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Abstract. We systematically study the security of twelve Beyond-
Birthday-Bound Message Authentication Codes (BBB MACs) in the Q2
model where attackers have quantum-query access to MACs. Assuming
the block size of the underlying (tweakable) block cipher is n bits, the se-
curity proofs show that they are secure at least up to O(22n/3) queries in
the classical setting. The best classical attacks need O(23n/4) queries. We
consider secret state recovery against SUM-ECBC-like and PMAC Plus-
like MACs and key recovery against PMAC Plus-like MACs. Both at-
tacks lead to successful forgeries. The first attack costs O(2n/2n) quan-
tum queries by applying Grover-meet-Simon algorithm. The second at-
tack costs O(2m/2) quantum queries by applying Grover’s algorithm,
assuming the key size of (tweakable) block cipher is m bits. As far as
we know, these are the first quantum attacks against BBB MACs. It is
remarkable that our attacks are suitable even for some optimally secure
MACs, such as mPMAC+-f, mPMAC+-p1, and mPMAC+-p2.

Keywords: Beyond-Birthday-Bound · Message Authentication Codes ·
Quantum Attacks

1 Introduction

Quantum attacks against symmetric crypto primitives. Recent years
we have seen amount of work to exploit the quantum security of symmetric
crypto primitives, such as Feistel structure [15], Even-Mansour cipher [23], FX
construction [24], message authentication codes (MACs) [19], authenticated en-
cryption schemes [19], hash functions [16,12], etc, by using quantum algorithms
including Simon’s algorithm[31], Grover’s algorithm [14], Grover-meet-Simon al-
gorithm [24], BTH algorithm [7], etc. All the attacks are carried on in the Q2
model, where attackers can make superposition queries to a quantum oracle of
UF : |x, y〉 7→ |x, y ⊕ F (x)〉, where F is the classic primitive.

Simon’s algorithm and birthday attacks. Common standard MACs such as
CBC-MAC, CMAC, PMAC, GMAC, suffer from birthday attacks in the classic
setting, and are broken by using Simon’s algorithm in polynomial time [19]. The
procedure of the attack using Simon’s algorithm is as follows: first construct
a periodic function f(x) based on the scheme, where the period is a hidden
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value s such that f(x) = f(x ⊕ s) for all x; second use Simon’s algorithm to
find the period s; third use the period s to carry out forgery etc. attacks. The
period s also can be retrieved from a collision of f(x) = f(y) for x 6= y, so that
s = x ⊕ y with high probability. Therefore O(2n/2) classic queries is enough
to find the period and break the scheme, where n is usually the block size of
the underling (tweakable) block ciphers. Therefore the schemes broken by using
Simon’s algorithm are destined to suffer from birthday attacks.

Beyond-Birthday-Bound MACs. The crypto community made great efforts
to enhance the security of MACs, by constructing beyond-birthday-bound (BBB)
ones, which are secure for above 2n/2 queries, where n is the block size of
the underlying (tweakable) block cipher. In 2010, Yasuda firstly proposed a
provable BBB MAC: SUM-ECBC [34]. Later on, other BBB MACs, such as
PMAC Plus [35] , 3kf9 [36], LightMAC Plus [28], 1k-PMAC Plus [11], Poly-
MAC [22] and so on were proposed. In 2018, Datta et al. [9] reduced the number
of keys and proposed BBB MACs: 2K-ECBC Plus, 2K-PMAC Plus, 2kf9, and
so on, where 2kf9 was broken by a birthday bound attack by Shen et al. [30].
The primary proofs show that they are secure up to 22n/3 queries (ignoring the
maximum message length). All the above BBB MACs follow a generic design
paradigm called Double-block Hash-then-Sum (in short DbHtS) [9], which gen-
erates double hash blocks on the message and then sum the two encrypted blocks
as the output. So the computation of DbHtS consists of two chains, which were
denoted as G and H, and DbHtS(M) = G(M)⊕H(M) for the message M .

In 2020, Cogliati et al. [8] proposed some variants of PMAC Plus: mPMAC+-
f, mPMAC+-p1, mPMAC+-p2, with optimal security, in other words, security
up to 2n queries. They follow a variant of DbHtS, we call it as Double-block Hash-
then-Function (in short DbHtF). The computation of DbHtF also consists of two
chains, denoted asG andH, but the chain results are processed by a more general
function F from 2n bits to n bits: DbHtF (M) = F (G(M), H(M)). Therefore
all PMAC Plus-like MACs which follow DbHtS also follow DbHtF. The double
blocks bring 2n-bit internal state, making the classic birthday attack no longer
applicable.

Classical attacks. Due to the 2n-bit internal state in DbHtS MACs, the out-
put collision of a pair of messages can not benefit forgery attacks. The best
classical attacks against part of DbHtS MACs proposed by Leurent et al. [25]
need O(23n/4) queries. The crucial point is to find a quadruple of messages,
which leads to successful forgeries. The search for such a quadruple is reduced
to a 4-xor problem with 3n-bit outputs based on DbHtS MACs. Recently, Kim
et al. [22] further proved that some of them are secure up to 23n/4 queries. So
the attack is optimal in terms of the query number. In fact, Leurent’s attack is
suitable for 2K-ECBC Plus, PolyMAC, and 2K-PMAC Plus as well.

Direct quantum acceleration. The k-xor problem, a generalized birthday
problem [32], is a hot topic related to quantum collision finding of hash func-
tions [13,29,16,12]. The main idea comes from BHT algorithm [7]. To solve the
core 4-xor problem with 3n-bit outputs proposed in [25], the best algorithm needs
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O(23n/5) quantum queries, which is the lowest bound according to [2]. Note that
O(23n/5) is slightly better than the query complexity of classical attacks.

Motivations. Are there any better quantum attacks against BBB MACs? What
about the security of BBB MACs in the quantum setting?

Grover-meet-Simon algorithm. For BBB MACs, Simon’s algorithm is in-
valid. We need new techniques. In 2017, Leander and May [24] combined Grover’s
algorithm with Simon’s algorithm to attack FX construction [20,21]. The main
idea is to construct a function with two inputs based on FX, say f(u, x). When
the first input u equals to a special value k, the function has a hidden period s
such that f(k, x) = f(k, x⊕ s) for all x. Their combined algorithm use Grover’s
algorithm to search k, by running many independent Simon’s algorithms to check
whether the function is periodic or not, and recover both k and s in the end. The
attack only costs O(2m/2(m + n)) quantum queries to FX, which is much less

than the proved security up to 2
m+n

2 queries [20], where m is the bit length of u,
which is the key length of the underlying block cipher and n is the bit length of
s, which is the block size. Their work provides a new tool to study the quantum
security of symmetric schemes.

Attack strategies. With strategies 1 and 2, we utilize Grover-meet-Simon al-
gorithm to recover some secret states of BBB MACs, which lead to successful
forgery attacks.

1) Strategy 1: For SUM-ECBC-like DbHtS MACs, G and H process the mes-
sage in the same way but with different keys, and they are not secure under the
quantum attack using Simon’s algorithm. We can use the same method C, based
on G (resp. H), to construct a periodic function denoted as g(b, x) = CG(b, x)
(resp. h(b, x) = CH(b, x)) where b ∈ {0, 1} and x ∈ {0, 1}n. The periods
of g and h are denoted as 1‖s1 and 1‖s2 respectively. Then use the same
method C on DbHtS = G ⊕H, we get CDbHtS(b, x) = CG(b, x) ⊕ CH(b, x) =
g(b, x) ⊕ h(b, x). Unfortunately s1 is equal to s2 usually with negligible proba-
bility, so CDbHtS(b, x) is not a periodic function. We construct

f(u, x) =CDbHtS(0, x)⊕ CDbHtS(1, x⊕ u)

=g(0, x)⊕ h(0, x)⊕ g(1, x⊕ u)⊕ h(1, x⊕ u).

We can verify that when u = s1 or s2, f(u, x) is a periodic function: the period
is s1⊕s2. Thus we can use Grover-meet-Simon algorithm to recover both s1 and
s2.

2) Strategy 2: For PMAC Plus-like DbHtF MACs, G and H process the mes-
sage in different ways with the same keys, making Strategy 1 not applicable.
But we can use the same method based on G (resp. H), to construct a function
denoted as g(u, b, x) (resp. h(u, b, x)). When u equals a special value say u∗, both
g(u∗, b, x) and h(u∗, b, x) are periodic functions with the same period 1‖s. If the
method is applied to DbHtF , we get

f(u, b, x) = F (g(u, b, x), h(u, b, x)).
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For u = u∗, f(u∗, b, x) is a periodic function. So Grover-meet-Simon algorithm
can be applied to recover the special value u∗ and the period 1‖s.
3) Strategy of key search: We notice that most BBB MACs have more than
one key. For example, mPMAC+-f, mPMAC+-p1, and mPMAC+-p2, are re-
spectively keyed by five independent m-bit keys. For a perfect crypto primitive,
there should be no better way to recover the keys than the exhaustive search,
whose complexity is O(25m/2) for 5m-bit keys by Grover’s algorithm. We found
it is sufficient to find one key in order to create any number of forgeries for Db-
HtF MACs. Accelerating the search by Grover’s search, the attack costs O(2m/2)
quantum queries. Especially, we are able to recover all keys after recovering one
key for some of DbHtS MACs.

Table 1. Summary of the main results. n is the message block size, m is the length of
the key of underlying (tweakable) block cipher. The number of maximum blocks of a
query is in number of constant length queries.

Key Provable classical Query complexity Query complexity of the Quantum secret state Quantum key recovery
Scheme space security query of classical quantum acceleration recovery attack (our work) attack (our work)

bound attack of classical attack Queries Qubits Queries Qubits

SUM-ECBC [34] 24m Ω(23n/4) [22] O(23n/4) [25] O(23n/5) O(2n/2n) O(n2) O(2mn) O(m+ n2)

2K-ECBC Plus [9] 23m Ω(22n/3) [9] O(23n/4) O(23n/5) O(2n/2n) O(n2) O(2mn) O(m+ n2)

PolyMAC [22] 22m+2n Ω(23n/4) [22] O(23n/4) O(23n/5) O(2n/2n) O(n2) O(2(n+m)/2n) O(m+ n2)

GCM-SIV2 [18] 24m+2n Ω(22n/3) [18] O(23n/4) [25] O(23n/5) O(2n/2n) O(n2) O(2(n+m)/2n) O(m+ n2)

PMAC Plus [35] 23m Ω(23n/4) [22] O(23n/4) [25] O(23n/5) O(2n/2n) O(n2) O(2m/2) O(m+ n)

1k-PMAC Plus [11] 2m Ω(22n/3) [11] O(23n/4) [25] O(23n/5) O(2n/2n) O(n2) O(2m/2) O(m+ n)

2K-PMAC Plus [9] 22m Ω(22n/3) [9] O(23n/4) O(23n/5) O(2n/2n) O(n2) O(2m/2) O(m+ n)

3kf9 [36] 23m Ω(23n/4) [22] O( 4
√
n23n/4) [25] O(23n/5) O(2n/2) O(n) O(2m/2) O(m+ n)

mPMAC+-f [8] 25m Ω(2n) [8] - - O(2n/2n) O(n2) O(2m/2) O(m+ n)

mPMAC+-p1 [8] 25m Ω(2n) [8] - - O(2n/2n) O(n2) O(2m/2) O(m+ n)

mPMAC+-p2 [8] 25m Ω(2n) [8] - - O(2n/2n) O(n2) O(2m/2) O(m+ n)

PMAC TBC3k [27] 23m Ω(2n) [27] - - - - O(2m/2) O(m+ n)

Our contributions. Table 1 summarizes our main results and comparisons
with provable security claims, best classical attack results, and its quantum
acceleration results.

