
Proof-Carrying Data without Succinct Arguments

Benedikt Bünz
benedikt@cs.stanford.edu

Stanford University

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

William Lin
will.lin@berkeley.edu

UC Berkeley

Pratyush Mishra
pratyush@berkeley.edu

UC Berkeley

Nicholas Spooner
nspooner@bu.edu

Boston University

December 31, 2020

Abstract

Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely. Known approaches to construct PCD are
based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct verifier or a
succinct accumulation scheme for their proofs.

In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD
scheme given any non-interactive argument of knowledge (e.g., with linear-size proofs) that has a split
accumulation scheme, which is a weak form of accumulation that we introduce.

We additionally construct a transparent non-interactive argument of knowledge for R1CS whose
accumulation is verifiable via a constant number of group and field operations. This leads, via the random
oracle heuristic and our result above, to efficiency improvements for PCD. Along the way, we construct a
split accumulation scheme for a simple polynomial commitment scheme based on Pedersen commitments.

Our results are supported by a modular and efficient implementation.

Keywords: proof-carrying data; accumulation schemes; recursive proof composition

1

Contents
1 Introduction 3

1.1 Contributions . 3

2 Techniques 7
2.1 Accumulation: atomic vs split . 7
2.2 PCD from split accumulation . 9
2.3 NARK with split accumulation based on DL . 10
2.4 Split accumulation for Pedersen polynomial commitments . 13
2.5 Implementation and evaluation . 16

3 Preliminaries 18
3.1 Non-interactive arguments in the ROM . 18
3.2 Proof-carrying data . 19
3.3 Instantiating the random oracle . 20
3.4 Post-quantum security . 20
3.5 Commitment schemes . 20
3.6 Polynomial commitments . 21

4 Split accumulation schemes for relations 22
4.1 Accumulation schemes for certain predicates . 23

5 PCD from arguments of knowledge with split accumulation 25
5.1 Construction . 26
5.2 Completeness . 26
5.3 Knowledge soundness . 27
5.4 Efficiency . 29

6 Accumulating Pedersen polynomial commitments 30
6.1 Accumulation scheme for PCHC . 31
6.2 Proof of Theorem 6.1 . 32
6.3 Knowledge soundness . 32

7 Implementation 38

8 Evaluation 39
8.1 Comparing polynomial commitments based on DLs . 39
8.2 Comparing accumulation schemes based on DLs . 39

A Split accumulation scheme for R1CS 41

Acknowledgements 43

References 43

2

1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely, while ensuring that every intermediate state
of the computation can be efficiently verified. A special case of PCD is incrementally-verifiable computation
(IVC) [Val08]. PCD has found applications in enforcing language semantics [CTV13], verifiable MapReduce
computations [CTV15], image authentication [NT16], blockchains [Mina; KB20; BMRS20; CCDW20], and
others. Given the theoretical and practical relevance of PCD, it is an important research question to build
efficient PCD schemes from minimal cryptographic assumptions.

PCD from succinct verification. The canonical construction of PCD is via recursive composition of
succinct non-interactive arguments (SNARGs) [BCCT13; BCTV14; COS20]. Informally, a proof that the
computation was executed correctly for t steps consists of a proof of the claim “the t-th step of the computation
was executed correctly, and there exists a proof that the computation was executed correctly for t− 1 steps”.
The latter part of the claim is expressed using the SNARG verifier itself. This construction yields secure PCD
(with IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness property (i.e., is
a SNARK). Efficiency requires the SNARK to have sublinear-time verification, achievable via SNARKs for
machine computations [BCCT13] or preprocessing SNARKs for circuit computations [BCTV14; COS20].

Requiring sublinear-time verification, however, significantly restricts the choice of SNARK, which limits
what we can achieve for PCD. These restrictions have practical implications: the concrete efficiency of
recursion is limited by the use of expensive curves for pairing-based SNARKs [BCTV14] or heavy use of
cryptographic hash functions for hash-based SNARKs [COS20].

PCD from accumulation. Recently, [BCMS20] gave an alternative construction of PCD using SNARKs
that have succinct accumulation schemes; this developed and formalized a novel approach for recursion
sketched in [BGH19]. Informally, rather than being required to have sublinear-time verification, the SNARK
is required to be accompanied by a cryptographic primitive that enables “postponing” the verification of
SNARK proofs by way of an accumulator that is updated at each recursion step. The main efficiency
requirement on the accumulation scheme is that the accumulation procedure must be succinctly verifiable,
and in particular the accumulator itself must be succinct.

Requiring a SNARK to have a succinct accumulation scheme is a weaker condition than requiring it to
have sublinear-time verification. This has enabled constructing PCD from SNARKs that do not have sublinear-
time verification [BCMS20]. This yields PCD constructions from assumptions and with efficiency properties
that were not previously achieved. Practitioners have exploited this freedom to design implementations of
recursive composition with improved practical efficiency [Halo20; Pickles20].

Our motivation. The motivation of this paper is twofold. First, can PCD be built from a weaker primitive
than SNARKs with succinct accumulation schemes? If so, can we leverage this to obtain PCD constructions
with improved concrete efficiency?

1.1 Contributions

We make theory and systems contributions that advance the state of the art for PCD: (1) We introduce split
accumulation schemes for relations, a cryptographic primitive that relaxes prior notions of accumulation.
(2) We obtain PCD from any non-interactive argument of knowledge that satisfies this weaker notion of
accumulation; surprisingly, this allows for arguments with no succinctness whatsoever. (3) We construct a
non-interactive argument of knowledge based on discrete logarithms (and random oracles) whose accumu-
lation verifier uses a constant number of group operations (improving over logarithmically many of prior

3

accumulation schemes in this setting). (4) We contribute libraries with generic implementation of PCD via
accumulation from [BCMS20] and this paper and corresponding accumulation schemes.

We elaborate on each of these contributions next.

(1) Split accumulation for relations. Recall from [BCMS20] that an accumulation scheme for a predicate
Φ: X → {0, 1} enables proving/verifying that each input in an infinite stream q1, q2, . . . satisfies the
predicate Φ, by augmenting the stream with accumulators. Informally, for each i, the prover produces a
new accumulator acci from the input qi and the old accumulator acci−1; the verifier can check that the triple
(acci−1, qi, acci) is a valid accumulation step, much more efficiently than running Φ on qi. At any time, the
decider can validate acci, which establishes that for all j ≤ i it was the case that Φ(qj) = 1. The accumulator
size (and hence the running time of the three algorithms) cannot grow in the number of accumulation steps.

We extend this notion in two orthogonal ways. First we consider relations Φ: X ×W → {0, 1} and
now for a stream of instances q1.x, q2.x, . . . the goal is to establish that there exist witnesses q1.w, q2.w, . . .
such that Φ(qi.x, qi.w) = 1 for each i. Second we consider accumulators acci that are split into an instance
part acci.x and a witness part acci.w with the restriction that the accumulation verifier only gets to see the
instance part (and possibly an auxiliary accumulation proof). We refer to this notion as split accumulation for
relations, and refer (for contrast) the notion from [BCMS20] as atomic accumulation for languages.

The purpose of these extensions is to enable us to consider accumulation schemes in which predicate
witnesses and accumulator witnesses are large while still requiring the accumulation verifier to be succinct (it
receives short predicate instances and accumulator instances but not large witnesses). We will see that such
accumulation schemes are both simpler and cheaper, while still being useful for primitives such as PCD.

(2) PCD via split accumulation. A non-interactive argument has a split accumulation scheme if the relation
corresponding to its verifier has a split accumulation scheme (we make this precise later). We show that any
non-interactive argument of knowledge (NARK) having a split accumulation scheme whose accumulation
verifier is sublinear can be used to build a proof-carrying data (PCD) scheme, even if the NARK does not have
sublinear argument size. This significantly broadens the class of non-interactive arguments from which PCD
can be built, and is the first result to obtain PCD from non-interactive arguments that need not be succinct.

Theorem 1 (informal). There is an efficient transformation that compiles any NARK with a split accumulation
scheme into a PCD scheme. If the NARK and its split accumulation scheme are zero knowledge, then the
PCD scheme is also zero knowledge.

Similarly to all PCD results known to date, the above theorem holds in a model where all parties have
access to a common reference string, but no oracles. (The construction makes non-black-box use of the
accumulation scheme verifier, and the theorem does not carry over to the random oracle model.)

A corollary of Theorem 1 is that any NARK with a split accumulation scheme can be “bootstrapped” into
a SNARK for machine computations. (PCD implies IVC and, further assuming collision-resistant hashing,
also efficient SNARKs for machine computations [BCCT13].) This is surprising: an argument with decidedly
weak efficiency properties implies an argument with succinct proofs and succinct verification!

See Section 2.2 for a summary of the ideas behind Theorem 1, and Section 5 for technical details.

(3) NARK with split accumulation based on DL. Our Theorem 1 motivates the question of whether we
can leverage the weaker condition on the argument system to improve the efficiency of PCD. Our focus is on
minimizing the cost of the accumulation verifier for the argument system, because it is the one component
that is used in a black-box way, and thus typically determines concrete efficiency. Towards this end, we
present a NARK with split accumulation based on discrete logarithms, with a constant-size accumulation
verifier; the NARK has a transparent (public-coin) setup.

4

Theorem 2 (informal). In the random oracle model and assuming the hardness of the discrete logarithm
problem, there exists a (transparent) NARK for R1CS and a corresponding split accumulation scheme with
the following efficiency:

NARK split accumulation scheme
prover time verifier time argument size prover time verifier time decider time accumulator size

O(m) G O(m) G O(1) G O(m) G O(1) G O(m) G |acc.x| = O(1) G+O(1) F
O(m logm) F O(m) F O(m) F O(m) F O(1) F O(m) F |acc.w| = O(m) F

Above, m the number of constraints in the R1CS instance, G denotes group scalar multiplications or group
elements, and F denotes field operations or field elements.

The NARK construction from Theorem 2 is particularly simple: it is obtained by applying the Fiat–Shamir
transformation to a sigma protocol for R1CS based on Pedersen commitments (and linear argument size).
The only “special” feature about the construction is that, as we prove, it has a very efficient split accumulation
scheme for the relation corresponding to its verifier. By heuristically instantiating the random oracle, we can
apply Theorem 1 (and [BCCT13]) to obtain a SNARK for machines from this modest starting point.

We find it informative to compare Theorem 2 and SNARKs with atomic accumulation based on discrete
logarithms [BCMS20]:
• the SNARK’s argument size is O(logm) group elements, much less than the NARK’s O(m) field elements;
• the SNARK’s accumulator verifier uses O(logm) group scalar multiplications and field operations, much

more than the NARK’s O(1) group scalar multiplications and field operations.
Therefore Theorem 2 offers a tradeoff that minimizes the cost of the accumulator at the expense of argument
size. (As we shall see later, this tradeoff has concrete efficiency advantages.)

Our focus on argument systems based on discrete logarithms is motivated by the fact that they can be
instantiated based on efficient curves suitable for recursion: the Tweedle [BGH19] or Pasta [Hop20] curve
cycles, which follow the curve cycle technique for efficient recursion [BCTV14]. This focus on discrete
logarithms is a choice made for this paper, and we believe that our ideas can lead to efficiency improvements
to recursion in other settings (e.g., pairing-based and hash-based arguments) and leave these to future work.

(4) Implementation and evaluation. We contribute a set of Rust libraries that realize PCD via accu-
mulation via modular combinations of interchangeable components: (a) generic interfaces for atomic and
split accumulation; (b) generic construction of PCD from arguments with atomic and split accumulation;
(c) accumulation schemes for polynomial commitments based on the inner product argument or a trivial use
of the Pedersen commitment (this latter underlies our NARK), including constraints for the accumulation
verifiers. Practitioners interested in PCD will find these libraries useful for prototyping and comparing
different types of recursion (and, e.g., may help decide if current systems based on atomic recursion [Halo20;
Pickles20] are better off via split recursion or not).

