the equation F (x) +
F (x+a) = b has at most δ solutions. We denote the minimum of these integers
δ by δF and call it the differential uniformity of F . For every (n,m)-function
F , we have δF ≥ max(2, 2n−m). It is shown in [20] that for m < n, equality can
happen for bent functions only, and then if and only if n is even and m ≤ n

2 .
Note that we can have δF = 2 only when n ≥ m. An (n, n)-function F is

called almost perfect nonlinear (APN) if it is differentially 2-uniform, that is, if
for every a ∈ Fn2 \ {0n} and every b ∈ Fn2 , the equation F (x) + F (x + a) = b
has 0 or 2 solutions (i.e. the derivative DaF (x) = F (x) + F (x + a) is 2-to-
1). Equivalently, |{DaF (x), x ∈ Fn2}| = 2n−1. Still equivalently, for distinct
elements x, y, z, t of Fn2 , the equality x+ y + z + t = 0n implies F (x) + F (y) +
F (z) + F (t) 6= 0n, that is, the restriction of F to any 2-dimensional flat (i.e.
affine plane) of Fn2 is non-affine. There are several characterizations of APN
functions (see [11, Chapter 11]): by the numbers of solutions of systems of
equations, by the function γF defined above, and as proved in [15] by the fourth
moment of the Walsh transform:

∑
u,v∈Fn2
v 6=0n

W 4
F (u, v) = 24n+1 − 23n+1 and other

relations involving the Walsh transform [9].
A subclass of APN functions is that of AB functions, that we defined already

(they are the (n, n)-functions, n odd, whose nonlinearity equals 2n−1−2
n−1
2 , and

this is equivalent to saying that their Walsh transform takes values {0,±2
n+1
2 }).

3 Generalities on γF

Recall from [13] the definition of the Boolean function γF associated to any
(n, n)-function F :

∀a, b ∈ Fn2 , γF (a, b) =

{
1 if a 6= 0n and ∃x ∈ Fn2 ;F (x) + F (x+ a) = b,
0 otherwise.

.

In other words, the support of the function b ∈ Fn2 7→ γF (a, b) equals the empty
set for a = 0n and the image set of DaF for a 6= 0n (we shall denote it by
Im(DaF )). Still equivalently, denoting by GF the graph {(x, F (x)), x ∈ Fn2} of
F , the support of γF equals (GF + GF ) \ {(0n, 0n)}. Function F is APN if and
only if γF has Hamming weight 22n−1 − 2n−1, and we have more precisely for
F APN that the Boolean function b 7→ γF (a, b) is balanced if a 6= 0n and is null
if a = 0n. The definition of γF from F makes it rather difficult to study.

A property of γF is that, for every nonzero a ∈ Fn2 ,
∑
b∈Fn

2
b γF (a, b) equals

the same value in Fn2 , equal to
∑
x∈Fn

2
F (x), for every a 6= 0n. Indeed, let

Ea be any linear hyperplane not containing a, we have
∑
b∈Fn

2
b γF (a, b) =∑

x∈Ea
DaF (x) =

∑
x∈Ea

F (x) +
∑
x∈Ea

F (x+ a) =
∑
x∈Fn

2
F (x).

If F is a permutation then, since F−1 is also APN and γF−1(a, b) = γF (b, a),
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because F−1(x)+F−1(x+a) = b is equivalent to F (F−1(x))+F (F−1(x)+b) =
a, we deduce that the sum

∑
a∈Fn

2
γF (a, b) calculated in Z (i.e. the Ham-

ming weight of the restriction of γF obtained by fixing b) equals 2n−1 and∑
a∈Fn

2
a γF (a, b) equals the same value in Fn2 for every b 6= 0n, this value being

equal to
∑
x∈Fn

2
F−1(x). But if F is not a permutation, then it is difficult to

see the specificities of
∑
a∈Fn

2
a γF (a, b), and even those of the Hamming weight∑

a∈Fn
2
γF (a, b) of the restriction of γF obtained by fixing b, as can already

be seen for n even with the simplest APN functions over F2n , that are the
Gold APN functions F (x) = x2

j+1, where gcd(j, n) = 1: for b 6= 0n, we have

{a ∈ F2n ; γF (a, b) = 1} = {a ∈ F2n \ {0n};∃x ∈ F2n ; a2
j+1(x2

j

+ x + 1) =

b} = {a ∈ F2n ;∃x ∈ F2n \ (F4 \ F2); a2
j+1 = b

x2j+x+1
} = {a ∈ F2n ;∃y ∈

F2n \ {0}; trn(y) = 0, a2
j+1 = b

y}, and we know (as proved by Dobbertin for

every APN power function in even dimension, and reported for instance in [11,

Proposition 165]) that a2
j+1 ranges over the set of cubes of F2n when a ranges

over F2n and a 7→ a2
j+1 is 3-to-1 over F∗2n . This leads to determining those

cubes which equal b
y with trn(y) = 0.

Remark. By using the Poisson summation formula (see e.g. [11, Corollary 3]),
it is possible to relate the Hamming weight of any restriction of γF obtained
by fixing a, respectively b, to the Fourier-Hadamard transform of γF (or to its
Walsh transform), that is related as shown in [13] (see also Section 6 in the
present paper) to the Walsh transform of F . We shall not give the details of
the calculation, but we could check that this gives with no surprise that the
Hamming weight of the restriction of γF obtained by fixing a 6= 0n equals 2n−1.
It also gives that the Hamming weight of the restriction of γF obtained by fixing
b 6= 0n equals 2−(n+1)

∑
v∈Fn

2
W 2
F (0n, v)(−1)b·v (this could also be shown by us-

ing the Wiener-Khintchine formula, see e.g. [11, Relation 2.53]). We find again
2n−1 in the case of a permutation since we have then WF (0n, v) = 0 for every
v 6= 0n. For non-permutations,

∑
v∈Fn

2
W 2
F (0n, v)(−1)b·v clearly depends on b.�

Another property of γF is that, for every a, a′, b ∈ Fn2 where a and a′ are
nonzero and distinct, if γF (a, b) = 1 then there exists b′ such that γF (a′, b′) =
γF (a + a′, b + b′) = 1. Indeed, there exists x ∈ Fn2 such that b = DaF (x) and
taking b′ = Da′F (x), we have b+ b′ = Da+a′F (x+ a).

Since APN functions are rare, it seems obvious that γF cannot be any 2n-
variable Boolean function having the properties described above, but little is
known on γF for general APN functions F , which would make it easier to
distinguish when a general 2n-variable Boolean function having such properties
can be a γF function. After the investigation we shall make in the present paper,
the Walsh transform will appear as the most efficient way of selecting functions
likely to be γF functions (see Section 6).

