
RandPiper – Reconfiguration-Friendly Random Beacons with

Quadratic Communication

Adithya Bhat ∗1, Nibesh Shrestha ∗2, Aniket Kate3, and Kartik Nayak4

1Purdue University, bhat24@purdue.edu
2Rochester Institute of Technology, nxs4564@rit.edu

3Purdue University, aniket@purdue.edu
4Duke University, kartik@cs.duke.edu

Abstract

Random beacon protocols provide a continuous public source of randomness and their applications
range from public lotteries to zero-knowledge proofs. Existing random beacon protocols in the bounded
synchronous model sacrifice either the fault tolerance or the communication complexity for security, or
ease of reconfigurability. This work overcomes the challenges with the existing works through a novel
communication efficient combination of state machine replication and (publicly) verifiable secret sharing
(PVSS/VSS) protocols.

We first design a new Byzantine fault-tolerant state machine replication protocol with O(κn2) bits
communication per consensus decision without using threshold signatures. Next, we design GRandPiper
(Good Pipelined Random beacon), a random beacon protocol with bias-resistance and unpredictability,
that uses PVSS and has a communication complexity of O(κn2) always (best and worst cases), for a
static adversary. However, GRandPiper allows an adaptive adversary to predict beacon values up to t+1
epochs into the future. Therefore, we design BRandPiper (Better RandPiper), that uses VSS and has a
communication complexity of O(κfn2), where f is the actual number of faults, while offering a strong
unpredictability with an advantage of only a single round even for an adaptive adversary.

1 Introduction

Public digital randomness is essential across a large spectrum of security applications ranging from e-voting to
blockchains. Its practical relevance further evident from NIST’s Randomness Beacons project [17] and from
the recent emergence of Drand Organization [21]. Both these projects as well as several other proposals [13,
16,20,26,27,35,36,39] and implementations [1, 2, 25] offer random beacons [33].

A random beacon emits a new random value at intermittent intervals such that the emitted values are
bias-resistant, i.e., no entity can influence a future random beacon value, and unpredictable, i.e., no entity
can predict future beacon value. Clearly, we cannot trust a single node to offer such a service — the node can
easily affect both bias-resistance and unpredictability of the beacon. A series of recent work [13, 27, 36, 39]
has instead relied on distributing the trust across multiple nodes such that even if a subset of nodes gets
compromised, the beacon is still secure.

In a system consisting of n nodes, tolerating t Byzantine faults, with security parameter κ, an ideal
distributed randomness beacon protocol, in addition to being bias-resistant and unpredictable, should have
the following properties: (i) optimal resilience, (ii) low communication overhead, (iii) reconfiguration friendly
(allowing efficient addition and removal of nodes), and (iv) use efficient cryptographic schemes (as opposed
to computationally expensive schemes such as Proof-of-Work (PoW) or Verifiable Delay Functions (VDFs)).

∗Contributed equally and listed alphabetically



Existing works trade one or the other of the above features expected from a random beacon. For instance,
HydRand [36] sacrifices optimal resilience (t < n/3) for better communication complexity (O(κn2) in the
best case and O(κn3) in the worst case) with minimal setup assumptions. Cachin et al. [13] provides a
communication complexity of O(κn2), but it requires a threshold (cryptographic) setup and hence cannot
support a reconfiguration of the system without changing the trusted setup through proactive secret sharing
techniques. Several other solutions [20,35] use computationally expensive mechanisms such as VDFs1where
nodes compute VDF function constantly to ensure security of the beacon.

In this paper, we ask whether we can design an optimally resilient random beacon protocol that achieves
good communication complexity while using efficient cryptographic schemes and a re-usable setup, i.e.,
avoiding setups such as those of threshold signatures where the entire setup needs to re-generated when
a participating node is replaced. To answer this question, we first design an optimally resilient Byzantine
fault-tolerant (BFT) state machine replication (SMR) protocol with O(κn2) communication complexity per
consensus decision while avoiding setups that do not allow reconfiguration. Next, we present two random
beacon protocols GRandPiper (Good Pipelined Random beacon) and BRandPiper (Better Pipelined Random
beacon) using our BFT SMR protocol as a building block and provide similar guarantees. GRandPiper is
communication efficient (O(κn2) in the best and worst case) but allows an adaptive adversary to predict
t+ 1 epochs into the future. BRandPiper offers stronger unpredictability guarantees (only 1 epoch into the
future), but has a communication complexity of O(κfn2) where f is the actual number of faults.

1.1 Efficient State Machine Replication without Threshold Signatures

There has been a long sequence of work in improving communication complexity of consensus proto-
cols [3, 6, 11, 22, 29, 30, 40]. In the synchronous SMR setting, the optimal communication complexity per
consensus decision of an SMR protocol is O(κn2) bits [3,5,30,38]. However, all of these solutions use thresh-
old signatures. Our first result improves upon the communication complexity in the absence of threshold
signatures. Specifically, we show the following:

Theorem 1.1. There exists a state machine replication protocol with O(κn2) communication complexity per
consensus decision tolerating t < n/2 Byzantine faults without assuming threshold signatures.

Our first result presents an optimally resilient BFT SMR protocol with quadratic communication per
consensus decision without using threshold signatures in the synchronous setting. To be precise, the protocol
incurs O(κn2) communication complexity under q-SDH assumption (whose parameters can be generated
using distributed protocols) or O(κn2 log n) without it. Getting rid of threshold signatures allows for efficient
reconfiguration of the participating nodes and does not require generating threshold keys each time a new
node joins the system. Thus, an efficient BFT protocol in this setting is of independent interest. We reduce
communication by making use of efficient erasure coding schemes [34] and cryptographic accumulators [10]
to efficiently broadcast large messages at the expense of increase in latency of SMR protocol. As we will see,
the increase in latency does not affect our random beacon protocols adversely.

1.2 RandPiper – Random Beacon Protocols

RandPiper is a suite of random beacon protocols that use our SMR protocol as a building block. We present
two protocols GRandPiper (Good Pipelined Random beacon) and BRandPiper (Better Pipelined Random
beacon) which differ in unpredictability and communication complexity. In both protocols, we use secret
sharing schemes to privately commit random numbers ahead of time. This ensures bias-resistance as the
random number once shared cannot be changed. For unpredictability, we ensure that the beacon outputs
are generated using inputs from t + 1 nodes (where t is the threshold of Byzantine nodes) at least one of
which is truly random, and therefore the output is truly random.

1VDFs require nodes to always compute the VDF operation such as squarings, which are energy intensive. For importantly,
VDFs require a precise estimation of how fast the fastest machine can compute the VDF operation (by CPUs, FPGAs, or
ASICs), which is generally a hard thing to do [20]. A variation in this estimation gives an adversary using the faster hardware
a better advantage.

2



GRandPiper protocol. In GRandPiper, we explore how to build a communication optimal random
beacon protocol with bias-resistance and strong unpredictability, allowing a static adversary to predict up
to a security parameter number of epochs into the future. In particular we show the following:

Theorem 1.2. With n nodes and t < n/2 static corruptions, there exists a reconfiguration friendly, bias-
resistant, and O(κ)-epoch unpredictable random beacon protocol with a communication complexity of O(κn2)
always.

With n nodes out of which t < n/2 can be Byzantine, our GRandPiper protocol outputs a random beacon
with O(κn2) communication complexity per beacon output, where κ is the security parameter. The output
of the beacon protocol is bias-resistant and it satisfies strong unpredictability against a static adversary, i.e.,
the probability of a static adversary predicting c rounds into the future is less than 2−c (in expectation this
is 2 rounds into the future). We also do not need any threshold setups, which allows nodes to join and leave
the system easily without stopping our protocol.

At a high-level, our protocol uses Publicly Verifiable Secret Sharing (PVSS) schemes, and allows a leader
to input an O(κn)-sized PVSS encryption vector into the SMR to share a single secret per epoch. Our key
insight in GRandPiper is to use extension techniques to deliver the O(κn)-sized PVSS encryption vector
(along with additional “votes”) to all the honest nodes with communication complexity O(κn2). Trivially,
this would have incurred O(κn3) where every node simply echoes the message to all the nodes. The secret
shared by the leader will be reconstructed when the same node is chosen as the leader again. To ensure
that eventually there is an honest leader, a leader does not repeat again for the next t epochs. This ensures
that our BFT SMR protocol decides on the proposed shares once we get an honest leader. Our construction
ensures that we always have a communication complexity of O(κn2) for the beacon, as the beacon keeps
outputting values based on buffered PVSS shares, and we remove Byzantine nodes to avoid the buffer from
ever being empty.

However, an adaptive adversary can predict t + 1 rounds into the future in GRandPiper by simply
corrupting the next t leaders and learning their committed secrets. At this point, continuing to use PVSS
to improve the unpredictability leads to a loss of our nice property of optimal communication complexity.
Hence, we look in a different direction to improve the unpredictability.

BRandPiper protocol. In BRandPiper protocol, we explore how to achieve the best possible unpre-
dictability (1 epoch into the future), while having the best possible communication complexity and also
supporting reconfiguration. In particular, we show the following result:

Theorem 1.3. With n nodes and t < n/2 adaptive corruptions and with κ as the security parameter,
there exists a reconfiguration-friendly, bias-resistant and 1-epoch unpredictable random beacon protocol with
a communication complexity of O(κfn2), where f ≤ t is the actual number of faults.

With n nodes out of which t < n/2 allowed to be Byzantine, our second protocol BRandPiper outputs
a random beacon with O(κfn2) communication complexity per output, and guarantees bias-resistance and
strong unpredictability. Here, f is the actual number of faults; when f = O(1), the protocol enjoys O(κn2)
communication complexity. BRandPiper protocol uses random inputs from > t nodes in every epoch,
ensuring strong unpredictability of only 1 epoch into the future.

As a building block, we first construct an improved VSS (iVSS) protocol by modifying the state-of-the-
art VSS scheme eVSS [28]. Compared to eVSS, which requires O(κfn) information on the bulletin board,
iVSS posts only O(κn) bits of information on the bulletin board which in effect improves the amortized
communication complexity of the VSS scheme to O(κfn2) where f is the actual number of faults and κ is
the security parameter. This may be of independent interest to applications requiring batched VSS sharings.

At a high level, we use round-robin leaders and iVSS in point-to-point channels to secret share n random
numbers in an epoch. Since we are producing n shares every epoch, we can now consume n shares in
every epoch. Thus, in every epoch, using the homomorphic properties of VSS secret shares, we reconstruct a
homomorphic sum of n shares in every epoch, thus eliminating the t+1 epoch advantage held by the adaptive
adversary and reducing it to just 1 epoch. We carefully design the protocol so that we have a communication
complexity of O(κfn2). Our key insight in BRandPiper is that a leader can secret share n shares at once

3



instead of one. These shares are buffered by all nodes, and it ensures that there are always sufficient shares
available for reconstruction in the next n epochs so far as leaders are chosen in a round-robin manner. The
buffering helps prevent a Byzantine node from biasing by refusing to share new blocks, when the outputs
are unfavorable. Without our techniques, while assuming threshold signatures, existing VSS protocols have
an optimistic communication complexity of O(κn2) and a worst case communication complexity of O(κn3)
to perform 1 secret sharing. BRandPiper protocol shows how to perform O(n) VSS secret sharings with a
communication complexity of O(κfn2) which is quadratic when f = O(1).

1.3 Related Work

In this section, we explore random beacon protocols, sometimes also referred to as coin tossing protocols, in
the synchronous setting. Some of the works were originally designed for the asynchronous settings, but in
this section, we evaluate them in the bounded synchronous setting.

Cachin et al. [13] use a threshold shared secret to generate beacons by creating a share of the beacon by
binding the shared secret to an agreed upon beacon value (for instance, a counter). When > t such shares
are obtained, all honest nodes obtain the same beacon value. Drand [21] uses a similar approach replacing
the threshold secret with a threshold BLS key and using signatures on the beacon value (say, the counter).
This incurs a communication complexity of O(κn2) always, but comes with the drawback that it does not
support reconfiguration, i.e., if a single node is replaced or joins the system, the threshold shared secret must
be regenerated.

Homomorphic Encryption Random Beacon (HERB) [16] uses homomorphic ElGamal encyrption scheme
to generate random numbers. The system tolerates n > 3t faults. Each node in the system encrypts a
random share and posts it on the bulletin board. The protocol uses t + 1 such encryptions to produce the
final beacon output. The work requires the use of a Byzantine Agreement protocol whose inputs are O(κn)
sized, and therefore has a communication complexity of O(κn3) in the best and worst cases. It also uses a
variant of threshold setup, thereby not permitting a re-usable setup.

RandChain [26] builds a DRB - Decentralized Random Beacon that assumes sequential Proof-of-Work
(Seq-PoW), and VDFs along with Nakamoto consensus for consistency. Constructions using these assump-
tions are not energy-efficient. In PoW, an adversary with more hash power can neglect unfavorable random
numbers by forking, and to avoid this requires the total honest hash power to be greater than 1/2. The work
uses existing Byzantine Agreement techniques which makes the protocol have a communication complexity
of O(κn2) in the best case, while inheriting the O(κn3) communication complexity from BA [18] in the worst
case.

Drake et al. [20] proposed a minimal bias-resistant VDF-based random beacon scheme, that assumes the
existence of a VDF and that the adversary has an advantage Amax in terms of speed over the honest nodes,
in computing the VDF. The VDF is used to determine the beacon output for a round, and sufficiently old
beacon outputs are used to select leaders for the Ethereum Proof-of-Stake protocol. The system tolerates
n > 3t faults, and is designed for partial synchrony.

RandRunner [35] builds a random beacon protocol using VDFs. Therefore, it has a setup that can be
re-used. It uses trapdoor Verifiable Delay Functions - VDFs with strong uniqueness properties that produces
unique values efficiently for the node that has the trapdoor, but takes time T to produce an output for the
nodes that do not have the trapdoor. This allows the beacon to output bias-resistant outputs in every round.
It is not immediately unpredictable as an adaptive adversary can corrupt the next t < n/2 leaders to know
the outputs for the next t epochs. RandRunner also requires the usage of reliable broadcasts which incurs a
communication complexity of O(κn2) for every round.