We additionally conduct experiments to evaluate our implementation, and establish that for constraint
systems of interest, recursion based on our split accumulation scheme is much cheaper in practice than
recursion based on prior atomic accumulation schemes.

Remark 1.1 (concurrent work). A concurrent work [BDFG20] studies similar questions as this paper. Below
we summarize the similarities and the differences between the two papers.

Similarities. Both papers are motivated by the goal of reducing the cost of recursive arguments. The
main object of study in [BDFG20] is additive polynomial commitment schemes (PC schemes), for which
[BDFG20] considers different types of aggregation schemes: (1) public aggregation in [BDFG20] is closely
related to atomic accumulation specialized to PC schemes from a prior work [BCMS20]; and (2) private

5

aggregation in [BDFG20] is closely related to split accumulation specialized to PC schemes from this paper.
Moreover, the private aggregation scheme for additive PC schemes in [BDFG20] is similar to our split
accumulation scheme for Pedersen PC schemes (overviewed in Section 2.4 and detailed in Section 6). The
protocols differ in how efficiency depends on the n claims to aggregate/accumulate: the verifier in [BDFG20]
uses n+ 1 group scalar multiplications while ours uses 2n. (Informally, [BDFG20] first randomly combines
claims and then evaluates at a random point, while we first evaluate at a random point and then randomly
combine claims.)

Differences. The two papers develop distinct, and complementary, directions.
The focus of [BDFG20] is to design protocols for any additive PC scheme (and, even more generally, any

PC scheme with a linear combination scheme), including the aforementioned private aggregation protocol
and a compiler that endows a given PC scheme with zero knowledge.

In contrast, our focus is to formulate a definition of split accumulation for general relation predicates that
(a) we demonstrate suffices to construct PCD, and (b) in the random oracle model, we can also demonstrably
achieve via a split accumulation scheme for Pedersen commitments. We emphasize that our definitions are
materially different from the case of atomic accumulation in [BCMS20], and necessitate careful consideration
of technicalities such as the flavor of adaptive knowledge soundness, which algorithms can be allowed to
query oracles, and so on. Hence, we cannot simply rely on the existing foundations for atomic accumulation
of [BCMS20] in order to infer the correct definitions and security reductions for split accumulation. Overall,
our theoretical work enables us to achieve the first construction of PCD without succinct arguments, and also
to obtain a novel NARK for R1CS with constant-size accumulation verifier.

We stress that the treatment of accumulation at a higher level of abstraction than for PC schemes is
essential to prove theorems about PCD. There are no known techniques that enable provably constructing PCD
from an aggregation/accumulation scheme for a PC scheme (unlike what is stated in [BDFG20]), because
using the PC scheme would involve using the random oracle in a way that cannot be recursively proved.
Instead, one can prove a theorem in the standard model starting from an aggregation/accumulation scheme
for a NARK, as we do. Separately, similar to the disconnect in [BCMS20], we do not have accumulation
schemes for NARKs in the standard model so instead we prove an analogous result in the ROM.

Another major difference is that we additionally contribute a comprehensive and modular implementation
of protocols from [BCMS20] and this paper, and conduct an evaluation for the discrete logarithm setting.
This supports the asymptotic improvements with measured improvements in concrete efficiency.

6

2 Techniques

We summarize the main ideas behind our results. In Section 2.1 we discuss the new notion of split ac-
cumulation for relation predicates, and compared it with the notion of atomic accumulation for language
predicates from [BCMS20]. In Section 2.2 we discuss the proof of Theorem 1. In Section 2.3 we discuss
the proof of Theorem 2; for this we rely, among other things, on a new result about split accumulation for a
Pedersen-based polynomial commitment (Theorem 3), which we discuss in Section 2.4. Finally in Section 2.5
we elaborate on our implementation and evaluation. Figure 1 illustrates the relation between our results. The
rest of the paper contains technical details, and we provide pointers to relevant sections along the way.

NARK with split accumulation

PCD

Theorem 1

instantiate random oracle

Theorem 2

NARK for R1CS
Σ-protocol for R1CS based

on Pedersen commitments

split accumulation for the NARK verifier
Theorem 3: split accumulation for

Pedersen polynomial commitments

+

random oracle model

no oracles

Figure 1: Diagram showing the relation between our results. Gray boxes within a result are notable subroutines.

2.1 Accumulation: atomic vs split

We review the notion of accumulation from [BCMS20], which we refer to as atomic accumulation, and then
describe the weaker notion that we consider, which we call split accumulation.

Atomic accumulation for languages. An accumulation scheme for a language predicate Φ: X → {0, 1}
consists of a tuple of algorithms (P,V,D), known as the prover, verifier, and decider, that enable prov-
ing/verifying statements of the form Φ(q1)∧Φ(q2)∧ · · · more efficiently than simply invoking the predicate
Φ on each input.

This is done by starting from an initial (“empty”) accumulator acc0, the prover is used to accumulate the
first input q1 to produce a new accumulator acc1 ← P(acc0, q1); then the prover is used again to accumulate
the second input q2 to produce a new accumulator acc2 ← P(acc1, q2); and so on.

Each accumulator produced so far enables efficient verification of the predicate on all inputs that went
into the accumulator. For example, to establish that Φ(q1) ∧ · · · ∧ Φ(qt) = 1 it suffices to check that:
• the verifier accepts each accumulation step: V(acc0, q1, acc1) = 1, V(acc1, q2, acc2) = 1, and so on; and
• the decider accepts the final accumulator: D(acct) = 1.
Qualitatively, this replaces the naive cost t · |Φ| with the new cost t · |V| + |D|. This is beneficial when
the verifier is much cheaper than checking the predicate directly and the decider is not much costlier than
checking the predicate directly. Crucially, the verifier and decider costs (and, in particular, the accumulator
size) should not grow with the number t of accumulation steps (which need not be known in advance).

The properties of an accumulation scheme are summarized in the following informal definition.

Definition 2.1 (informal). An accumulation scheme for a predicate Φ: X → {0, 1} consists of a triple of
algorithms (P,V,D), known as the prover, verifier, and decider, that satisfies the following properties.

7

• Completeness: For all accumulators acc and predicate inputs q ∈ X , if D(acc) = 1 and Φ(q) = 1, then
for acc? ← P(acc, q) it holds that V(acc, q, acc?) = 1 and D(acc?) = 1.

• Soundness: For every efficiently-generated accumulators acc, acc? and predicate input q ∈ X , if
D(acc?) = 1 and V(acc, q, acc?) = 1 then, with all but negligible probability, Φ(q) = 1 and D(acc) = 1.

The above definition omits many details, such as the ability to accumulate multiple inputs and multiple
accumulators in one step, or features required for zero knowledge such as a validity proof for the accumulator
(produced by P and checked by V but not passed on like the accumulator). We refer the reader to [BCMS20]
for more details.

The aspect that we wish to highlight here is the following: in order for the verifier to be much cheaper
than the predicate (|V| � |Φ|) it must be that the accumulator itself is much smaller than the predicate
(|acc| � |Φ|) because the verifier receives the accumulator as input. (And if the accumulator is accompanied
by a validity proof πV then this proof must also be small.)

We refer to this setting as atomic accumulation because the entirety of the accumulator is treated as one
short monolithic string. In contrast, next we consider a relaxed variant where this is not the case, and will
enable us to consider new instantiations that ultimately lead to interesting theoretical and practical results.
Split accumulation for relations. We propose a relaxed notion of accumulation scheme. A split accumula-
tion scheme for a relation predicate Φ: X ×W → {0, 1} is again a tuple of algorithms (P,V,D) as before.
The difference is that: (a) an input q to Φ is split into a short instance part q.x and a (possibly) long witness
part q.w; (b) an accumulator acc is split into a short instance part acc.x and a (possibly) long witness part
acc.w; (c) the verifier only needs the short parts of inputs and accumulators to verify an accumulation step,
along with a short validity proof instead of the long witness parts.

As before, the prover is used to accumulate a new input qi into a prior accumulator acci−1 to obtain
a new accumulator and validity proof (acci, πV,i) ← P(acci−1, qi). Different from before, however, we
wish to establish that there exists (or, more precisely, a party knows) witnesses q1.w, . . . , qt.w such that
Φ(q1.x, q1.w) ∧ · · · ∧ Φ(qt.x, qt.w) = 1, and for this it suffices to check that:
• the verifier accepts each accumulation step given only the short instance parts: V(acc0.x, q1.x, acc1.x, πV,1) =

1, V(acc1.x, q2.x, acc2.x, πV,2) = 1, and so on; and
• the decider accepts the final accumulator (made of both the instance and witness part): D(acct) = 1.
Again the naive cost t · |Φ| is replaced with the new cost t · |V|+ |D|, but now it could be that an accumulator
is, e.g., as large as |Φ|; we only need the instance part of the accumulator (and predicate inputs) to be short.

The security property of a split accumulation scheme involves an extractor that outputs a long witness
part from a short instance part and proof, and is reminiscent to the knowledge soundness of a succinct
non-interactive argument. Turning this high level description into a working definition requires some care,
however, and we view this as a contribution of this paper. (By “working definition” we mean a definition that
we can provably fulfill under concrete hardness assumptions, and provably suffices for recursive composition.)
Informally the security definition could be summarized as follows.

Definition 2.2 (informal). A split accumulation scheme for a predicate Φ: X ×W → {0, 1} consists of a
triple of algorithms (P,V,D) that satisfies the following properties.

• Completeness: For all accumulators acc and predicate inputs q ∈ X ×W , if D(acc) = 1 and Φ(q) = 1,
then for (acc?, π?V)← P(acc, q) it holds that V(acc.x, q.x, acc?.x, π?V) = 1 and D(acc?) = 1.

• Knowledge: For every efficiently-generated old accumulator instance acc.x, old input instance q.x,
accumulation proof π?V, and new accumulator acc?, if D(acc?) = 1 and V(acc.x, q.x, acc?.x, π?V) = 1
then, with all but negligible probability, an efficient extractor can find old witness parts acc.x and q.x such
that Φ((q.x, q.w)) = 1 and D((acc.x, acc.w)) = 1.

8

One can verify that split accumulation is indeed a relaxation of atomic accumulation: any atomic
accumulation scheme is (trivially) a split accumulation scheme with empty witnesses. Crucially, however, a
split accumulation scheme alleviates a major restriction of atomic accumulation, namely, that the accumulator
itself (and a predicate input) has to be short.

See Section 4 for details about the definition of split accumulation.

Next, in Section 2.2 we show that split accumulation suffices for recursive composition (which has
surprising theoretical consequences) and then in Section 2.3 we present a NARK with split accumulation
scheme based on discrete logarithms.

2.2 PCD from split accumulation

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data (PCD) from any NARK
that has a split accumulation scheme. To ease exposition, in this summary we focus on IVC, which can be
viewed as the special case where a circuit F is repeatedly applied. That is, we wish to incrementally prove a
claim of the form “F T (z0) = zT ” where F T denotes F composed with itself T times.

Prior work: recursion via atomic accumulation. Our starting point is a theorem from [BCMS20] that
obtains PCD from any SNARK that has an atomic accumulation scheme. The IVC construction implied by
that theorem is roughly follows.

• The IVC prover receives as input a previous instance zi, proof πi, and accumulator acci; then accumulates
(zi, πi) with acci to obtain a new accumulator acci+1; and finally generates a SNARK proof πi+1 of the
claim: “zi+1 = F (zi), and there exist a proof πi and an accumulator acci such that the accumulation
verifier accepts ((zi, πi), acci, acci+1)”, expressed as a circuit R (see Fig. 2, middle box). The IVC proof
for zi+1 is (πi+1, acci+1).