1) We reduce the query complexity from O(23n/5) by direct quantum accel-
eration of classic method to O(2n/2n) by our secret state recovery attacks
in the Q2 model for both DbHtS and DbHtF MACs. Especially, our attack
strategies are even suitable to optimal secure MACs, including mPMAC+-f,
mPMAC+-p1, mPMAC+-p2 and PMAC TBC3k.

2) We introduce a method which is sufficient to find one key in order to create
any number of forgeries for DbHtF MACs, whose complexity is O(2m/2) in
the Q2 model. Although one key recovery is enough to get successful forgery,
we can further recover all keys of PMAC Plus, 3kf9, and 2K-PMAC Plus.

Organization of the paper. Section 2 introduces quantum algorithms, the
quantum security of MAC and previous attack for MAC by Simon’s algorithm.
Section 3 applies Strategy 1 and 2 to make secret state attacks for SUM-ECBC-
like and PMAC Plus-like MACs respectively. Section 4 applies the strategy of
of key search to make key recovery attacks for PMAC Plus-like MACs. Section
5 gives conclusions.
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2 Preliminaries

For a positive integer m, let {0, 1}m be the set of all m-bit binary string. For two
bit strings x and y, the concatenation is x‖y, the bitwise exclusive-or is x ⊕ y.
Let |U| be the number of the elements in set U .

2.1 Quantum Algorithms

In this section, we introduce some useful quantum techniques which will be
involved in the following sections. We put quantum basis in Appendix A.

1) Grover’s algorithm Grover’s algorithm [14] can find a target value with
high probability.
Grover problem. Let m be a positive integer, and test : {0, 1}m → {0, 1} be a
boolean function (|{u : test(u) = 1}| = e). Find a u such that test(u) = 1.

Classically, we can search an element who satisfies test(u) = 1 with O( 2m

e )
queries to test(·). However, the Grover’s algorithm [14] can find such an element

with only O(
√

2m

e ) quantum queries [6]. Generally, the test function can’t de-

scribe the target objects precisely. So we consider Grover problem with biased
test function.
Grover problem with biased test function. Let m be a positive integers,
U(|U| = e) be a subset in {0, 1}m, test : {0, 1}m → {0, 1} be a boolean function
who satisfies {

Pr[test(u) = 1] = 1, u ∈ U ,
Pr[test(u) = 1] ≤ p1, u 6∈ U .

Find a u ∈ U .
Grover’s algorithm can solve the problem as well with some biases. In fact,

Grover’s algorithm does as follows: first there is an initial probability to get a
u who satisfies test(u) = 1; second amplify the initial probability iteration by
iteration; third measure the quantum state and get a u who satisfies test(u) = 1
with high probability. From definition 2.1, we obtain the initial probability to
get a u who satisfies test(u) = 1 is between [p0, p0 +p1], where p0 = e

2m and it is
the initial probability to get a u ∈ U . Bonnetain [4] has proved when the initial
success probability to get a u where test(u) = 1 is between an interval [p0, p0+p1],
then after t = d π

4 arcsin
√
p0
e quantum queries to test(·), the final probability to

get a u who satisfies test(u) = 1 is [1− (p1p0 +
√
p0 + p1 +2

√
1 + p1

p0

3
p0)2]. Among

all elements satisfying test(u) = 1, the proportion of u ∈ U is at least p0
p0+p1

.
Multiple them and we get the following theorem.

Theorem 1. (Adapted from [4]) Let m, e,U , test be defined as in Grover
problem with biased test function, and p0 := e

2m . Assume the quantum implemen-
tation of test(·) costs O(n) qubits. Then Grover’s algorithm with t = d π

4 arcsin
√
p0
e

quantum queries to test(·) and O(m+ n) qubits will output a u ∈ U with proba-

bility at least p0
p0+p1

[1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].
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We put Grover’s algorithm and the concrete proof of theorem 1 in Appendix
B. When apply theorem 1 to concrete attacks of MACs, if e = 1, p1 ≤ 1

22m , then

for sufficient large m the Grover’s algorithm with O(2m/2) quantum queries to
test(·) and O(m + n) qubits will output a u ∈ U with probability almost 1 by
theorem 1.

2) Simon’s algorithm Simon’s algorithm [31] finds the period of a periodic
function in polynomial time.
Periodic/Aperiodic function. Let n, d be two positive integers, f : {0, 1}n →
{0, 1}d be a boolean function. We call f as a periodic (resp. aperiodic) function
if there is a unique (resp. no) s ∈ {0, 1}n\{0n} such that f(x) = f(x⊕ s) for all
x ∈ {0, 1}n.
Simon problem. Let n, d be two positive integers, f : {0, 1}n → {0, 1}d be a
periodic function with a period s. Find s.

Classically, if f is a periodic function, we can find out the period by searching
a collision with O(2n/2) queries. However, if f is given as a quantum oracle,
Simon’s algorithm [31] can solve it with only O(n) quantum queries. Let

ε(f) := max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x⊕ t)]. (1)

This parameter quantifies the disturbance of other partial periods, i.e., f(x) =
f(x⊕ t) where t ∈ {0, 1}n\{0n, s}. Kaplan et al. [19] have proved the following
theorem.

Theorem 2. [19] Let n, d, f, s be defined as in Simon problem. Let ε(f) be
defined as in equation (1), and c be a positive integer. Then Simon’s algorithm
with cn quantum queries to f and O(n+ d) qubits will recover s with probability

at least 1− [2( 1+ε(f)
2 )c]n.

We put Simon’s algorithm and the proof of theorem 2 in Appendix C.

3) Grover-meet-Simon Algorithm In 2017 Leander and May [24] combined
Grover’s algorithm with Simon’s algorithm to analyze FX construction. Their
analysis is combined with FX construction too closely. So we consider the gen-
eralization case. A general problem is described as follows:
Grover-meet-Simon problem. Let m,n, d be three positive integers, set U ⊆
{0, 1}m(|U| = e) and f : {0, 1}m × {0, 1}n → {0, 1}d be a function who satisfies{

f(u, ·) is a period function with period su, u ∈ U ,
f(u, ·) is an aperiodic function, u 6∈ U .

Set Us := {(u, su) : u ∈ U , su is the period of f(u, ·)}. Find any tuple (u, su) ∈
Us.

The problem consists of the Grover problem as a whole and the Simon prob-
lem partially. The main idea is to search u ∈ U by Grover’s algorithm and



Attacks on Beyond-Birthday-Bound MACs in the Quantum Setting 7

check whether or not u ∈ U by whether f(u, ·) is periodic or not, which can
be implemented by Simon’s algorithm. Bonnetain [4] has formalized the Grover-
meet-Simon algorithm. He presented the success probability for |U| = 1. Let

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x⊕ t)] (2)

to quantify the disturbance of u 6∈ U and other partial periods ts for u ∈ U , i.e.,
f(u, x) = f(u, x⊕ t) where (u, t) ∈ {0, 1}m × {0, 1}n\(Us ∪ {0, 1}m × {0n}). We
generalize the success probability of the algorithm for |U| ≥ 1 as follows.

Theorem 3. Let m,n, d, f,U ,Us, e be defined as in Grover-meet-Simon prob-
lem. Let ε(f) be defined as in equation (2). Let c be a positive integer, p0 := e

2m

and p1 := [2 ·( 1+ε(f)
2 )c]n. Then Grover-meet-Simon algorithm with d π

4 arcsin
√
p0
e ·

cn quantum queries to f and O(m+cn2+cdn) qubits outputs a tuple (u, su) ∈ Us
with probability at least (1−p1)p0

p0+p1
[1− (p1p0 +

√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].

We put Grover-meet-Simon algorithm and the proof of theorem 3 in Ap-
pendix D. When apply this algorithm to a concrete attack of MACs, if ε(f) ≤
3/4, e ≤ 2, d = m = n and n is sufficient large, then we let c = 16 and Grover-
meet-Simon algorithm after O(2n/2n) quantum queries to f using O(n2) qubits
will output a tuple (u, su) ∈ Us with probability almost 1 by theorem 3.

2.2 Quantum Security of MACs

Message authentication code (MAC) generates a tag T for any message M with
key K: T = MACK(M). Given the quantum oracle of MACK(·), Boneh and
Zhandry [3] defined the existential unforgeability against quantum chosen mes-
sage attack (EUF-qCMA). One MAC is EUF-qCMA if no quantum attacker
can output q+ 1 distinct massage-tag pairs with non-negligible probability after
q quantum queries to MACK . Notice that we can regard any classical query
as a special quantum query. So the q quantum queries contain q quantum and
classical queries in all.

For all concrete MACs in this paper, we assume the bit length of message is
integral multiples of n. Also, we assume the underlying (tweakable) block cipher
of MACs is a (tweakable) random permutation.

2.3 Attacking ECBC-MAC

MACs of single-chain like ECBC-MAC are broken by using Simon’s algorithm [19],
with only O(n) quantum queries. We write the MAC as a function G. The attack
in [19] is to construct a periodic function g based on G using a method C. We
denote it as g(b, x) = CG(b, x) with a period 1‖s.

In the following, we demonstrate how they construct g for the ECBC-MAC
variant [1], the estimation of ε(g) and the forgery attack after recovery of s.
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Fig. 1. ECBC-MAC with two-block message M = (αb, x).

ECBC-MAC uses a block cipher keyed by two independent keys, denote as
E1, E2.
Construction of function g. Let b ∈ {0, 1}, x ∈ {0, 1}n, and α0, α1 are two ar-
bitrary fixed numbers in {0, 1}n. ECBC-MAC with messageM = (M [1],M [2]) =
(αb, x) is shown in figure 1, which can be written as

MAC(αb, x) = g(b, x),

where
g(b, x) = E2(E1(E1(αb)⊕ x)).