Quadratic APN functions have a well-known additional property, which
makes them slightly easier to find than general APN functions: the equation
DaF (x) = b being linear, APNness reduces for them to the condition that,

7



for every a 6= 0n, the homogeneous linear equation ϕF (a, x) := DaF (x) +
DaF (0n) = F (x) + F (x + a) + F (0n) + F (a) = 0n has exactly two solutions1,
which are 0n and a. Note that ϕF is bilinear (more precisely, symplectic).
Quadratic APN functions are probably rare among all APN functions, but
they are rather numerous among known APN functions. The γF functions of
quadratic APN functions have also well-known additional properties: for every
a 6= 0n, the support Im(DaF ) of the function b 7→ γF (a, b) is an affine hyper-
plane, and since for every a, a′, the functionDaDa′F (x) takes constant value and
this value equalsDaDa′F (0n) = ϕF (a, a′), then for every a, a′ 6= 0n, Im(DaF ) is
stable under translation by ϕF (a, a′), since DaF (x)+DaDa′F (x) = DaF (x+a′)
belongs to Im(DaF ).

The general expression of the algebraic normal form or the univariate rep-
resentation of γF has never been studied (the latter has been given only for
the main examples of known almost bent functions, see [4]). We briefly address
them in Section 4.

No real study of the algebraic degree of γF when F is a general APN func-
tion has been made (and for some known APN functions, it is not even easy to
determine the algebraic degree of their γF function).
When F is almost bent, then we know that since γF is bent, it has algebraic
degree at most n (see e.g. [11, Theorem 13] for the fact that any 2n-variable
bent function has algebraic degree at most n), but what is the lowest possible
algebraic degree is unknown (and what are all the particularities of this bent
function is also not clear).
The possible values of the algebraic degree of γF function for general APN func-
tion F are even more of a mystery. They can be as large as 2n − 4 (at least
for n odd) since when F is the multiplicative inverse function F (x) = x2

n−2,
which is APN for n odd, we have (see [13]) γF (a, b) = trn

(
1
ab

)
+ 1 + δ0(a) +

δ0(b) + δ0(a)δ0(b) + δ0(ab + 1) and the algebraic degree of this function is
2n − 4, since the algebraic degree of trn

(
1
ab

)
and of δ0(a)δ0(b) + δ0(ab + 1) =

(a2
n−1 + 1)(b2

n−1 + 1) + (ab+ 1)2
n−1 + 1 =

∑2n−2
i=0 (ab)i + a2

n−1 + b2
n−1 equals

2n− 2 and these two functions have the same terms of algebraic degree 2n− 2,
no term of algebraic degree 2n−3 and different terms of algebraic degree 2n−4.
Can the algebraic degree be larger than 2n−4? This is not clear (but we know it
cannot equal 2n since γF has an even Hamming weight). It equals 2n− 1 if and
only if F has algebraic degree n, since we have seen that

∑
b∈Fn

2
b γF (a, b) equals

the same value
∑
x∈Fn

2
F (x) for every a 6= 0n and is zero for a = 0n, and this im-

plies
∑
a,b∈Fn

2
(a, b) γF (a, b) = (0n,

∑
x∈Fn

2
F (x)). We know (see Section 2) that

the nullity of these two sums is equivalent to the facts that, respectively, γF has
degree less than 2n− 1 and F has degree less than n. Determine whether there
exist APN (n, n)-functions of algebraic degree n is an open problem (proofs of
non-existence are given in [5] within some general classes of functions).

Remark. According to the observations above, we have also that the algebraic
degree of an APN function F equals n if and only if at least one (equivalently,

1This generalizes to plateaued APN functions, see [8, 11].
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any) of the functions fa(b) = γF (a, b), a 6= 0n, has algebraic degree n− 1. �

What can be the lowest possible algebraic degree of γF functions is also un-
known. We know it cannot be 0 or 1 because of the Hamming weight of γF .
Note that McEliece’s theorem [17] does not give more information: it tells us
that the Hamming weights of 2n-variable Boolean functions of algebraic degree

at most r are divisible by 2d
2n
r e−1. Since the Hamming weight of γF is not divis-

ible by 2n, we have
⌈
2n
r

⌉
− 1 < n and this only gives dalg(γF ) > 1. Considering

the Hamming weight of restrictions does not seem to give information either:
for instance, given a 6= 0n , the restriction of γF to the (n + 1)-dimensional
subspace {0n, a} × Fn2 has Hamming weight 2n−1, which only tells that the al-
gebraic degree is at least 2.
Note however that if γF is quadratic, then it is bent, and F is then almost
bent (and n is odd), according to the result of [13] recalled in the introduction.
The existence of APN functions F such that γF is quadratic reduces then to
the existence of almost bent functions having this property, and the minimum
algebraic degree of γF when F is an APN (n, n)-function with n even is at least
3. No (almost bent) function is known with a quadratic γF function for n ≥ 5

(even for the quadratic Gold APN functions F (x) = x2
j+1, gcd(j, n) = 1, we

have γF (a, b) = 1 + trn(1 + ba2
n−2j−2) as observed in [13] and the algebraic

degree of γF is then n− 2). We leave open the question of the determination of
the possible values of the algebraic degrees of the γF functions of APN (n, n)-
functions, respectively, of almost bent (n, n)-functions, and in particular of their
minimum values.

Nothing seems to be known either on the linear structures of γF , that is,
those nonzero pairs (α, β) ∈ (Fn2 )2 such that D(α,β)γF (a, b) = γF (a, b) + γF (a+
α, b+ β) is constant (even if we restrict ourselves to 0-valued linear structures,
that is, those such that D(α,β)γF (a, b) is the zero function - the others being
called 1-valued). The study of linear structures is often one of the simplest
studies to be done on Boolean functions. However, for γF functions, the question
seems wide open, while knowing the linear structures on the γF functions of
general APN functions F would tell much on F . We obtain partial results in
Section 5 and deduce corollaries in Subsection 5.3.
What is known from [19] is that, for every APN (n, n)-function F with n even,
there exists v 6= 0n such that the component function v·F has no (nonzero) linear
structure, that is, admits no a 6= 0n such that the Boolean function v · (DaF )
is constant. This is equivalent to saying that, for every nonzero a ∈ Fn2 , the
set {b ∈ Fn2 ; γF (a, b) = 1} is neither included in {0, v}⊥ nor disjoint from this
hyperplane. In other words, {b ∈ Fn2 ; γF (a, b) = 1} is neither equal to {0, v}⊥
nor equal to its complement. This is good to know but it is rather thin as a
piece of information on γF .

We shall see in Subsection 6.3 that the nonlinearity of γF is closely related
to that of F itself; many questions remain open about them. We shall provide
a lower bound in Subsection 6.2 thanks to results obtained in Subsections 6 and
6.1.
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It is difficult to make conjectures about the questions evoked above, since
all known APN functions, except a sporadic one due to Edel and Pott [16], are
either power functions or quadratic functions, and seem then peculiar.