• The IVC verifier validates an IVC proof (πi, acci) for zi by running the SNARK verifier on ((zi, acci), πi)
and running the accumulation scheme decider on acci.

In each iteration we maintain the invariant that if acci is a valid accumulator (according to the decider) and πi
is a valid proof, then the computation is correct up to the i-th step.

Note that while it would suffice to prove that “zi+1 = F (zi), πi is a valid proof, and acci is a valid accu-
mulator”, we cannot afford to do so. Indeed: (i) proving that πi is a valid proof requires proving a statement
about the argument verifier, which may not be sublinear; and (ii) proving that acci is a valid accumulator
requires proving a statement about the decider, which may not be sublinear. Instead of proving this claim
directly, we “defer” it by having the prover accumulate (zi, πi) into acci to obtain a new accumulator acci+1.
The soundness property of the accumulation scheme ensures that if acci+1 is valid and the accumulation
verifier accepts ((zi, πi), acci, acci+1), then πi is a valid proof and acci is a valid accumulator. Thus all that
remains to maintain the invariant is for the prover to prove that the accumulation verifier accepts; this is
possible provided that the accumulation verifier is sublinear.

Our construction: recursion via split accumulation. Our construction naturally extends the above
idea in the setting of NARKs with split accumulation schemes. Indeed, the only difference to the above
construction is that the proof πi+1 generated by the IVC prover is for the statement “zi+1 = F (zi), and there
exist a proof instance πi.x and an accumulator instance acci.x such that the accumulation verifier accepts
((zi, πi.x), acci.x, acci+1.x)”, and accordingly the IVC verifier runs the NARK verifier on ((zi, acci.x), πi).
This is illustrated in Fig. 2 (lower box). Note that the circuit R itself is unchanged from the atomic case; the
difference is in whether we pass the entire proof and accumulators or just the x part.

9

Proving that this relaxation yields a secure construction is more complex. Similar to prior work, the proof
of security proceeds via a recursive extraction argument, as we explain next.

For an atomic accumulation scheme ([BCMS20]), one maintains the following extraction invariant: the
i-th extractor outputs (zi, πi, acci) such that πi is valid according to the SNARK, acci is valid according to
the decider, and F T−i(zi) = zT . The T -th “extractor” is simply the malicious prover, and we can obtain
the i-th extractor by applying the knowledge guarantee of the SNARK to the (i+ 1)-th extractor. That the
invariant is maintained is implied by the soundness guarantee of the atomic accumulation scheme.

For a split accumulation scheme, we want to maintain the same extraction invariant; however, the extractor
for the NARK will only yield (zi, πi.x, acci.x), and not the corresponding witnesses. This is where we
make use of the extraction property of the split accumulation scheme itself. Specifically, we interleave
the knowledge guarantees of the NARK and accumulation scheme as follows: the i-th NARK extractor is
obtained from the (i+ 1)-th accumulation extractor using the knowledge guarantee of the NARK, and the
i-th accumulation extractor is obtained from the i-th NARK extractor using the knowledge guarantee of the
accumulation scheme. We take the malicious prover to be the T -th accumulation extractor.

From sketch to proof. In Section 5, we give the formal details of our construction and a proof of correctness.
In particular, we show how to construct PCD, a more general primitive than IVC. In the PCD setting, rather
than each computation step having a single input zi, it receives m inputs from different nodes. Proving
correctness hence requires proving that all of these inputs were computed correctly. For our construction,
this entails checking m proofs and m accumulators. To do this, we extend the definition of an accumulation
scheme to allow accumulating multiple instance-proof pairs and multiple “old” accumulators.

We also note that the application to PCD leads to other definitional considerations, which are similar
to those that have appeared in previous works [COS20; BCMS20]. In particular, the knowledge soundness
guarantee for both the NARK and the accumulation scheme should be of the stronger “witness-extended
emulation with auxiliary input and output” type used in previous work. Additionally, the underlying
construction of split accumulation achieves only expected polynomial-time extraction (in the ROM), and so
the recursive extraction technique requires that we are able to extract from expected-time adversaries.

Remark 2.3 (flavors of PCD). The recent advances in PCD from accumulation achieve weaker forms
than PCD from succinct verification, and formally these results are incomparable. (Starting from weaker
assumptions they obtain weaker conclusions.) The essential feature that all these works achieve is that the
efficiency of PCD algorithms is independent of the number of nodes in the PCD computation, which is
how PCD is defined (see Section 3.2). That said, prior work on PCD from succinct verification [BCCT13;
BCTV14; COS20] additionally guarantees that verifying a PCD proof is sublinear in a node’s computation;
and prior work on PCD from atomic accumulation [BCMS20] merely ensures that a PCD proof has size (but
not necessarily verification time) that is sublinear in a node’s computation. The PCD scheme obtained in this
paper does not have these additional features: a PCD proof has size that is linear in a node’s computation.

2.3 NARK with split accumulation based on DL

We summarize the main ideas behind Theorem 2, which provides, in the discrete logarithm setting with
random oracles, a NARK for R1CS that has a split accumulation scheme whose accumulation verifier uses a
constant number of group scalar multiplications. We describe the NARK and then explain at high level how
we accumulate the verifier’s computation. This in turn motivates accumulation for polynomial commitments
based on Pedersen commitments, which we address in the next subsection (Section 2.4).

10

recursion circuit via
succinct verification

recursion circuit via
atomic accumulation

recursion circuit via
split accumulation

R
(
(ivk, zi), (zi−1, πi−1)

)
:

• zi = F (zi−1)
• SNARK.V(ivk, zi−1, πi−1) = 1

R
(
(avk, zi, acci), (zi−1, πi−1, acci−1, πV,i)

)
:

• zi = F (zi−1)
• ACC.V

(
avk, ((avk, zi−1, acci−1), πi−1), acci−1, acci, πV,i

)
= 1

R
(
(avk, zi, acci.x), (zi−1, πi−1.x, acci−1.x, πV,i)

)
:

• zi = F (zi−1)
• ACC.V

(
avk, ((avk, zi−1, acci−1.x), πi−1.x), acci−1.x, acci.x, πV,i

)
= 1

Figure 2: Comparison of circuits used to realize recursion with different techniques.

We highlight here that both the NARK and the accumulation scheme are particularly simple compared to
other protocols in the SNARK literature (especially with regard to recursion!), and view this as a significant
advantage for potential practical deployments.
NARK for R1CS. Recall that R1CS is a standard generalization of arithmetic circuit satisfiability where
the “circuit description” is given by coefficient matrices, as below; there “◦” denotes the entry-wise product.

Definition 2.4 (R1CS problem). Given a finite field F, coefficient matrices A,B,C ∈ Fm×n and an instance
vector x ∈ F`, is there a witness vector w ∈ Fn−` such that z := (x,w) ∈ Fn and Az ◦Bz = Cz?

The NARK for R1CS in Theorem 2 is obtained by applying the Fiat–Shamir transformation to a sigma
protocol for R1CS based on Pedersen commitments. We provide the sigma protocol in Figure 3. The public
parameters pp are those for the Pedersen commitment to have message space Fm+1 (i.e., pp contains a group
description and m+ 1 random group elements) and Commit its commitment function; also, VH(X) denotes
the vanishing polynomial of a subset H ⊆ F of size m.

The efficiency is evident from the construction: quasilinear prover time (due to polynomial arithmetic);
linear argument size (the first message is succinct but the third message is not); and linear verifier time
(more precisely, linear number of group scalar multiplications). In more detail, denoting by k the number of
non-zero entries in the coefficient matrices A,B,C ∈ Fm×n, the asymptotic efficiency is as follows:

NARK prover time NARK verifier time NARK argument size

O(m+ n) G O(m+ n) G O(1) G
O(m logm+ n+ k) F O(m+ n+ k) F O(m+ n) F

The sigma protocol may superficially appear useless because it has linear argument size and is not zero
knowledge as stated (though it could be modified to be); in fact, the prover commits to the witness (and more)
in the first message, only to send “everything” to the verifier in the next round, so that the verifier is (almost)
checking the R1CS relation itself!

How is this “better” than the prover simply sending the witness as a non-interactive proof?
The key point is that we do not know how to obtain a split accumulation scheme for the computation that

directly checks the witness but we do know how to obtain one for the NARK verifier in Figure 3.
Split accumulation for the NARK. We describe a split accumulation scheme for the NARK for R1CS
with the efficiency as reported in the table below (where we additionally report the number of oracle calls).

11

P(pp, A,B,C, x, w) V(pp, A,B,C, x)

z := (x,w)
zA := Az
zB := Bz
zC := Cz
q := q̂(H)

where q̂(X) := ẑA(X)·ẑB(X)−ẑC(X)
VH (X)

Cw := Commit(pp, w)
CA := Commit(pp, zA)
CB := Commit(pp, zB)
CC := Commit(pp, zC)
Cq := Commit(pp, q)
CH := Commit(pp, VH)

vA := ẑA(γ)
vB := ẑB(γ)
vC := ẑC(γ)
vq := q̂(γ)

Cw, CA, CB, CC , Cq, CH

γ ∈ F

vA, vB, vC , vq, vH
w, zA, zB, zC , q

|w| ?
= n− |x| |zA|, |zB|, |zC |, |q|

?
= m

vq · vH
?
= vA · vB − vC

Cw
?
= Commit(w)

CA
?
= Commit(pp, zA)

CB
?
= Commit(pp, zB)

CC
?
= Commit(pp, zC)

Cq
?
= Commit(pp, q)

CH
?
= Commit(pp, VH)

z := (x,w)

vA
?
= ẑA(γ)

vB
?
= ẑB(γ)

vC
?
= ẑC(γ)

vq
?
= q̂(γ)

vH
?
= VH(γ)

zA
?
= Az

zB
?
= Bz

zC
?
= Cz

Figure 3: The sigma protocol for R1CS that underlies the NARK for R1CS.

accumulation prover time
(per accumulated NARK)

accumulation verifier time
(per accumulated NARK) decider time accumulator size

O(m+ n) G O(1) G O(m+ n) G |acc.x| = O(1) G+O(1) F
O(m+ n+ k) F O(1) F O(m+ n+ k) F |acc.w| = O(m+ n) F

O(1) RO O(1) RO – –

We view the first message of the protocol as a succinct instance and the third message of the protocol as a
non-succinct “opening” witness aimed at making the NARK verifier accept. We now sketch how to design
a split accumulation scheme for the relation implied by this instance-witness split of the NARK verifier;
technical details are in Appendix A.

The NARK verifier performs four types of checks:

1. a test for the polynomial equation q̂(X) · VH(X) = ẑA(X) · ẑB(X)− ẑC(X);
2. checks for the linear equations zA = Az, zB = Bz, zC = Cz;
3. checking a commitment (Cw

?
= Commit(w));

4. several checks of the form “C = Commit(f) and f̂(γ) = v” (highlighted in blue in Figure 3).

The first check is cheap so does not have to be accumulated (the accumulation verifier directly performs this
check). The second and third checks are linear and so can be easily (split) accumulated via random linear
combinations. The last type of check is concerned with evaluation claims about committed polynomials.1

1Note that it may appear odd that these include even a claim about the vanishing polynomial VH because, for suitable choices of
H , can be evaluated in only log |H| = logm field operations directly. This is because, similarly to an optimization in [CCDW20],
by having the prover commit to the vanishing polynomial, we can ensure later on that the accumulation verifier only has to perform
O(1) field operations rather than O(logm).

12

This requires some work: designing a highly-efficient split accumulation scheme for the “trivial” polynomial
commitment scheme based on Pedersen commitments — we discuss this in the next section.