RandShare [39] is a strawman protocol for where the beacon output is generated using n independent
Byzantine Agreement instances are run in a system tolerating n > 3t faults. Running n BA instances incurs
a communication complexity of O(κn3) in the best case and O(κn4) in the worst case. RandHerd [39] is
an improved version of RandShare, driven by a client seeking a random beacon value. The client splits
the system into groups of size c which internally use RandShare, leading to a communication complexity of
O(κc2n), even in the worst case. However, even though c is a constant, it depends on n as the randomness
of the beacon output is determined by c. RandHound [39] goes beyond RandHerd by using a stable-leader

4



Table 1: Comparison of related works on Random Beacon protocols in standard synchrony

Protocol Res.(t) Unpred.
Comm. Compl Adp.

Adv.

Re-
usable
Setup

No
DKG?

Special
Assumption

Best Worst

Cachin et al./Drand [13,21] 49% 1 O(κn2) O(κn2) 7 7 7
Threshold

Secret/BLS

Dfinity [4, 27] 49% O(κ) O(κn2) O(κn3)∗ X 7 7
Threshold

BLS

HERB [16] 33% 1 O(κn3) O(κn3) X 7 7 -

HydRand [36] 33% O(min(κ, t))† O(κn2) O(κn3) 7 X X -

HydRand [36] 33% t+ 1 O(κn2) O(κn3) X X X -

RandChain [26] 33% O(κ) O(κn2) O(κn3) X 7 7 PoW

RandHerd [39] 33% O(κ) O(κc logn)¶ O(κn4) X 7 7
Threshold
Schnorr

RandHound [39] 33% 1 O(κc2n)¶ O(κc2n2)¶ X X X
Client
based

RandRunner [35] 49% t+ 1 O(κn2) O(κn2) X X X VDF

RandShare [39] 33% 1 O(κn3) O(κn4) X X X -

GRandPiper (Single) 49% O(min(κ, t))† O(κn2) O(κn2) 7 X X -

GRandPiper (Single) 49% t+ 1 O(κn2) O(κn2) X X X -

GRandPiper (Multiple)‡ 49% o(log(t/p)) O(pκn2) O(pκn2) X X X -

BRandPiper 49% 1 O(κn2)§ O(κn3) X X X -

κ is the security parameter denoting maximum of sizes of signatures, hashes, and other components used in the pro-
tocol. Res. refers to the number of Byzantine faults tolerated in the system. Unpred. refers to the unpredictability
of the random beacon, in terms of the number of future rounds an adaptive rushing adversary can predict. A rushing
adversary can always obtain outputs before correct nodes, and hence, the minimum is 1. Adp. Adv refers to
Adaptive Adversary whether the adversary can pick its t corruptions at any point in the protocol. Reusable Setup
refers to a setup that can be reused when a node is replaced in the system. ∗probabilistically O(κn3) when O(n)
consecutive leaders are bad. ¶c is the average (constant) size of the groups of server nodes. †In expectation it is 2
rounds, the probability of an adversary predicting c epochs into the future is 2−c, with a security parameter κ it is
min(κ, t) + 1 epochs. ‡Run p instances of GRandPiper in parallel. §In the optimistic case, when the leader is honest
and f = O(1) nodes are Byzantine.

5



approach and dividing the system into groups of nodes with group leaders in a tree structure during the
setup. This incurs RandHound, a communication complexity of O(κc2 log n) when the leader and the group
leaders are honest. However, when the leader is bad, it uses a view-change protocol which is analogous to
Byzantine Agreement, and incurs a cost of O(κn3) communication complexity when t consecutive leaders
are Byzantine.

HydRand [36] is a random beacon protocol in the bounded synchrony model which tolerates t faults,
with n > 3t, with a communication complexity of O(κn2) in bits, where κ is the security parameter, and
O(κn3) communication complexity in the worst case. It uses PVSS schemes (in particular SCRAPE [14])
and tolerates an adaptive adversary which can predict upto t+ 1 epochs into the future.

Summary of limitations. Before, we set out to show what we achieve in this work, we show what
the current works show what is achievable and what is not currently possible. The state of the art SMR
protocols [3,5,7,40] have a lower bound of O(κn2) on the communication complexity in the best case, which
hints that we cannot do better than O(κn2) without improving SMR first. State of the art random beacon
protocols [13, 16, 39] show that we cannot achieve an unpredictability advantage better than 1 epoch, since
a rushing adversary can always know one epoch output before the rest of the honest nodes. State of the art
Random beacon protocols [13, 16, 39] also show that a random beacon not in lock-step cannot avoid giving
a time advantage of less than 2∆ to a rushing adversary. Our work aims to bridge these gaps in existing
random beacon protocols.

Insights from existing works. RandPiper uses some insights from HydRand [36] and non-trivially im-
proves upon them for optimal fault tolerance (t < n/2 unlike t < n/3 from HydRand) and better commu-
nication complexity (recall that HydRand has a communication complexity of O(κn2) in the best case and
O(κn3) in the worst case). We first observe that HydRand secret shares one value and uses this shared value
the next time the same node becomes a leader again. We observe that this is buffering of shares, and that
this buffering can be done for more than one share, i.e., every time a node becomes a leader, we can use
the value from the last dth time it was a leader to buffer d shares. Next, we observe that HydRand cannot
tolerate more than t > n/3 because it fails to deliver the PVSS vector to all correct nodes, if the leaders
fails to send it to them. We solve this concern using extension techniques from recent works [31]. However,
these works assume threshold signatures which we avoid in our protocol. Thus, in RandPiper, we achieve
an optimal fault tolerance of t < n/2 and also improved communication complexity.

2 Model and Definitions

We consider a system P := {p1, . . . , pn} consisting of n nodes out of which at most t < n/2 nodes can
be Byzantine. The Byzantine nodes may behave arbitrarily. When we assume an adaptive adversary A,
the nodes can be corrupted to behave arbitrarily at any time during execution. When we assume a static
adversary A, the nodes to be corrupted must be chosen by the adversary before the start of the protocol.
A node that is not faulty throughout the execution is considered to be honest and executes the protocol as
specified.

We assume the network between nodes consists of point-to-point secure (authenticated and confidential)
bounded synchronous channels. Messages between nodes may take at most ∆ time before they arrive, where
∆ is a known maximum network delay. To provide safety under adversarial conditions, we assume that the
adversary is capable of delaying the message for an arbitrary time upper bounded by ∆. In addition, we
assume all honest nodes have clocks moving at the same speed. They also start executing the protocol within
∆ time from each other. This can be easily achieved by using the clock synchronization protocol [3] once
at the beginning of the protocol.

We make use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and replays
and to validate messages. Message x sent by a node p is digitally signed by p’s private key and is denoted
by 〈x〉p. In addition, we use H(x) to denote the invocation of the random oracle H on input x.

6



2.1 Definitions

We consider a state machine replication protocol defined as follows:

Definition 2.1 (Byzantine Fault-tolerant State Machine Replication [37]). A Byzantine fault-tolerant state
machine replication protocol commits client requests as a linearizable log to provide a consistent view of the
log akin to a single non-faulty server, providing the following two guarantees.

• Safety. Honest nodes do not commit different values at the same log position.

• Liveness. Each client request is eventually committed by all honest nodes.

We define d-absolute unpredictability as follows:

Definition 2.2 (d-absolute unpredictability). Consider an epoch based protocol. Let the honest nodes be at
epoch e. The protocol is said to be unpredictable with absolute bound d for d ≥ 1, if the the probability of an
adversary A predicting the honest output for epoch e+ d is a negligible function negl(κ).

We define the security requirements for a random beacon protocol RB as follows:

Definition 2.3 (Secure random beacon protocol). An epoch based protocol RB is said to be a d-secure
random beacon protocol if it satisfies the following conditions:

1. Bias-resistance. Let O be the output of the beacon for some epoch e. No t-bounded adversary A
can bias the output of the beacon, i.e., fix c bits of O for any epoch e > 1 with probability better than
1
2c + negl(κ).

2. Unpredictability. The protocol satisfies d-unpredictability.

3. Guaranteed Output Delivery. For every epoch e ≥ 1, the protocol outputs a value.

2.2 Primitives

In this section, we present several primitives used in our protocols.

Linear erasure and error correcting codes. We use standard (t+ 1, n) Reed-Solomon (RS) codes [34].
This code encodes t + 1 data symbols into codewords of n symbols and can decode the t + 1 elements of
codewords to recover the original data.

• ENC. Given inputsm1, . . . ,mt+1, an encoding function ENC computes (s1, . . . , sn) = ENC(m1, . . . ,mt+1),
where (s1, . . . , sn) are codewords of length n. A combination of any t + 1 elements of n codewords
uniquely determines the input message and the remaining of the codeword.

• DEC. The function DEC computes (m1, . . . ,mt+1) = DEC(s1, ..., sn), and is capable of tolerating up to
c errors and d erasures in codewords (s1, . . . , sn), if and only if t ≥ c+ d.

Cryptographic accumulators. The cryptographic accumulator constructs an accumulation value for a
set of values and produces witness for each value in the set. Given the accumulation value and a witness,
any node can verify if a value is indeed in the set. Formally, given a parameter k, and a set D of n values
d1, . . . , dn, an accumulator has the following components:

• Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and an accumulation
threshold n (an upper bound on the number of values that can be accumulated securely), returns an
accumulator key ak. The accumulator key ak is part of the trusted setup and therefore is public to all
nodes.

• Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values to be accumulated,
returns an accumulation value z for the value set D.

7



• CreateWit(ak, z, di): This algorithm takes an accumulator key ak, an accumulation value z for D and
a value di, returns ⊥ if di ∈ D ,and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value z for D, a
witness wi and a value di, returns true if wi is the witness for di ∈ D, and false otherwise.

We use cryptographic accumulators proposed by Barić and Pfitzmann [10].

Lemma 2.1 (Collision-free accumulator [32]). The bilinear accumulator is collision-free. That is, for any
set size n, there is only a probability negligible in k for a probabilistic polynomial-time adversary to find an
accumulator key ak, a set D = {d1, . . . , dn}, an accumulation value z for D, a value d′ 6∈ D, and a witness
w′ such that Verify(ak, z, w

′, d′) = true.

Publicly Verifiable Secret Sharing — PVSS. PVSS schemes consist of communication such as broad-
casts, posts on the bulletin board, as well as computational components such as share generation, encryption,
etc. We separate the two components and present interfaces to computational algorithms that we will use
in our protocols. We use the interfaces to a secure PVSS scheme PVSS as described in Table 2.

Table 2: PVSS scheme algorithm interface

Interface Description

PVSS.pp← PVSS.Setup(κ, aux) Generate the scheme parameters PVSS.pp. PVSS.pp
is an implicit input to all other algorithms.

(PVSS.pk,PVSS.sk)← PVSS.KGen(κ) Generate PVSS key-pair (PVSS.pk,PVSS.sk) used
for share encryption and decryption

c← PVSS.Enc(PVSS.pk,m)
m← PVSS.Dec(PVSS.sk, c)

The encryption and decryption algorithms used to send
shares to all, and obtain private share respectively.
The invariant Pr [PVSS.Dec(PVSS.Enc(m)) = m] = 1
must always hold true for all m in the message domain
of PVSS.Enc.

(PVSS.~S,PVSS. ~E,PVSS.π)← PVSS.ShGen(s) Typically, executed by the dealer L with secret s to
generate secret share vector
PVSS.~S := {PVSS.s1, . . . ,PVSS.sn} and encryption
vector of shares PVSS. ~E :=
{PVSS.Enc(PVSS.s1), . . . ,PVSS.Enc(PVSS.sn)} for
all nodes P, and a cryptographic proof PVSS.π
committing to s which guarantees any node with > t
shares reconstruct a unique s.

{0, 1} ← PVSS.ShVrfy(PVSS. ~E,PVSS.π) Verify if the sharing is correct. A successful
verification guarantees that its share is correct and
t+ 1 nodes reconstruct a unique s. 0 indicates a failure
and 1 indicates a success.

s← PVSS.Recon(PVSS.~S) Reconstruct the shared secret s from the collection of
shares PVSS.~S ⊆ {PVSS.s1, . . . ,PVSS.sn}t+1

We assume the existence of a secure PVSS algorithm PVSS as defined in Definition 2.4.

Definition 2.4 (PVSS security). Let L ∈ P be the dealer with secret s and κ be the security parameter. A
PVSS scheme PVSS must provide the following guarantees:

1. Secrecy. If the dealer L is honest, then the adversary’s view during the sharing phase reveals no
information about the dealer’s secret s with probability better than negl(κ).

8



2. Correctness. If L is honest, then the honest nodes output the secret s at the end of the reconstruction
phase with high probability 1− negl(κ).

3. Commitment. If L is Byzantine, then at the end of the sharing phase there exists a value s? in the
input space including ⊥, such that at the end of the reconstruction phase all honest nodes output s?

with high probability 1− negl(κ).

4. (Public) Verifiability. If the check in verification algorithm returns 1, i.e., succeeds, then with high
probability 1− negl(κ), the encryptions are valid shares of some secret.

Verifiable Secret Sharing and Commitments. Similar to the PVSS schemes, we use the interfaces to
a secure VSS scheme VSS as described in Table 3.

Table 3: VSS scheme algorithm interface

Interface Description

VSS.pp← VSS.Setup(κ, aux) Generate the scheme parameters VSS.pp. VSS.pp is
an implicit input to all other algorithms.

(VSS.~S,VSS. ~W,VSS.C)← VSS.ShGen(s) Typically executed by the dealer L with secret s to
generate a secret share vector
VSS.~S := {VSS.s1, . . . ,VSS.sn}, witness vector
VSS. ~W := {VSS.π1, . . . ,VSS.πn}, and a constant size
commitment VSS.C to a Shamir polynomial.

{0, 1} ← VSS.ShVrfy(VSS.s,VSS.π,VSS.C) Verify if the share VSS.s and witness VSS.π form a
correct share for VSS.C. 0 indicates a failure and 1
indicates a success.

s← VSS.Recon(VSS.~S) Reconstruct the shared secret s from the collection of
shares VSS.~S ⊆ {VSS.s1, . . . ,VSS.sn}t+1.