Obviously, g has a period of 1‖s where s = E1(α0)⊕ E1(α1):

g(b′, x′) = g(b, x)⇔ E2(E1(E1(αb′)⊕ x′)) = E2(E1(E1(αb)⊕ x))

⇔
{
x′ ⊕ x = 0n if b′ ⊕ b = 0,
x′ ⊕ x = E1(α0)⊕ E1(α1) if b′ ⊕ b = 1.

Therefore, ε(g) = 0 and s can be recovered with O(n) quantum queries to g
using O(n) qubits by theorem 2.
Forgery attack. After recovering s, by using the property of g(b, x) = g(b, x⊕s),
they make a successful forgery after one classic queries as follows:
1) Query M1 = (α0, x) and get tag T ;
2) Forge M2 = (α1, x⊕ s) and its tag T .

To break the notion of EUF-qCMA security, they produce q + 1 valid tags
with only q queries to the quantum oracle of MAC. Let q′ = O(n) denote the
number of of quantum queries made to find s. The attacker just repeats the
above classic forgery step q′ + 1 times. So that 2q′ + 2 messages with valid tags
are produced, using a total of 2q′ + 1 classical and quantum queries. Therefore,
ECBC-MAC is broken by a quantum existential forgery attack.

3 Secret State Recovery Attack for BBB MACs

3.1 Secret State Recovery Attack for SUM-ECBC-like MACs

We focus on DbHtS MAC [9]: DbHtS(M) = G(M)⊕H(M), which is the generic
paradigm of SUM-ECBC-like MACs. Strategy 1 in section 1 constructs

f(u, x) = g(0, x)⊕ h(0, x)⊕ g(1, x⊕ u)⊕ h(1, x⊕ u),

where periodic function g (resp. h) based on G (resp. H) and g(b, x) (resp.
h(b, x)) with a period 1‖s1 (resp. 1‖s2). When u = s1 or s2, f(u, x) has a period
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of s1 ⊕ s2. If ε(f) ≤ 3/4, then by theorem 3, Simon-meet-Grover algorithm
can find both s1 and s2 with at most O(2n/2n) quantum queries and O(n2)
qubits. In the following, for any concrete SUM-ECBC-like MAC, we only give
the construction of function f , the estimation of ε(f), and the forgery attack after
recovery of s1 and s2. The method applies to SUM-ECBC [34], PolyMAC [22],
the authentication part of GCM-SIV2 [18] and 2K-ECBC Plus [9]. We only take
SUM-ECBC and PolyMAC as examples.

1) Secret State Recovery Attack for SUM-ECBC. SUM-ECBC was de-
signed by Yasuda in 2010 [34], which is the sum of two independent ECBC-
MACs. The scheme uses a block cipher keyed by four independent keys, denoted
as E1, E2, E3, E4.

𝛼𝑏 𝑥 

⊕ 𝐸1 𝐸1 𝐸2 

 

⊕ 

MAC(𝛼𝑏, 𝑥) 

, 𝑥)𝐸3 𝐸3 𝐸4 

𝑥 ⊕ 𝛼𝑏 

Fig. 2. SUM-ECBC with two-block message M = (αb, x).

Construction of function f . Let b ∈ {0, 1}, x ∈ {0, 1}n, and α0, α1 are two
arbitrary different fixed numbers in {0, 1}n. SUM-ECBC with message M =
(M [1],M [2]) = (αb, x) is shown in figure 2, which can be written as

MAC(αb, x) = g(b, x)⊕ h(b, x),

where

g(b, x) = E2(E1(E1(αb)⊕ x)), h(b, x) = E4(E3(E3(αb)⊕ x)).

Obviously, g (resp. h) has a period of 1‖s1 where s1 = E1(α0) ⊕ E1(α1) (resp.
1‖s2 where s2 = E3(α0) ⊕ E3(α1)). Given that E1, E3 are two independent
random permutations, the probability of s1 = s2 is 1/2n. So in the following we
assume s1 6= s2. Let

f(u, x) = MAC(α0, x)⊕MAC(α1, x⊕ u).

Estimation of ε(f). In this case, Us = {(s1, s1 ⊕ s2), (s2, s1 ⊕ s2)},

ε(f) = max
(u,t)∈{0,1}n×{0,1}n\(Us∪{0,1}n×{0n})

Prx[f(u, x) = f(u, x⊕ t)].

We consider u = s1 as an example and the other situations are similar. In this
case f(u, x) = f(s1, x) = E4(E3(x ⊕ E3(α0)) ⊕ E4(E3(x ⊕ s1 ⊕ E3(α1)). We
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will prove ε(f(s1, ·)) ≤ 1
2 with overwhelming probability. Otherwise, there is

t 6∈ {0n, s1 ⊕ s2} such that Prx[f(s1, x) = f(s1, x⊕ t)] > 1/2, i.e.,

Prx

[
E4(E3(x⊕ E3(α0)))⊕ E4(E3(x⊕ s1 ⊕ E3(α1)))⊕

E4(E3(x⊕ t⊕ E3(α0)))⊕ E4(E3(x⊕ t⊕ s1 ⊕ E3(α1))) = 0n

]
> 1/2.

(3)

When t 6∈ {0n, s1 ⊕ s2} and s1 6= s2, we know the four inputs of E4(E3(·)) are
different from each other. If E4 is a random function and E3 is a permutation,
the equation (3) happens with negligible probability.
Forgery attack. After recovering s1 and s2, by using the property of f(s1, x) =
f(s1, x ⊕ s1 ⊕ s2), we can make a successful forgery after 3 classic queries as
follows.
1) Query M1 = (α0, x) and get tag T1;
2) Query M2 = (α1, x⊕ s1) and get tag T2;
3) Query M3 = (α0, x⊕ s1 ⊕ s2) and get tag T3;
4) Forge M4 = (α1, x⊕ s2) and its tag T1 ⊕ T2 ⊕ T3.

In fact, we can forge any number of forgeries by repeating the above classic
forgery step for different x. Now we try to break the notion of EUF-qCMA
security. If q′ = O(2n/2n) denote the number of of quantum queries made to find
s1 and s2. The attacker just repeats the above classic forgery step q′ + 1 times.
So that 4q′ + 4 messages with valid tags are produced, using a total of 4q′ + 3
classical and quantum queries. Therefore, SUM-ECBC is broken by a quantum
existential forgery attack. Generally, the EUF-qCMA attack is straightforward
after we find the hidden periods. So we omit it in the following examples.

2) Secret State Recovery Attack for PolyMAC. By replacing the block ci-
pher Ei in SUM-ECBC with multiplication functions Hki(x) = ki ·x for i = 1, 3,
we get PolyMAC [22], where k1, k3 are two independent keys in {0, 1}n and
they are independent of the keys of E2, E4. The chain of MAC is actually Poly-
Hash, which is used in the authentication of associated data in GCM-SIV2 [18],
GCM [26] and HCTR [33].

𝛼𝑏 𝑥 

MAC(𝛼𝑏, 𝑥) 

𝑘1 

𝐸4 

𝑘1 

⊕ 

𝐸2 ⨀ ⊕ ⨀ 

𝛼𝑏 𝑥 

⨀ ⊕ ⨀ 

𝑘3 𝑘3 

Fig. 3. PolyMAC with two-block message M = (M [1],M [2]) = (αb, x).

Construction of function f . Let b ∈ {0, 1}, x ∈ {0, 1}n, and α0, α1 are
two arbitrary different fixed numbers in {0, 1}n. PolyMAC with message M =
(M [1],M [2]) = (αb, x) is shown in figure 3, which can be written as

MAC(αb, x) = g(b, x)⊕ h(b, x),
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where

g(b, x) = E2(k21αb ⊕ k1x), h(b, x) = E4(k23αb ⊕ k3x).

Obviously, g (resp. h) has a period of 1‖s1 where s1 = k1α0 ⊕ k1α1 (resp. 1‖s2
where s2 = k3α0 ⊕ k3α1). The probability of s1 = s2 is 1/2n by the randomness
of k1, k3. So in the following we assume s1 6= s2. Let

f(u, x) = MAC(α0, x)⊕MAC(α1, x⊕ u).

Similar as SUM-ECBC, we can prove ε(f) ≤ 3/4.

3.2 Secret State Recovery Attack for PMAC Plus-like MACs

We focus on DbHtF MAC [9]: DbHtF (M) = F (G(M), H(M)), which is the
generic paradigm of PMAC Plus-like MACs. Strategy 2 in section 1 constructs

f(u, b, x) = F (g(u, b, x), h(u, b, x)),

where g(u, b, x) (resp. h(u, b, x)) based on G (resp. H). When u equals a spe-
cial value u∗, both g(u∗, b, x) and h(u∗, b, x) are periodic functions with the
same period 1‖s. Thus f(u∗, b, x) is a periodic function with period 1‖s. If
s 6= 0n, ε(f) ≤ 3/4, we can apply Grover-meet-Simon algorithm (theorem 3) to
recover u∗, s with at mostO(2n/2n) quantum queries andO(n2) qubits. If s = 0n,
we can apply Grover algorithm (theorem 1) to recover u∗ with at most O(2n/2)
quantum queries andO(n) qubits. In the following, for any concrete PMAC Plus-
like MAC, we only give the construction of function f , the estimation of ε(f).
The method applies to PMAC Plus [35], 1k-PMAC Plus [10,11], 3kf9 [36] and
2K-PMAC Plus [9], for which the function F is the sum of two cipher blocks.
The method even applies to optimally secure MACs, including mPMAC+-f [8],
mPMAC+-p1 [8] and mPMAC+-p2 [8], for which the function F is HtmB-
f, HtmB-p1 and HtmB-p2 [8] respectively. We only take PMAC Plus [35] and
3kf9 [36] as examples.

1) Secret State Recovery Attack for PMAC Plus. PMAC Plus was de-
signed by Yasuda in 2011 [35]. The scheme uses a block cipher keyed by three
independent keys, denoted as E1, E2, E3.
Construction of function f . Let b ∈ {0, 1}, u, x ∈ {0, 1}n and

αb :=

{
2E1(0)⊕ 22E1(1), if b = 0,
22E1(0)⊕ 24E1(1), if b = 1.