4 On the algebraic normal form and univariate
representation of γF

Let F be known by its ANF:

F (x) =
∑

I⊆{1,...,n}

uI
∏
i∈I

xi; uI , x ∈ Fn2 .

Let us denote by f1, . . . , fn the coordinate functions of F . Denoting uI =
(uI,1, . . . , uI,n), we have that, for every i = 1, . . . , n, the ANF of fi is

fi(x) =
∑

I⊆{1,...,n}

uI,i
∏
i∈I

xi.

For every a ∈ Fn2 , we have:

DaF (x) =
∑

I⊆{1,...,n}

uI

∑
J(I

∏
i∈I\J

ai
∏
i∈J

xi

 ,

Dafi(x) =
∑

I⊆{1,...,n}

uI,i

∑
J(I

∏
i∈I\J

ai
∏
i∈J

xi

 .

For every a, b ∈ Fn2 , we have γF (a, b) = 1 if and only if a 6= 0n and ∃x ∈ Fn2 ; b =
DaF (x). Since the contrary of “∃x ∈ Fn2 ; b = DaF (x)” is “∀x ∈ Fn2 ; ∃i ∈
{1, . . . , n}; bi +Dafi(x) + 1 = 0” and a product is null if and only if one of its
terms is null, we have then:

γF (a, b) =

(δ0(a) + 1)

1 +
∏
x∈Fn

2

(
n∏
i=1

[bi +Dafi(x) + 1] + 1

) =

(δ0(a)+1)

1 +
∏
x∈Fn

2

 n∏
i=1

bi +
∑

I⊆{1,...,n}

uI,i

∑
J(I

∏
i∈I\J

ai
∏
i∈J

xi

+ 1

+ 1

 .
This expression is rather complex, but the situation simplifies if we con-

sider the univariate representation of F (leading to the bivariate expression of
γF (a, b)) instead of its ANF. Let:

F (x) =

2n−1∑
i=0

uix
i; ui, x ∈ F2n .
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For every a ∈ F2n , we have:

DaF (x) =

2n−1∑
i=0

ui
∑

j�i;j 6=i

ai−jxj ,

where j � i means that the binary expansion of j is covered by that of i. Indeed,

for i =
∑
k∈K 2k, we have (x+a)i =

∏
k∈K

(x2
k

+a2
k

) =
∑
K′⊆K

a
∑

k∈K\K′ 2
l

x
∑

k∈K′ 2
l

.

We have δ0(a) = a2
n−1 + 1 and for every a, b ∈ F2n , γF (a, b) = 1 if a 6= 0 and

∃x ∈ F2n ; b = DaF (x). The contrary of “∃x ∈ F2n ; b = DaF (x)” is then
“
∏
x∈F2n

(b+DaF (x))2
n−1 = 1”. We have then, for every a, b ∈ F2n :

γF (a, b) =

a2
n−1

1 +
∏
x∈F2n

(b+DaF (x))
2n−1

 =

a2
n−1

1 +
∏
x∈F2n

b+

2n−1∑
i=0

ui
∑

j�i;j 6=i

ai−jxj

2n−1
 . (11)

Note that this expression of a and b has in general degree larger than 2n in
each variable a and b. The bivariate representation of γF (a, b) is obtained after
reducing Relation (11) modulo a2

n

+ a and b2
n

+ b, that is, concretely, after:
- reducing modulo 2n − 1 each exponent of a (resp. b) which is not a multiple
of 2n − 1,
- replacing by 2n − 1 each nonzero exponent of a (resp. b) which is a multiple
of 2n − 1,
and this seems difficult to perform on the general expression.

5 On the linear structures of γF and their rela-
tion with bent components of F

We shall see in Subsection 5.3 that the study of 0-valued linear structures of the
form (0n, β) of APN functions have consequences on the number of their bent
components. Let us first show that these are the only ones which could possibly
exist. In the next proposition WγF denotes the Walsh transform of γF .

Proposition 1. Let n be any positive integer, F any APN (n, n)-function, α
and β any elements of Fn2 , and ε ∈ F2. Function γF admits (α, β) for ε-valued
linear structure if and only if:

∀u, v ∈ Fn2 , (α · u+ β · v = ε+ 1)⇒WγF (u, v) = 0.

Function γF admits then no 1-valued linear structure and no (0-valued) linear
structure (α, β) such that α 6= 0n.
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For every β ∈ Fn2 , (0n, β) is a 0-valued linear structure of γF if and only if all
the component functions v · F such that v 6∈ {0n, β}⊥ are bent.
No APN (n, n)-function with n odd has linear structures.

Proof. It is known (see e.g. [11, Proposition 29]) that any n-variable Boolean
function f admits e ∈ Fn2 for 0-valued (resp. 1-valued) linear structure if and
only if the support {u ∈ Fn2 ; Wf (u) 6= 0} of Wf is included in {0n, e}⊥ = {x ∈
Fn2 ; e ·x = 0} (resp. in its complement). This proves the first part of the propo-
sition, after replacing n by 2n, f by γF and e by (α, β).
It is known (see [13], or Section 6 below) that, for every u, v ∈ Fn2 , WγF (u, v)
equals 2n if v = 0n, and 2n − W 2

F (u, v) otherwise. Since WγF (u, v) is then
nonzero for every u if v = 0n, this shows that, if (α, β) is a linear structure of
γF , then the affine hyperplane {(u, v) ∈ (Fn2 )2; α · u+ β · v = ε+ 1} has empty
intersection with the vector space Fn2 × {0n}, that is, the equation α · u = ε+ 1
has no solution, or equivalently, ε = 0 and α = 0n. The rest of the proposition
is straightforward. �

Open problem 1: Address the (non)existence of the linear structures of γF
functions for general APN functions. Proposition 1 allows to restrict the study
to 0-valued linear structures of the form (0n, β) for n even.

Remark. Thanks to Proposition 1, determining whether, for a given APN
(n, n)-function F (n even), function γF has linear structures, is a sub-problem
of determining what is the maximum dimension of the affine spaces of bent
components of F . Indeed, if F admits a linear structure (0n, β), then the com-
plement, say H, of {0n, β}⊥ is an affine hyperplane of Fn2 such that all the
components v · F , v ∈ H, of F are bent, and conversely, if we have such an
affine hyperplane, then we have a linear structure. And it is easily seen (using
that any APN function has nonzero nonlinearity, see [11, Proposition 161]) that,
for any APN function F , the dimension of an affine subspace A of Fn2 equals the
dimension of the affine subspace {v ·F ; v ∈ A} of Bn. The functions v ·F , v ∈ H,
above provide then an affine space of maximum dimension of bent components.
This leads naturally to the following open question: what is, for a given even
n, the largest dimension of the affine spaces of bent functions? All these ques-
tions seem difficult (probably more difficult, but also more interesting from the
viewpoint of bent functions, than determining the number of bent components
of vectorial functions, see Subsection 5.3). �

Open problem 2: Determine, for every even positive integer n, the maximum
dimension of affine spaces of bent components of APN (n, n)-functions.