Remark 2.5. If one replaced the (succinct) polynomial commitment scheme that underlies the preprocessing
SNARK in [CHMMVW20] with a (non-succinct) Pedersen polynomial commitment scheme then one would
obtain a NARK for R1CS with a split accumulation scheme whose accumulation verifier is of constant
size but other asymptotics would be worse compared to Theorem 2. First, the cryptographic costs and the
quasilinear costs of the NARK and accumulation scheme would also grow in the number k of non-zero entries
in the coefficient matrices, which can be much larger than m and n (asymptotically and concretely). Second,
the NARK verifier and accumulation decider would additionally use a quasilinear number of field operations
due to FFTs (to run the the indexer from that paper). Finally, in addition to poorer asymptotics, this approach
would lead to a concretely more expensive accumulation verifier and overall a more complex protocol.

2.4 Split accumulation for Pedersen polynomial commitments

Any commitment implies a “trivial” polynomial commitment scheme: commit to the polynomial (in coeffi-
cient or evaluation form), and then reveal the entire polynomial (the receiver can then check the evaluation
claim directly). We fix the commitment to be a Pedersen commitment (what we used in Section 2.3), which
implies that commitments are linear in the underlying polynomials. We prove that this simple polynomial
commitment scheme has a very efficient split accumulation scheme in the random oracle model.

Theorem 3 (informal). The Pedersen polynomial commitment scheme has a split accumulation scheme ASHC

that is secure in the random oracle model (and assuming the hardness of the discrete logarithm problem).
Verifying accumulation requires 2 group scalar multiplications and O(1) field additions/multiplications per
claim, and results in an accumulator whose instance part is 1 group element and 2 field elements and whose
witness part is d field elements. (See Table 1.)

In Table 1 we compare our the efficiency of the split accumulation scheme ASHC for the (non-succinct)
Pedersen PC scheme PCHC and the efficiency of the atomic accumulation scheme ASIPA in [BCMS20]
for the (succinct) PC scheme PCIPA based on the inner-product argument on cyclic groups [BCCGP16;
BBBPWM18; WTSTW18]. The takeaway is that accumulation verifier for ASHC is significantly cheaper than
the accumulation verifier for ASIPA.

Technical details are in Section 6; in the rest of this section we sketch the ideas behind Theorem 3.

accumulation
type assumption

accumulation accumulation accumulation accumulator size
scheme prover (per claim) verifier (per claim) decider instance witness

ASIPA [BCMS20] atomic DLOG + RO †
O(log d) G
O(d) F

[+O(d) G per accumulation]

O(log d) G
O(log d) F
O(log d) RO

O(d) G
O(d) F

1 G
O(log d) F 0

ASHC [this work] split DLOG + RO
O(d) G
O(d) F

2 G
O(1) F
2 RO

O(d) G
O(d) F

1 G
2 F d F

Table 1: Efficiency comparison between the atomic accumulation scheme ASIPA for PCIPA in [BCMS20] and the
split accumulation scheme ASHC for PCHC in this work. Above G denotes group scalar multiplications or group
elements, and F denotes field operations or field elements. (†: ASIPA relies on knowledge soundness of PCIPA, which
results from applying the Fiat–Shamir transformation to a logarithmic-round protocol. The security of this protocol has only
been proven via a superpolynomial-time extractor [BMMTV19] or in the algebraic group model [GT20].)

13

2.4.1 A simple linear polynomial commitment scheme

A polynomial commitment scheme is a cryptographic primitive that enables one to produce a commitment
C to a polynomial p, and then to prove that this committed polynomial evaluates to a claimed value v at a
desired point z. (See Section 3.6 for a definition.)

Any commitment scheme Commit implies a “trivial” commitment scheme: in the commit phase, the
sender commits to the coefficients of the polynomial p; in the reveal phase, the sender sends the entire
polynomial p as opening, and the receiver can itself check that p(z) = v as claimed.2 (We are assuming that
the message space of Commit is Fn where F is the field over which p is defined and that n ≥ deg(p) + 1.)

If additionally we know that Commit is linear (i.e., for every a and b in Fn, Commit(a) + Commit(b) =
Commit(a+b)) then the trivial construction yields a (trivial) linear polynomial commitment scheme. Typically
the commitment space is a cryptographic group G (so addition is over the group), and a natural example is
the Pedersen commitment scheme, which is secure provided the discrete logarithm problem is hard in G.

We refer to the foregoing trivial scheme as PCHC, and next discuss accumulation for it.

2.4.2 Split accumulation for PCHC

An (atomic or split) accumulation scheme for a PC scheme accumulates claims of the form “I know a
polynomial p of degree at most d such that C is a commitment to p and p(z) = v”. We summarize such an
evaluation claim via the tuple (C, z, v, d). Below we summarize our split accumulation scheme for PCHC.

First we describe a simple public-coin interactive reduction for combining two or more evaluation
claims into a single evaluation claim, and then explain how this interactive reduction gives rise to the split
accumulation scheme. We prove security in the random oracle model, using an expected-time extractor.

Batching evaluation claims. First consider two evaluation claims (C1, z, v1, d) and (C2, z, v2, d) for the
same evaluation point z (and degree d). We can use a random challenge α ∈ F to combine these claims into
one claim (C ′, z, v′, d) where C ′ := C1 + αC2 and v′ := v1 + αv2. If either of the original claims does not
hold then, with high probability over the choice of α, neither does the new claim. This idea extends to any
number of claims for the same evaluation point, by taking C ′ :=

∑
i α

iCi and v′ :=
∑

i α
ivi.

Next consider two evaluation claims (C1, z1, v1, d) and (C2, z2, v2, d) at (possibly) different evaluation
points z1 and z2. We explain how these can be combined into four claims all at the same point. Below we use
the fact that p(z) = v if and only if there exists a polynomial w(X) such that p(X) = w(X) · (X − z) + v.

Let p1(X) and p2(X) be the polynomials “inside” C1 and C2, respectively, that are known to the prover.

1. The prover computes the witness polynomials w1 := p1(X)−v1

X−z1 and w2 := p2(X)−v2

X−z2 and sends the
commitments W1 := Commit(w1) and W2 := Commit(w2).

2. The verifier sends a random evaluation point z∗ ∈ F.

3. The prover computes and sends the evaluations y1 := p1(z∗), y2 := p2(z∗), y′1 := w1(z∗), y′2 := w2(z∗).

4. The verifier checks the relation between each witness polynomial and the original polynomial at the
random evaluation point z∗:

y1 = y′1(z∗ − z1) + y′1 and y2 = y′2(z∗ − z2) + y′2 .

2Alternatively, and this is what we actually use in Section 2.3 (though we ignore the difference in this high level overview), the
sender commits to the evaluation of the polynomial, and subsequently the receiver checks that extending the revealed evaluation
table at z yields the claimed value v. Over suitable domains this operation is also linear time.

14

Next the verifier outputs four evaluation claims for p1(z∗) = y1, p2(z∗) = y2, w1(z∗) = y′1, w2(z∗) = y′2:

(C1, z
∗, y1, d) , (C2, z

∗, y2, d) , (W1, z
∗, y′1, d) , (W2, z

∗, y′2, d) .

More generally, we can reduce m evaluation claims at m points to 2m evaluation claims all at the same point.
By combining the two techniques, one obtains a public-coin interactive reduction from any number of

evaluation claims (regardless of evaluation points) to a single evaluation claim.

Split accumulation. The batching protocol described above yields a split accumulation scheme for PCHC

(and, more generally, any linear polynomial commitment scheme) in the random oracle model. The accu-
mulated predicate Φ takes inputs q whose instance part is an evaluation claim q.x = (C, z, v, d) and whose
witness part is a polynomial q.w = p(X), and accepts if and only if C = Commit(p) and p(z) = v. An
accumulator acc has the same form as a predicate input: the instance part is an evaluation claim and the
witness part is a polynomial. Next we describe the algorithms of the accumulation scheme.

• The accumulation prover P runs the interactive reduction by relying on the random oracle to generate
the random verifier messages (i.e., it applies the Fiat–Shamir transformation to the reduction), in order to
combine the instance parts of old accumulators and inputs to obtain the instance part of a new accumulator.
Then P also combines the committed polynomials using the same linear combinations in order to derive
the new committed polynomial, which is the witness part of the new accumulator.

• The accumulation verifier V checks that the challenges were correctly computed from the random oracle,
and performs the checks of the reduction (the claims were correctly combined and that the proper relation
between each yi, y′i, zi, z

∗ holds).

• The accumulation decider D reads the accumulation in its entirety and checks that the polynomial (the
witness part) satisfies the evaluation claim (the instance part). (Here the random oracle is not used.)

Efficiency. The efficiency claimed in Theorem 3 (and Table 1) is evident from the construction. The
accumulation prover P computes n+m commitments to polynomials when combining n old accumulators
and m predicate inputs (all polynomials are for degree at most d). An accumulator consists of O(d) group
elements, with the (short) instance part consisting of 1 group element and 2 field elements. The accumulator
decider D computes 1 commitment (and 1 polynomial evaluation at 1 point) in order to validate an accumulator.
Finally, the cost of running the accumulator verifier V is dominated by 2(n+m) scalar multiplication of the
linear commitments.

2.4.3 Security

While proving the completeness property of our split accumulation scheme is straightforward, proving its
knowledge property is less so. Given an adversary that produces evaluation claims (Ci, zi, vi, di), a single
claim (C, z, v, d) which passes the checks in the reduction procedure, and a polynomial s with s(z) = v to
which C is a commitment, we obtain an extractor which outputs polynomials pi with pi(zi) = vi to which Ci
is a commitment. Our security proof (detailed in Section 6.3) works in the random oracle model, assuming
only the hardness of the discrete logarithm problem.

The extractor obtains 2n polynomials s(j) for the same evaluation point z∗ but distinct challenges αj ,
where n is the number of evaluation claims. The checks in the reduction procedure imply that s(j) =∑

i α
i
jpi +

∑
i α

n+i
j wi, where wi is the witness corresponding to pi; hence we can recover the pi, wi by

solving a linear system. We then use a variant of the zero-finding game lemma from [BCMS20] (see

15

Section 6.3.3) to show that if a particular polynomial equation on pi, wi holds at the point z∗ obtained from
the random oracle, it must with overwhelming probability be an identity. Applying this to the equation
induced by the reduction shows that the original claims hold with high probability.

The proof crucially relies on the ability to efficient generate the 2n related proofs. For this we formulate a
new expected-time forking lemma in the random oracle model, which is informally stated below (and detailed
in Section 6.3.2). For this application, the set L will be valid accumulators and proofs.

Lemma 1 (informal). Let L be an efficiently recognizable set. Suppose there exists an expected polynomial
time algorithm with access to a random oracle ρ that outputs, with probability δ, a tuple (q, α, y) ∈ L such
that ρ(q) = α. Then there exists an expected polynomial time extractor E such that for N = poly(λ), E
outputs N related tuples (q, αi, yi) ∈ L for distinct αi with probability at least δ − negl(λ).

This forking lemma differs from prior forking lemmas in three significant ways. First, it is in the random
oracle model rather than the interactive setting (unlike [BCCGP16]). Second, we can obtain any polynomial
number of accepting transcripts in polynomial time with only negligible loss in success probability (unlike
[BN06]). Finally, it holds even if the adversary itself runs in expected (as opposed to strict) polynomial time.
This is important for our application to PCD where the extractor of one recursive step becomes the adversary
of the next recursive step.

2.5 Implementation and evaluation

We elaborate on our implementation and evaluation of accumulation schemes and their application to PCD.

The case for a PCD framework. Different PCD constructions offer different trade-offs. The tradeoffs are
both about asymptotics (see Remark 2.3) and about practical concerns, as we review below.

• PCD from sublinear verification [BCCT13; BCTV14; COS20] is typically instantiated via preprocessing
SNARKs based on pairings.3 This route offers excellent verifier time (a few milliseconds regardless of the
computation at a PCD node) but requires a circuit-specific trusted setup (which complicates deployment)
and cycles of pairing-friendly elliptic curves (which are costly in terms of group arithmetic and size).