{0, 1} ← VSS.ComVrfy(VSS.C, s) Check if s is the correct opening for the commitment
VSS.C. 0 indicates a failure, and 1 indicates a success.

We assume the existence of a secure Verifiable secret sharing scheme with commitments VSS with the
following security properties:

Definition 2.5 (VSS Security). We call an n−node VSS protocol, with t−bounded adversary A and security
parameter κ, an (n− t)-VSS protocol if it satisfies the following conditions:

1. Secrecy. If the dealer L is honest, then the probability of A learning any information about the dealer’s
secret s in the sharing phase is negl(κ).

2. Correctness. If L is honest, then the honest nodes output the secret s at the end of the reconstruction
phase with a high probability of 1− negl(κ).

3. Commitment. If L is Byzantine, then at the end of the sharing phase there exists a value s? in the
input space including ⊥, such that at the end of the reconstruction phase all honest nodes output s?

with high probability 1− negl(κ).

In our work, we implicitly assume that the VSS scheme used is (n− n/2)-secure.

Normalizing the length of cryptographic building blocks. Let λ denote the security parameter,
κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and witness of

9



the accumulator and κv = κv(λ) denote the size of secret share and witness of a secret. Further let κ =
max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the paper, we can use
the same parameter κ to denote the hash size, signature size, accumulator size and secret share size for
convenience.

3 BFT SMR Protocol

In this section, we present a simple BFT SMR protocol as a basic building block for the beacon protocols
discussed in following sections. Our protocol achieves O(κn2) bits communication complexity with a trusted
setup under q-SDH assumption, or O(κn2 log n) bits communication complexity without a trusted setup
assumption. In particular, we do not use threshold signatures, and therefore do not require any distributed
key generation during the setup. We note that prior synchronous BFT SMR protocols [5,15,38] with honest
majority incur O(κn3) communication complexity for committing each block without threshold signatures.

Before we explain how our protocol achieves O(κn2) (or O(κn2 log n)) communication complexity, we
first present some preliminaries pertaining to our SMR protocol.

Epochs. Our protocol progresses through a series of numbered epochs with each epoch coordinated by a
distinct leader. Epochs are numbered by non-negative integers starting with 1. The leaders for each epoch
are rotated irrespective of the progress made in each epoch. For simplicity, we use round-robin leader election
in this section and the leader of epoch e, represented as Le, is determined by e mod n. Later in the beacon
protocols, we introduce different leader election rules. Each epoch lasts for 11∆ time.

Blocks and block format. The goal of the leader in each epoch is to add a block to the blockchain. Each
block references its predecessor with the exception of the genesis block which has no predecessor. We call a
block’s position in the chain as its height. A block Bh at height h has the format, Bh := (bh, H(Bh−1)) where
bh denotes the proposed payload at height h, Bh−1 is the block at height h − 1 and H(Bh−1) is the hash
digest of Bh−1. The predecessor for the genesis block is ⊥. A block Bh is said to be valid if (1) its predecessor
block is valid, or if h = 1, predecessor is ⊥, and (2) the payload in the block meets the application-level
validity conditions. A block Bh extends a block Bl (h ≥ l) if Bl is an ancestor of Bh.

Certified blocks, and locked blocks. A block certificate on a block Bh consists of t+1 distinct signatures
in an epoch e and is represented by Ce(Bh). Block certificates are ranked by epochs, i.e., blocks certified in a
higher epoch has a higher rank. During the protocol execution, each node keeps track of all certified blocks
and keeps updating the highest certified block to its knowledge. Nodes will lock on highest ranked certified
blocks and do not vote for blocks that do not extend highest ranked block certificates to ensure safety of a
commit.

Equivocation. Two or more messages of the same type but with different payload sent by an epoch leader
is considered an equivocation. In this protocol, the leader of an epoch e sends propose and vote-cert messages
(explained later) to all other nodes. In order to facilitate efficient equivocation checks, the leader sends the
payload along with signed hash of the payload. When an equivocation is detected, broadcasting the signed
hash suffices to prove equivocation by Le.
How does our protocol achieve O(κn2) (or O(κn2 log n)) communication complexity per epoch?
Prior BFT SMR protocols perform all-to-all broadcast of certificates to ensure totality between nodes or to
synchronize all nodes across epochs. In general, a certificate consists of a quorum of n− t signatures which
cannot be compressed without the use of threshold signatures. A näıve approach of performing all-to-all
broadcast of O(κn)-sized certificates trivially incurs O(κn3) signatures of communication.

We make use of a combination of erasure-coding schemes and cryptographic accumulators to efficiently
broadcast a message. To broadcast a message of size `, this technique incurs O(n`+ (κ+ w)n2) bits where
κ is the size of accumulator and w is the size of the accumulator witness. The size of witness is O(κ) when
bilinear accumulators are used. If one wishes to avoid bilinear accumulators, we can use Merkle trees as
witness. The size of Merkle witness is logarithmic in the size of the number of witnesses (n). Thus, the total
communication complexity to broadcast a single message of size ` is O(n`+ κn2) bits, or O(n`+ κn2 log n)

10



bits without trusted setup assumption.
As mentioned before, the size of a certificate is linear and broadcasting a certificate using the above

technique yields a communication complexity of O(kn2) bits (or O(kn2 log n) bits). However, in general,
there can be exponentially many combinations of ≥ n−t signatures forming a certificate depending on the set
of signers, and each node may broadcast a different combination. This will trivially blowup communication
by a factor of n.

In order to address the issue, we need to ensure there is a single certificate for a block. We ensure
this by using leader as a relay to collect signatures and form a single certificate. The leader forwards this
certificate to all nodes. The next challenge is the relay can be Byzantine and forward the certificate only
to a subset of nodes. We resolve this issue by having honest nodes forward their shares along with the
witness. As a result, if an honest node receives a valid certificate, all honest nodes receive the corresponding
share. Another challenge is the relay can form multiple certificates using different sets of signatures and send
different certificate to different nodes. Our protocol treats such behaviors as faulty; we require the leader
to send a signed hash, and in case of equivocation, we broadcast equivocating hashes signed by the leader.
All-to-all broadcasting of size κ hashes incurs only O(κn2) in communication. equivocating certificates are
formed before making a decision. Broadcasting a single certificate in this way reduces the complexity to
O(κn2) (or O(n2κ log n)) bits. Several prior works [24,40] have used relay based message-distribution along
with threshold-signatures to reduce the message complexity. Here, we reduce the communication complexity
with extension techniques [31].

3.1 Protocol Details

We first describe a simple function that is used by an honest node to forward a message received from the
epoch leader.

Deliver function. The Deliver() function (refer Figure 2) implements efficient broadcast of long messages
using erasure coding techniques and cryptographic accumulators. The input parameters to the function are
a keyword key, long message b, accumulation value ze corresponding to object b and epoch e in which deliver
function is invoked. The input keyword key corresponds to message type containing large object b sent by
leader Le of epoch e. In order to facilitate efficient leader equivocation, the input keyword key, hash of object
b, accumulation value ze and epoch e are signed by leader Le.

When the function is invoked using above input parameters, the message b is first divided into n coded
shares (s1, . . . , sn) using RS codes and a cryptographic witness wj is computed for each value sj . Then, the
share (sj , wj) is sent to the node pj ∈ P along with the accumulation value ze, keyword key, Le’s signature
on the message. When a node pj receives the first valid shares for an accumulation value ze such that the
witness wj verifies the share sj , it forwards the share (sj , wj) to all nodes. When a node pi receives n − t
valid shares corresponding to the first accumulation value ze it receives, it reconstructs the object b. Note
that node pi reconstructs object b for the first valid share even though it detects equivocation in an epoch.

Our protocol (refer Figure 1) executes following steps in each epoch e.

Epoch advancement. When epoch-timere−1 expires, node pi enters epoch e. After entering epoch e, node
pi sends its highest ranked certificate Ce′(Bl) to leader Le. In addition, it also sets epoch-timere to 11∆ and
starts counting down.

Propose. After entering epoch e, Leader Le waits for 2∆ to collect highest ranked certificates from all
honest nodes. The 2∆ wait before a proposal ensures that leader Le can collect highest ranked certificates
from all honest nodes when leader Le enters epoch e ∆ time before other honest nodes.2 After the 2∆
wait, leader Le proposes a block Bh by extending the highest ranked block certificate Ce(Bl) known to Le.
The proposal for Bh, conceptually, has the form 〈propose, Bh, e, Ce′(Bl), zpe〉Le

where zpe is the accumulation
value for the pair (Bh, Ce′(Bl)). In order to facilitate efficient equivocation checks, the leader signs the tuple
〈propose, H(Bh, Ce′(Bl)), e, zpe〉Le

and sends Bh and Ce′(Bl) separately. This size of the signed message

2We assume that all honest nodes enter the epoch and perform all steps within ∆ time of each other. This can be achieved
using a clock synchronization protocol [3] only once at the start of the execution.

11



Let e be the current epoch and Le be the leader of epoch e. For each epoch e, node pi performs following
operations:

1. Epoch advancement. When epoch-timere−1 reaches 0, enter epoch e. Upon entering epoch e, send
highest ranked certificate Ce′(Bl) to Le. Set epoch-timere to 11∆ and start counting down.

2. Propose. Le waits for 2∆ time after entering epoch e and broadcasts 〈propose, Bh, e, Ce′(Bl), zpe〉Le

where Bh extends Bl. Ce′(Bl) is the highest ranked certificate known to Le.

3. Vote. If epoch-timere ≥ 7∆ and node pi receives the first proposal pe = 〈propose, Bh, e, Ce′(Bl), zpe〉Le

where Bh extends a highest ranked certificate, invoke Deliver(propose, pe, zpe, e). Set vote-timere to
2∆ and start counting down. When vote-timere reaches 0, send 〈vote, H(Bh), e〉i to Le.

4. Vote cert. Upon receiving t+ 1 votes for Bh, Le broadcast 〈vote-cert, Ce(Bh), e, zve〉Le .

5. Commit. If epoch-timere ≥ 3∆ and node pi receives the first ve = 〈vote-cert, Ce(Bh), e, zve〉Le
, invoke

Deliver(vote-cert, ve, zve, e). Set commit-timere to 2∆ and start counting down. When commit-timere
reaches 0, if no equivocation for epoch-e has been detected, commit Bh and all its ancestors.

6. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Le and stop performing
epoch e operations.

Figure 1: BFT SMR Protocol with O(kn2) bits communication per epoch and optimal resilience.

Deliver(key, b, ze, e):

– Send 〈share, key, sj , wj , ze, e〉i with shares computed from b to nodes pj ∀j ∈ [n].

– If node pj receives the first valid share 〈share, key, sj , wj , ze, e〉∗ for the accumulator ze, send the share
to all the nodes.

– Upon receiving n− t valid shares for the accumulator ze, decode b.

Figure 2: Deliver function

12



is O(κ) and hence can be broadcast during equivocation or while delivering pe without incurring cubic
communication overhead.

Vote. If a node receives the first valid proposal pe = 〈propose, Bh, e, Ce′(Bl), zpe〉Le
when epoch-timere ≥ 7∆

and block Bh extends the highest ranked certificate known to the node, it invokes Deliver(propose, pe, zpe, e).
In addition, the node sets its vote-timere to 2∆ and starts counting down. When vote-timere reaches 0 and
detects no epoch e equivocation, the node sends 〈vote, H(Bh), e〉i to Le. If block Bh does not extend the
highest ranked certificate known to the node or receives proposal pe when its epoch-timere < 7∆, the node
simply ignores the proposal and does not vote for Bh.

Vote certificate. When leader Le receives t+1 vote messages for the proposed block Bh, denoted by Ce(Bh),
Le broadcasts 〈vote-cert, Ce(Bh), e, zve〉Le

to all nodes where zve is the accumulation value of Ce(Bh). Similar
to the proposal, the hash of the certificate is signed to allow for efficient equivocation checks. It is important
to note that two different certificates for the same value is still considered an equivocation in this step.

Commit. When node pi receives the block certificate ve = 〈vote-cert, Ce(Bh), e, zve〉Le when epoch timer is
large enough (3∆), it invokes Deliver(vote-cert, ve, zve, e) and sets commit-timere to 2∆. When commit-timere
reaches 0, if no equivocation for epoch-e has been detected, node pi commits Bh and all its ancestors. The
Deliver() message ensures that all honest nodes have received Ce(Bh) before quitting epoch e. We note that
it is not necessary for node pi to vote for Bh to commit it. A block certificate on Bh implies at least one
honest node voted for Bh and if node pi had a different highest ranked certificate due to which it did not
vote, then the corresponding block was not committed.

Equivocation. At any time in epoch e, if a node pi detects an equivocation, it broadcasts equivocating
message signed by Le. As mentioned earlier, the message signed by Le are O(1) sized and does not incur
large communication. Node pi also stops participating in epoch e at that time.

Latency and communication complexity. We note that all honest nodes commit in the same epoch
when the epoch leader is honest. However, when the epoch leader is Byzantine, some honest nodes may
commit in the epoch while some honest nodes may not commit. Due to round robin leader selection, there
will be at least one honest leader every t+1 epochs and all honest nodes commit common blocks upto to the
honest epoch. Thus, our protocol has a commit latency of t + 1 epochs. Our protocol has communication
cost of O(n`+ (κ+ w)n2) bits per epoch (more details on Lemma 3.8).

3.2 Safety and Liveness

We say a block Bh is committed directly in epoch e if it is committed as a result of its own commit-timere
expiring. We say a block Bh is committed indirectly if it is a result of directly committing a proposal B`
(` > h) that extends Bh.

Fact 3.1. If an honest node delivers an object b at time τ in epoch e and no honest node has detected an
epoch e equivocation by time τ + ∆, then all honest nodes will receive object b by time τ + 2∆ in epoch e.

Proof. Suppose an honest node pi delivers an object b at time τ in epoch e. Node pi must have sent valid
shares 〈share, key, sj , wj , ze, e〉i computed from b to every pj ∈ P at time τ . The shares arrive at all honest
nodes by time τ + ∆.