Open problem 3: Determine, for every even positive integer n, the maximum
dimension of affine spaces of bent n-variable Boolean functions.

Remark. An m-dimensional affine space of n-variable bent functions (n even)
is a set of bent functions over Fn2 of the form f +

∑
i∈I gi where I ranges over

12



the subsets of {1, . . .m} and where the gi’s are linearly independent Boolean
functions. Let us denote by G the (n,m)-function whose coordinate functions
are the gi’s. The functions write then f + y ·G where y ranges over Fm2 and “·”
is the usual inner product. Note that the function h : (x, y) 7→ f(x) + y ·G(x)
is a Maiorana-McFarland function (see [11]).
The function x 7→ f(x)+y ·G(x) is bent for every y ∈ Fm2 if and only if, for every
nonzero a ∈ Fn2 and every y, the function Daf(x) + y ·DaG(x) is balanced, that
is,
∑
x∈Fn

2
(−1)Daf(x)+y·G(x) = 0, and using that a pseudo-Boolean function is

identically null if and only if its Fourier-Hadamard transform is identically null,
this is equivalent to:

∀a ∈ Fn2 , a 6= 0,∀b ∈ Fm2 ,
∑
x∈Fn2
y∈Fm2

(−1)Daf(x)+y·DaG(x)+b·y =

2m
∑

x∈(DaG)−1(b)

(−1)Daf(x) = 0.

A necessary condition for all functions f(x) + y ·G(x) to be bent is then that,
for every nonzero a ∈ Fn2 and every b in Fm2 , the size of the set (DaG)−1(b) is
divisible by 4. Indeed, if for some a 6= 0 and some b we have |(DaG)−1(b)| ≡ 2
(mod 4), the sum

∑
x∈(DaG)−1(b)(−1)Daf(x) is the double of an odd integer, since

both the function Daf and the set (DaG)−1(b) are invariant under translation
by a (in particular, if G is an APN (n, n)-function, then it is impossible that
the n-dimensional affine space of n-variable functions f(x) + y ·G(x) is made of
bent functions, only).
Once the necessary condition is satisfied, a necessary and sufficient condition is
that, for every a 6= 0, function Daf is balanced on each pre-image by DaG. �

In the rest of this section, we shall, according to Proposition 1, assume n
even and focus on 0-valued linear structures of the form (0n, β). Function γF
admits (0n, β) for 0-valued linear structure if and only if, for every (a, b) such
that γF (a, b) = 1, we have γF (a, b + β) = 1 (indeed, the condition is neces-
sary, and it is sufficient since this implies that γF (a, b) = 1 is equivalent to
γF (a, b + β) = 1 and therefore, γF (a, b) = 0 is equivalent to γF (a, b + β) = 0,
and then D(0n,β)γF (a, b) equals 0). Function γF admits then (0n, β) for 0-valued
linear structure if and only if, for every nonzero a and every x in Fn2 , there ex-
ists y ∈ Fn2 such that DaF (x) +DaF (y) = β. Thanks to the change of variable
b = x + y, we have that γF admits (0n, β) for 0-valued linear structure if and
only if, for every nonzero a and every x in Fn2 , there exists b ∈ Fn2 such that
DaDbF (x) = β.

Remark. Denoting ∆ = {(x, x); x ∈ Fn2}, we have that F being APN, the
function φ : (a, x, y) ∈ (Fn2 \ {0n})× ((Fn2 )2 \∆) 7→ DaF (x) +DaF (y), involved
in this characterization, is such that, when fixing any two elements among a, x
and y, the corresponding restriction of φ is 2-to-1. Indeed, if we fix a 6= 0n and
x (or y), then this corresponds exactly to the definition of APNness, and if we
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fix x and y such that x 6= y and consider two distinct elements a, a′ in Fn2 \{0n},
then we have that DaF (x) + DaF (y) = Da′F (x) + Da′F (y) if and only if
DaF (x)+DaF (y)+Da′F (x)+Da′F (y) = Da+a′F (x+a)+Da+a′F (y+a) = 0 and
F being APN and x+y nonzero, this is equivalent to saying that x+y = a+a′. �

It seems difficult to study the 0-valued linear structures of the form (0n, β)
of γF , in general. We have seen that handling γF in bivariate representation is
simpler than with the ANF. Let us then consider the expression in (11). The
pair (0, β) is a linear structure of γF if and only if the bivariate expression of
γF (a, b) is invariant under translation of b by β, that is, according to (11), if for
every a 6= 0:

∏
x∈F2n

b+

2n−1∑
i=0

ui
∑

j�i;j 6=i

ai−jxj

2n−1

≡

∏
x∈F2n

b+ β +

2n−1∑
i=0

ui
∑

j�i;j 6=i

ai−jxj

2n−1

[mod a2
n

+ a, b2
n

+ b].

It seems hard to go further with this method, when dealing with general APN
functions; this would need to handle the reduction modulo a2

n

+ a and b2
n

+ b,
which is necessary before we can apply the uniqueness of the univariate repre-
sentation of an (n, n)-function.

5.1 The case of APN power functions

APN power functions are easier to study. For F (x) = xd and a 6= 0, we
have γF (a, b) = γF (1, b

ad
), since DaF (ax) = adD1F (x). Then, (0, β) is a 0-

valued linear structure of γF if and only if, for every a 6= 0, β
ad

is a 0-valued
linear structure of the n-variable function γF (1, b). We know, according to the
Dobbertin result already recalled and recorded in [11, Proposition 165], that
when a ranges over F∗2n (n even), ad ranges over the multiplicative group C of all
cubes of F∗2n . The existence of a (nonzero) 0-valued linear structure of the form
(0, β) for function γF would imply the invariance of the support of γF (1, b) under
the translation by any element of a coset bC of C, and then under translation by
any element of b < C > where < C > is the F2-vector space spanned by C. It is
easily seen that, n being even, x3 + (x+ 1)3 ranges over the set E of elements of
trace 0 and then C +C equals C E, since (ax)3 + (ax+ a)3 = a3(x3 + (x+ 1)3),
and therefore |C +C| > |E| = 2n−1 since there are cubes of traces 0 and 1, and
therefore < C >= Fn2 (since its dimension is strictly larger than n−1 and equals
then n), a contradiction since γF is not constant. According to Proposition 1,
we have then:

Proposition 2. For any n and for any APN power (n, n)-function F , the γF
function has no (nonzero) linear structure.
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Remark. Despite the result of Proposition 2, for every a 6= 0n, the Boolean
function b 7→ γF (a, b) may have linear structures. For instance in the case of