PMAC Plus with message M = (M [1]) = (x) and message M = (M [1],M [2]) =
(u, x) are shown as figure 4, which can be written as

MAC(M) =

{
F (g(u, 0, x), h(u, 0, x)), if M = (x),
F (g(u, 1, x), h(u, 1, x)), if M = (u, x),
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𝑥 

⊕ 

𝐸1 

MAC(𝑢, 𝑥) 

𝑥 

⊕ 
⊕ 

⊕ 

𝑢 

𝛼1 ⊕ 

⊕ ⨀ 2 

𝑢 

⊕ 

𝐸1 

𝐸2 

MAC(𝑥) ⊕ 
𝛼0 

𝑥 

⊕ 

𝛼0 ⊕ 

𝐸1 

𝑥 

𝐸1 

𝐸2 

𝐸3 

𝐸1 

𝛼0 

𝐸3 

𝐸1 

𝛼1 𝛼0 

(a) MAC(x).

𝑥 

⊕ 

𝐸1 

MAC(𝑢, 𝑥) 

𝑥 

⊕ 
⊕ 

⊕ 

𝑢 

𝛼1 ⊕ 

⊕ ⨀ 2 

𝑢 

⊕ 

𝐸1 

𝐸2 

MAC(𝑥) ⊕ 
𝛼0 

𝑥 

⊕ 

𝛼0 ⊕ 

𝐸1 

𝑥 

𝐸1 

𝐸2 

𝐸3 

𝐸1 

𝛼0 

𝐸3 

𝐸1 

𝛼1 𝛼0 

(b) MAC(u, x).

Fig. 4. PMAC Plus with one-block message M = (x) and two-block message M =
(u, x).

where

g(u, b, x) =

{
E1(x⊕ α0), if b = 0,
E1(x⊕ α1)⊕ E1(u⊕ α0), if b = 1,

h(u, b, x) =

{
E1(x⊕ α0), if b = 0,
E1(x⊕ α1)⊕ 2E1(u⊕ α0), if b = 1.

F (x′, y′) = E2(x′)⊕ E3(y′),

where x′, y′ ∈ {0, 1}n. We define

f(u, b, x) =

{
MAC(x), if b = 0,
MAC(u, x), if b = 1.

Let u∗ ∈ {0, 1}n such that E1(u∗ ⊕ α0) = 0n. When u = u∗, f(u, b, x) has a
period 1‖(α0 ⊕ α1).
Estimation of ε(f). In this case, Us = {(u∗, 1‖α0 ⊕ α1)}. Let Ut := {0, 1}n ×
{0, 1} × {0, 1}n\(Us ∪ {0, 1}n × {0n+1}), then

ε(f) = max
(u,t1,t2)∈Ut

Prb,x[f(u, b, x) = f(u, b⊕ t1, x⊕ t2)].

We consider u = u∗ as example and the others are similar. Firstly, we divide the
scope t1‖t2 ∈ {0, 1}n+1\{0n+1, 1‖α0 ⊕ α1} into two parts t1 = 0, t2 6= 0n and
t1 = 1, t2 6= α0 ⊕ α1. We take the former as example. In fact, when u = u∗, t1 =
0, t2 6= 0n, the equation f(u, b, x) = f(u, b⊕ t1, x⊕ t2) equals

E2(E1(x⊕αb))⊕E2(E1(x⊕t2⊕αb))⊕E3(E1(x⊕αb))⊕E3(E1(x⊕t2⊕αb)) = 0n.
(4)

When t2 6= 0n and E1 is a random permutation, we obtain the two inputs of E2

and the two inputs of E3 are different respectively. Therefore, by the randomness
of E2, E3, the equation (4) holds with probability at most 1/2 with overwhelming
probability.
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2) Secret State Recovery Attack for 3kf9. 3kf9 was designed by Zhang
et.al. [36]. The scheme uses a block cipher keyed with three independent keys,
denoted as E1, E2, E3.

MAC(𝑥) 

𝐸2 

𝑥 

MAC(𝑢, 𝑥) 

𝑥 𝑢 𝑥 

𝑥 𝑢 

𝐸1 

𝐸1 

𝐸3 

𝐸1 

𝐸3 

𝐸1 

𝐸2 

𝐸1 𝐸1 

(a) MAC(x).

MAC(𝑥) 

𝐸2 

𝑥 

MAC(𝑢, 𝑥) 

𝑥 𝑢 𝑥 

𝑥 𝑢 

𝐸1 

𝐸1

𝐸3

𝐸1

𝐸3 

𝐸1 

𝐸2

𝐸1𝐸1

(b) MAC(u, x).

Fig. 5. 3kf9 with one-block message M = (x) and two-block message M = (u, x).

Construction of function f . Let b ∈ {0, 1}, u, x ∈ {0, 1}n. Then 3kf9 with
message M = (M [1]) = (x) and message M = (M [1],M [2]) = (u, x) are shown
in figure 5, which can be written as

MAC(M) =

{
F (g(u, 0, x), h(u, 0, x)), if M = (x),
F (g(u, 1, x), h(u, 1, x)), if M = (u, x),

where

g(u, b, x) =

{
E1(x), if b = 0,
E1(x⊕ E1(u)), if b = 1,

h(u, b, x) =

{
E1(x), if b = 0,
E1(x⊕ E1(u))⊕ E1(u), if b = 1,

F (x, y) = E2(x)⊕ E3(y).

where x′, y′ ∈ {0, 1}n. We define

f(u, b, x) =

{
MAC(x), if b = 0,
MAC(u, x), if b = 1.

Let u∗ ∈ {0, 1}n such that E1(u∗) = 0n. It is easy to obtain that u∗ is unique
by permutation E1. Then when u = u∗, f(u∗, 0, x) = f(u∗, 1, x) holds for all
x ∈ {0, 1}n. It means the period is 1‖0n, which is trivial. So we apply Grover
algorithm to recover u∗ directly. We define test : {0, 1}n → {0, 1} as

test(u) =

{
1, if f(u, 0, xi) = f(u, 1, xi), i = 1, . . . , q,
0, otherwise,
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where xi ∈ {0, 1}n and xis are different from each other.
Estimation of maxu∈{0,1}n\{u∗}Pr[test(u) = 1] ≤ 2−2n. The deviation

max
u∈{0,1}n\{u∗}

Pr[test(u) = 1]

= max
u∈{0,1}n\{u∗}

Pr[f(u, 0, x1) = f(u, 1, x1), . . . , f(u, 0, xq) = f(u, 1, xq)].

Here, the equation system

f(u, 0, xi) = f(u, 1, xi), i = 1, 2, . . . , q,

equals
E2(y1i )⊕ E2(y2i )⊕ E3(y3i )⊕ E3(y4i ) = 0n, i = 1, 2, . . . , q,

where y1i = E1(xi), y
2
i = E1(xi ⊕ E1(u)), y3i = E1(xi), y

4
i = E1(xi ⊕ E1(u)) ⊕

E1(u). To calculate the probability of these q equations, we consider sampling
about E2. If y1i , y

2
i , who are the inputs of E2 in ith equation, both have appeared

in the other q − 1 equations, then we don’t sample in the ith equation. In fact,
if xi ⊕ xj = E1(u) then y1i = y2j , y

2
i = y1j . Therefore, we have to sample E2 in at

least b q+1
2 c equations among q. For every equation, by the randomness of E2, it

holds with probability at most 1
2n−2q . Therefore, for any u ∈ {0, 1}n\{u∗}, we

have Pr[test(u) = 1] ≤ ( 1
2n−2q )

q−1
2 . When q = 7, we have Pr[test(u) = 1] ≤ 2−2n

for n ≥ 4.

4 Key Recovery Attack for PMAC Plus-like MACs

We observe that PMAC Plus-like MACs such as PMAC Plus [35], 3kf9 [36] etc.,
with message M = (M [1],M [2],M [3]) share a common structure as in figure 6.

𝑀[1] 𝑀[2] 𝑀[3] 

𝑃𝑘1

⊕ ⊕ 

𝑌[1] 𝑌[2] 𝑌[3] 

𝑣 

MAC𝑘1,𝑘𝑒𝑙𝑠𝑒
(𝑀)𝐹𝑘𝑒𝑙𝑠𝑒

⨀ ⨀ ⨀ 

𝑤 

𝑏1 𝑏2 𝑏3 

⊕ ⊕ 
Θ(𝑌) 

Σ(𝑌) 
⨀ ⨀ ⨀ 𝑎1 𝑎2 𝑎3 

Fig. 6. PMAC Plus-like MACs with three-block message M = (M [1],M [2],M [3]).

Let message M = (M [1],M [2],M [3]) ∈ ({0, 1}n)3, the tag MACk1,kelse(M) ∈
{0, 1}n, the independent keys k1 ∈ {0, 1}m, kelse ∈ {0, 1}l, Pk1 be a permutation
from 3n bit to 3n bit keyed by k1 and Fkelse be a function from 2n bit to n
bit keyed by kelse, Y = (Y [1], Y [2], Y [3]) ∈ ({0, 1}n)3, public constants A =
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(a1, a2, a3) ∈ ({0, 1}n)3, B = (b1, b2, b3) ∈ ({0, 1}n)3. Then the procedure of
MACk1,kelse(M) is as follows.
1) Given message M , compute Y = Pk1(M);
2) Compute linear combination processes Σ(Y ) := a1Y [1] ⊕ a2Y [2] ⊕ a3Y [3]

and Θ(Y ) := b1Y [1]⊕ b2Y [2]⊕ b3Y [3];
3) Compute Fkelse(Σ(Y ), Θ(Y )) and output it.

4.1 Partial Key Recovery Attack for PMAC Plus-like MACs

We notice that most BBB MACs have several keys. So we consider a partial key
recovery attack, and find that knowing the key k1 is enough to create forgeries.
The recovery of k1 is as follows. Firstly we fix arbitrary values at points v and
w. Secondly, we reverse the linear combination process in step 2) to get two
arbitrary different solutions C0, C1 ∈ {0, 1}3n. Thirdly, we guess k1 and reverse
step 1) to get two messages. Finally, input the two messages into the oracle of
MACk1,kelse(·) to get two tags. If the guess is correct, then the two tags are same
by colliding at both points v and w. Otherwise, the two tags may be different
with overwhelming probability. That is to say, we check whether or not the guess
is correct by whether or not the two tags are equal.
Accelerate the search of k1 by applying Grover’s search. Let set

C :=

{
(C0, C1)

∣∣∣∣ Σ(C0) = Σ(C1), Θ(C0) = Θ(C1), where
Cj = (Cj [1], Cj [2], Cj [3]) ∈ ({0, 1}n)3, j = 0, 1 and C0 6= C1

}
and function f : {0, 1}m×{0, 1}3n → {0, 1}n as f(k,C) = MACk1,kelse(P−1k (C)).
Then we define test : {0, 1}m → {0, 1} as

test(k) =

{
1, if f(k,Ci0) = f(k,Ci1), i = 1, . . . , q,
0, otherwise,

where (Ci0, C
i
1) ∈ C. We notice when k = k1, test(k) = 1. Given quantum oracle

of MACk1,kelse(·), if the deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1] ≤ 2−2m for
q = O(1), then we can recover k1 by Grover’s algorithm (theorem 1) with at
most O(2m/2) quantum queries and O(m+ n) qubits.
Forgery attack. After recovering k1, we make a successful forgery after a clas-
sical query as follows.
1) Choose an arbitrarily pair (C0, C1) ∈ C.
2) Compute M0 = (Pk1)−1(C0) and M1 = (Pk1)−1(C1);
3) Query M0 to MACk1,kelse(·) and get T ;
4) Forge message-tag pair (M1, T ).