Since no honest node has detected an epoch e equivocation by time τ + ∆, it must be that either honest
nodes will forward their shares 〈share, key, sj , wj , ze, e〉 when they receive the shares sent by node pi or they
already sent the corresponding share when they either delivered object b or received the share from some
other node pj . In any case, all honest nodes will forward their epoch e shares corresponding to object b by
time τ + ∆. Thus, all honest nodes will have received n − t valid shares for a common accumulation value
ze by time τ + 2∆ and receive object b by time τ + 2∆.

Fact 3.2. If an honest node votes for a block Bh at time τ in epoch e, then all honest nodes receive Bh by
time τ .

13



Proof. Suppose an honest node pi votes for a block Bh at time τ in epoch e. Node pi must have received
proposal pe for Bh by time τ − 2∆ and detected no epoch e equivocation by time τ . This implies no honest
node detected an epoch e equivocation by time τ −∆. Node pi must have invoked Deliver(propose, pe, zpe, e)
at time τ − 2∆. By Fact 3.1, all honest nodes receive pe by time τ . Thus, all honest nodes must have
received Bh by time τ .

Lemma 3.3. If an honest node directly commits a block Bh in epoch e, then (i) no equivocating block
certificate exists in epoch e, and (ii) all honest nodes receive Ce(Bh) before quitting epoch e.

Proof. Suppose an honest node pi commits a block Bh in epoch e at time τ . Node pi must have received a
vote-cert for Bh at time τ − 2∆ such that its epoch-timere ≥ 3∆ and did not detect an equivocation by time
τ . This implies no honest node detected an epoch e equivocation by time τ −∆. In addition, some honest
node pj must have voted for Bh by time τ − 2∆. By Fact 3.2, all honest nodes would receive Bh by time
τ − 2∆.

For part (i), observe that no honest node received an equivocating proposal by time τ − 2∆; otherwise,
all honest nodes would have received a share for equivocating proposal by time τ − ∆ and node pi would
not commit. And, no honest node would vote for an equivocating block after time τ − 2∆ (since they have
received Bh by time τ − 2∆). Thus, an equivocating block certificate does not exist in epoch e.

For part (ii), observe that node pi must have invoked Deliver(vote-cert, ve, zve, e) for ve = Ce(Bh) at time
τ − 2∆ and did not detect epoch e equivocation by time τ . By Fact 3.1, all honest nodes receive ve by
time τ . Note that node pi must have its epoch-timere ≥ 3∆ at time τ − 2∆. Since, all honest nodes are
synchronized within ∆ time, all other honest nodes must have epoch-timere ≥ 2∆ at time τ − 2∆. Thus, all
nodes are still in epoch e at time τ and receive Ce(Bh) before quitting epoch e.

Lemma 3.4 (Unique Extensibility). If an honest node directly commits a block Bh in epoch e, then any
certified blocks that ranks higher than Ce(Bh) must extend Bh.

Proof. The proof is by induction on epochs e′ > e. For an epoch e′, we prove that if a Ce′(Bh′) exists then
it must extend Bh.

For the base case, where e′ = e + 1, the proof that Ce′(Bh′) extends Bh follows from Lemma 3.3. The
only way Ce′(Bh′) for Bh′ forms is if some honest node votes for Bh′ . However, by Lemma 3.3, there does
not exist any equivocating block certificate in epoch e and all honest nodes receive and lock on Ce(Bh) before
quitting epoch e. Thus, a block certificate cannot form for a block that does not extend Bh.

Given that the statement is true for all epochs below e′, the proof that Ce′(Bh′) extends Bh follows from
the induction hypothesis because the only way such a block certificate forms is if some honest node votes
for it. An honest node votes in epoch e′ only if Bh′ extends a valid certificate Ce′′(Bh′′). Due to Lemma 3.3
and the induction hypothesis on all block certificates of epoch e < e′′ < e′, Ce′(Bh′) must extend Bh.

Theorem 3.5 (Safety). Honest nodes do not commit conflicting blocks for any epoch e.

Proof. Suppose for the sake of contradiction two distinct blocks Bh and B′h are committed in epoch e.
Suppose Bh is committed as a result of Bh′ being directly committed in epoch e′ and B′h is committed as a
result of B′h′′ being directly committed in epoch e′′. Without loss of generality, assume h′ < h′′. Note that
all directly committed blocks are certified. By Lemma 3.4, B′h′′ extends Bh′ . Therefore, Bh = B′h.

Fact 3.6. Let Bh be a block proposed in epoch e. If the leader of an epoch e is honest, then all honest nodes
commit Bh and all its ancestors in epoch e.

Proof. Suppose leader Le of an epoch e is honest. Let τ be the earliest time when an honest node pi enters
epoch e. Due to ∆ delay between honest nodes, all honest nodes enter epoch e by time τ + ∆. Some honest
nodes might have received a higher ranked certificate than leader Le before entering epoch e; thus, they send
their highest ranked certificate to leader Le.

Leader Le might have entered epoch e at time τ while some honest nodes enter epoch e only at time
τ + ∆. The 2∆ wait in the Propose step ensures that the leader can receive highest ranked certificates from

14



all honest nodes. However, leader Le may enter epoch e ∆ time after the earliest honest nodes. Due to
2∆ wait after entering epoch e, leader Le collects the highest ranked certificate Ce′(Bl) by time τ + 3∆ and
sends a valid proposal pe = 〈propose, Bh, e, Ce′(Bl), zpe〉Le

for a block Bh that extends Ce′(Bl) which arrives
all honest nodes by time τ + 4∆.

Thus, all honest nodes satisfy the constraint epoch-timere ≥ 7∆. In addition, Bh extends the highest
ranked certificate. So, all honest nodes will invoke Deliver(propose, pe, zpe, e) and set vote-timere to 2∆ which
expires by time τ + 6∆. All honest nodes send vote for Bh to Le which arrives Le by time τ + 7∆. Leader
Le forwards Ce(Bh) which arrives all honest nodes by time τ + 8∆. Note that all honest nodes satisfy the
constraint epoch-timere ≥ 3∆ and honest nodes set their commit-timere to 2∆ which expires by time τ+10∆.
Moreover, no equivocation exists in epoch e. Thus, all honest nodes will commit Bh and its ancestors in
epoch e before their epoch-timere expires.

Theorem 3.7 (Liveness). All honest nodes keep committing new blocks.

Proof. For any epoch e, if the leader Le is Byzantine, it may not propose any blocks or propose equivocating
blocks. Whenever an honest leader is elected in epoch e, by Fact 3.6, all honest nodes commit in epoch e.
Since we assume a round-robin leader rotation policy, there will be an honest leader every t+ 1 epochs, and
thus the protocol has a commit latency of t+ 1 epochs.

Lemma 3.8 (Communication complexity). Let ` be the size of block Bh, κ be the size of accumulator and
w be the size of witness. The communication complexity of the protocol is O(n`+ (κ+w)n2) bits per epoch.

Proof. At the start of an epoch e, each node sends a highest ranked certificate to leader Le. Since, size
of each certificate is O(κn), this step incurs O(κn2) bits communication. A proposal consists of a block of
size ` and block certificate of size O(κn). Proposing O(n + `)-sized object to n nodes incurs O(κn2 + n`).
Delivering O(κn + `)-sized object has a cost O(n` + (κ + w)n2), since each node broadcasts a share of size
O((n+ `)/n), a witness of size w and an accumulator of size κ.

In Vote cert step, the leader broadcasts a certificate for block Bh which incurs O(κn2) communication.
Delivering O(κn)-sized Ce(Bh) incurs O((κ+ w)n2) bits. Hence, the total cost is O(n`+ (κ+ w)n2) bits.

4 Random Beacon Protocols

In this section, we present two random beacon protocols while tolerating f ≤ t < n/2 Byzantine faults.
The first protocol GRandPiper outputs a random beacon with O(κn2) communication complexity always
per beacon output where κ is the security parameter, guarantees bias-resistance, and O(min(κ, t))-absolute
unpredictability against a static adversary, but t+1-absolute unpredictability against an adaptive adversary.
The second protocol BRandPiper outputs a random beacon with O(κfn2) communication complexity per
output after amortization where κ is the security parameter, and guarantees bias-resistance and 1-absolute
unpredictability. When the actual number of faults f = O(1), the communication complexity is quadratic.

A key aspect of both of our protocols is their reconfiguration-friendliness. A protocol is said to be
reconfiguration-friendly if it allows changing protocol parameters such as the scheme and nodes, without
stopping the old instance, and starting a new one. Such reconfiguration is possible if the setup used for the
protocol does not bind to the system, as such a binding will force a new setup to change any parameter
in the system. This is true, for instance, when using threshold signatures in a protocol which is used
by many existing permissioned systems [9, 11, 12, 23]. Neither of our protocols use a trusted setup for
threshold signatures, but a setup based on the q-Strong Diffie Hellman assumption. This allows for easy
reconfiguration.3

3We can use Merkle trees instead of q-SDH at the expense of O(logn) multiplicative communication complexity.

15



4.1 RandPiper – GRandPiper Protocol

SMR
Re

Recon.

Epoch e

Leader Le

Share Queue Q(·)

SMR
Re+1

Recon.

Epoch e+ 1

Leader Le+1

· · ·

· · ·

SMR
Re′

Recon.

Epoch e′

Leader Le′ = Le

Enqueue(Q(Le), Re)

Dequeue(Q(Le′))

Le 6= Li
∀i ∈ {e+ 1, . . . , e+ t}

Oe′ ← H(Re,
Oe′−1, . . . ,Oe′−t)

Figure 3: Overview of RandPiper – GRandPiper Random beacon protocol. In every epoch, a
PVSS encryption vector is used to secret share some random value. At the same time, a reconstruction
protocol is used to reconstruct the random value committed by the leader of this epoch, the last time it was
a leader. Oe′ is generated using the random value Re, shared in epoch e, reconstructed in epoch e′ > e+ t,
and outputs {Oe′−1, . . . ,Oe′−t} from previous epochs by using them as inputs to the random oracle H.

We use the SMR protocol (refer Figure 1) described in the Section 3 as a building block. At a high-level,
consider using the SMR protocol such that the leader outputs a number chosen uniformly at random in each
epoch. The random beacon output can be a function of the outputs of the last t + 1 epochs, allowing for
the presence of at least one honest input (chosen uniformly at random) which is potentially sufficient to
obtain a random output. This argument holds only if each leader chooses their input in the SMR protocol
independently of other inputs. Otherwise, if a Byzantine leader can choose an input after knowing the
outputs of the previous t instances then it can bias the output. A separate concern with using the SMR
protocol as is, is that in an epoch with a Byzantine leader, honest nodes may not all output the same value
or output at all.

To fix both of these concerns, we require each node to send a commitment of a random value more than
t epochs before it will be reconstructed and used in the beacon protocol. To ensure the secrecy of this value
(for unpredictability and bias-resistance), the values are shared with the nodes using a publicly verifiable
secret sharing (PVSS) scheme. Committing a secretly chosen value ahead of time helps us solve both of our
previous concerns. First, if the same leader is not chosen twice in any span of t+ 1 epochs, it ensures that
the t+ 1 values that will be used to construct the beacon protocol are chosen independently of one another.
Thus, when nodes reconstruct a value in an epoch, it corresponds to a value committed more than t epochs
before. Moreover, the nodes can reconstruct this value independent of the participation of the leader in this
epoch. Second, waiting for t + 1 epochs before opening allows for the value to be committed by the SMR
protocol. Thus, all honest nodes will open the same value in an epoch.

A graphical description of this approach is presented in Figure 3. In epoch e, a leader Le inputs PVSS
shares corresponding to a random value Re to the SMR protocol. Conceptually, when the block is committed,
this value is added to a queue Q(Le) corresponding to this leader. When the same node is chosen the next
time as a leader, say in epoch e′, the committed shares of Re is dequeued and reconstructed by all honest
nodes to obtain Re. The output Oe′ of epoch e′ can be computed as H(Re,Oe′−1, . . . ,Oe′−t). To allow for
unpredictability in leader selection while disallowing repetition within t + 1 epochs, the leader for the next
epoch e′ + 1 is chosen based on Oe′ and by removing the leaders Le′ , . . . , Le′−t.

A remaining concern is when no values are added to the chain at epoch e. Observe that the reconstruction
in epoch e is not affected, since nodes reconstruct values previously committed. However, nodes may not

16



have shares in epoch e′ > e + t where e′ is the first epoch where Le is chosen as the leader again. To fix
this concern, we ensure that such a malicious leader who does not commit in epoch e can be removed by
all nodes by e + t < e′. Subsequently, we can ensure that Le is never chosen as the leader again. To allow
for reconstruction the first time a node is chosen as the leader, we ensure a setup where each node has an
agreed upon share buffered for every other node.

4.1.1 Protocol details

All nodes pi ∈ P running the SMR protocol do the following:

• Setup. Set e = 1. All nodes agree upon seed random values for Re and {Oe−1, . . . ,Oe−t}. Set
LLast ← {pn, . . . , pn−t}, Pr ← ∅. Run PVSS.Setup and agree on the public parameters PVSS.pp.
Then every node generates a key pair (PVSS.sk,PVSS.pk)← PVSS.KGen(κ), and all nodes agree on
each others public keys.

• Leaders. Choose leaders for an epoch e using Definition 4.1 instead of a round robin order.

• Blocks. The leader Le of an epoch e, creates a PVSS sharing (PVSS.~S,PVSS. ~E,PVSS.π) ←
PVSS.ShGen(R) of a random value chosen from the input space of PVSS, and creates a block Bh
with block contents bh as bh := (PVSS. ~E,PVSS.π) ← PVSS.ShGen(R). (We drop the individual

shares in PVSS.~S.)

• Block validity. After regular checks for block validity, with the block content parsed as bh :=
(PVSS. ~E,PVSS.π), ensure that PVSS.ShVrfy(PVSS. ~E,PVSS.π) = 1.

• Update. When committing a block Bh sent by leader Le′ for some epoch e′, Enqueue(Q(Le′), bh). At
the end of epoch e, if no block was committed for epoch e− t by Le−t, then remove Le−t from future
proposals, i.e., Pr ← Pr ∪ {Le−t} from epoch e+ 1.