Gold APN functions over F2n : F (x) = x2
j+1, gcd(j, n) = 1, we have that

β is a linear structure of b 7→ γF (a, b) if and only if, for every a ∈ F2n

there exists y ∈ F2n such that a2
j

x + ax2
j

+ a2
j+1 + a2

j

y + ay2
j

+ a2
j+1 =

a2
j+1

(
x+y
a +

(
x+y
a

)2j)
= β and this happens for every β such that trn

(
β

a2
j+1

)
=

0, but there is no β 6= 0 which satisfies this condition for every a 6= 0. �

5.2 Another class admitting no linear structure

Another case where the study of linear structures of γF is simplified (in fact,
is straightforward) is when F is plateaued with a single amplitude, that is,
when there exists some integer λ such that, for every u, v ∈ Fn2 , v 6= 0n, we have
WF (u, v) ∈ {0,±λ}. Indeed, since, according to Proposition 1, some component
functions of F should be bent, all should then be bent, that is, F should be bent,
and we know from [20] that no bent (n, n)-function exists.
According to [8], F is plateaued with a single amplitude if and only if the size
of the set {(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w} does not depend on x ∈ Fn2 nor on
w ∈ Fm2 when w 6= 0n. Let us extend the non-existence result to those functions
such that, for some x ∈ Fn2 , the size of the set {(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}
does not depend on w ∈ Fm2 when w 6= 0n.

Proposition 3. Let n be any positive integer and F any APN (n, n)-function
such that, for some x ∈ Fn2 , the size of the set {(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}
does not depend on w ∈ Fm2 when w 6= 0n. Then F admits non linear structure.

Proof. According to Proposition 1, we can restrict ourselves to a 0-valued linear
structure of the form (0n, β). Suppose that (0n, β) is such a linear structure of
γF . Then, for every nonzero a, there exists b ∈ Fn2 such that DaDbF (x) = β,
and we have then |{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = β}| ≥ 2n − 1, but then
we have |{(a, b) ∈ (Fn2 )2 ; a 6= 0n, b 6= 0n, a 6= b}| ≥

∑
w∈Fn

2 \{0n}
|{(a, b) ∈

(Fn2 )2 ; DaDbF (x) = w}| = (2n − 1) |{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = β}| ≥
(2n − 1)2, a contradiction since |{(a, b) ∈ (Fn2 )2 ; a 6= 0n, b 6= 0n, a 6= b}| =
(2n − 1)(2n − 2). �

Remark. The class of those APN functions such that, for some x, the size
|{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}| does not depend on w ∈ Fm2 when w 6=
0n, is larger than the class of plateaued APN functions with a single ampli-
tude. Let us give examples of such functions which are not plateaued with
a single amplitude. Let us take for instance x = 0n and restrict ourselves
to those (n, n)-functions F such that F (0n) = 0n. We have that |{(a, b) ∈
(Fn2 )2 ; DaDbF (0n) = w}| = 2−n

∑
a,b,v∈Fn

2

(−1)v·(F (a)+F (b)+F (a+b)+w), equal to

2−4n
∑
a,b,v,u,u′,u′′∈Fn

2
WF (u, v)WF (u′, v)WF (u′′, v)(−1)(u+u

′′)·a+(u′+u′′)·b+v·w =
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2−2n
∑
v,u∈Fn

2
W 3
F (u, v)(−1)v·w and |{(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w}|, does not

depend on w 6= 0n if and only if
∑
u∈Fn

2
W 3
F (u, v) does not depend on v 6= 0n.

This is for instance the case of power permutations.
Note that the proof of Proposition 3 above does not work for general plateaued
functions (satisfying ∀u, v ∈ Fn2 ,WF (u, v) ∈ {0,±λv} for some integers λv de-
pending only on v): it is shown in [8] that F is plateaued if and only if the size of
the set {(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w} does not depend on x ∈ Fn2 ; but chang-
ing x for another value does not change {(a, b) ∈ (Fn2 )2 ; DaDbF (x) = w} into a
disjoint set, contrary to changing w for another value (when F is quadratic, it
does not even change the set at all). Hence, we cannot have x playing the role
played by w in the proof above. �

5.3 On the bent component functions of APN functions

We have seen that the component function v · F of an APN function F is
bent if and only if WγF (u, v) equals 0 for every u ∈ Fn2 . Now, since WγF (u, v)
can be viewed as the value at u of the Fourier-Hadamard transform of the
function a 7→

∑
b∈Fn

2
(−1)γF (a,b)+v·b, and since (as already used), a pseudo-

Boolean function is identically null if and only if its Fourier-Hadamard transform
is identically null, we have the following property, which could be proved also
by using the Wiener-Khintchine formula:

Proposition 4. Let F be any APN (n, n)-function. Then for every nonzero
v ∈ Fn2 , the component function v · F is bent if and only if, for every a ∈ Fn2 ,
the Boolean function b 7→ γF (a, b) + v · b is balanced.

Remark. In this proposition, v is assumed nonzero. If we take v = 0n and
if F is APN, then the Boolean function b 7→ γF (a, b) + v · b is balanced for
every a 6= 0n but not for a = 0n. We could have stated the proposition with a
nonzero instead of v nonzero since, if v 6= 0n, b 7→ γF (a, b)+v ·b is automatically
balanced for a = 0n. �

Remark. Replacing (−1)γF (a,b) (respectively, (−1)v·b) by 1−2γF (a, b) (respec-
tively, by 1 − 2v · b) in the sum

∑
b∈Fn

2
(−1)γF (a,b)+v·b and using that b 7→ v · b

is balanced for v 6= 0n (respectively, b 7→ γF (a, b) is balanced for a 6= 0n), we
have that, for every nonzero v, the component function v · F is bent if and
only if, for every nonzero a ∈ Fn2 , the Boolean function b 7→ v · b is balanced
on the set {b ∈ Fn2 ; γF (a, b) = 1} or its complement (respectively, the Boolean
function b 7→ γF (a, b) is balanced on the hyperplane of equation v · b = 1 or its
complement). �

Remark. Poposition 4 combined with Proposition 1 shows that (0n, β) is a
linear structure of γF if and only if, for every v 6∈ {0n, β}⊥ and every a ∈ Fn2 ,
the Boolean function b 7→ γF (a, b) + v · b is balanced. �

It is shown in [22] that the number of bent components of any (n, n)-function
is at most 2n−2

n
2 and that if an (n, n)-function F has 2n−2

n
2 bent components,
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then the set of values of v such that v ·F is not bent is an n
2 -dimensional vector

space. In [18] (see also some precisions in the more recent reference [1]) is
shown that the set of those (n, n)-functions having 2n − 2

n
2 bent components

does not contain any APN plateaued function (that is, as we saw already, any
APN function F satisfying ∀u, v ∈ Fn2 ,WF (u, v) ∈ {0,±λv} for some integers
λv depending only on v), and then in particular any quadratic APN function.
We have:

Corollary 1. For every even n and every APN (n, n)-function F , function F
has 2n−2

n
2 bent components if and only if there exists an n

2 -dimensional vector
subspace V of Fn2 such that any pair (0n, β) with β ∈ V is a 0-valued linear
structure of γF .