• PCD from atomic accumulation [BCMS20] can, e.g., be instantiated via SNARKs based on cyclic groups
[BGH19]. This route offers a transparent setup (easy to deploy) and logarithmic-size arguments (a few
kilobytes even for large computations), using cycles of standard elliptic curves (more efficient than their
pairing-friendly counterparts). On the other hand, this route yields linear verification times (expensive for
large computations) and logarithmic costs for accumulation (increasing the cost of recursion).

• PCD from split accumulation (this work) can, e.g., be instantiated via NARKs based on cyclic groups. This
route still offers a transparent setup and allows using cycles of standard elliptic curves. Moreover, it offers
constant costs for accumulation, but at the expense of argument size, which is now linear.

It would be desirable to have a single framework that supports different PCD constructions via a modular
composition of simpler building blocks. It would allow for replacing older building blocks with new ones. It
would enable prototyping different PCD constructions for different applications (which may have different
needs) and thereby enable practitioners to make informed choices about which PCD construction is best for
them. It would facilitate auditing of what would otherwise be a complex cryptographic system with many
intermixed layers. (Realizing even a single PCD construction is a substantial implementation task.) Finally, it
would be useful for applications to be separated from the underlying recursion via a common PCD interface.

3Instantiations based hashes are also possible [COS20] but are (post-quantum and) less efficient.

16

Implementation (Section 7). The foregoing considerations motivated our implementation efforts for PCD.
Our code base has two main parts, one for realizing accumulation schemes and another for realizing PCD
from accumulation (which we integrated with PCD from succinct verification).

• Framework for accumulation. We designed a modular framework for (atomic and split) accumulation
schemes, and use it to provide a common interface for accumulation schemes for popular polynomial
commitments (and thus for SNARKs that use these), including: (a) the atomic accumulation scheme ASAGM

in [BCMS20] for the PC scheme PCAGM; (b) the atomic accumulation scheme ASIPA in [BCMS20] for the
PC scheme PCIPA; (c) the split accumulation scheme ASHC in this paper for PCHC. Our framework also
provides a generic method for defining R1CS constraints for the verifiers of these accumulation schemes;
we leverage this to implement R1CS constraints for all these accumulation schemes.

• PCD from accumulation. We use the foregoing framework to implement a generic construction of PCD
from accumulation. We support the PCD construction of [BCMS20] (which uses atomic accumulation)
and the PCD construction in this paper (which uses split accumulation). Our code builds on and extends
an existing PCD library.4 Our implementation is modular: it takes as ingredients an implementation
of any NARK, an implementation of any accumulation scheme for that NARK, and constraints for the
accumulation verifier, and produces a concrete PCD construction. We use our concrete instantiations of
these ingredients to construct PCD that is based on atomic accumulation of PCAGM and PCIPA, and split
accumulation of PCHC.

Evaluation for DL setting (Section 8). When realizing PCD in practice the main goal is to “minimize the
cost of recursion”, that is, to minimize the number of constraints that need to be recursively proved in each
PCD step (excluding the constraints for the application) without hurting other parameters too much (prover
time, argument size, and so on). We evaluate our implementation with respect to this goal, with a focus on
understanding the trade-offs between atomic and split accumulation in the discrete logarithm setting.

The DL setting is of particular interest to practitioners, as it leads to systems with a transparent (public-
coin) setup that can be based on efficient cycles of (standard) elliptic curves [BGH19; Hop20]; indeed, some
projects are developing real-world systems that use PCD in the DL setting [Halo20; Pickles20]. The main
drawback of the DL setting is that verification time (and sometimes argument size) is linear in a PCD node’s
computation. This inefficiency is, however, tolerable if a PCD node’s computation is not too large, as is the
case in the aforementioned projects. (Especially so when taking into account the disadvantages of PCD based
on pairings, which involves relying on a circuit-specific trusted setup and more expensive curve cycles.)

We compare two routes for PCD in the DL setting:
• recursion based on the atomic accumulation scheme for the PC scheme PCIPA [BCMS20];
• recursion based on the split accumulation scheme for PCHC (Section 6).
Our evaluation focuses on these polynomial commitment schemes and their corresponding accumulation
schemes, as they comprise the primary cost of recursion in popular accumulation-friendly (S)NARKs, and
demonstrates that the constraint cost of the ASHC accumulation verifier is 8 to 20 times cheaper than that of
the ASIPA accumulation verifier.

We emphasize that the key aspect to focus on is the relative costs of the two components. This is because
the cost of both components is dominated by the cost of many common subcomponents, and so improvements
in these subcomponents will preserve the relative cost. For example, applying existing techniques [Halo20;
Pickles20] for optimizing scalar multiplications should benefit both schemes in a similar way.

4https://github.com/arkworks-rs/pcd

17

https://github.com/arkworks-rs/pcd

3 Preliminaries

Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L(R) is the set of pairs (i,x) for which there
exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits
consists of triples where i is the description of a boolean circuit, x is a partial assignment to its input wires,
and w is an assignment to the remaining wires that makes the circuit to output 0.

Security parameters. For simplicity of notation, we assume that all public parameters have length at least
λ, so that algorithms which receive such parameters can run in time poly(λ).

Random oracles. We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. We denote by
U(∗) the set

⋃
λ∈N U(λ). A random oracle with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ

sampled uniformly at random from U(λ).

3.1 Non-interactive arguments in the ROM

A tuple of algorithms ARG = (G, I,P,V) is a (preprocessing) non-interactive argument in the random
oracle model (ROM) for an indexed relationR if the following properties hold.

• Completeness. For every adversary A,

Pr


(i,x,w) 6∈ R

∨
Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 = 1 .

• Soundness. For every polynomial-size adversary P̃ ,

Pr

 (i,x) 6∈ L(R)
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)

(i,x, π)← P̃ρ(pp)
(ipk, ivk)← Iρ(pp, i)

 ≤ negl(λ) .

The above formulation of completeness allows (i,x,w) to depend on the random oracle ρ and public
parameters pp, and the above formulation of soundness allows (i,x) to depend on the random oracle ρ and
public parameters pp.

Our PCD construction makes use of the stronger property of knowledge soundness, and optionally also
the property of (statistical) zero knowledge. We define both of these properties below. Note that this definition
is stronger the standard definition of knowledge soundness; this is required to prove post-quantum security in
Theorem 5.2. This stronger definition is similar to the notion of witness-extended emulation [Lin03]. We refer
to an argument with knowledge soundness as a NARK (non-interactive argument of knowledge) whereas an
argument that just satisfies soundness is a NARG.

Knowledge soundness. We say that ARG = (G, I,P,V) has knowledge soundness (with respect to
auxiliary input distribution D) if for every expected polynomial time adversary P̃ there exists an expected

18

polynomial time extractor E such that for every set Z,

Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] , (ij ,xj ,wj) ∈ R

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
ai← D(pp)

(~i, ~x, ~w, ao)← EP̃(pp, ai)



≥ Pr

 (pp, ai,~i, ~x, ao) ∈ Z
∧∀ j ∈ [`] ,V(ivkj ,xj , πj) = 1

∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(pp)

(~i, ~x,~π, ao)← P̃ρ(pp, ai)
∀ j ∈ [`] , (ipkj , ivkj)← Iρ(pp, ij)

− negl(λ) .

Zero knowledge. We say that ARG = (G, I,P,V) has (statistical) zero knowledge if there exists a
probabilistic polynomial-time simulator S such that for every polynomial-size honest adversary A the
distributions below are computationally indistinguishable:(ρ, pp, i,x, π)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← Gρ(1λ)
(i,x,w)← Aρ(pp)

(ipk, ivk)← Iρ(pp, i)
π ← Pρ(ipk,x,w)

 and

(ρ[µ], pp, i,x, π)

∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(i,x)
(i,x,w)← Aρ(pp)

(π, µ)← Sρ(pp, i,x, τ)

 .

Above, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise. This
definition uses explicitly-programmable random oracles [BR93]. (Non-interactive zero knowledge with
non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].)

3.2 Proof-carrying data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data scheme (PCD scheme)
for a class of compliance predicates F if the properties below hold.

Definition 3.1. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by local
data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The output of a transcript T, denoted
o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 3.2. A vertex u ∈ V (T) is ϕ-compliant for ϕ ∈ F if for all outgoing edges e = (u, v) ∈ E(T):
• (base case) if u has no incoming edges, ϕ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts;

• (recursive case) if u has incoming edges e1, . . . , em, ϕ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) accepts.
We say that T is ϕ-compliant if all of its vertices are ϕ-compliant.

Completeness. For every adversary A,

Pr


(
ϕ ∈ F ∧

(
∀ i, zi = ⊥ ∨ ∀ i, V(ivk, zi, πi) = 1

)
∧

ϕ(z, zloc, z1, . . . , zm) accepts
)

⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1 .

19

Knowledge soundness. We say that PCD = (G, I,P,V) has knowledge soundness (with respect to
auxiliary input distribution D) if for every expected polynomial-time (non-uniform) adversary P̃, there exists
an expected polynomial-time extractor EP̃ such that for every set Z,

Pr

 ϕ ∈ F ∧ (pp, ai, ϕ, o(T), ao) ∈ Z
∧T is ϕ-compliant

∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ,T, ao)← EP̃(pp, ai)



≥ Pr

 ϕ ∈ F ∧ (pp, ai, ϕ, o, ao) ∈ Z
∧V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(pp)

(ϕ, o, π, ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, ϕ)

− negl(λ) .

Zero knowledge. We say that PCD = (G, I,P,V) has (statistical) zero knowledge if there exists a
probabilistic polynomial-time simulator S such that for all honest adversaries A the distributions below are
statistically close:(pp, ϕ, z, π)

∣∣∣∣∣∣∣
pp← G(1λ)

(ϕ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, ϕ)
π ← P(ipk, ϕ, z, zloc, [zi, πi]

m
i=1)

 and

{
(pp, ϕ, z, π)

∣∣∣∣∣ (pp, τ)← S
(ϕ, z, zloc, [zi, πi]

m
i=1)← A(pp)
π ← S(ϕ, z, τ)

}
.

Here, an adversary is honest if its output satisfies the implicant of the completeness condition with probability
1, namely: ϕ ∈ F, ϕ(z, zloc, z1, . . . , zm) = 1, and either for all i, zi = ⊥, or for all i, V(ivk, zi, πi) = 1.
Efficiency. The generator G, prover P, indexer I and verifier V run in polynomial time. A proof π has size
poly(λ, |ϕ|); in particular, it is not permitted to grow with each application of P.

3.3 Instantiating the random oracle

Almost all of the results in this paper are proved in the random oracle model, and so we give definitions
which include random oracles. The single exception is our construction of proof-carrying data, in Section 5.1.
We do not know how to build PCD schemes which are secure in the random oracle model from any standard
assumption. Instead, we show that assuming the existence of a non-interactive argument with security in the
standard (CRS) model, we obtain a PCD scheme which is also secure in the standard (CRS) model.

For this reason, the definition of PCD above is stated in the standard model (without oracles). We do
not explicitly define non-interactive arguments in the standard model; the definition is easily obtained by
removing the random oracle from the definition presented in Section 3.1.

3.4 Post-quantum security

The definitions of both non-interactive arguments (in the standard model) and proof-carrying data can
be strengthened, in a straightforward way, to express post-quantum security. In particular, we replace
“polynomial-size circuit” and “polynomial-time algorithm” with their quantum analogues. Since we do not
prove post-quantum security of any construction in the random oracle model, we do not discuss the quantum
random oracle model.

3.5 Commitment schemes

A commitment scheme CM = (Setup,Trim,Commit) enables one to create binding commitments to
messages.

20

• CM.Setup, on input a message format L, outputs public parameters pp; this specifies a message universe
Mpp and a commitment universe Cpp.