• Reconstruct. When the epoch timer epoch-timere−1 for epoch e − 1 ends, obtain the

(PVSS. ~E,PVSS.π) corresponding to the committed block in Dequeue(Q(Le)). Send s ←
PVSS.Dec(PVSS.sk,PVSS. ~Ei) to all the nodes in the system. On receiving share s′ from another

node pj , ensure that PVSS.Enc(PVSS.pkj , s′) = PVSS. ~Ej . On receiving t+1 valid shares in PVSS.~S,

reconstruct Re ← PVSS.Recon(PVSS.~S).

• Output. After reconstructing Re for epoch e, output the beacon value Oe by computing,

Oe ← H(Re,Oe−1, . . . ,Oe−t)

Figure 4: RandPiper – GRandPiper beacon protocol description. We describe the modifications
required to the SMR protocol described in Figure 1 to build GRandPiper beacon protocol.

We now explain the protocol in detail (described in Figure 4). We use a Publicly Verifiable Secret Sharing
(PVSS) scheme PVSS with threshold t to generate encrypted shares and an associated proof that guarantees
that any > t nodes will reconstruct a unique secret.

Setup. We establish PVSS parameters PVSS.pp, and public keys PVSS.pki for every node pi ∈ P. We also
buffer shares for one random value for every node pi, i.e., fill Q(pi) for pi ∈ P. We start with epoch e = 1,
and use seed random values for Re and {Oe−1, . . . ,Oe−t}. We also arbitrarily assign LLast ← {pn, . . . , pn−t}
and set Pr ← ∅.

17



Leader selection. The leader for epoch e is chosen based on the following rule:

Definition 4.1 (Leader selection rule). Let e be the current epoch, LLast := {Le−1, . . . , Le−t} be the leaders
of the last t epochs, Pr be the set of nodes that are removed (due to misbehavior), and Le = (P\LLast)\Pr :=
{l0, . . . , lw−1}, be a set of candidate leaders for epoch e ordered canonically, with 0 < w < n− t and Le ⊆ P.
Then the leader Le of epoch e, is derived from output Oe−1, as

Le ← l(Oe−1 mod w)

Blocks. The leader of an epoch chooses R uniformly at random from the input space of the PVSS algorithm
(which could be a cyclic additive/multiplicative group, or pairing groups). The leader uses the PVSS.ShGen
algorithm to generate share PVSS.si for node pi which are encrypted using PVSS.pki, and all shares for

the nodes are stored in the encryption vector PVSS. ~E. The PVSS.ShGen algorithm also outputs the proof
PVSS.π that any > t shares will reconstruct a unique secret, which implies that the degree of the polynomial
cannot be more than t. Finally, the block in our SMR protocol consists of the outputs of the PVSS.ShGen
algorithm, i.e., bh := (PVSS. ~E,PVSS.π) ← PVSS.ShGen(Re). Note that despite the blocks being O(κn)
sized, due to our usage of Deliver primitive, we retain a communication complexity of O(κn2) per epoch.

Commit, reconstruct, and output beacon value. In each epoch, nodes commit the shares sent by the
leader. They also reconstruct the block last sent by the leader at the start of the epoch. Note that each node
can separately maintain the last time a node was elected as the leader, and thus, be able to appropriately
invoke Dequeue(Q(Le)). Moreover, since a leader does not repeat in any consecutive t + 1 epochs, and
we ensure that the set of leaders are consistently known to all honest nodes (as will be shown in the next
subsection), the reconstructed block is agreed upon by all honest nodes. When the nodes reconstruct Re,
they already have access to {Oe−1, . . . ,O1}. Hence, they can compute a consistent output Oe. Observe that
since all nodes enter epoch e within a delay of ∆, they also output the beacon value within ∆ time of each
other.

Remove misbehaving leaders. Finally, at the end of an epoch e, if no block was committed in epoch e− t
by Le−t, Le−t is removed from all future proposals. Since this operation is performed after t+ 1 epochs, all
nodes will perform this action consistently.

4.1.2 Security Analysis

Theorem 4.1 (Consistent beacon). Let L = Le denote the leader of epoch e. Then the following properties
hold:

(i) Block consistency: if an honest node commits a block B proposed in epoch e′ ≤ e − t, then all honest
nodes commit block B by epoch e.

(ii) Leader validity: all nodes have a block in Q(Le).

(iii) Output consistency: all honest nodes output the same randomness Re, output Oe, and

(iv) Leader consistency: all honest nodes choose the same leader for epoch e+ 1.

Proof. We prove the theorem by induction on epochs.

Base case for epoch e = 1 to e = t + 1. (ii) should hold for the first t + 1 leaders because we fill Q(pi)
with m = 1 values for all nodes pi ∈ P during the setup phase. Additionally, from Definition 4.1, no leaders
repeat in the first t + 1 epochs, thereby proving (ii) for the base case. (iii) and (iv) hold since the first
t+ 1 outputs only use the seed values, and pre-agreed upon shares from Q from the setup phase. At epoch
e = t+ 1, from the proof for (iv) for the base cases, we know that all nodes agree on the leaders for epochs
1 ≤ e′ ≤ t+1. Therefore, if some honest node commits block B1 from epoch e = 1, then all honest nodes will
commit B1 by epoch e = t+ 1, because at least one leader in some epoch 1 ≤ e′ ≤ t+ 1 must be honest, and

18



from Fact 3.6 all honest nodes commit the block proposed in e′ and therefore directly or indirectly commit
B1. Therefore, by epoch e = t+ 1 all honest nodes commit B1, thereby proving (i) for the base cases.

Induction hypothesis. The statements hold until epoch e− 1.

Induction step. Proof for (i). From the induction hypothesis for (iv), we have that all the leaders until
epoch e are consistent and at epoch e− 1, and from the induction hypothesis for (i) all honest nodes would
have committed all the blocks for epoch e′ < e− 1− t by consistent leaders upto epoch e− 1. Now, at epoch
e all honest nodes need to decide on the block B proposed in epoch e− t− 1. In epochs e− t− 1 ≤ e′ < e,
there is one epoch e′ whose leader Le′ is honest, from Fact 3.6, all honest nodes commit B in epoch e′, thus
proving the hypothesis for (i).

Proof for (ii). By the induction hypothesis for (iv), the leader of epoch e and all previous epochs is agreed
upon. Let Le be the leader for epoch e. Then Le must have committed a block in some epoch < e − t, or
during the setup. If Le was never the leader, then the hypothesis (ii) is trivially satisfied. Let e′ < e− t be
the latest epoch in which Le was the leader last. If Le proposed a block in some epoch e′ < e− f , then from
the proof for (i) for epoch e, all nodes agree on the same block for epoch e′. If no block proposed in epoch e′

is added to the chain by epoch e′ + t < e , then from our leader selection rule (in Definition 4.1), no honest
node will derive Le as the leader as Le ∈ Pr. Therefore, (ii) also holds for epoch e.

Proof for (iii). The randomness Re depends on choosing a committed value to be reconstructed. The output
Oe depends on Re and {Oe−1, . . . ,Oe−t}. By the induction hypothesis for (iii), all honest nodes agree on
Oe−1, . . . ,Oe−f . Moreover, by the induction hypothesis for (iv), they also choose the same leader Le for
epoch e. Thus, if we can prove that all honest nodes agree upon the value from Le that is reconstructed in
epoch e, then agreement on Oe is trivial. From the proof of (i) and (ii), we know that there is a block bh
that is enqueued in the queue Q(Le) for Le, which all honest nodes agree on, and therefore obtain the same
Re for epoch e. Thus, (iii) holds true for epoch e.

Proof for (iv). The leader derivation depends on the candidate set Le, outputs of the last t iterations
{Oe−1, . . . ,Oe−t}, and the reconstructed randomness Re in epoch e. By the induction hypothesis for (iv),
and proof of (iii), the output of the last f iterations and that of epoch e is agreed upon. From the proof of
(i), (ii), and the induction hypothesis for (iv), all honest nodes have the same LLast and Pr. From (iii), all
honest nodes derive the same leader for epoch e+ 1.

Next, we show that the SMR protocol is a secure PVSS protocol, satisfying the requirements specified in
Definition 2.4.

Theorem 4.2 (Secure PVSS). The GRandPiper protocol is a secure publicly verifiable secret sharing protocol
with the dealer as the leader of an epoch, and the rest of the nodes as the verifiers.

Proof. We will individually prove all the requirements stated in Definition 2.4.

1. Secrecy. Let Le be a honest leader for epoch e. If an adversary A has access to the internal state of
any t nodes in P \ {Le}, it cannot get any information with probability better than negl(κ) from the
security of the underlying scheme PVSS.

2. Correctness. Let Le be an honest leader for epoch e. Then its proposed block that shares Re is always
committed (from Fact 3.6). Thus when the secret is reconstructed in the beacon protocol (Figure 4)
all honest nodes will output Re with a high probability of 1 − negl(κ) (from the underlying PVSS
algorithm).

3. Commitment. If Le is Byzantine, then either all nodes commit to one of the blocks Bh proposed by it
or ⊥ by epoch e + t + 1. Therefore, the commitment property is satisfied by our protocol. From the
underlying scheme PVSS, there is a negligible probability negl(κ) for two correct nodes pi and pj to
output different s∗i 6= s∗j 6= ⊥.

19



4. (Public) Verifiability. This property holds true with high probability from the underlying PVSS scheme
PVSS.

Now, we show that GRandPiper is a secure random beacon protocol.

Lemma 4.3 (Rushing Adversary Advantage). For any epoch e, a rushing adversary can reconstruct output
Oe at most 2∆ time before honest nodes.

Proof. An honest node sends its secret shares in epoch e when its epoch-timere−1 expires. Let node pi be the
earliest honest node whose epoch-timere−1 expires and node pi sends its secret share at time τ . A rushing
adversary may instantaneously receive the share and reconstruct the output Oe at time τ .

Due to ∆ delay in honest nodes entering into an epoch, other honest nodes may send their secret shares
only at time τ + ∆ which arrives all honest nodes by time τ + 2∆. In the worst case, honest nodes can
reconstruct only at time τ + 2∆. Thus, a rushing adversary can reconstruct output Oe at most 2∆ time
before honest nodes.

Lemma 4.4 (Guaranteed Beacon Output). For each epoch e, all honest nodes output a new beacon output
Oe.

Proof. By Theorem 4.1 part (iv), all honest nodes have consistent leaders. Let node pi be the leader of
epoch e. Honest nodes output a new beacon output in each epoch e if Q(pi) 6= ⊥. Suppose for the sake
of contradiction Q(pi) = ⊥ in epoch e. Observe that nodes update Q(pi) with secret proposed in epoch e′

(with e′ < e− t) when pi was an epoch leader in epoch e′ by epoch e and node pi did not propose any secrets
in epoch e′. However, if pi did not propose in epoch e′, pi would have been removed from the candidate
leader set for epoch e and would not be epoch leader for epoch e and honest nodes would not use Q(pi) in
epoch e. A contradiction.

Thus, all honest nodes send secret shares for secret shared in Q(pi) and all honest nodes will receive t+ 1
valid shares to reconstruct a common randomness Re and output Oe.

Lemma 4.5 (Bias-Resistance). For any epoch e ≥ 1, the probability that a t bounded adversary A can fix
any c bits of the GRandPiper beacon output Oe is 1

2c + negl(κ).

Proof. The output in any epoch e is Oe ← H(Re,Oe−1, . . . ,Oe−t). Assume that an adversary A wants to
bias some c bits of the output. Now, there is at least one honest node who is a leader in epoch e′ where
e − t ≤ e′ ≤ e. WLOG, assume that the leader at epoch e′ = e − t is honest. Then the output of epoch e′

is known only in epoch e′ within 2∆ time of entering the epoch e′ (from Lemma 4.4). Therefore, a rushing
adversary A can know the Oe′ at max 2∆ before an honest node enters epoch e′. But the adversary has to
choose all Re′′ before epoch e′, where e− t < e′′ < e′ ≤ e, so that it can bias Oe. But all blocks containing
Re′′ are committed before the epoch e′, since Re′′ comes from the blocks previously proposed by the leaders
before epoch e′ at the start (or during the setup). Thus all blocks containing Re′′ are proposed before
observing Re′ , which is guaranteed to be secret for a honest node against A (from the secrecy property
of Theorem 4.2) except with negligible probability negl(κ). Thus, an adversary A can do no better than
1
2c + negl(κ) to fix c bits.

Lemma 4.6 (GRandPiperO(min(κ, t))-absolute unpredictability). The GRandPiper random beacon protocol
is an O(min(κ, t))-unpredictable random beacon against a static adversary, when a single instance is run.

Proof. Since the leaders are chosen using the beacon outputs, the probability that the adversary’s nodes are
chosen in an epoch e is t/n < 1/2. The probability that c consecutive leaders are Byzantine is therefore(
t
c

)
/(n − t)c < 2−c for 3 < c < t and is exponentially decreasing in c. The expected value is dlog 2e = 2.

If c = t + 1, the probability is already negl(κ). Thus, for a given security parameter κ, we can achieve a
probability of a static adversary predicting the output with better than κ in min(κ, t) + 1 epochs.

20



Better unpredictability using multiple instances. Running a single instance of the GRandPiper
beacon, a static adversary can predict c rounds into the future with probability < 2−c for c > 3 (Lemma 4.6).
However, an adaptive adversary can choose to corrupt the leaders of the next t epochs at any epoch e, reducing
the unpredictability to t+ 1-absolute unpredictability. We can improve this to obtain statistical security in
parameter κ, by running p parallel instances of the beacon protocol whose leaders are chosen independently
and randomly. This protocol has a communication complexity O(pκn2) complexity per epoch. In any epoch,
the probability of the next leader being Byzantine is t/n < 1/2. When p independent beacon instances run
in parallel, the beacon protocol becomes o(log(t/p))-absolute unpredictable.

Lemma 4.7 (Multiple-instance Unpredictability). GRandPiper is an o(log(t/p))-absolute unpredictable ran-
dom beacon protocol against an adaptive adversary, when p instances are run in parallel.

Proof. We are running p instances of GRandPiper beacon protocol. Let an adaptive adversary A have
0 ≤ c ≤ t choices to corrupt nodes. In order to predict the output of epoch e, A has to corrupt all the
leaders of the p instances.