Proof. Let F have 2n − 2
n
2 bent components, and according to [22], E be

the n
2 -dimensional vector space such that v · F is bent for v 6∈ E. Let us

denote, for every a ∈ Fn2 , by fa the n-variable function b 7→ γF (a, b). Ac-
cording to Proposition 4, for every a ∈ Fn2 , we have Wfa(v) = 0 for ev-
ery v 6∈ E. According to the inverse Walsh transform relation (3), we have∑
v∈Fn

2
Wfa(v)(−1)v·b =

∑
v∈EWfa(v)(−1)v·b = 2n(−1)fa(b),∀b ∈ Fn2 , and this

implies that, for every β ∈ E⊥ := {x ∈ Fn2 ; v ·x = 0, ∀v ∈ E} and every b ∈ Fn2 ,
we have fa(b+β) = fa(b). We have then, for every a, b ∈ Fn2 and every β ∈ E⊥,
that γF (a, b+β) = γF (a, b) and (0n, β) is a 0-valued linear structure of γF . This
completes the proof in the direct sense since E⊥ has dimension n

2 . The converse
is similar, using that fa(b + β) = fa(b) for every b ∈ Fn2 and every β ∈ E⊥ is
equivalent to Wfa(v) = 0 for every v 6∈ E. �

Proposition 2 and Corollary 1 show then:

Corollary 2. For every even n, any APN power (n, n)-function has strictly
less than 2n − 2

n
2 bent components.

The following problem is posed in [22, Question 8]: are there any APN func-
tions having 2n − 2

n
2 bent components? We leave it open.

6 On the Walsh transform of γF and its nonlin-
earity

As already observed in [13], for every APN (n, n)-function F , we have that

γF (a, b), viewed as a pseudo-Boolean function, equals |(DaF )−1(b)|
2 −2n−1δ0(a, b),

and then, by the linearity of the Fourier-Hadamard transform: γ̂F (u, v) =
1

2

∑
a,x∈Fn

2

(−1)u·a+v·DaF (x) − 2n−1 =
1

2
W 2
F (u, v)− 2n−1, which implies that γF is

bent if and only if F is AB. According to Relation (2) applied with 2n in the place
of n and (u, v) in the place of u, we have then WγF (0n, 0n) = 22n−W 2

F (0n, 0n)+

17



2n = 2n, and for u 6= 0n and v 6= 0n: WγF (u, 0n) = −W 2
F (u, 0n) + 2n = 2n and

WγF (u, v) = −W 2
F (u, v) + 2n, and then, for every u, v:

WγF (u, v) =

{
2n if v = 0n,
2n −W 2

F (u, v) if v 6= 0n.
(12)

This kind of relation between the Walsh transform of a 2n-variable Boolean
function and the Walsh transform of an (n, n)-function is remarkable. The fact
that the Walsh transform of this 2n-variable Boolean function has all its values
bounded above by 2n (like bent functions) and that 2n−WγF (u, v) is moreover
always a square is probably the most distinctive we know for functions γF (with
of course also the fact that each restriction b 7→ γF (a, b) is balanced for a 6= 0n).
It would be interesting to make a computer investigation of those 2n-variable
Boolean functions, say γ, having the two properties:
- the n-variable function b 7→ γ(a, b) is balanced for every a 6= 0n and null for
a = 0n,
- all the values taken by 2n −Wγ , where Wγ is the Walsh transform of γ, are
squares (equal to 0 when v = 0n).
The computation of Wγ has complexity 2n 22n which seems better than for
checking the APNness of an (n, n)-function. Once such functions γ are found,
we can use for each of them the resulting values of |WF (u, v)| and determine
the possible signs so that F exists. This may be the hard part (see e.g. [23] for
a related difficult problem) but we would have a corpus of investigation where
finding new APN functions.
We study in the next subsections additional information on F , respectively on
γF , provided by Relation (12).

Remark. When F is a power function F (x) = xd, x ∈ F2n , it is well known

that, for u 6= 0, we have WF (u, v) = WF (1, v
ud ) (since

∑
x∈F2n

(−1)trn(vx
d+ux) =∑

x∈F2n
(−1)trn(

v

ud x
d+x)). We have then WγF (u, v) = WγF (1, v

ud ). Of course,
this can also be checked directly. �

6.1 A new relation on the Walsh transform of APN func-
tions deduced from (12)

In this subsection, we shall review the known relations satisfied by one of the
functions WF and WγF , and see if this gives new information on the other.
- The inverse Walsh transform relation (3) applied to the component func-
tion v · F gives

∑
u∈Fn

2
WF (u, v)(−1)u·w = 2n(−1)v·F (w), which does not seem

to allow deducing any property on γF . The inverse Walsh transform rela-

tion applied to γF writes:
∑

u,v∈Fn
2

(−1)u·a+v·bWγF (u, v) = 2n
∑

u,v∈Fn
2

(−1)u·a+v·b −

18



∑
u,v∈Fn2
v 6=0n

(−1)u·a+v·bW 2
F (u, v) = 22n(−1)γF (a,b), that is:

∑
u,v∈Fn2
v 6=0n

(−1)u·a+v·bW 2
F (u, v) = 23nδ0(a, b)− 22n(−1)γF (a,b). (13)

or equivalently, using that (−1)γF (a,b) = 1− 2 γF (a, b):∑
u,v∈Fn

2

(−1)u·a+v·bW 2
F (u, v) = 23nδ0(a, b) + 22n+1γF (a, b).

This relation, which can also be deduced from Relation (6) applied to f = v ·F ,
does not give new information.
- The Parseval relation (4) applied to the component function v · F writes:
∀v ∈ Fn2 ,

∑
u∈Fn

2
W 2
F (u, v) = 22n, and implies:

∀v ∈ Fn2 , v 6= 0n,
∑
u∈Fn

2

WγF (u, v) = 0.

This relation can also be deduced by applying the Poisson summation formula
(see e.g. [11, Corollary 3]) to γF and using that the Boolean function b 7→
γF (a, b) is balanced for each a 6= 0n; it then gives no new information either.
The Parseval relation on γF provides (again) the value of the fourth moment
of the Walsh transform of an APN function, see [15]:

∑
u,v∈Fn

2
W 4
F (u, v) =

3 · 24n − 23n+1.
- The Titsworth relation (5) applied to v · F does not seem to give anything
exploitable on γF . When applied to γF , it writes:

∀(u0, v0) 6= (0n, 0n),
∑

u,v∈Fn
2

WγF (u, v)WγF (u+ u0, v + v0) = 0, (14)

that is:

• If v0 = 0n (and u0 6= 0n), then (by separating the case v = 0n from the
case v 6= 0n):

23n +
∑

u,v∈Fn2
v 6=0n

(2n −W 2
F (u, v))(2n −W 2

F (u+ u0, v)) = 0,

that is, by using the Parseval relation on the Boolean function v · F :∑
u,v∈Fn2
v 6=0n

W 2
F (u, v)W 2

F (u+u0, v) = −23n−23n(2n−1)+23n+1(2n−1) = 24n−23n+1.