The EUF-qCMA attack is straightforward. So we omit it.
The method apply to PMAC Plus [35], PMAC TBC3k [27], mPMAC+-f [8],

mPMAC+-p1 [8], mPMAC+-p2 [8], 1k-PMAC Plus [10,11], 3kf9 [36] and 2K-
PMAC Plus [9]. In section 4.1 and 4.1, we take PMAC Plus [35] and 3kf9 [36]
as examples and prove the deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1] ≤ 2−2m

for q = O(1) for both of them.
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1) Deviation Estimation for PMAC Plus We have introduced PMAC Plus
in section 3.2. Assume the three independent keys are (k1, k2, k3) ∈ ({0, 1}m)3.
The construction with three-block message M = (M [1],M [2],M [3]) is shown in
figure 7, where tjk1 = 2jEk1(0n)⊕ 22jEk1(0n−1 ‖ 1), j = 1, 2, 3.

𝑋[3] 𝑋[2] 𝑋[1] 

𝑀[1] 

⊕ 

𝑀[2] 

𝑡𝑘1

2

𝑀[3] 

𝑌[2] 

𝐸𝑘1

⊕ 𝑡𝑘1

1

⊕ 

𝑌[1] 

⊕ 0 

⊕ 𝑡𝑘1

3

⊕ 

𝑌[3] 

⨀ ⨀ ⨀ 22 21 20 

⊕ ⊕ ⊕ 0 

Σ(𝑌) 

Θ(𝑌) 
⊕ MAC𝑘1,𝑘2,𝑘3

(𝑀)

𝑃𝑘1

𝐹𝑘𝑒𝑙𝑠𝑒

𝐸𝑘1
𝐸𝑘1

𝐸𝑘2

𝐸𝑘3

Fig. 7. PMAC Plus with three-block message M = (M [1],M [2],M [3]).

The deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1] is equals to

max
k∈{0,1}m\{k1}

Pr[f(k,C1
0 ) = f(k,C1

1 ), . . . , f(k,Cq0) = f(k,Cq1)].

Here, the equation system

f(k,Ci0) = f(k,Ci1), i = 1, 2, . . . , q, (5)

equals

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), i = 1, 2, . . . , q,

where

Σ(Y ib ) =Ek1(Xi
b[1])⊕ Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,

Θ(Y ib ) =22Ek1(Xi
b[1])⊕ 2Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,

and

Xi
b[1] = E−1k (Cib[1])⊕ t1k ⊕ t1k1 ,

Xi
b[2] = E−1k (Cib[2])⊕ t2k ⊕ t2k1 ,

Xi
b[3] = E−1k (Cib[3])⊕ t3k ⊕ t3k1 .

We assume all Cib[a], i = 1, . . . , q, b = 0, 1, a = 1, 2, 3 are different. This can be
realized easily. Then all Xi

b[1], i = 1, . . . , q, b = 0, 1 are different, all Xi
b[2], i =
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1, . . . , q, b = 0, 1 are different and all Xi
b[3], i = 1, . . . , q, b = 0, 1 are different as

well.
In the following, we only consider the equations which have new sample of

Ek1 among the q equations in (5). If Xi
b[a], b = 0, 1, j = 1, 2, 3, who are the in-

puts of Ek1 in ith equation, have all appeared in the other q− 1 equations, then
we don’t sample in the ith equation. In fact, there may be Xi

b[a1] = Xi′

b′ [a2] =

Xi′′

b′′ [a3], where a1, a2, a3 are three different values belong to {1, 2, 3}, b, b′, b′′ ∈
{0, 1}, i′, i′′ ∈ {1, . . . , q}. TakeXi

0[1] as example, there may be b′, b′′ ∈ {0, 1}, i′, i′′ ∈
{1, . . . , q} such that Xi

0[1] = Xi′

b′ [2] = Xi′′

b′′ [3]. Therefore, it is easily to obtain
that we have to sample Ek1 in at least b q+2

3 c equations among q. Then we con-
sider the probability of the ith equation f(k,Ci0) = f(k,Ci1) where we have new
sample of Ek1 .
1) If

Σ(Y i0 ) = Σ(Y i1 ), Θ(Y i0 ) = Θ(Y i1 ), (6)

then the ith equation holds. We want to know the upper bound of the prob-
ability of this case. So we only consider Σ(Y i0 ) = Σ(Y i1 ). It means

Ek1(Xi
0[1])⊕Ek1(Xi

0[2])⊕Ek1(Xi
0[3]) = Ek1(Xi

1[1])⊕Ek1(Xi
1[2])⊕Ek1(Xi

1[3]).

By the randomness of Ek1 , the probability to make the above equation holds
by sampling Ek1 is at most 1

2n−6q .

2) When the equation set (6) doesn’t holds but

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), (7)

then the ith equation holds as well. Firstly, we exclude the case that Σ(Y i0 ),
Θ(Y i0 ),Σ(Y i1 ),Θ(Y i1 ) in ith equation have all appeared in other q − 1 equa-
tions, whose probability is at most ( 2q

2n−6q )4. Then we assume that in ith

equation that at least Σ(Y i0 ) hasn’t been appeared in other q− 1 equations,
which means Ek2(Σ(Y i0 )) is a new sample. Thus the ith equation holds with
probability at most 1

2n−2q . Overall, this case happens with probability at

most ( 2q
2n−6q )4 + 1

2n−2q .

Sum of case 1) and 2), the ith equation holds with probability at most 1
2n−6q +

( 2q
2n−6q )4 + 1

2n−2q ≤
q

2n−3 assuming 6q ≤ 2n−1. Therefore, the q equations

happens with probability at most ( q
2n−3 )

q−1
3 . For PMAC Plus, the key length

m ≤ 2n. Then when q = 16, we have Pr[test(k) = 1] ≤ 2−2m for m ≥ 42 and
any k ∈ {0, 1}m\{k1}.

2) Deviation Estimation for 3kf9 We have introduced 3kf9 in section 3.2.
Assume the three keys are (k1, k2, k3) ∈ ({0, 1}m)3. The construction with mas-
sage M = (M [1],M [2],M [3]) is defined as in figure 8.

The deviation maxk∈{0,1}m\{k1} Pr[test(k) = 1] is equals to

max
k∈{0,1}m\{k1}

Pr[f(k,C1
0 ) = f(k,C1

1 ), . . . , f(k,Cq0) = f(k,Cq1)].
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𝑀[1] 𝑀[2] 𝑀[3] 

𝑋[2] 

𝑌[2] 
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𝑌[1] 

𝑋[3] 

𝑌[3] 

Σ(𝑌) 

Θ(𝑌) 
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𝐸𝑘1

𝐸𝑘2
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Fig. 8. 3kf9 with three-block message M = (M [1],M [2],M [3]).

Here, the equation system

f(k,Ci0) = f(k,Ci1), i = 1, 2, . . . , q, (8)

equals

Ek2(Σ(Y i0 ))⊕ Ek3(Θ(Y i0 )) = Ek2(Σ(Y i1 ))⊕ Ek3(Θ(Y i1 )), i = 1, 2, . . . , q,

where
Σ(Y ib ) =Ek1(Xi

b[3]), b = 0, 1,

Θ(Y ib ) =Ek1(Xi
b[1])⊕ Ek1(Xi

b[2])⊕ Ek1(Xi
b[3]), b = 0, 1,

and
Xi
b[1] = E−1k (Cib[1]),

Xi
b[2] = Ek1(Xi

b[1])⊕ Cib[1]⊕ E−1k (Cib[2]),

Xi
b[3] = Ek1(Xi

b[2])⊕ Cib[2]⊕ E−1k (Cib[3]).

We assume all Cib[1], i = 1, . . . , q, b = 0, 1 are different. This can be realized
easily. Then all Xi

b[1], i = 1, . . . , q, b = 0, 1 are different from each other, which
means we have to sample for Ek1(Xi

0[1]) in every equation in (8). Similar as
the PMAC Plus in appendix 4.1, every equation f(k,Ci0) = f(k,Ci1) holds with
probability at most q

2n−3 . Therefore, the q equations happens with probability
at most ( q

2n−3 )q. For 3kf9, the key length m ≤ 2n. Then when q = 5, we have
Pr[test(k) = 1] ≤ 2−2m for m ≥ 24 and any k ∈ {0, 1}m\{k1}.

4.2 Full Key Recovery Attack for PMAC Plus-like MACs

Although one key recovery is enough to get successful forgery, we can further
recover all keys of PMAC Plus, 3kf9, and 2K-PMAC Plus after knowing k1.
Their finalization functions all can be represented as the sum of two keyed per-
mutations. That is to say, kelse = (k2, k3) and for all x, y ∈ {0, 1}n we have
Fkelse(x, y) = Fk2(x) ⊕ F ′k3(y) where F, F ′ are two keyed permutations on n
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bits and k2, k3 are two m-bit keys. Our goal is to recover k2, k3. In fact, after
recovering k1, we are able to evaluate the inputs of Fkelse(·, ·) and get the output
which is tag. That is to say, we are able to construct the quantum oracle of
Fkelse(·, ·) by given the quantum oracle of P−1k1

(·) and MACk1,kelse(·). Let func-
tion f : {0, 1}m×{0, 1}n×{0, 1}n → {0, 1}n as f(k, x1, x2) = Fk(x1)⊕Fk(x2) for
k ∈ {0, 1}m, x1, x2 ∈ {0, 1}n. Then we are able to know whether k = k2 or not
by whether f(k, x1, x2) = Fkelse(x1, y)⊕ Fkelse(x2, y) or not. Applying Grover’s
algorithm we can recover k2. Then the last unknown key k3 can be recovered
easily by Grover’s algorithm as well. The whole attack costs O(2m/2) quantum
queries and O(m+ n) qubits.

5 Conclusions

In this paper, we introduce secret state recovery and key recovery for a se-
ries of BBB MACs in the Q2 model, leading to forgery attacks. Notice that
PMAC TBC3k handles message blocks with different tweakable block ciphers
but not the same block cipher as other PMAC Plus-like MACs in section 3.2. So
we are not able to construct a period function and the secret state recovery at-
tack is not suitable for it. Another notice is that SUM-ECBC-like MACs handle
the message with two different hash block chains and have no linear combination
processes. So we can’t apply key recovery attack in section 4 to them. However,
there is another key recovery attack. Take SUM-ECBC as an example. The com-
plexity of the attack is O(2mn) quantum queries assuming the size of message
block is n bits and the size of all keys is 4m bits. We describe it in appendix E.
The further question is if there is provable security in the quantum setting to
show the tightness of the bound. We leave it as an open problem.