Since the adversary wants to predict continuous beacon values, let us start with c(0) ← 0 initially. For
the first epoch, A has to corrupt p leaders. For the next epoch, c ← p, i.e., the adversary has t− c = t− p
choices left. However, the c corrupted leaders from the first round can become leaders in other instances in
this epoch. Therefore, let us first analyze the expected number of corruptions needed in this epoch.

Let X be the random variable defining the number of new corruptions. The probability of A needing x
new corruptions is the probability that in x ≤ p instances one of the c nodes do not become leaders, which
is:

Pr [X = x] =

(
c

n− t

)p−x(
1− c

n− t

)x
E[X] = p

(
c

n− t

)
Hence, in every epoch from 1, with c0 = p, ci grows by pci−1/(n− t), i.e., ci = ci−1 +pci−1/(n− t) whose

solution is

ci+1 = p

((
p

n− t

)i)
+ p


1−

(
p

n− t

)i
1− p

n− t


. Now all we need to do is to ensure that ci always stays less than t, whose solution gives us:

ci ≤ t

=⇒ i = o

(
log

(
t

p

))
Thus o(log(t/p)) gives us a strict upper bound on the prediction power of an adaptive adversary.

Theorem 4.8 (GRandPiper secure random beacon). GRandPiper protocol is a:

1. O(min(κ, t))-secure random beacon protocol assuming a static adversary.

2. t+ 1-secure random beacon protocol assuming an adaptive adversary using a single instance.

3. o(log(t/p))-secure random beacon protocol assuming an adaptive adversary using p parallel instances.

Proof. 1. This follows from Lemma 4.5, Lemma 4.4, and Lemma 4.6.

21



2. The bias-resistance and guaranteed output delivery follow from Lemma 4.5 and Lemma 4.4. t + 1-
absolute unpredictability follows directly from Lemma 4.6 by allowing an adaptive adversary to corrupt
the next t leaders after knowing the output for the current epoch before the other honest nodes (from
Lemma 4.3).

3. This follows from Lemma 4.5, Lemma 4.4, and Lemma 4.7.

4.2 BRandPiper Protocol

In this section, we present a randomness beacon protocol with 1-absolute unpredictability with O(κfn2) bits
communication complexity where f ≤ t is the actual number of faults. Thus, in the optimistic case when
f = O(1), our communication complexity is quadratic.

4.2.1 Improved VSS

We will first describe an improved VSS scheme that achieves better communication complexity in the opti-
mistic case which will then be used for our randomness beacon protocol.

Efficient VSS (eVSS). eVSS [28] (refer Figure 5) presents the state-of-the-art VSS scheme for synchronous
network setting. The protocol is described assuming the presence of a bulletin board (or broadcast channels)
[8,14,16,28] where there exists a public bulletin board, in which messages posted by any node are available
instantly, and the bulletin board provides a consistent view to all the nodes. We can realize such message
delivery guarantees by invoking Byzantine Broadcast (BB) protocols.

Let VSS be the VSS scheme being used. Let VSS.pp be the public VSS parameters. Let L be a dealer with
secret s. Assuming the existence of a bulletin board, each node pi ∈ P does the following:

1. Post commitment. If pi is L, then generate shares for every node by running
(VSS.~S,VSS. ~W,VSS.C) ← VSS.ShGen(s), and post the commitment VSS.C to the secret s on the
bulletin board.

2. Send shares. If pi is L, then send shares VSS.sj ∈ VSS.~S and witness VSS.πj ∈ VSS. ~W over the
confidential channel to all nodes pj ∈ P.

3. Send blames. Post complaints 〈blame, L〉i on the bulletin board, if no valid share is received privately
or if VSS.ShVrfy(VSS.si,VSS.πi,VSS.C) = 0.

4. Open shares. For all blames 〈blame, L〉i, if pi is L, post their shares VSS.sj and witnesses VSS.πj
on the bulletin board.

5. Decide. If the published share and witness satisfies VSS.ShVrfy(VSS.sk,VSS.πk,VSS.C) = 1 for
every blame, and there are only up to f ≤ t blames on the bulletin board, then commit VSS.sj .
Otherwise, abort, i.e., output ⊥.

Figure 5: eVSS [28] protocol description. This scheme is to secret share one secret.

In this scheme, a dealer L creates a commitment VSS.C to a random polynomial whose constant term
is the secret, and posts the commitment on the bulletin board (Step 1), while privately sending individual
shares VSS.sj along with witnesses VSS.πj to every node pj ∈ P (Step 2). Nodes post complaints on the
bulletin board in the form of blame message if they do not receive valid shares (Step 3) in a timely manner.
The dealer then opens the secret shares on the bulletin board corresponding the nodes that blamed (Step

22



4). If there are > t complaints, the nodes abort (Step 5). Otherwise, the honest nodes commit their shares
(Step 5), with the guarantee that all honest nodes will be able to reconstruct the shared secret.

Note that f ≤ t Byzantine nodes can always blame regardless of the dealer being honest or not. This
forces an honest dealer to post O(fn) shares on the bulletin board when secret sharing O(n) secrets. In
general, the amount of information posted on the bulletin board is O(κn+κf +κfn) corresponding to O(n)
commitments, f blame messages and O(fn) opened secret shares. A näıve approach of using BB protocols
(extension BB protocols [31] for larger inputs can be used) to instantiate the bulletin board involves following
steps:

1. Commitment and sharing. Dealer L invokes BB to broadcast n commitments Step 1, while privately
sharing individual shares Step 2.

2. Blame. Nodes invoke n parallel instances of BB to broadcast blame messages Step 3.

3. Open shares. Dealer L invokes an instance of BB with secret shares corresponding to the blames
received.

We note that state-of-the-art honest majority BB protocols, without threshold signatures, incur O(κn3)
bits communication cost to achieve consensus on a single decision [3, 19, 29]. Thus, invoking n parallel
instances of BB trivially incurs O(κn4) communication cost. In addition, running BB on inputs of size O(fn)
incurs O(κfn3) without threshold signatures and extension techniques. Thus, the total communication
complexity is O(κn4) bits.

Improved eVSS (iVSS). In order to reduce the large communication overhead, we first present an improved
VSS scheme, that reduces (i) the number of posts to the bulletin board, and (ii) the amount of information
posted on the bulletin board.

In iVSS (refer Figure 6), the dealer posts commitments on the bulletin board, privately sends the secret
shares and corresponding witnesses similar to eVSS. However, unlike eVSS, nodes send the blame messages
to all nodes. In addition, nodes forward the received blame messages to the dealer to request for missing
shares. The dealer privately sends missing shares to the nodes that forwarded the blame message instead of
posting on the bulletin board. If an honest node receives missing shares for all blame messages it forwarded,
it sends an ack to the dealer. The dealer collects t + 1 ack messages and posts the ack certificate on the
bulletin board. An honest node commits the proposed commitment if it observes an ack certificate on the
bulletin board.

Later, during the reconstruction phase, honest nodes forward the missing shares if the dealer sent the
missing shares before they send an ack. A key correctness argument for our scheme is the following: if an
honest node pi ∈ P does not receive commitments and secret shares, it must have sent blame messages to
all honest nodes. If some honest node pj ∈ P sends an ack message, it must have received missing shares
corresponding to the blame messages it received and forwarded (which includes share for pi). Thus, honest
nodes together have sufficient shares to reconstruct the proposed secrets.

We note that both eVSS and iVSS schemes guarantee secrecy (see Definition 2.5) only when the dealer
is honest. If t Byzantine nodes send a blame message, then an honest but curious node can violate secrecy,
however this can be easily solved by assuming an additional honest node, i.e., n > 2t+ 1.

Theorem 4.9 (Security of iVSS). The verifiable secret sharing scheme proposed in Figure 6 is a secure
verifiable secret sharing scheme assuming a bulletin board.

Proof. We prove the security of iVSS protocol by proving that the individual requirements from Defini-
tion 2.5.

1. Secrecy : If the dealer L is honest, then no honest node will blame and the maximum number of blames
is at most t. Thus, only up to t blames will be opened privately by the leader. Therefore, the adversary
A does not learn any new share from which it can learn the secret s, except with negl(κ) probability.

2. Correctness: If the dealer L is honest, then all honest nodes have their shares for the secret s, and
similar to eVSS, will output the same secret s except with negl(κ) probability.

23



Let VSS be the VSS scheme being used. Let VSS.pp be the public VSS parameters. Let L be a dealer
with n secrets S := {s1, . . . , sn} it wishes to secret share with nodes P. Assuming the existence of a bulletin
board, each node pi ∈ P does the following:

1. Post commitment. If pi is L, run (VSS.~Si,VSS. ~Wi,VSS.Ci)← VSS.ShGen(si) for all si ∈ S. Build

the commitment vector VSS. ~C := {VSS.C1, . . . ,VSS.Cn} which contain commitments VSS.Ci for si.

Post VSS. ~C on the bulletin board.

2. Send shares. If pi is L, collect shares and witnesses (VSS.sj ,VSS.πj) for every node pj ∈ P, and

secret si ∈ S, and build VSS.~Sj ,VSS. ~Wj . Send (VSS.~Sj ,VSS. ~Wj) to node pj ∈ P.

If pi ∈ P is not the dealer L, then wait to obtain (VSS.~Si,VSS. ~Wi) from the dealer L, and ensure

that VSS.ShVrfy(VSS.sj ,VSS.πj ,VSS. ~Cj) = 1 holds for VSS.sj ∈ VSS.~Si, and VSS.πj ∈ VSS. ~Wi.

3. Send blames. If invalid/no shares are received from the dealer L, then send 〈blame, L〉i to all the
nodes. Collect similar blames from other nodes.

4. Private open. Send all the collected blames to the dealer L. If pi is the leader, then for every blame
〈blame, L〉k received from node pj , send (VSS.~Sk,VSS. ~Wk) to node pj .

If pi is not L, then ensure that VSS.ShVrfy(VSS.sj ,VSS.πj ,VSS. ~Cj) = 1 for every 〈blame, L〉j ,
VSS.sj ∈ VSS.~Sj , and VSS.πj ∈ VSS. ~Wj .

5. Ack and decide. If pi received ≤ t blames and the leader responded with valid shares
(VSS.~Sj ,VSS. ~Wj) for every 〈blame, L〉j it forwarded, then send an ack message to the dealer L.

If pi is L, then post ack certificate (denoted by AC(VSS. ~C)) on the bulletin board.

If there is an ack certificate AC(VSS. ~C) on the bulletin board, commit VSS. ~C, and send

(VSS.~Sj ,VSS. ~Wj), if received from L.

Reconstruction. Each node pi ∈ P does the following:

1. If there is a share VSS.si,VSS.πi, send the share and witness to all the nodes.

On receiving a share and witness (VSS.sj ,VSS.πj) from pj , ensure that
VSS.ShVrfy(VSS.sj ,VSS.πj ,VSS.C) = 1.

2. On receiving t+1 valid shares in VSS.~S, reconstruct the secret s using s← VSS.Recon(VSS.~S). Send
s to all the nodes.

3. On receiving an opened secret s, ensure that VSS.ComVrfy(VSS.C, s) = 1 and output s.

Figure 6: iVSS - Improved eVSS protocol description

24



3. Commitment : If the dealer L is Byzantine, then either a vote certificate is formed, or not. If a vote
certificate is formed, then at least one honest node has not observed ≥ t+ 1 blames, and has received
valid shares for every blame. This honest node, say pi has all the shares for every honest node that does
not have a share. Therefore, all honest nodes together have t+1 shares, which guarantees reconstruction
to the unique secret s that was committed except with negl(κ) probability. If no vote certificate is
formed, then all the honest nodes, agree on ⊥, thus satisfying the Commitment requirement with high
probability of 1− negl(κ).

4.2.2 Randomness Beacon for BRandPiper Protocol

In this section, we instantiate bulletin boards using our SMR protocol (Section 3) and present a random
beacon protocol, we call BRandPiper, using the iVSS scheme. When we use our SMR protocol with rotating
leaders, a proposed block gets committed within t + 1 epochs and incurs O(κn2) bits of communications
per epoch for O(κn)-sized blocks. To obtain 1-absolute unpredictability, we need reconstruction of at least
t+ 1 secrets from distinct nodes in each epoch. For simplicity, we reconstruct one secret from all nodes that
have not been removed. Due to round-robin leader election policy, a leader can share secrets at least every
n epochs. Thus, an epoch leader proposes commitments to n secrets using SMR protocol. These secrets
can be used for n epochs for reconstruction. Our beacon output step takes advantage of the homomorphic
properties of the underlying VSS scheme VSS to combine secret shares for multiple secrets into O(κ)-sized
share which can be efficiently broadcast to all nodes. Honest nodes collect t + 1 homomorphic shares to
reconstruct the common randomness Re. Such reconstructed randomness is guaranteed to be unbiasable
since an adversary cannot know the secrets of honest nodes until reconstructed, and an adversary cannot
prevent reconstruction. For the same reason, BRandPiper protocol ensures 1-absolute unpredictability, even
for a rushing adaptive adversary.

Protocol Details

Leader selection. We employ a round robin leader selection policy. If an epoch leader pi fails to commit
within t+ 1 epochs, it is added to the set of removed nodes Pr and is prevented from being a future leader.
Remaining nodes P \ Pr propose in a round robin manner.

Setup. During the setup phase, all nodes are provided with VSS parameters VSS.pp required for using the
VSS scheme VSS. Each node maintains n queues Q(pi) ∀pi ∈ P. Each queue Q(pi) holds tuples with each
tuple containing a secret share, its witness and commitment proposed by node pi when node pi was an epoch
leader. During the setup phase, each queue Q(pi) is filled with m = n + t tuples containing secret shares,
witnesses and commitments for m secrets. This ensures that all honest nodes have a common secret shares
in Q(pn) and can perform Dequeue(Q(pn)) upto epoch n + t even if pn does not propose in epoch n. This
is because honest nodes perform Dequeue(Q(pn)) (explained later) in each epoch unless node pn has been
removed. If node pn does not propose in epoch n, it is removed only in epoch n+ t.

Block validation protocol. BRandPiper protocol consists of a commitment validation phase, called Block
validation protocol, responsible for sharing commitments to secrets along with secret shares, and creating
a certificate to prove sufficient secret shares have been shared among honest nodes. The commitment and
certificate is then input to the SMR protocol to ensure that all honest nodes agree on the commitment.
When the commitment is committed, all honest nodes use corresponding secret shares to reconstruct the
common randomness.