• CM.Trim, on input public parameters pp and a trim specification `, outputs a commitment key ck containing
a description of a message spaceMck ⊆Mpp (corresponding to `).

• CM.Commit, on input a commitment key ck, a message m ∈Mck and randomness ω, outputs a commit-
ment C ∈ Cpp.

CM is binding if, for every message format L such that |L| = poly(λ), and for every efficient adversary A,
the following holds.

Pr

 m1 ∈Mck1 , m2 ∈Mck2 , m1 6= m2

∧
CM.Commit(ck1,m1; ω1) = CM.Commit(ck2,m2; ω2)

∣∣∣∣∣∣∣∣
pp← CM.Setupρ(1λ, L)

((`1,m1, ω1), (`2,m2, ω2))← Aρ(pp)
ck1 ← CM.Trimρ(pp, `1)
ck2 ← CM.Trimρ(pp, `2)

 ≤ negl(λ) .

Note that m1 6= m2 is well-defined sinceMck1 ,Mck2 ⊆Mpp.

3.6 Polynomial commitments

A polynomial commitment scheme is a cryptographic primitive that enables a sender to commit to a polyno-
mial p over a field F and then later prove the correct evaluation of the polynomial at a desired point. In more
detail, a polynomial commitment scheme PC is a tuple of algorithms (Setup,Trim,Commit,Open,Check)
with the following syntax and properties:

• PC.Setup(1λ, D)→ pp. On input a security parameter λ (in unary), and a maximum degree bound D ∈ N,
PC.Setup samples public parameters ppPC. The parameters contain the description of a finite field F
(which has size that is super-polynomial in λ).

• PC.Trim(pp, d)→ (ck, rk). On input public parameters ppPC, and supported degree d, PC.Trim determin-
istically computes a key pair (ck, rk) that is specialized to d.

• PC.Commit(ck, p;ω) → C. On input ck, a univariate polynomial p over the field F such that deg(p) ≤
ck.d, PC.Commit outputs a commitment C to the polynomial p. The randomness ω is used if the
commitment C is hiding.

• PC.Open(ck, p, C, z;ω)→ π. On input the commitment key ck, a univariate polynomial p over the field
F, a commitment C to p, an evaluation point z, and commitment randomness ω, PC.Open outputs an
evaluation proof π.

• PC.Check(rk, C, z, v, π) → b. On input the receiver key rk, a commitment C, an evaluation point z, a
claimed evaluation v, and an evaluation proof π, PC.Check if π attests that the polynomial p committed in
C has degree at most rk.d, and evaluates to v at z.

A polynomial commitment scheme PC must be such that (PC.Setup,PC.Trim,PC.Commit) is a (binding)
commitment scheme for bounded-degree polynomials over a field. The message format L is equal to the
maximum degree bound D; the message universe is the set of polynomials over some field F of degree at
most D. The trim specification ` is equal to the supported degree d; the corresponding message space is the
set of polynomials over F of degree at most d.

In this work we will not use any property of the PC.Open and PC.Check algorithms; their inclusion here
is merely for consistency with previous definitions.

21

4 Split accumulation schemes for relations

Let Φ: ({0, 1}∗)3 → {0, 1} be a relation predicate. LetH be a randomized oracle algorithm, which outputs
predicate parameters ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D) of which I,P,V
have access to the same random oracle ρ. The algorithms have the following syntax and properties.

Syntax. The algorithms comprising AS have the following syntax:

• Generator: On input a security parameter λ (in unary), G samples and outputs public parameters pp.

• Indexer: On input public parameters pp, predicate parameters ppΦ (generated byH), and a predicate index
iΦ, I deterministically computes and outputs a triple (apk, avk, dk) consisting of an accumulator proving
key apk, an accumulator verification key avk, and a decision key dk.5

• Accumulation prover: On input the accumulator proving key apk, inputs [qi = (q.xi, q.wi)]
n
i=1, and old

accumulators [accj = (acc.xj , acc.wj)]
m
j=1, P outputs a new accumulator acc = (acc.x, acc.w) and a

proof πV for the accumulation verifier.

• Accumulation verifier: On input the accumulator verification key avk, input instances [qi.x]ni=1, accumulator
instances [accj .x]mj=1, a new accumulator instance acc.x, and a proof πV, V outputs a bit indicating whether
acc.x correctly accumulates [qi]

n
i=1 and [accj]

m
j=1.

• Decider: On input the decision key dk, and an accumulator acc = (acc.x, acc.w), D outputs a bit indicating
whether acc is a valid accumulator.

These algorithms must satisfy two properties, completeness and knowledge soundness, defined below. We
additionally define a notion of zero knowledge that we will rely on to achieve zero knowledge PCD (see
Section 5).

Completeness. For every (unbounded) adversary A,

Pr


∀ j ∈ [m], D(dk, accj) = 1
∀ i ∈ [n], Φ(ppΦ, iΦ, qi) = 1

⇓
Vρ(avk, [qi.x]ni=1, [accj .x]mj=1, acc.x, πV) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [qi]

n
i=1, [accj]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← Iρ(pp, ppΦ, iΦ)
(acc, πV)← Pρ(apk, [qi]

n
i=1, [accj]

m
j=1)

 = 1 .

Note that for m = n = 0, the precondition on the left-hand side holds vacuously; this is required for the
completeness condition to be non-trivial.
Knowledge soundness. We say that AS = (G, I,P,V,D) has knowledge error k(λ) if for every (non-
uniform) adversary P̃ running in expected polynomial time there exists an extractor E running in expected

5We remark that in some schemes it is important, for the sake of efficiency, for the indexer I to have oracle access to the predicate
parameters ppΦ and predicate index iΦ, rather than reading them in full. All of our constructions and statements extend, in a
straightforward way, to this case.

22

polynomial time such that for every set Z:

Pr


(pp, ppΦ, ai, iΦ, acc, [qi.x]ni=1, [accj .x]mj=1, ao) ∈ Z

∧
∀ j ∈ [m], D(dk, accj) = 1
∀ i ∈ [n], Φ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)(

iΦ acc ao
[qi]

n
i=1 [accj]

m
j=1

)
← EP̃(pp, ppΦ, ai)



≥ Pr


(pp, ppΦ, ai, iΦ, acc, [qi.x]ni=1, [accj .x]mj=1, ao) ∈ Z

∧
Vρ(avk, [qi.x]ni=1, [accj .x]mj=1, acc.x, πV) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← Hρ(1λ)
ai← D(1λ)(

iΦ acc πV ao
[qi.x]ni=1 [accj .x]mj=1

)
← P̃ρ(pp, ppΦ, ai)

(apk, avk, dk)← Iρ(pp, ppΦ, iΦ)


− k(λ) .

If k(λ) is negligible then we say AS satisfies knowledge soundness.
Zero knowledge. There exists a polynomial-time simulator S such that for every polynomial-size “honest”
adversary A (see below) the following distributions are (statistically/computationally) indistinguishable:

(ρ, pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [qi]

n
i=1, [accj]

m
j=1)← Aρ(pp, ppΦ)

(apk, avk, dk)← Iρ(pp, ppΦ, iΦ)
(acc, πV)← Pρ(apk, [qi]

n
i=1, [accj]

m
j=1)


and (ρ[µ], pp, ppΦ, iΦ, acc)

∣∣∣∣∣∣∣∣∣∣
ρ← U(λ)

(pp, τ)← Sρ(1λ)
ppΦ ← H(1λ)

(iΦ, [qi]
n
i=1, [accj]

m
j=1)← Aρ(pp, ppΦ)

(acc, µ)← Sρ(ppΦ, τ, iΦ)

 .

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [qi]
n
i=1, [accj]

m
j=1) such that Φ(ppΦ, iΦ, qi) = 1

and D(dk, accj) = 1 for all i ∈ [n] and j ∈ [m]. Note that the simulator S is not required to simulate the
accumulation verifier proof πV.

4.1 Accumulation schemes for certain predicates

We conclude by specializing the definition of an accumulation scheme to the case of predicates induced
by the verifier in a non-interactive argument (Definition 4.1) and in a polynomial commitment scheme
(Definition 4.2).

Definition 4.1 (accumulation for ARG). A non-interactive argument system ARG = (G, I,P,V) has an
accumulation scheme if the pair (ΦV ,HARG := G) has an accumulation scheme, where ΦV is defined below:

ΦV(ppΦ = pp, iΦ = i, q.x = (x, π.x), q.w = π.w):
1. (ipk, ivk)← I(pp, i).
2. Output V(ivk,x, (π.x, π.w)).

23

Definition 4.2 (accumulation for PC). A polynomial commitment scheme PC = (Setup,Trim,Commit,Open,Check)
has an accumulation scheme if, for every D(λ) = poly(λ), the pair (ΦPC,HPC,D) defined below has an
accumulation scheme.

ΦPC(ppΦ = ppPC, iΦ = d, q = ((C, z, v), π)):
1. (ck, rk)← PC.Trim(ppPC, d).
2. Output PC.Check(rk, C, z, v, π).

HPC,D(1λ):
Output ppPC ← PC.Setup(1λ, D(λ)).

24

5 PCD from arguments of knowledge with split accumulation

We formally restate and then prove Theorem 1, which provides a construction of proof-carrying data (PCD)
from any NARK that has a split accumulation scheme with certain efficiency properties.

First, we provide some notation for these properties.

Definition 5.1. Let AS = (G, I,P,V,D) be an accumulation scheme for a non-interactive argument (see
Definition 4.1). We denote by V(λ,m,N,k) the circuit corresponding to the computation of the accumula-
tion verifier V, for security parameter λ, when checking the accumulation of m instance-proof pairs and
accumulators, on an index of size at most N , where each instance is of size at most k.

We denote by v(λ,m,N, k) the size of the circuit V(λ,m,N,k), by |avk(λ,m,N)| the size of the accumula-
tor verification key avk, and by |acc.x(λ,m,N)| the size of an accumulator instance.

Note that here we have specified that the size of acc.x is bounded by a function of λ,m,N ; in particular, it
may not depend on the number of instances accumulated.

When we invoke the accumulation verifier in our construction of PCD, an instance will consist of an
accumulator verification key, an accumulator instance, and some additional data of size `. Thus the size of
the accumulation verifier circuit used in the scheme is given by

v∗(λ,m,N, `) := v(λ,m,N, |avk(λ,m,N)|+ |acc.x(λ,m,N)|+ `) .

The notion of “sublinear verification” which is important here is that v∗ is sublinear in N . The following
theorem shows that when this is the case, this accumulation scheme can be used to construct PCD.

Theorem 5.2. There exists a polynomial-time transformation T such that if ARG = (G, I,P,V) is a NARK
for circuit satisfiability and AS is a split accumulation scheme for ARG then PCD = (G, I,P,V) := T(ARG,AS)
is a PCD scheme for constant-depth compliance predicates, provided

∃ ε ∈ (0, 1) and a polynomial α s.t. v∗(λ,m,N, `) = O(N1−ε · α(λ,m, `)) .

Moreover:
• If ARG and AS are secure against quantum adversaries, then PCD is secure against quantum adversaries.
• If ARG and AS are (post-quantum) zero knowledge, then PCD is (post-quantum) zero knowledge.
• If the size of the predicate ϕ : F(m+2)` → F is f = ω(α(λ,m, `)1/ε) then:

– the cost of running I is equal to the cost of running both I and I on an index of size f + o(f);

– the cost of running P is equal to the cost of accumulating m instance-proof pairs using P, and running
P , on an index of size f + o(f) and instance of size o(f);

– the cost of running V is equal to the cost of running both V and D on an index of size f + o(f) and an
instance of size o(f).

This last point gives the conditions for a sublinear additive recursive overhead; i.e., when the additional cost
of proving that ϕ is satisfied recursively is asymptotically smaller than the cost of proving that ϕ is satisfied
locally. Note that the smaller the compliance predicate ϕ, the more efficient the accumulation scheme has to
be in order to achieve this.