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000), https:
//doi.org/10.1006/jcss.1999.1694 7

2. Belovs, A., Spalek, R.: Adversary lower bound for the k-sum problem. In: Pro-
ceedings of the 4th conference on Innovations in Theoretical Computer Science.
pp. 323–328 (2013) 3

3. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013.
Lecture Notes in Computer Science, vol. 7881, pp. 592–608. Springer (2013),
https://doi.org/10.1007/978-3-642-38348-9_35 7

4. Bonnetain, X.: Tight bounds for Simon’s algorithm. IACR Cryptol. ePrint Arch.
2020, 919 (2020), https://eprint.iacr.org/2020/919 5, 7, 26, 29

5. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives
in practice. CoRR abs/2011.07022 (2020), https://arxiv.org/abs/2011.07022
30

6. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002) 5

https://doi.org/10.1006/jcss.1999.1694
https://doi.org/10.1006/jcss.1999.1694
https://doi.org/10.1007/978-3-642-38348-9_35
https://eprint.iacr.org/2020/919
https://arxiv.org/abs/2011.07022


20 Tingting Guo, Peng Wang, Lei Hu, Dingfeng Ye

7. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997) 1, 2

8. Cogliati, B., Jha, A., Nandi, M.: How to build optimally secure prfs using block
ciphers. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of Cryptology
and Information Security, Part I. Lecture Notes in Computer Science, vol. 12491,
pp. 754–784. Springer (2020), https://doi.org/10.1007/978-3-030-64837-4_25
2, 4, 11, 15

9. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018), https://doi.org/10.13154/tosc.v2018.i3.36-92 2, 4,
8, 9, 11, 15

10. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key be-
yond birthday bound message authentication code. Tech. rep., Cryptology ePrint
Archive, Report 2015/958, 2015. http://eprint. iacr. org . . . (2015) 11, 15

11. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017), https:
//doi.org/10.13154/tosc.v2017.i4.268-305 2, 4, 11, 15

12. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision at-
tacks on AES-like hashing with low quantum random access memories. In: Mo-
riai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 12492, pp. 727–
757. Springer (2020). https://doi.org/10.1007/978-3-030-64834-3 25, https://

doi.org/10.1007/978-3-030-64834-3_25 1, 2

13. Grassi, L., Naya-Plasencia, M., Schrottenloher, A.: Quantum algorithms for the
k -xor problem. In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology -
ASIACRYPT 2018, Part I. Lecture Notes in Computer Science, vol. 11272, pp.
527–559. Springer (2018), https://doi.org/10.1007/978-3-030-03326-2_18 2

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, 1996. pp. 212–219 (1996), https://doi.org/10.1145/237814.237866 1,
5

15. Hodzic, S., Knudsen, L.R., Kidmose, A.B.: On quantum distinguishers for
Type-3 generalized feistel network based on separability. In: Ding, J.,
Tillich, J. (eds.) Post-Quantum Cryptography - 11th International Confer-
ence, PQCrypto 2020. Lecture Notes in Computer Science, vol. 12100, pp.
461–480. Springer (2020). https://doi.org/10.1007/978-3-030-44223-1 25, https:

//doi.org/10.1007/978-3-030-44223-1_25 1

16. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12106, pp. 249–279. Springer
(2020). https://doi.org/10.1007/978-3-030-45724-2 9, https://doi.org/10.1007/
978-3-030-45724-2_9 1, 2

17. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-
ciphertext attacks against Feistel ciphers. In: Matsui, M. (ed.) Topics in Cryptology
- CT-RSA 2019 - The Cryptographers’ Track at the RSA Conference 2019. Lecture
Notes in Computer Science, vol. 11405, pp. 391–411. Springer (2019), https://
doi.org/10.1007/978-3-030-12612-4_20 29

https://doi.org/10.1007/978-3-030-64837-4_25
https://doi.org/10.13154/tosc.v2018.i3.36-92
https://doi.org/10.13154/tosc.v2017.i4.268-305
https://doi.org/10.13154/tosc.v2017.i4.268-305
https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-030-03326-2_18
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-44223-1_25
https://doi.org/10.1007/978-3-030-44223-1_25
https://doi.org/10.1007/978-3-030-44223-1_25
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-12612-4_20
https://doi.org/10.1007/978-3-030-12612-4_20


Attacks on Beyond-Birthday-Bound MACs in the Quantum Setting 21

18. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016), https://doi.org/10.13154/tosc.
v2016.i1.134-157 4, 9, 10

19. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Advances in Cryptology -
CRYPTO 2016, Proceedings, Part II. pp. 207–237 (2016), https://doi.org/10.
1007/978-3-662-53008-5_8 1, 6, 7, 29

20. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Advances in Cryptology - CRYPTO ’96. pp. 252–267 (1996), https://doi.org/
10.1007/3-540-68697-5_20 3

21. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptology 14(1), 17–35 (2001), https://doi.org/10.1007/
s001450010015 3

22. Kim, S., Lee, B., Lee, J.: Tight security bounds for Double-Block Hash-then-Sum
MACs. In: Advances in Cryptology - EUROCRYPT 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12105, pp. 435–465. Springer (2020),
https://doi.org/10.1007/978-3-030-45721-1_16 2, 4, 9, 10

23. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and its
Applications, ISITA 2012. pp. 312–316 (2012), http://ieeexplore.ieee.org/

document/6400943/ 1
24. Leander, G., May, A.: Grover meets simon - quantumly attacking the FX-

construction. In: Advances in Cryptology - ASIACRYPT 2017, Proceedings, Part
II. pp. 161–178 (2017), https://doi.org/10.1007/978-3-319-70697-9_6 1, 3, 6,
29

25. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Advances in Cryptology - CRYPTO 2018, Proceedings, Part I.
pp. 306–336 (2018), https://doi.org/10.1007/978-3-319-96884-1_11 2, 4

26. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Progress in Cryptology - INDOCRYPT 2004. pp. 343–355
(2004), https://doi.org/10.1007/978-3-540-30556-9_27 10

27. Naito, Y.: Full PRF-secure message authentication code based on tweakable block
cipher. In: Provable Security - 9th International Conference, ProvSec 2015. pp.
167–182 (2015), https://doi.org/10.1007/978-3-319-26059-4_9 4, 15

28. Naito, Y.: Blockcipher-based MACs: Beyond the birthday bound without message
length. In: Advances in Cryptology - ASIACRYPT 2017, Proceedings, Part III.
pp. 446–470 (2017), https://doi.org/10.1007/978-3-319-70700-6_16 2

29. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-xor-sum algorithms. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology -
EUROCRYPT 2020, Part II. Lecture Notes in Computer Science, vol. 12106, pp.
311–340. Springer (2020), https://doi.org/10.1007/978-3-030-45724-2_11 2

30. Shen, Y., Wang, L., WengS, J.: Revisiting the security of DbHtS MACs: Beyond-
birthday-bound in the multi-user setting. IACR Cryptol. ePrint Arch. 2020, 1523
(2020), https://eprint.iacr.org/2020/1523 2

31. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997), https://doi.org/10.1137/S0097539796298637 1, 6

32. Wagner, D.A.: A generalized birthday problem. In: Yung, M. (ed.) Advances
in Cryptology - CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442,
pp. 288–303. Springer (2002). https://doi.org/10.1007/3-540-45708-9 19, https:

//doi.org/10.1007/3-540-45708-9_19 2

https://doi.org/10.13154/tosc.v2016.i1.134-157
https://doi.org/10.13154/tosc.v2016.i1.134-157
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/s001450010015
https://doi.org/10.1007/978-3-030-45721-1_16
http://ieeexplore.ieee.org/document/6400943/
http://ieeexplore.ieee.org/document/6400943/
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-26059-4_9
https://doi.org/10.1007/978-3-319-70700-6_16
https://doi.org/10.1007/978-3-030-45724-2_11
https://eprint.iacr.org/2020/1523
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19


22 Tingting Guo, Peng Wang, Lei Hu, Dingfeng Ye

33. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Information Security and Cryptology, First SKLOIS Conference, CISC 2005.
Lecture Notes in Computer Science, vol. 3822, pp. 175–188. Springer (2005), https:
//doi.org/10.1007/11599548_15 10

34. Yasuda, K.: The sum of CBC macs is a secure PRF. In: Topics in Cryptology - CT-
RSA 2010. pp. 366–381 (2010), https://doi.org/10.1007/978-3-642-11925-5_
25 2, 4, 9

35. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Advances
in Cryptology - CRYPTO 2011. pp. 596–609 (2011), https://doi.org/10.1007/
978-3-642-22792-9_34 2, 4, 11, 14, 15

36. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3gpp-mac beyond the
birthday bound. In: Advances in Cryptology - ASIACRYPT 2012. Lecture Notes
in Computer Science, vol. 7658, pp. 296–312. Springer (2012), https://doi.org/
10.1007/978-3-642-34961-4_19 2, 4, 11, 13, 14, 15

A Quantum Basics

For two n-bit strings x = x1x2 . . . xn and y = y1y2 . . . yn where xi, yi ∈ {0, 1},
the inner product of them is x · y = x1y1 ⊕ . . .⊕ xnyn.

Qubits. We call quantum bits as qubits . Let notation ket ”|·〉” represent a
column vector. The n-qubit system is associated with the 2n-dimension Hilbert
space in complex field. Let the unit orthogonal basis of the Hilbert space be
{|x〉} where x ∈ {0, 1}n, which also is the basis of the n-qubit system. If we let
|x〉 be an unit column vector whose x-th component is 1 and other components
are 0. Then any n-qubit state can be represented as the linear combination of
the basis:

|ψ〉 =
∑

x∈{0,1}n
αx|x〉 =


α00...0

α00...1

. . .
α11...1

 .
where αx ∈ C and

∑
x∈{0,1}n |αx|2 = 1. It means any n-qubit state |ψ〉 is a unit

length complex vector in the Hilbert space. If we measure |ψ〉, the superposition
state will collapse into a basis state |x〉 with probability |αx|2. Let notation bra

”〈·|” represent a row vector. Then |ψ〉 = (|ψ〉)† = [α†00...0, . . . , α
†
11...1]. We call

〈ψ1|ψ2〉 as inner product and |ψ1〉〈ψ2| as outer product. The orthogonal basis
means the inner product of any two different vectors in the basis is equal
to 0. For two independent quantum system |ψ1〉 =

∑
x1∈{0,1}n αx1

|x1〉 and

|ψ2〉 =
∑
x2∈{0,1}m αx2

|x2〉, the joint state can be represented by tensor product:

|ψ1〉 ⊗ |ψ2〉 =
∑
x1∈{0,1}n

∑
x2∈{0,1}m αx1αx2(|x1〉 ⊗ |x2〉),where |x1〉 ⊗ |x2〉 can

be represented as |x1x2〉 as well.