• If v0 6= 0n (and u0 ∈ Fn2 ), then (by separating the cases v = 0n, v = v0
and v 6= 0n, v0):

2n+1

∑
u∈Fn

2

(2n −W 2
F (u, v0))

+
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∑
u,v∈Fn2

v 6=0n,v 6=v0

(2n −W 2
F (u, v))(2n −W 2

F (u+ u0, v + v0)) =

∑
u,v∈Fn2

v 6=0n,v 6=v0

(2n −W 2
F (u, v))(2n −W 2

F (u+ u0, v + v0)) = 0,

(by using again the Parseval relation on the Boolean function v · F ), that
is, :∑

u,v∈Fn2
v 6=0n,v 6=v0

W 2
F (u, v))W 2

F (u+ u0, v + v0) = −23n(2n − 2) + 23n+1(2n − 2)

= 24n − 23n+1.

The characterization of APNness by the fourth moment of the Walsh transform∑
u,v∈Fn2
v 6=0n

W 4
F (u, v) = 24n+1 − 23n+1, allows us to cover all cases in the following

statement:

Theorem 1. Any APN (n, n)-function F satisfies, for every (u0, v0), that:∑
u,v∈Fn2

v 6=0n,v 6=v0

W 2
F (u, v)W 2

F (u+ u0, v + v0) = 24n − 23n+1 + 24n δ0(u0, v0).

Of course, the converse is also true (i.e. this relation implies APNness) since
in the particular case u0 = v0 = 0n, we obtain the value of the fourth moment
of WF , which is characteristic of APNness. The relation of Theorem 1 looks
like those obtained in [9], but in fact, it is quite different, for (u0, v0) 6= (0n, 0n).
Indeed, these latter relations involve the values at (0n, 0n) of the convolutional
products (of diverse orders) of the square of WF with itself, and cannot then
equal the expression of Theorem 1, which involves the value at a nonzero input
of the convolutional product of order 2 of the square of WF . The information
provided by Theorem 1 is then complementary of those obtained in [9], and we
shall see in the next subsection that it is in fact more exploitable.

6.2 A lower bound on the nonlinearity of a large class of
APN functions including all known ones

In Theorem 1, if |WF (u, v)| takes its maximum at least twice, then denoting
by (u0, v0) 6= (0n, 0n) the difference between two values of (u, v) where this
maximum is taken, we have since maxv 6=0n,uW

4
F (u, v) appears then at least

twice in
∑

u,v∈Fn2
v 6=0n,v 6=v0

W 2
F (u, v)W 2

F (u+ u0, v + v0):

Corollary 3. Let n be any positive integer and F any APN (n, n)-function such
that {|WF (u, v)|;u, v ∈ Fn2 , v 6= 0n} takes its maximum for at least two differ-
ent inputs (u, v) (i.e. the minimum Hamming distance between the component
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functions of F and affine Boolean functions is achieved more than once), then
we have :

nl(F ) ≥ 2n−1 − 1

2
4
√

24n−1 − 23n.

Indeed, we have according to Theorem 1 that 2 maxv 6=0n,uW
4
F (u, v) ≤ 24n−

23n+1 and Corollary 3 is then deduced from Relation (8).
Note that all known APN functions satisfy the condition of Corollary 3. In-
deed, all APN power functions do2 because, for n odd, all component functions
trn(vxd) are affine equivalent to each others, and for n even, any two compo-
nent functions trn(vxd) and trn(v′xd) are affine equivalent when v

v′ is a cube.
All quadratic functions also satisfy the condition (more generally, all plateaued
functions do) and the sporadic Edel-Pott function having the same Walsh spec-
trum as the Gold functions, it does too.

Open problem 4: Determine whether all APN functions satisfy the condi-
tion of Corollary 3. If not, then characterize, and if possible determine, all the
(n,m)-functions that do not satisfy the condition of this corollary.

Remark. Even for general (n,m)-functions, it is not that easy to build functions
that do not satisfy the condition of Corollary 3 (among which we could search for
APN functions with low nonlinearity). The study is simplified when consider-
ing those (n,m)-functions obtained by modifying the values of an affine function
L(x)+a (where L is linear over Fn2 ) over a set E of size less than 2n−2 (which is
favorable to a search of functions with low nonlinearity), but even then, the con-
dition is not straightforward. For such function F , denoting for every x ∈ E by
φ(x) the vector added to L(x) +a to obtain F (x), by L∗ the adjoint operator of
L, defined by v ·L(x) = L∗(v)·x, and by δb the indicator function of the singleton
{b} (that is, the Dirac symbol at b), we have WF (u, v) = 2n(−1)v·aδL∗(v)(u) −
(−1)v·a

∑
x∈E(−1)(L

∗(v)+u)·x + (−1)v·a
∑
x∈E(−1)(L

∗(v)+u)·x+v·φ(x).
Since |E| < 2n−2, the value of max

u∈Fn
2 ,v∈Fm

2 \{0m}
|WF (u, v)| is achieved for u =

L∗(v) and equals 2n − |E| + maxv∈Fm
2 \{0m}

∑
x∈E(−1)v·φ(x), which is reached

only for one value of (u, v) ∈ Fn2 ×Fm2 \ {0m} under the necessary and sufficient
condition that the maximum maxv∈Fm

2 \{0m}
∑
x∈E(−1)v·φ(x) is achieved by one

value of v only (this condition is always satisfied if m = 1, that is, for a Boolean
function, but it is not straightforward for m > 1, and in any case, the relation

|Im(F )| ≥
⌈

22n

3·2n−2

⌉
shown in [14, 12] on the image set size of every APN func-

tion and applied to F+L+a shows that, since |E| < 2n−2, function F cannot be
APN. A larger class could be investigated: that of all the functions defined the

same way but with |E| larger than 22n

3·2n−2 ; characterizing that such a function

does not satisfy the condition of Corollary 3 seems very complex, since 22n

3·2n−2
is large. �

2But the bound of Corollary 3 is weaker than the bound from [9], which writes that

nl(F ) ≥ 2n−1 − 2
3n−3

4 for n odd and nl(F ) ≥ 2n−1 − 2
3n−2

4 for n even.
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Note that the bound of Corollary 3 can be further improved if there ex-
ists (u0, v0) 6= (0n, 0n) for which there exist more than two values of (u, v)
such that both |WF (u, v)| and |WF (u + u0, v + v0)| achieve the maximum of
{|WF (u, v)|;u, v ∈ Fn2 , v 6= 0n}: according to Theorem 1, if the number of these

values (u, v) equals t, then we have nl(F ) ≥ 2n−1 − 1
2

4

√
24n−23n+1

t .