25

5.1 Construction

Let ARG = (G, I,P,V) be a non-interactive argument for circuit satisfiability, and let AS = (G, I,P,V,D)
be an accumulation scheme for ARG. Below we construct a PCD scheme PCD = (G, I,P,V).

Given a compliance predicate ϕ : F(m+2)` → F, the circuit that realizes the recursion is as follows.

R
(λ,N,k)
V,ϕ

(
(avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, πV)

)
:

1. Check that the compliance predicate ϕ(z, zloc, z1, . . . , zm) accepts.
2. If there exists i ∈ [m] such that zi 6= ⊥, check that the NARK accumulation verifier accepts:

V(λ,m,N,k)(avk, [(avk, zi, acci.x), πi.x]mi=1, [acci.x]mi=1, acc.x, πV) = 1 .

3. If the above checks hold, output 1; otherwise, output 0.

Below we denote by “qi” the query contents ((avk, zi, acci), πi), and use “qi.x” to denote query instances
((avk, zi, acci.x), πi.x) and “qi.w” to denote the corresponding query witnesses ((avk, zi, acci.w), πi.w).

Above, V(λ,m,N,k) refers to the circuit representation of V with input size appropriate for security
parameter λ, number of instance-proof pairs and accumulators m, index size N , and instance size k.

Next we describe the generator G, indexer I, prover P, and verifier V of the PCD scheme.

• G(1λ): Sample pp← G(1λ) and ppAS ← G(1λ), and output pp := (pp, ppAS).

• I(pp, ϕ):

1. Compute the integer N := N(λ, |ϕ|,m, `), where N is defined in Lemma 5.3 below.
2. Construct the circuit R := R

(λ,N,k)
V,ϕ where k := |avk(λ,N)|+ `+ |acc(λ,N)|.

3. Compute the index key pair (ipk, ivk)← I(pp, R) for the circuit R for the NARK.
4. Compute the index key triple (apk, dk, avk)← I(ppAS, iΦ = (pp, R)) for the accumulator.
5. Output ipk := (ipk, apk) and ivk := (ivk, dk, avk).

• P(ipk, z, zloc, [zi, (πi, acci)]
m
i=1):

1. If zi = ⊥ for all i ∈ [m] then set (acc, πV)← P(apk,⊥).
2. If zi 6= ⊥ for some i ∈ [m] then compute (acc, πV)← P(apk, [qi]

m
i=1, [acci]

m
i=1).

3. Compute π ← P
(
ipk, (avk, z, acc.x), (zloc, [zi, πi.x, acci.x]mi=1, πV)

)
.

4. Output (π, acc).

• V(ivk, z, (π, acc)): Accept if both V(ivk, (avk, z, acc.x), π) and D(dk, acc) accept.

5.2 Completeness

Let A be any adversary that causes the completeness condition of PCD to be satisfied with probability p.
We construct an adversary B, as follows, that causes the completeness condition of AS to be satisfied with
probability at most p.

B(pp, ppAS):
1. Set pp := (pp, ppAS) and compute (ϕ, z, zloc, [zi, πi, acci]

m
i=1)← A(pp).

2. Run (apk, dk, avk)← I(ppAS, pp, R
(λ,N,k)
V,ϕ).

3. Output (R
(λ,N,k)
V,ϕ , [qi]

m
i=1, [acci]

m
i=1).

26

Suppose that A outputs (ϕ, z, zloc, [zi, πi, acci]
m
i=1) such that the completeness precondition is satisfied, but

V(ivk, z, (π, acc)) = 0. Then, by construction of V, it holds that either V(ivk, (avk, z, acc.x), π) = 0 or
D(dk, acc) = 0. If zi = ⊥ for all i, then by perfect completeness of ARG both of these algorithms output 1;
hence there exists i such that zi 6= ⊥. Hence it holds that for all i, V(ivk, zi, (πi, acci)) = 1, whence for all i,
V(ivk, (avk, zi, acci.x), πi) = ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, zi, acci.x), πi) = 1 and D(dk, acci) = 1.

If V(ivk, (avk, z, acc.x), π) = 0, then, by perfect completeness of ARG, we know that R(λ,N,k)
V,ϕ rejects(

(avk, z, acc), (zloc, [zi, πi.x, acci.x]mi=1), πV

)
, and so V(avk, [qi.x]mi=1, [acci.x]mi=1, acc.x) = 0. Otherwise,

D(dk, acc) = 0.
Now consider the completeness experiment for AS with adversary B. Since pp, ppAS are drawn identically

to the PCD experiment, the distribution of the output of A is identical. Hence in particular it holds that
for all i, ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, zi, acci), πi) = 1 and D(dk, acci) = 1. By the above, it holds that either

V(avk, [qi.x]mi=1, [acci.x]mi=1, acc) = 0 or D(dk, acc) = 0, and so B := (B1,B2) causes the completeness
condition for AS to be satisfied with probability at most p.

5.3 Knowledge soundness

Since the extracted transcript T will be a tree, we find it convenient to associate the label z(u,v) of the unique
outgoing edge of a node u with the node u itself, so that the node u is labelled with (z(u), z

(u)
loc). For the

purposes of the proof we also associate with each node u a NARK proof π(u) and an accumulator acc(u), so
that the full label for a node is (z(u), z

(u)
loc , π

(u), acc(u)). It is straightforward to transform such a transcript
into one that satisfies Definition 3.1.

Given a malicious prover P̃, we will define an extractor EP̃ that satisfies knowledge soundness. In the
process we construct a sequence of extractors E1, . . . ,Ed for d := d(ϕ) (the depth of ϕ); Ej outputs a tree of
depth j + 1. Let E0(pp, ai) run (ϕ, o, π, acc) ← P̃(pp, ai) and output (ϕ,T0), where T0 is a single node
labeled with (o, π, acc). Let lT(j) denote the vertices of T at depth j; lT(0) := ∅ and lT(1) is the singleton
containing the root.

Now we define the extractor Ej inductively for each j ∈ [d]. Suppose we have already constructed Ej−1.
We construct a NARK prover P̃j as follows:

P̃j(pp, (ppAS, ai)):
1. Compute (ϕ,Tj−1, ao)← Ej−1((pp, ppAS), ai).
2. For each vertex v ∈ lTj−1

(j), denote its label by (z(v), π(v), acc(v)).

3. Run the argument indexer (ipk, ivk) ← I(pp, R
(λ,N,k)
V,ϕ). Run the accumulator indexer

(apk, dk, avk)← I(ppAS, pp, R
(λ,N,k)
V,ϕ).

4. Output

(~i, ~x,~π, ao′) :=
(
~R, (avk, z(v), acc(v).x)v∈lTj−1

(j), (π
(v))v∈lTj−1

(j), (ϕ,Tj−1, ao)
)

where ~R is the vector (R
(λ,N,k)
V,ϕ , . . . , R

(λ,N,k)
V,ϕ) of the appropriate length.

Next let EP̃j
be the extractor that corresponds to P̃j , via the knowledge soundness of the non-interactive

argument ARG. We now define an accumulation scheme prover Pj as follows:

27

P̃j(ppAS, (pp, ai)):
1. Run the extractor (~i, ~x, ~w, ao′)← EP̃j

(pp, (ppAS, ai)).
2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort.
3. For each vertex v ∈ lT′(j),

• obtain acc(v) from T′;
• obtain the local data z(v)

loc , input messages
(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and accumulation

proof π(v)
V from w(v);

• append z(v)
loc to the label of v in T′;

• let Sj := {v ∈ lT′(j) : ∃i, z(v)
i 6= ⊥}; attach m children to each v ∈ Sj , where the i-th child

is labeled with z(v)
i .

4. Output
((
i(v), acc(v), π

(v)
V , [q

(v)
i .x =

(
(avk, z

(v)
i , acc

(v)
i .x), π

(v)
i .x

)
]mi=1, [acc

(v)
i .x]mi=1

)
v∈Sj

, (ϕ,T′, ao)
)

.

Let EP̃j
be the extractor corresponding to P̃j , by the knowledge soundness guarantee of AS. Finally, we

define the extractor Ej as follows:

Ej(pp = (pp, ppAS), ai):

1. Run the extractor
((
i(v), acc(v), [q

(v)
i]mi=1, [acc

(v)
i]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(pp, ppAS, ai).

2. Parse the auxiliary output ao′ as (ϕ,T′, ao). If T′ is not a transcript of depth j, abort. Let
Sj := {v ∈ lT′(j) : ∃i, z(v)

i 6= ⊥}.
3. Parse each q

(v)
i as (avk(v), z

(v)
i , acc

(v)
i .x, π

(v)
i).

4. Output (ϕ,Tj , ao) where Tj is the transcript constructed from T′ by adding, for each vertex
v ∈ Sj , (π

(v)
i , acc

(v)
i) to the label of its i-th child.

The extractor EP̃ is equal to Ed.
We now show that EP̃ runs in expected polynomial time and that it outputs a transcript that is ϕ-compliant.

Running time of the extractor. It follows from the extraction guarantees of ARG and AS that Ej runs in
expected time polynomial in the expected running time of Ej−1. Hence if d(ϕ) is a constant, EP̃ = Ed(ϕ)

runs in expected polynomial time.

Correctness of the extractor. Fix a set Z, and suppose that P̃’s output falls in Z, and causes V to accept,
with probability µ. We show by induction that, for all j ∈ {0, . . . , d}, the transcript Tj output by Ej is
ϕ-compliant up to depth j, and that for all v ∈ Tj , both V(ivk, (avk, z(v), acc(v).x), π(v)) and D(dk, acc(v))
accept, and that (pp, ai, ϕ, o(Tj), ao) ∈ Z and ϕ ∈ F, with probability µ− negl(λ).

For j = 0 the statement holds by assumption.
Now suppose that (ϕ,Tj−1) ← Ej−1(pp, ai) is such that Tj−1 is ϕ-compliant up to depth j − 1,

and that both V(ivk, (avk, z(v), acc(v).x), π(v)) and D(dk, acc(v)) accept for all v ∈ Tj−1, with probability
µ− negl(λ).

Let (~i, (avkv, z
(v), acc(v).x)v, (π

(v))v, (ϕ,T
′), ~w)← EP̃j

(pp, (ppAS, ai)).

We let (pp, (ppAS, ai),~i, (avkv, z
(v), acc(v).x)v, (ϕ,T

′, ao)) ∈ Z ′ if and only if, for (apk, dk, avk) ←
I(ppAS, pp, R

(λ,N,k)
V,ϕ):

• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F,
• i(v) = R

(λ,N,k)
V,ϕ and avkv = avk for all v,

• T′ is ϕ-compliant up to depth j − 1,
• D(dk, acc(v)) accepts for all v ∈ T′, and

28

• for v ∈ lT′(j), v is labeled in T′ with (z(v), π(v), acc(v)).
By knowledge soundness, with probability µ − negl(λ), (pp, (ppAS, ai),~i, (ivkv, z

(v))v, (ϕ,T
′)) ∈ Z ′

and for every vertex v ∈ lT′(j), (R
(λ,N,k)
V,ϕ , (avkv, z

(v), acc(v)),w(v)) ∈ RR1CS. Here we use Z ′ and the
auxiliary output in the knowledge soundness definition of ARG to ensure consistency between the values z(v)

and T′, and to ensure that T′ is ϕ-compliant and that the decider accepts.
Consider some v ∈ lT′(j). Since (R

(λ,N,k)
V,ϕ , (avk(v), z(v), acc(v).x),w(v)) ∈ RR1CS, we obtain from

w(v) either
• local data z(v)

loc , input messages
(
z

(v)
i , π

(v)
i .x, acc

(v)
i .x

)
i∈[m]

and proof πV such that ϕ(z(v), zloc, z1, . . . , zm)

accepts and the accumulation verifier V(λ,N,k)(avk(v), [q
(v)
i .x]mi=1, [acc

(v)
i .x]mi=1, acc

(v), π
(v)
V) accepts, where

q
(v)
i .x := ((avk(v), z

(v)
i , acc

(v)
i .x), π

(v)
i .x); or

• local data z(v)
loc such that ϕ(z(v), z

(v)
loc ,⊥, . . . ,⊥) accepts.