The Block validation protocol (refer Figure 7) is executed in parallel with SMR protocol. The leader
Le of epoch e executes the block validation protocol while in epoch e − 1 to generate an ack certificate for
commitments to be proposed in epoch e. The protocol consists of following steps:

Distribute. Leader Le creates n commitments VSS. ~C corresponding to n secrets {s1, . . . , sn} it wishes

to share using VSS.ShGen algorithm for secrets {si|∀1 ≤ i ≤ n}, along with share vector VSS.~Sj :=

25



The protocol is executed in parallel with BFT SMR protocol in Figure 1 using round robin leader selection.
Let Le be the leader of epoch e and the current epoch be e− 1. Node pi performs following operations while
in epoch e− 1:

1. Distribute. Le waits for ∆ time after entering epoch e− 1 and then does the following:

• Let {s1, . . . , sn} be n random numbers chosen uniformly from the input space of VSS.

• Build SB := 〈Commitment,VSS. ~C, e, zse〉Le
, the sharing block which consists of commit-

ments VSS. ~C := {VSS.C1, . . . ,VSS.Cn} to the n random numbers generated by run-

ning (VSS.~Si,VSS. ~Wi,VSS.Ci) ← VSS.ShGen(si) for i ∈ {1, . . . , n}, where VSS.~Si :=

{VSS.si,1, . . . ,VSS.si,n}, and VSS. ~Wi := {VSS.πi,1, . . . ,VSS.πi,n}.

• Build the share vector VSS.~Sj := {VSS.s1 ← VSS.~S1,j , . . . ,VSS.sn ← VSS.~Sn,j} and the wit-

ness vector VSS. ~Wj := {VSS.π1 ← VSS. ~W1,j , . . . ,VSS.πn ← VSS. ~Wn,j} for node pj using jth

share and witness from VSS.~Si and VSS. ~Wi for random number si.

• Send VSS.~Sj , VSS. ~Wj , and SB to every node pj ∈ P.

2. Blame/Forward. If epoch-timere−1 ≥ 8∆ and node pi receives valid share vector VSS.~Si,
witness vector VSS. ~Wi and commitment SB := 〈Commitment,VSS. ~C, e, zse〉Le

, then invoke
Deliver(Commitment, SB, zse, e). If no shares has been received within 3∆ time while in epoch e − 1,
broadcast a blame 〈blame, e〉i to all nodes.

3. Request open. Wait until epoch-timere−1 ≥ 5∆. Collect all blames received so far. If upto t blames
are received so far, forward the blames to Le. If no blames or equivocation by Le has been detected,
send 〈ack, H(SB), e〉i to Le.

4. Private open. Le sends valid share VSS.~Sj and witness VSS. ~Wj to node pi, for every blame
〈blame, e〉j received from node pi.

5. Ack. Upon receiving valid share VSS.~Sj and witness VSS. ~Wj for every 〈blame, e〉j it forwarded and

detects no equivocation, send 〈ack, H(SB), e〉i to Le. Forward share VSS.~Sj and witness VSS. ~Wj to
node pj for every 〈blame, e〉j it received.

6. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Le and stop performing
any operations.

Figure 7: Block validation protocol.

26



{VSS.s1,j , . . . ,VSS.sn,j} and witness vector VSS. ~Wj := {VSS.π1,j , . . . ,VSS.πn,j} ∀pj ∈ P. We define

a share block SB := 〈Commitment,VSS. ~C, e, zse〉Le
the sharing block to share the commitment VSS. ~C.

Leader Le sends VSS.~Sj , VSS. ~Wj , and SB to node pj ∀pj ∈ P. Similar to the SMR protocol, the

leader signs the tuple 〈Commitment, H(VSS. ~C)), e, zse〉Le
and sends VSS. ~C separately to facilitate

efficient equivocation checks. It is important to note that commitment VSS. ~C, shares VSS.~Sj , and

witness VSS. ~Wj are O(n)-sized and the shares VSS.sj are only sent to node pj . Sending only required
shares to designated nodes reduces communication complexity.

Blame/Forward. If a node pi receives a valid secret share VSS.~Si, witness VSS. ~Wi, and sharing block

SB := 〈Commitment,VSS. ~C, e, zse〉Le within 3∆ time in epoch e−1, it invokes Deliver(Commitment, SB, zse, e).

A valid share satisfies the constraint VSS.ShVrfy(VSS.sj ,VSS.πj ,VSS. ~Cj) = 1 ∀j ∈ [n]. Otherwise,
node pi broadcasts 〈blame, e〉i to all nodes.

Request open. Node pi waits for 6∆ time in epoch e− 1 to collect any blames sent by other nodes. If
no blames or equivocation by Le has been detected within that time, pi sends 〈ack, H(SB), e〉i to Le.
If upto t blames are received, pi forwards the blames to Le.

Private open. If Le receives any blames from node pi, it sends valid VSS.~Sj , witness VSS. ~Wj for every
blame 〈blame, e〉j received from node pi.

Ack. If node pi forwarded any blames and received valid secret shares VSS.~Sj and witness VSS. ~Wj for
every blame 〈blame, e〉j it forwarded and detects no equivocation, node pi sends 〈ack, H(SB), e〉i to Le.

In addition, node pi forwards secret shares VSS.~Sj and witness VSS. ~Wj for every blame 〈blame, e〉j it
received. Thus, if an honest node sends an ack for the sharing block SB, then all honest nodes have
their respective secret shares corresponding to sharing block SB (more details in Lemma 4.10).

Equivocation. At any time in epoch e−1, if a node pi detects an equivocation, it broadcasts equivocating
hashes signed by Le and stops participating in epoch e− 1 block validation protocol.

Beacon protocol. We now present the beacon protocol (refer Figure 8) for the BRandPiper protocol. The
beacon protocol consists of the following rules for an epoch e. Here, an epoch corresponds to an epoch in
SMR protocol.

Generate Blocks. The leader Le of an epoch e chooses n secrets uniformly at random and invokes
block validation protocol while in epoch e− 1 to obtain an ack certificate (denoted by ACe(SB)), for
the sharing block SB corresponding to the n secrets. In epoch e, the leader proposes block Bh with
bh := (H(SB),ACe(SB)) where ACe(SB) is an ack certificate for commitment SB using the SMR
protocol. We redefine valid blocks for the SMR protocol with an additional constraint to contain an
ack certificate created in epoch e − 14 and all honest nodes vote in the SMR protocol as long as the
proposed block meets this additional constraint. As mentioned before, an ack certificate for a sharing
block SB implies all honest nodes have secret shares required to reconstruct the secrets corresponding
to commitments in SB. Thus, it is safe for honest nodes to vote in the SMR protocol although they
sent blame during block validation phase.

Update. At the end of epoch e, node pi updates Q(Le−t) as follows. If Le−t proposed a valid block Bl
in epoch e− t and Bl has been committed by epoch e, node pi replaces the contents of Q(Le−t) with
n tuples with each tuple containing secret shares, witnesses and commitments shared in epoch e − t.
If no epoch e− t block was committed, it removes Le−t from future proposals, i.e., Pr ← Pr ∪ {Le−t}.
It is important to note that the SMR protocol guarantees all honest nodes commit proposed blocks in
t+ 1 epochs. Thus, all honest nodes either update Q(Le−t) or remove Le−t in epoch e.

4For the first epoch, an ack certificate can be created during the setup phase.

27



Let VSS be the VSS scheme used, e be the current epoch and Le be the leader of epoch e. Node pi ∈ P
augments SMR protocol in Figure 1 as follows:

• Setup. Set e = 1. All nodes agree upon and fill Q(pi) with m = n + t tuples ∀pi ∈ P. Set Pr ← ∅.
Run VSS.Setup and agree on the public parameters VSS.pp. Set Le ← p1.

• Blocks. While in epoch e − 1, leader Le starts the block validation protocol (refer Figure 7) with
{s1, . . . , sn}, where the secrets are chosen randomly si ←$ {0, 1}κ for 1 ≤ i ≤ n.

In epoch e, Le proposes block Bh with bh := (H(SB),ACe(SB)) where ACe(SB) is an ack certificate
for commitment SB.

• Update. When epoch-timere expires, if Le−t proposed a valid block Bl in epoch e − t and Bl has
been committed by epoch e, update Q(Le−t) with n tuples with each tuple containing secret shares,
witnesses and commitments shared in epoch e− t. Otherwise, remove Le−t from future proposals i.e.,
Pr ← Pr ∪ {Le−t}.

• Reconstruct. When epoch-timere expires, do the following:

1. Get (VSS.~S,VSS. ~W,VSS. ~C) := {Dequeue(Q(pj))|pj /∈ Pr}.
2. Build homomorphic sum share SVi, witness VSS.πi, and commitment VSS.Ce using all shares

from VSS. ~C. Send SVi and VSS.πi to all the nodes.

3. Upon receiving share SVj and witness VSS.πj for VSS.Ce, ensure that
VSS.ShVrfy(SVj ,VSS.πj ,VSS.Ce) = 1.

4. Upon receiving (t+ 1) valid homomorphic sum shares in SV , obtain Re ← VSS.Recon(SV ).

• Output. Compute and output Oe ← H(Re).

Figure 8: RandPiper – BRandPiper beacon protocol.

Reconstruct. At the end of epoch e, each nodes perform {Dequeue(Q(pj))∀pj ∈ P \ Pr} to fetch n
secret shares (one from each node) and corresponding witnesses. It computes the homomorphic sum
of shares and witnesses and broadcasts it to all nodes.

Output. From the above discussion, it is clear that all honest nodes send homomorphic sum of shares
for common commitments and all honest nodes will receive at least t + 1 valid homomorphic shares.
When a node pi receives t+1 homomorphic shares, it reconstructs the randomness Re using VSS.Recon
primitive and computes Oe ← H(Re).

4.2.3 BRandPiper Security Analysis

Lemma 4.10. If an honest node sends an ack for a sharing block SB in epoch e, then (i) all honest
nodes receive the sharing block SB in epoch e, (ii) all honest nodes receive their respective secret shares
corresponding to sharing block SB within ∆ time of entering epoch e+ 1.

Proof. Suppose an honest node pi sends an ack for sharing block SB := 〈Commitment,VSS. ~C, e, zse〉Le

at time τ in epoch e. Node pi must have received upto t blame messages. This implies at least one
honest node pj received a valid share VSS.si and sharing block SB within 3∆ time in epoch e and invoked
Deliver(Commitment, SB, zse, e). Let τ ′ be the time when node pj invoked Deliver(Commitment, SB, zse, e).
The earliest node pi sends an ack for SB is when it waits until epoch-timere ≥ 5∆ (i.e., 6∆ in epoch e)
and does not detect any equivocation by Le or any blame messages. Due to ∆ delay between honest nodes

28



entering into epoch e, this time corresponds to τ ′ + 2∆ in the worst case. This implies no honest node
received an epoch e equivocation by time τ ′ + ∆. By Fact 3.1, all honest nodes receives the sharing block
SB. This proves part (i) of the Lemma.

For part (ii), node pi can send ack on two occasions: (a) when it does not detect any equivocation or
blame until its epoch-timere ≥ 5∆, and (b) when leader Le+1 sent valid secret shares for every blame message
it forwarded and does not detect any equivocation by time τ .

In case (a), node pi did not detect any equivocation or blame messages until its epoch-timere > 5∆ at
time τ . Observe that all honest nodes must have received valid shares corresponding to the sharing block
SB within 3∆ time in epoch e; otherwise node pi must have received blame message by time τ (since honest
nodes may enter epoch e with ∆ time difference and send blame message if no valid secret shares received
within 3∆ time in epoch e). In addition, no honest node received an equivocating sharing block SB′ within
3∆ time in epoch e; otherwise, node pi must have received a share for SB′ (via Deliver) by time τ . Thus,
all honest nodes receive their respective secret shares corresponding to sharing block SB in epoch e (i.e.,
within ∆ time of entering epoch e+ 1).

In case (b), node pi receives valid secret shares from leader Le+1 for every blame (up to t blame) messages
it forwarded and detected no equivocation by time τ . Observe that node pi received f ≤ t blame messages
and received valid shares for every blame message it forwarded. This implies at least n− t− f honest nodes
have received valid shares for sharing block SB from leader Le+1 within 3∆ in epoch e; otherwise, node pi
would have received more than f blame message by the time its epoch-timere = 5∆. Since, node pi forwards
f received secret shares corresponding to f received blame message in epoch e and honest nodes enter epoch
e + 1 within ∆ time, all honest nodes receive their respective secret shares corresponding to sharing block
SB within ∆ time of entering epoch e+ 1.

Theorem 4.11 (Consistent Beacon). For any epoch e, all honest nodes reconstruct the same randomness
Re and output the same beacon Oe.

Proof. Honest nodes output the same randomness Re and output the same beacon Oe in epoch e if all honest
nodes receive t+1 valid homomorphic shares for the same set of secrets. This condition is satisfied if all honest
nodes (i) have consistentQ(pi) ∀pi ∈ P and consistent Pr in each epoch, (ii) {Dequeue(Q(pi)) 6= ⊥∀pi ∈ P \ Pr}
in each epoch, and (iii) share valid homomorphic shares corresponding to dequeued secret shares.

For part(i), we show all honest nodes have consistent Q(pi) ∀pi ∈ P and consistent Pr in every epoch.
We prove part (i) by induction on epochs. Consider the base case for epochs 1 to t. During setup phase,

each node is assigned m = n+t tuples (with each tuple containing secret shares, witnesses and commitments)
for each Q(pi) ∀pi ∈ P (i.e., m ∗ n secrets in total). Since, removing a Byzantine node requires t+ 1 epochs,
all honest nodes have Pr = ∅ for epochs 1 to t. In addition, no honest node update Q(pi) during epochs 1
to t. Thus, for epochs 1 to t, all honest nodes have consistent Q(pi) ∀pi ∈ P and Pr.