Anyway, the bound of Corollary 3 and its possible improvement have the
form nl(F ) ≥ λ2n−1 (where of course λ < 1) and a nonlinearity more or less
equal to λ · 2n−1 is asymptotically bad.

6.3 On the relation between the nonlinearities of γF and
of F

The nonlinearity of γF equals, thanks to Relation (7) (applied with 2n in the
place of n) and to Relation (12) and to the fact that WF (u, 0n) = 0 for u 6= 0n:

nl(γF ) = 22n−1 − 1

2
max

(
2n, max

(u,v)∈Fn
2×(Fn

2 \{0n})
|2n −W 2

F (u, v)|
)

= 22n−1 − 1

2
max

(
2n, max

(u,v)∈Fn
2×Fn

2 \{(0n,0n)}
|2n −W 2

F (u, v)|
)
.

For being able to deduce the expression of nl(γF ) by means of nl(F ), we need
to look separately at the distances from γF to all linear 2n-variable Boolean
functions and to all of their complements:
- the former equals 22n−1− 1

2 max
(
2n,max(u,v)∈Fn

2×(Fn
2 \{0n})(2

n −W 2
F (u, v))

)
=

22n−1 − 2n−1 and is achieved by the zero linear function (among others),
- the latter equals 22n−1 − 1

2 max(u,v)∈Fn
2×(Fn

2 \{0n})(W
2
F (u, v)− 2n).

We have max(u,v)∈Fn
2×(Fn

2 \{0n})W
2
F (u, v) ≥ 2n+1, according to the SCV bound.

The nonlinearity of γF equals then the minimum Hamming distance between
γF and the complements of linear forms (and if F is not AB, then the best affine
approximations of γF are only with such complements).

Proposition 5. Let n be any positive integer and F any APN (n, n)-function
being not almost bent. The best approximations of γF by 2n-variable affine
Boolean functions are the functions `(a, b) = u · a+ v · b+ 1, v 6= 0n, such that
the Hamming distance between the component function v · F and the n-variable
affine Boolean function u · x+ ε, is minimum for some ε ∈ F2.

The fact that attacking, by the linear attack, a block cipher using an APN
function F as a substitution box is related to attacking, by the fast correlation
attack, a stream cipher in the filter model (see e.g. [11, Subsection 3.1.3]) using
γF as nonlinear function, is interesting. Moreover, since the nonlinearity of F
equals 2n−1 − 1

2 max(u,v)∈Fn
2×(Fn

2 \{0n}) |WF (u, v)|, we have:

nl(γF ) = 22n−1 − 1

2

(
(2n − 2nl(F ))2 − 2n

)
.

Hence:
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Proposition 6. For every APN (n, n)-function, we have:

nl(γF ) = 2n+1nl(F )− 2(nl(F ))2 + 2n−1. (15)

Note that the function x 7→ 2n+1x−2x2+2n−1 is strictly increasing from the

interval ]0, 2n−1 − 2
n−1
2 ] (within which the nonlinearity of an (n, n)-function is

located, according to the lower bound nl(F ) > 0 and to the SCV upper bound)
onto the interval ]2n−1, 22n−1 − 2n−1] (within which the nonlinearity of the 2n-
variable Boolean function γF is located, according to (15) and to the covering
radius bound). The value of nl(γF ) is then a strictly increasing function of

nl(F ) which matches it maximum 22n−1−2n−1 at 2n−1−2
n−1
2 and Proposition

6 can be viewed as a generalization and a clarification of the fact that γF is
bent if and only if F is almost bent. The puzzling question is that, while we
know the maximum of each of the two nonlinearities for n odd, we ignore the
minimum.
Note that, according to Proposition 6, the possible values of nl(γF ) are not all
the integers of the interval ]2n−1, 22n−1−2n−1]. For instance, for n = 5, if nl(F )
could take any value between 1 and 12, the nonlinearity of γF could take only
the values 78, 136, 190, 240, 286, 328, 366, 400, 430, 456, 478, 496. In fact, the
possible values of nl(F ) are all known3, see [2], and they are not all the integers
between 1 and 12; indeed, there are only two possible values: the nonlinear-
ity 10 of the Dobbertin and inverse functions and the nonlinearity 12 of almost
bent functions; the nonlinearity of γF can then only take the values 456 and 496.

Open problem 5: Determine, for every n, which values are possible for nl(F )
when F is a general APN (n, n)-function, and therefore, determine which values
are possible for nl(γF ). There are several sub-problems: determine whether
nl(F ) can be an odd integer, which is equivalent to determining whether nl(γF )
can be congruent with 2 modulo 4; a positive reply would imply a positive reply
to the open problem whether the algebraic degree of F can be equal to n, al-
ready mentioned. Note that for general functions F , the fact that the algebraic
degree equals n does not necessarily imply that the nonlinearity is odd (take
for instance a linear function and modify one of its coordinate functions so that
its Hamming weight becomes odd, the algebraic degree equals then n while the
nonlinearity is zero); it is not clear whether we have the same situation when
restricting ourselves to APN functions (this provides then one more open prob-
lem).

Conclusion
In this paper, we have initiated a study of the 2n-variable Boolean function γF
(indicating where the equation F (x) + F (x + a) = b has solutions x ∈ Fn2 for
a, b ∈ Fn2 , a 6= 0n) when F is a general APN (n, n)-function. We have described
how the representations of γF can be obtained from those of F , and shown the
difficulty of studying γF , for instance through its linear structures. We have
related the existence of linear structures to that of affine spaces of bent Boolean

3Number 5 is the largest value of n for which they are.
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functions. We have also shown how γF can be used for studying F . We have
in particular more deeply studied the relationship between the nonlinearities of
F and γF and derived a lower bound which gives a beginning of explanation
why the nonlinearity of all known APN functions is rather good. More needs
to be done in this direction. We have posed five open problems (and a few
sub-problems) (1) on the linear structures of γF functions, (2) on the largest
dimension of affine spaces of bent components of APN functions, (3) on the
largest dimension of affine spaces of bent Boolean functions, (4) whether all
APN functions have Walsh transforms taking their maximum absolute value for
at least two different nonzero inputs (whose positive answer would provide a
lower bound on the nonlinearity of all APN functions), and (5) on the possible
values of nl(F ) and nl(γF ) when F is APN. Further work is needed on these
difficult problems and on other questions on γF functions that we also listed,
which have not been tackled since the introduction of APN functions thirty
years ago.
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