Quantum Operations. Unitary operation (unitary matrix, unitary gate) U
can transform a quantum state |ψ1〉 to another quantum state |ψ2〉 = U |ψ1〉.
For a joint system of two independent quantum system |ψ1〉 and |ψ2〉, a joint
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quantum unit operation on the system can be represented as by tensor product
U ⊗ V , where U ⊗ V (|ψ1〉 ⊗ |ψ2〉) = (U |ψ1) ⊗ (V |ψ2〉). There are some useful
unitary operations. The first is Hadamard transform

H =

[
1√
2

1√
2

1√
2
− 1√

2

]

on a single qubit. For example, when we apply it to state |1〉, we get 1√
2
|0〉− 1√

2
|1〉

by

H|1〉 =

[
1√
2

1√
2

1√
2
− 1√

2

] [
0
1

]
=

[
1√
2

− 1√
2

]
=

1√
2
|0〉 − 1√

2
|1〉.

If we apply H on 1√
2
|0〉 − 1√

2
|1〉 again, it is easy to know we will get |1〉 again.

So H is the inverse of itself. Let H⊗n be the operation that apply H to ev-
ery qubit of n-qubit quantum state. Then for n-qubit basis state |x〉, we get
H⊗n|x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y|y〉. Assume |ψ1〉, |ψ2〉 are n qubits state. The

second unitary operation is D|ψ1〉 = 2|ψ1〉〈ψ1| − I2n . The transform D|ψ1〉|ψ2〉
implements filpping the vector |ψ2〉 with |ψ1〉 as the symmetry axis, which is the
core operation of Grover’s algorithm.

Quantum Queries. Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉 be a quantum oracle for
implementing function f : {0, 1}n → {0, 1}m, where |y〉 is ancilla m qubits and
|x〉, |y〉 are basis states. For f : {0, 1}n → {0, 1}, there is another available quan-

Fig. 9. The oracle Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.

tum oracle O′f , which is constructed from Of by the following quantum circuit.

The input of the quantum circuit is |x〉|1〉 and the output is (−1)f(x)|x〉|1〉. If we

Fig. 10. The quantum circuit to construct oracle O′f from oracle Of .

neglect the last qubit |1〉, then we get the quantum oracle O′f : |x〉 → (−1)f(x)|x〉.
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In fact, for state

|ψ〉 =
∑

x∈{0,1}n
αx|x〉

=
∑

f(x)=0

αx|x〉+
∑

f(x)=1

αx|x〉

=

√ ∑
f(x)=0

α2
x

∑
f(x)=0

αx√∑
f(x)=0 α

2
x

|x〉+

√ ∑
f(x)=1

α2
x

∑
f(x)=1

αx√∑
f(x)=1 α

2
x

|x〉

= cos θ|ψ0〉+ sin θ|ψ1〉,

O′f |ψ〉 = O′f (cos θ|ψ0〉+ sin θ|ψ1〉) = cos θ|ψ0〉 − sin θ|ψ1〉. That is to say, O′f flip
the vector |ψ〉 with |ψ0〉 as its symmetry axis.

In fact, in EUF-qCPA the quantum adversary maintains its state as follows.
Let |0n〉 be the initial state of adversary. Let Oi be the i-th quantum oracle query
for adversary of MAC function and let U0, U1, . . . , Uq be the unitary operations
applied by adversary between queries. Then after q quantum queries, the final
state of adversary will be UqOq . . . U1O1U0|0n〉. Finally, the adversary applies
the final state to get some useful information and make forgeries.

Quantum Complexity.There are three dimensions to measure the complexities
of a quantum algorithm: query complexity, time complexity, memory complexity.
The query complexity counts the number of the superposition oracle queries Of
used for function f . Notice that the classical queries are specific cases of super-
position queries. So we add the number of classical queries to query complexity
in the quantum algorithm. The time complexity is the number of quantum op-
erations (gates, unitaries). The memory complexity is the number of qubits in
a quantum circuit. In our work, the time complexity of the quantum algorithm
is close to query complexity, so we only consider query complexity and memory
complexity.

B Grover’s Algorithm and Proof of Theorem 1

B.1 Grover’s Algorithm

The Grover’s algorithm consists of a series of Grover’s routines. Before all it-
erations, when we measure |ψ〉 the initial probability to get a u who satisfies
test(u) = 1 is small. However, every routine of the algorithm will amplify the am-
plitude of such elements. When the amplitude of such elements is large enough,
then when we measure the state we will get a u who satisfies test(u) = 1. In our
paper, we will apply the Grover algorithm to find some hidden useful informa-
tion, such as the correct secret key. The quantum circuit of Grover’s algorithm
is showed figure 11 and the algorithm is showed in algorithm 1.

Firstly, we divide the initial superposition state |ψ〉 = H⊗m|0m〉
= 2−

m
2

∑
u∈{0,1}m |u〉 as two parts by whether test(u) = 0 or not. Let θ =
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Fig. 11. The quantum circuit of Grover’s algorithm.

Algorithm 1 Grover’s Algorithm

Input: m, t, test : {0, 1}m → {0, 1}
Output: u who satisfies test(u) = 1

Let Otest|u〉 = (−1)test(x)|u〉, D|ψ〉 = 2|ψ〉〈ψ| − I2m .
1: Initialize m qubits registers |0m〉;
2: Apply H⊗m to obtain |ψ〉 = H⊗m|0m〉;
3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)

t|ψ〉;
4: Measure |φ〉 in order to get u who satisfies test(u) = 1;
5: return u;

arcsin
√

e
2m , |ψ0〉 =

∑
test(u)=0

1√
2m−e |u〉, |ψ1〉 =

∑
test(u)=1

1√
e
|u〉. Then the ini-

tail state |ψ〉 = cos θ|ψ0〉+sin θ|ψ1〉. It is easy to know that |ψ1〉 and |ψ0〉 are two
orthogonal unit vectors. Then we can establish a coordinate system with |ψ0〉
and |ψ1〉 as its orthogonal coordinate axis. In this coordinate system, the vector
|ψ〉 is a unit-length vector with angle θ. In the first Grover routine, the query
Otest flip the state |ψ〉 with |ψ0〉 as the symmetry axis to a unit-length vector
whose angle is −θ, i.e., cos θ|ψ0〉−sin θ|ψ1〉. Then the flip operation D|ψ〉 will flip
vector Otest|ψ〉 with |ψ〉 as its symmetry axis to get a unit-length vector whose
angle is 3θ, i.e., cos 3θ|ψ0〉+ sin 3θ|ψ1〉. We show the above process in figure 12.
It is easy to know that every iteration will add an angle 2θ. After t Grover itera-
tions, we will get a quantum state |φ〉 = cos ((2t+ 1)θ)|ψ0〉+ sin ((2t+ 1)θ)|ψ1〉.
For t = d π4θ e, the final state |φ〉 will be close to |ψ1〉 and we will get a good
elements with probability almost 1.

Fig. 12. The effect of the first Grover’s routine.

In the above Grover algorithm, we amplify some amplitudes of a uniform
superposition state |ψ〉 = 2−m/2

∑
u∈{0,1}m |u〉, which in produced by H⊗m on

|0n〉. In the following, we will introduce a more general Grover algorithm: am-
plitude amplification algorithm (algorithm 2). It can amplify some amplitudes
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of any quantum state |ψ〉 =
∑
u∈{0,1}m αu|u〉 as long as we can produce |ψ〉 by

a unitary operation U on |0m〉.

Fig. 13. The quantum circuit of amplitude amplification algorithm.

Algorithm 2 Amplitude Amplification Algorithm

Input: m, t, test : {0, 1}m → {0, 1}, unitary operation U
Output: u who satisfies g(u) = 1

Let Otest|u〉 = (−1)test(u)|u〉, D|ψ〉 = 2|ψ〉〈ψ| − I2m .
1: Initialize m qubits registers |0m〉;
2: Apply U to obtain |ψ〉 = U |0m〉;
3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)

t|ψ〉;
4: Measure |φ〉 in order to get a u who satisfies test(u) = 1;
5: return u;

B.2 Proof of Theorem 1

Firstly, we prove the following lemma.

Lemma 1. (Adapted from [4]) Let test : {0, 1}m → {0, 1}, U as defined
in definition 2.1. Assume in algorithm 2 the initial probability to get a u ∈ U
after measuring |ψ〉 is p0 and the quantum implement of test(·) costs j qubits.
Then amplitude amplification algorithm with t = d π

4 arcsin
√
p0
e quantum queries

to test(·) and O(m + j) qubits will output a u ∈ U with probability at least
p0

p0+p1
[1− (p1p0 +

√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].

Proof. From lemma 1 we get the initial probability of measuring |ψ〉 to get
a u who satisfies test(u) = 1 is between [p0, p0 + p1]. Paper [4] has proofed
when the initial probability is between [p0, p0 + p1], then after t = d π

4 arcsin
√
p0
e

Grover’s routines the probability to get a u who satisfies test(u) = 1 is at least

1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2. Among all u who satisfies test(u) = 1, the

proportion of u ∈ U is at least p0
p0+p1

. Multiple them and then we can get the
lower bound of the probability of getting a u ∈ U .

By setting U = H⊗m in amplitude amplification algorithm (algorithm 2), We
obtain Grover’s algorithm (algorithm 1) and p0 = e

2m . By lemma 1, we prove
theorem 1.
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C Simon’s Algorithm and Proof of theorem 2

C.1 Simon’s Algorithm

Simon’s algorithm consist of many Simon’s routines. The quantum circuit and
the quantum algorithm of of a Simon’s routine is showed in figure 15 and al-
gorithm 3. If f is a periodic function with period s, Simon’s routine outputs
vi ∈ {0, 1}n who is perpendicular to the period s. Assume l Simon’s routines
output v1, v2, . . . , vl. If v1, v2, . . . , vl span the whole space {0n, s}⊥, then we can
get the nontrivial period s by solving the equation system s · vi = 0, i = 1, . . . , l.
The whole Simon’s algorithm is in algorithm 4.

Fig. 14. The quantum circuit of Simon’s routine.