We assume part(i) holds until epoch e− 1.
Consider an epoch e > t. In epoch e, all honest nodes update only Q(Le−t). If Le−t proposed a valid

block Bl (with bl = (H(SB), ack-cert(SB)) for some commitment SB and Bl is committed by epoch e, all
honest nodes update Q(Le−t) with n tuples containing secret shares, witnesses and commitments in SB (by
Lemma 4.10, all honest nodes receive commitments and secret shares in SB before epoch e). Otherwise,
all honest nodes update Pr to exclude Le−t i.e., Pr ← Pr ∪ {Le−t}. Thus, all honest nodes should have
consistent Q(Le−t) by epoch e. Since honest nodes do not update Q(pi 6= Le−t) and do not add pi into Pr
in epoch e, by induction hypothesis, all honest nodes should have consistent Q(pi) ∀pi ∈ P and consistent
Pr in epoch e. This proves part(i). Since, all honest nodes have a consistent Q(pi) ∀pi ∈ P and consistent
Pr, all honest nodes perform {Dequeue(Q(pi))∀pi ∈ P \ Pr} for common secrets.

Next, we show {Dequeue(Q(pi)) 6= ⊥∀pi ∈ P \ Pr} in epoch e. Suppose for the sake of contradiction,
Dequeue(Q(pi)) = ⊥ and pi 6∈ Pr in epoch e. Observe that, honest nodes update Q(pi) or include pi in Pr
t+ 1 epochs after node pi becomes an epoch leader. Let e′ be the last epoch in which node pi last proposed
with e′ ≤ e− t. However, if node pi did not propose in e′, all honest nodes would have removed pi by epoch
e′ + t ≤ e and pi ∈ Pr in epoch e. A contradiction.

29



Finally, we show all honest nodes send valid homomorphic shares for the dequeued secret shares. Observe
that honest nodes only dequeue secret shares corresponding to a committed block that contains a valid ack
certificate. By Lemma 4.10 part(ii), all honest nodes receive valid secret shares before honest nodes update
their queues. Thus, all nodes will dequeue common secret shares and will receive at least t + 1 valid
homomorphic shares for a common secrets and reconstruct the same randomness Re and output the same
beacon Oe.

Lemma 4.12 (Liveness). If the leader Le of an epoch e is honest, then (i) an ack certificate for its sharing
block SB will form in epoch e− 1, and (ii) all honest nodes commit (H(SB),ACe(SB)) in epoch e.

Proof. Consider an honest leader Le for an epoch e. Let τ be the time when leader Le enters epoch e − 1.
Leader Le waits for ∆ time after entering epoch e− 1 and must have sent valid shares VSS.si and sharing
block SB containing commitments to node pi ∀pi ∈ P at time τ + ∆.

Since honest nodes enter epoch e− 1 within ∆ time, all honest nodes must have entered epoch e− 1 by
time τ + ∆. Leader Le could have entered epoch e− 1 ∆ time before some honest nodes or Leader Le could
have entered epoch e− 1 ∆ time after some honest nodes. In any case, all honest nodes must have received
valid secret shares and sharing block SB within 3∆ after entering epoch e− 1. Thus, no honest nodes send
blame in epoch e − 1 and will receive no blame messages from honest nodes within 6∆ time in epoch e − 1
(i.e., until epoch-timere−1 > 5∆).

Consider an honest node pi. If node pi receives no blame messages from Byzantine nodes, it will send an
ack for sharing block SB to Le. On the other hand, if node pi receives upto t blame messages from Byzantine
nodes, it forwards blame messages to Le. Honest Leader Le sends the shares corresponding to the blame
messages to node pi which node pi receives within 8∆ in epoch e − 1. Moreover, there is no equivocation
from leader Le. Thus, node pi sends an ack for sharing block SB to Le.

Thus, all honest nodes send ack for sharing block SB and leader Le receives t+1 ack message for sharing
block SB within 10∆ (Le may start epoch e− 1 ∆ time before node pi) in epoch e− 1. This proves part (i)
of the Lemma.

Since leader Le proposes a valid proposal (H(SB),ACe(SB)) in epoch e, part(ii) follows immediately
from Fact 3.6.

Lemma 4.13 (Guaranteed Beacon Output). For each epoch e, all honest nodes output a new beacon output
Oe.

Proof. Due to round-robin leader election, honest nodes propose in at least n− t epochs out of n epochs. By
Lemma 4.12, all honest nodes commit n new secret shares in every honest epoch and updates their queues
after t+ 1 epochs. Thus, Dequeue(Q(pi)) 6= ⊥∀pi ∈ P \ Pr. where pi is an honest node. From the proof of
Theorem 4.11, all honest nodes have consistent queues and Pr in each epoch. At the end of each epoch, all
honest nodes dequeue common secret shares and send homomorphic sums to all other nodes. Thus, honest
nodes will have t+ 1 valid homomorphic sums and will output new beacon outputs in every epochs.

Lemma 4.14 (Communication Complexity). Let f ≤ t be the number of actual Byzantine faults, κ be the
size of accumulator and w be the size of witness. The amortized communication complexity of the protocol
is O(κfn2 + (κ+ w)n2) bits per epoch.

Proof. In the Block validation protocol, distributing O(κn)-sized commitment has a cost of O(κn2) com-
munication. Sending corresponding O(κn)-sized secret shares and O(wn)-sized witness incur O((κ+ w)n2)
communication. Next, f Byzantine nodes can always blame even when the epoch leader is honest. Thus, an
epoch leader needs to send O(κfn)-sized secret shares while privately opening the secret shares. The nodes
also forward privately opened secret secrets to nodes that blamed. This step has a cost of O(κfn2) in an
honest epoch. When the leader is Byzantine, it can create a scenario when upto t nodes send blame and
hence, this step has O(κtn2) cost. Out of n consecutive epochs, there can be at most f Byzantine epochs
and n− f honest epochs. Hence, this step has amortized complexity of O(κfn2).

30



By Lemma 3.8, SMR protocol has a cost O((κ + w)n2) bits for input of size O(κn). The homomorphic
sum of secret shares is κ and homomorphic sum of witness is w. Thus, all-to-all broadcast of homomorphic
sums incurs O((κ+w)n2). Thus, the amortized communication complexity is O(κfn2 + (κ+w)n2) bits per
epoch.

Now, we prove the beacon properties for BRandPiper protocol. We first show that BRandPiper is a
secure VSS protocol as per Definition 2.5. The proof is similar to the proof in Theorem 4.9, but we present
it here for completeness.

Theorem 4.15 (Secure VSS). The BRandPiper protocol is a secure verifiable secret sharing protocol with
the dealer as the leader of an epoch, and the rest of the nodes as the verifiers.

Proof. We prove the security of VSS by proving the individual properties:

1. Secrecy : When the leader Le for an epoch e is honest, then no honest node will blame, and therefore an
adversary A will only learn the t shares of its own corruption, and not learn any new share by blaming.
Therefore the probability of A of violating the secrecy property is negl(κ) from the underlying VSS
scheme.

2. Correctness: When the leader Le of epoch e is honest, from Lemma 4.12, all honest nodes commit the
SB with shares for the secret. During the reconstruction for the beacon, every honest node pi ∈ P
use the same share for SVLe,i with a high probability of 1− negl(κ). A Byzantine node pj ∈ P cannot
provide a valid witness VSS.πLe,j for an incorrect share with probability better than negl(κ), thereby
ensuring that the correctness property is maintained.

3. Commitment : If an honest node commits a valid block SB from a byzantine leader Le in some epoch
e, then all honest nodes commit SB, from the SMR property in Theorem 3.5. Therefore during
reconstruction, a Byzantine node pj ∈ P cannot provide incorrect shares as it cannot generate a valid
witness VSS.πLe,j (except with negl(κ) probability). If a Byzantine leader does not propose any block,
then all honest nodes agree on ⊥, thereby ensuring the commitment property.

Next, we show that BRandPiper satisfies the bias-resistance requirement from Definition 2.3.

Lemma 4.16 (Bias-resistance). For any epoch e ≥ 1, the probability that a t bounded adversary A can fix
any c bits of the BRandPiper beacon output Oe is 1

2c + negl(κ).

Proof. The output in any epoch e is Oe ← H(Re), where Re is the homomorphic sum of secrets from at
least t + 1 honest nodes. From the secrecy guarantee in Theorem 4.15, we know that no adversary A can
predict the value of these honest nodes until reconstruction with probability better than negl(κ). At the
same time, no adversary A can change the committed value for any pi during reconstruction due to the
commitment guarantee from Theorem 4.15 with probability better than negl(κ). Therefore, a t-bounded
adversary cannot do better than guessing whose probability is 1

2c + negl(κ) to fix c bits in the output Oe for
any epoch e ≥ 1.

Next, we show that BRandPiper satisfies the 1-absolute unpredictability requirement from Definition 2.3.

Lemma 4.17 (BRandPiper 1-absolute unpredictability). The BRandPiper random beacon protocol is an
1-absolute unpredictable random beacon.

Proof. Let τ be some time at which all honest nodes are in an epoch e ≥ 1. We show that an adversary
A cannot predict Oe+1. Due to the secrecy property in Theorem 4.15 and the fact that the beacon output
Oe+1 is derived from the reconstruction of Re+1, which is a homomorphic sum of inputs from at least n− t
honest nodes. From Lemma 4.16 we know that no adversary A can bias Oe+1. The values from the honest

31



nodes are guaranteed to be truly random (by definition). Therefore, the output Oe+1 is unpredictable for
an adversary A.

An adversary A can get a 1 epoch advantage since there can exists times τ where some honest nodes are
in epoch e and others are in epoch e− 1. At this point, a rushing adversary knows the output Oe before the
honest nodes.

Lemma 4.18 (Rushing Adversary Advantage). For any epoch e, a rushing adversary can reconstruct output
Oe at most 2∆ time before honest nodes.

The proof remains identical to Lemma 4.3.

Theorem 4.19 (BRandPiper Secure Random Beacon). BRandPiper protocol is a 1-secure random beacon.

Proof. The proofs follow trivially from Lemma 4.16, Lemma 4.17, and Lemma 4.13.

Acknowledgements

We would like to thank Alin Tomescu for helpful feedback on the q-SDH assumption. This work is supported
in part by research gift grants from VMware Research and Novi, IARPA HECTOR program, the National
Science Foundation under grant CNS-1846316, and ARL.

References

[1] blockchain oracle service, enabling data-rich smart contracts.

[2] Generate random numbers for smart contracts using chainlink vrf.

[3] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous byzantine
agreement with expected O(1) rounds, expected O(n2) communication, and optimal resilience. Financial
Cryptography and Data Security (FC), 2019.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity consensus, explored. IACR Cryptol.
ePrint Arch., 2018:1153, 2018.

[5] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff: Simple and
practical synchronous state machine replication. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 654–667.

[6] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asyn-
chronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 337–346, 2019.

[7] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Optimal good-case latency for byzantine
broadcast and state machine replication. arXiv preprint arXiv:2003.13155, 2020.

[8] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing revisited. In
International Conference on the Theory and Application of Cryptology and Information Security, pages
590–609. Springer, 2011.

[9] Shehar Bano, Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun
Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, et al. State machine replication in the libra blockchain.
Avalaible at: https://developers. libra. org/docs/state-machine-replication-paper (Consulted on Decem-
ber 19, 2020), 2020.

32



[10] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In International conference on the theory and applications of cryptographic techniques, pages
480–494. Springer, 1997.

[11] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, 2016.

[12] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437,
2017.

[13] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[14] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public entities. In
International Conference on Applied Cryptography and Network Security, pages 537–556. Springer, 2017.

[15] TH Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely simple synchronous blockchain. 2018.

[16] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic encryption random beacon.
IACR Cryptol. ePrint Arch., 2019:1320, 2019.

[17] Information Technology Laboratory Computer Security Division. Interoperable randomness beacons:
Csrc.

[18] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. Journal
of the ACM (JACM), 32(1):191–204, 1985.

[19] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

[20] J Drake. Minimal vdf randomness beacon. ethereum research post (2018).

[21] Drand. Drand - a distributed randomness beacon daemon.

[22] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agree-
ment. SIAM Journal on Computing, 26(4):873–933, 1997.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 51–68, 2017.

[24] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter,
Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: A scalable and decentralized trust
infrastructure. In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 568–580. IEEE, 2019.

[25] Mads Haahr. True random number service.

[26] Runchao Han, Jiangshan Yu, and Haoyu Lin. Randchain: Decentralised randomness beacon from
sequential proof-of-work.

[27] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series, consensus
system. arXiv preprint arXiv:1805.04548, 2018.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In International conference on the theory and application of cryptology and
information security, pages 177–194. Springer, 2010.

[29] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement.
In Annual International Cryptology Conference, pages 445–462. Springer, 2006.

33



[30] Atsuki Momose and Ling Ren. Optimal communication complexity of byzantine consensus under honest
majority. arXiv preprint arXiv:2007.13175, 2020.

[31] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension protocols
for byzantine broadcast and agreement. arXiv preprint arXiv:2002.11321, 2020.

[32] Lan Nguyen. Accumulators from bilinear pairings and applications. In Cryptographers’ track at the
RSA conference, pages 275–292. Springer, 2005.

[33] Michael O Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations of
Computer Science (sfcs 1983), pages 403–409. IEEE, 1983.

[34] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the society
for industrial and applied mathematics, 8(2):300–304, 1960.

[35] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar Weippl. Randrun-
ner: Distributed randomness from trapdoor vdfs with strong uniqueness. Technical report, Cryptology
ePrint Archive, Report 2020/942, https://eprint. iacr. org/2020/942, 2020.

[36] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hydrand: Practical continu-
ous distributed randomness. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

[37] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[38] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the Optimality of Optimistic Re-
sponsiveness. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 839–857, 2020.

[39] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 444–460. Ieee, 2017.

[40] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 347–356, 2019.

34


	Introduction
	Efficient State Machine Replication without Threshold Signatures
	RandPiper – Random Beacon Protocols
	Related Work

	Model and Definitions
	Definitions
	Primitives

	BFT SMR Protocol
	Protocol Details
	Safety and Liveness

	Random Beacon Protocols
	RandPiper – GRandPiper Protocol
	Protocol details
	Security Analysis

	BRandPiper Protocol
	Improved VSS
	Randomness Beacon for BRandPiper Protocol
	BRandPiper Security Analysis