Algorithm 3 Simon’s routine

Input: n, d, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: v who satisfies v · s = 0

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.
1: Initialize n+ d qubits registers |0n〉|0d〉 ;
2: Apply U = (H⊗n × I2d)Of (H⊗n × I2d) on |0n〉|0d〉 to get

|ψ〉 = 2−n
∑

v∈{0,1}n

∑
x∈{0,1}n

(−1)x·v|v〉|f(x)〉;

3: Measure |ψ〉 and get the first n-bit v;
4: return v;

In fact, we can parallel Simon’s routines to construct Simon’s algorithm as
in algorithm 5. The quantum circuit of algorithm 5 is in figure 15.

Fig. 15. The quantum circuit of Simon’s algorithm.
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Algorithm 4 Simon’s algorithm

Input: n, d, l, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: the period s

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉.
1: Initialize n+ d qubits registers |0n〉|0d〉 ;
2: For i = 1 to l do
3: Apply U = (H⊗n × I2d)Of (H⊗n × I2d) on |0n〉|0d〉 to get

|ψi〉 = 2−n
∑

vi∈{0,1}n,xi∈{0,1}n
(−1)xi·vi |vi〉|f(xi)〉;

4: Measure |ψi〉 to get the first n-bits values vi;
5: end for
6: Compute the period s by solving the equation system s · vi = 0, i = 1, 2, . . . , l;
7: return s;

Algorithm 5 Simon’s algorithm

Input: n, d, l, f : {0, 1}n → {0, 1}d who has a hiddden period s
Output: the period s

Let Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉, Uf |x1〉 . . . |xl〉|y1〉 . . . |yl〉 → |x1〉 . . . |xl〉|y1 ⊕
f(x1)〉 . . . |yl ⊕ f(xl)〉 with l calls to Of .
1: Initialize nl + dl qubits registers |0nl〉|0dl〉 ;
2: Apply U = (H⊗nl × I2dl)Uf (H⊗nl × I2dl) on |0nl〉|0dl〉 to get

|ψ〉 = 2−nl
∑

v1,...,vl∈{0,1}n,
x1,...,xl∈{0,1}n

(−1)x1·v1 |v1〉 . . . (−1)xl·vl |vl〉|f(x1)〉 . . . |f(xl)〉;

3: Measure |ψ〉 to get the first nl-bits values v1, v2, . . . , vl;
4: Compute the period s by solving the equation system s · vi = 0, i = 1, 2, . . . , l;
5: return s;



Attacks on Beyond-Birthday-Bound MACs in the Quantum Setting 29

C.2 Proof of Theorem 2

Proof. Firstly, let us focus on Simon’s routine. Kaplan et al (Appendix A in [19])
have proved for t ∈ {0, 1}n \ {0n}, therefore is a relationship between the prob-
ability of get a v who satisfies v · t = 0 after measuring |ψ〉 and the proportion
of x who satisfies f(x) = f(x⊕ t) among {0, 1}n. It is

Pr
v

[v · t = 0] =
1

2
(1 + Pr

x
[f(x) = f(x⊕ t)]). (9)

If t = s, we have Prx[f(x) = f(x⊕ s)] = 1, which leads to Prv[v · s = 0] = 1 by
equation (9). That is to say, for function f with period s, we can always get a v
who satisfies v · s = 0 after Simon’s routine. By

ε(f) = max
t∈{0,1}n\{0n,s}

Prx[f(x) = f(x⊕ t)],

we have Prv[v · t = 0] ≤ 1
2 (1 + ε(f)) for t ∈ {0, 1}n\{0n, s}. That is to say, the

probability of getting a v who satisfies v · t = 0 for t ∈ {0, 1}n\{0n, s} is at most
1
2 (1 + ε(f)).

Now, let us focus on Simon’s algorithm. The line 1 to 3 are l parallel Simon
routines. Then v1, . . . , vl are all satisfy vi · s = 0, i ∈ {1, . . . , l}. Therefore, the
space spanned by v1, . . . , vl is the subspace of {0n, s}⊥. If the space spanned by
v1, . . . , vl is equal to {0n, s}⊥, then we can get s by solving the equation system
vi ·s = 0, i = 1, . . . , l. However, Simon’s algorithm may fail when there is at least
one t ∈ {0, 1}n\{0n, s} such that vi · t = 0, i = 1, . . . , l. The probability of this

bad case is at most 2n · ( 1+ε(f)
2 )l. Let l = cn then we get theorem 2.

D Grover-meet-Simon Algorithm and Proof of Theorem
3

D.1 Grover-meet-Simon Algorithm

For Grover-meet-Simon problem in definition 2.1, Leader and May [24] firstly
propose Grover-meet-Simon algorithm to solve it. The main idea is to search u ∈
U by Grover’s algorithm and in every Grover’s routine check whether or not each
u ∈ U by whether f(u, ·) is periodic or not, which can be implemented by Simon’s
algorithm. Assume the l parallel Simon routines in Simon’s algorithm output
v1, . . . , vl. For simplicity, we only check whether or not the rank of v1, . . . , vl is
at most n−1 instead of whether f(u, ·) is periodic or not, this the first proposed
in [17] and then combined with Grover’s algorithm in [4]. The replacement is
available for the following reason. For u ∈ U , f(u, x) is a periodic function. Thus
the space spanned by v1, . . . , vl is the subspace of {0n, s}⊥. So the rank of such
space is no more than n−1. However, for u 6∈ U , f(u, x) is an aperiodic function.
Thus the space spanned by v1, . . . , vl is the subspace of {0, 1}n. For sufficient
large l, the v1, . . . , vl can span the whole space {0, 1}n. We let the the output of
the test function be 1 when the rank of {v1, . . . , vl} is at most n− 1. Otherwise,
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it is 0. Therefore, Grover’s routine will amplify the amplitude of u ∈ U . At
last, we can get a u ∈ U and its corresponding v1, . . . , vl. Like the Simon’s
algorithm, we can get su by solving the equation system vi · s = 0, i = 1, . . . , l
in the end. The whole Grover-meet-Simon is in algorithm 6 and the quantum
circuit is in figure 16. More accurately, the whole algorithm is an amplitude
amplification algorithm (algorithm 2) with Hadamard transform and the parallel
Simon’s routines without measurement as the unitary operation U in algorithm
2.

D.2 Proof of Theorem 3

Proof. When u ∈ U , the classifier function test will output 1. If we measure |ψ〉,
it is easy to know the probability to get a u ∈ U is e

2m . For u 6∈ U , if there is at
least one t ∈ {0, 1}n\{0n} who satisfies t · vi = 0, i = 1, . . . , l , then test output
1 as well. By

ε(f) = max
(u,t)∈{0,1}m×{0,1}n\(Us∪{0,1}m×{0n})

Prx[f(u, x) = f(u, x⊕ t)],

this case happens with probability at most 2n ·( 1+ε(f)
2 )l. By lemma 1, we will get

the lower bound of the probability of get a u ∈ U after measuring |φ〉. For u ∈ U ,
Simon’s algorithm with function f(u, ·) output the period su with probability

at least 1 − 2n · ( 1+ε(f)
2 )l. Multiple them and then we can get lower bound of

the probability of get a tuple (u, su) ∈ Us. Let l = cn. By paper [5], we get the
qubits of these algorithm is O(m+cn2 +cdn). Now, we have proved the theorem
3.

Fig. 16. The quantum circuit of Grover-meet-Simon algorithm.

E Key Recovery Attack for SUM-ECBC

Let b ∈ {0, 1}, x ∈ {0, 1}n. Similar as introduction (section 1, strategy 1),
we construct CMACk1,k2,k3,k4 (b, x) = gk1,k2(b, x)⊕ hk3,k4(b, x) from SUM-ECBC
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Algorithm 6 Grover-meet-Simon Algorithm

Input: m,n, r, l, t, f : {0, 1}m × {0, 1}n → {0, 1}d, for u ∈ U ⊆ {0, 1}m that f(u, ·) is
a periodic function, otherwise it is an aperiodic function.

Output: a good element x
Let Of |u〉|x〉|y〉 = |u〉|x〉|y ⊕ f(u, x)〉, Uf |u〉|x1〉 . . . |xl〉|y1〉 . . . |yl〉 =
|u〉|x1〉 . . . |xl〉|y1⊕f(u, x1)〉 . . . |yl⊕f(u, xl)〉 with l calls to Of , test : {0, 1}m+nl+dl →
{0, 1} with

test(u, v1, . . . , vl, y1, . . . , yl) =

{
1, dim{v1, . . . , vl} ≤ n− 1
0, dim{v1, . . . , vl} = n

,

Otest|u, v1, . . . , vl, y1, . . . , yl〉 = (−1)test(u,v1,...,vl,y1,...,yl)|u, v1, . . . , vl, y1, . . . , yl〉, D|ψ〉 =
2|ψ〉〈ψ| − I2m .
1: Initialize m+ nl + dl qubits registers |0m〉|0nl〉|0dl〉;
2: Apply U = (I2m⊗H⊗nl⊗I2dl)Uf (H⊗m⊗H⊗nl⊗I2dl) to |0m〉|0nl〉|0dl〉 to obtain

|ψ〉 = 2−(m
2
+nl)

∑
u∈{0,1}m,

v1,...,vl∈{0,1}n,
x1,...,xl∈{0,1}n

|u〉(−1)x1·v1 |v1〉 . . . (−1)xl·vl |vl〉|f(u, x1)〉 . . . |f(u, xl)〉;

3: Repeat Grover’s routines with t times to get |φ〉 = (D|ψ〉Otest)
t|ψ〉;

4: Measure |φ〉 to in order to get the first (m+ nl)-bit values u ∈ U and v1, . . . , vl
who satisfy su · vi = 0, i = 1, . . . , q;

5: Compute the period su by solving the equation system su · vi = 0, i = 1, 2, . . . , l;
6: return u, su;
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through method C, where gk1,k2(b, x) and hk3,k4(b, x) have periods 1‖s1 and
1‖s2 respectively and k1, k2, k3, k4 are keys. Then we construct a function f :
{0, 1}m × {0, 1}m × {0, 1} × {0, 1}n → {0, 1}n as

fk1,k2,k3,k4(k′3, k
′
4, b, x) =CMACk1,k2,k3,k4 (b, x)⊕ hk′3,k′4(b, x)

=gk1,k2(b, x)⊕ hk3,k4(b, x)⊕ hk′3,k′4(b, x).

When (k′3, k
′
4) = (k3, k4), f equals gk1,k2(b, x) and have a period 1‖s1. By ap-

plying Grover-meet-Simon algorithm, we can recover k3, k4, s1, which leads to
a forgery attack. After recover k3, k4, it is easily to recover k1, k2 by Grover’s
search. Either the forgery attack or full key recover attack costs O(2mn) quan-
tum queries with O(m+ n2) qubits by theorem 3 and theorem 1.
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