In both cases we append z(v)
loc to the label of v. In the latter case, v has no children and so is ϕ-compliant

by the base case condition. In the former case we label the children of v with (zi, πi, acci), and so v is
ϕ-compliant.

We define (ppAS, pp, ai, (i
(v), acc(v), [q

(v)
i .x]mi=1, [acc

(v)
i .x]mi=1)v, (ϕ,T

′, ao)) ∈ Z ′′ if and only if
• ((pp, ppAS), ai, ϕ, o(T′), ao) ∈ Z and ϕ ∈ F,
• i(v) = R

(λ,N,k)
V,ϕ for all v,

• T′ is ϕ-compliant up to depth j,
• for all v, q(v)

i .x = ((avk, z
(v)
i , acc

(v)
i .x), π

(v)
i) where (apk, avk, dk)← I(ppAS, ppΦ, iΦ), and

• for u ∈ lT′(j + 1), where u is the i-th child of v ∈ lT′(j), u is labeled in T′ with z(v)
i .

Let
((
i(v), acc(v), [q

(v)
i]mi=1, [acc

(v)
i]mi=1

)
v∈Sj

, ao′
)
← EP̃j

(ppAS, pp, ai). By the knowledge soundness

guarantee of the accumulation scheme, (pp, ppΦ, ai, (i
(v), acc(v), [q

(v)
i .x]mi=1, [acc

(v)
i .x]mi=1)v, ao

′) ∈ Z ′′, and
it holds that for all descendants u of v in Tj , D(dk, acc(u)) accepts and ΦV(pp, R

(λ,N,k)
V,ϕ , (avk, z(u), acc(u).x), π

(u)
in) =

V(ivk, (avk, z(u), acc(u).x), π
(u)
in) accepts, with probability µ− negl(λ); this completes the inductive step.

Hence by induction, (ϕ,T, ao)← E(pp, ai) has ϕ-compliant T, (pp, ai, ϕ, o(T), ao) ∈ Z, and ϕ ∈ F,
with probability µ− negl(λ).

5.4 Efficiency

The efficiency argument follows from Lemma 5.3 and is essentially identical to that of [BCMS20], and so we
will not repeat it. We note only that the quantity v∗ (i) describes the size of the accumulation verifier, which
in particular need not read the entire NARK proof, which may be large, and (ii) is a function of the size of the
accumulator instance alone; the accumulator witness may be large.

Lemma 5.3. Suppose that for every security parameter λ ∈ N, arity m, and message size ` ∈ N the ratio of
accumulation verifier circuit size to index size v∗(λ,m,N, `)/N is monotone decreasing in N . Then there
exists a size function N(λ, f,m, `) such that

∀λ, f,m, ` ∈ N S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) .

Moreover if for some ε > 0 and some increasing function α it holds that, for all N,λ,m, ` sufficiently large,

v∗(λ,m,N, `) ≤ N1−εα(λ,m, `)

then, for all λ,m, ` sufficiently large, N(λ, f,m, `) ≤ O(f + α(λ,m, `)1/ε).

29

6 Accumulating Pedersen polynomial commitments

We construct a split accumulation scheme for the Pedersen polynomial commitment scheme. This polynomial
commitment scheme has modest efficiency properties: commitments are succinct, but evaluation proofs (and
the time to verify them) are linear in the degree of the committed polynomial.

Despite this, our split accumulation scheme achieves strong efficiency guarantees: checking the accumu-
lation of n evaluation claims only requires the accumulation verifier V to add O(n) commitments (regardless
of the degree of the committed polynomials) and only requires the decider D to check one evaluation proof.

In more detail, we prove the following (more general) theorem for a polynomial commitment scheme
PCHC derived from any Fq-linear hash function HC. The Pedersen commitment [Ped92] is an Fq-linear
homomorphic commitment where the commitment space is a group G of order q, and is computationally
binding provided the discrete logarithm problem is hard in G.

Theorem 6.1. The scheme AS = (G, I,P,V,D) constructed in Section 6.1 is an accumulation scheme in
the random oracle model for the polynomial commitment scheme PCHC described in Fig. 4. AS achieves the
following efficiency:

• Generator: G(1λ) runs in time O(λ).
• Indexer: the time of I(pp, ppΦ, iΦ = d) is dominated by the time to compute HC.Trim with degree bound d.
• Accumulation prover: the time of Pρ(apk, [qi]

n
i=1, [accj]

m
j=1) is dominated by the time to commit to n+m

polynomials of degree d. The output accumulator acc consists of
– an accumulator instance acc.x consisting of a commitment and two field elements, and
– an accumulator witness acc.w consisting of a polynomial of degree less than d.
The output proof π consists of n commitments and 2n+ 2m field elements.

• Accumulation verifier: the time of Vρ(avk, [qi.x]ni=1, [accj .x]mj=1, acc.x, π) is dominated by O(n + m)
field additions/multiplications and O(n+m) group scalar multiplications.

• Decider: the time of D(dk, acc) is dominated by the time to compute a commitment to a polynomial of
degree less than d.

Definition 6.2. An Fq-linear homomorphic commitment HC = (Setup,Trim,Commit) for prime q is a binding
commitment scheme (Section 3.6) with the following additional properties: the message space is Fnq , and there
exists an efficient operation + on the commitment space such that

∀~a,~b ∈ Fnq , HC.Commit(~a) + HC.Commit(~b) = HC.Commit(~a+~b) .

PCHC. We use HC to construct a homomorphic polynomial commitment scheme PCHC:
• Setup: On input λ,D ∈ N, output ppCM ← HC.Setup(1λ, D + 1).
• Trim: On input ppCM and d ∈ N, check that d ≤ D, set ckHC ← HC.Trim(ppCM, d + 1), and output

(ck := (ckHC, d), rk := (ckHC, d)).
• Commit: On input ck and p ∈ Fq[X] of degree at most ck.d, output C ← HC.Commit(ck.ckHC, p).
• Open: On input (ck, p, C, z), output π := p.
• Check: On input (rk, (C, z, v), π = p), check that C = HC.Commit(rk.ckHC, p), p(z) = v, and deg(p) ≤ rk.d.
Completeness of PCHC follows from that of HC, while extractability follows from the binding property of HC.

Figure 4: PCHC is a homomorphic polynomial commitment scheme based on a linear homomorphic commitment.

30

6.1 Accumulation scheme for PCHC

We describe the accumulation scheme AS = (G, I,P,V,D) for the homomorphic polynomial commitment
scheme PCHC. First, we describe the form of inputs q = (q.x, q.w) and accumulators acc = (acc.x, acc.w).
Both q.x and acc.x are tuples of the form (C, z, v), while both q.w and acc.w consist of a polynomial p
(allegedly, committed inside C and such that p(z) = v and deg(p) < d). Jumping ahead, we note that since
the decider D is equal to the predicate ΦPC, there is no distinction between inputs and prior accumulators,
and so it suffices to accumulate inputs only.

Generator. The generator G receives as input pp := 1λ and outputs 1λ. (In other words, G does not have
to create additional public parameters beyond those used by HC.)

Indexer. On input the accumulator parameters pp, predicate parameters ppΦ = ppPC, and a predicate index
iΦ = d, the indexer I computes the committer and receiver keys (ck, rk) := PCHC.Trim(ppPC, d), and then
outputs the accumulator proving key apk := (ck, d), the accumulator verification key avk := d, and the
decision key dk := rk.

Accumulation prover. On input accumulation proving key apk and inputs [qi]
n
i=1, P works as below.

Pρ(apk = (ck, d), [qi]
n
i=1):

1. For each i in [n]:
(a) Parse the input instance q.xi as (Ci, zi, vi) and the input witness q.wi as πi = pi ∈ F≤ck.d[X].
(b) Compute the witness polynomial wi(X) := pi(X)−vi

X−zi .
(c) Compute a commitment to wi(X): Wi := PCHC.Commit(ck, wi).

2. Compute the challenge z := ρ(d, [(Ci, zi, vi,Wi)]
n
i=1).

3. For each i in [n], compute the evaluations yi := pi(z) and y′i := wi(z).
4. Compute the challenge α := ρ(z, [(yi, y

′
i)]
n
i=1).

5. Compute the linear combination p :=
∑n
i=1 α

i−1 · pi +
∑n
i=1 α

n+i−1 · wi.
6. Compute the evaluation v := p(z).
7. Compute the linear combination C :=

∑n
i=1 α

i−1 · Ci +
∑n
i=1 α

n+i−1 ·Wi.
8. Set the accumulator acc := (acc.x, acc.w) where acc.x := (C, z, v) and acc.w := p.
9. Set the proof πV := [(Wi, yi, y

′
i)]
n
i=1.

10. Output (acc, πV).

Accumulation verifier. On input the accumulator verification key avk, input instances [qi.x]ni=1, a new
accumulator instance acc.x, and a proof πV, V works as below.

Vρ(avk = d, [qi.x]ni=1, acc.x, πV):
1. Parse acc.x as (C, z, v), and πV as [(Wi, yi, y

′
i)]
n
i=1.

2. For each i ∈ [n], parse q.xi as (Ci, zi, vi).
3. Check that z = ρ(d, [(Ci, zi, vi,Wi)]

n
i=1).

4. For each i ∈ [n], check that yi − vi = y′i · (z − zi).
5. Compute α := ρ(z, [(yi, y

′
i)]
n
i=1)

6. Check that v =
∑n
i=1 α

i−1 · yi +
∑n
i=i α

n+i−1 · y′i.
7. Check that C =

∑n
i=1 α

i−1 · Ci +
∑n
i=1 α

n+i−1 ·Wi.

Decider. On input the decision key dk = rk and an accumulator acc = (acc.x = (C, z, v), acc.w = π), D
checks that PCHC.Check(rk, C, z, v, π) = 1.

31

6.2 Proof of Theorem 6.1

We prove Theorem 6.1 by first proving that AS constructed above is complete and satisfies the claimed
efficiency properties, and then, in Section 6.3, by proving that AS achieves knowledge soundness.

Completeness. Recalling that we need only accumulate predicate inputs, we demonstrate that the following
simplified completeness property holds for every (unbounded) adversary A:

Pr


∀ i ∈ [n], Φ(ppΦ, iΦ, qi) = 1

⇓
Vρ(avk, [qi.x]ni=1, acc.x, πV) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
(iΦ, [qi]

n
i=1)← A(pp, ppΦ)

(apk, avk, dk)← Iρ(pp, ppΦ, iΦ)
(acc, πV)← Pρ(apk, [qi]

n
i=1)

 = 1 .

We prove this directly. For each i ∈ [n], since

Φ(ppΦ, iΦ, qi = (Ci, zi, vi), πi = pi) = PCHC.Check(rk, Ci, zi, vi, pi) = 1 ,

we know that Ci = PCHC.Commit(ck, pi) and pi(zi) = vi; this implies that each witness polynomial
wi(X) = pi(X)−vi

X−zi is indeed a polynomial of degree d− 1.
Together with the fact that the accumulation prover P behaves honestly, the foregoing facts imply that C

is a well-formed commitment to p =
∑n

i=1 α
ipi +

∑n
i=1 α

n+iwi, and that p(z) = v, as required.

Efficiency. We now analyze the efficiency of our accumulation scheme.

• Generator: G(1λ) outputs 1λ, and hence runs in time O(λ).

• Indexer: Iρ(pp, ppΦ, iΦ) invokes PCHC.Trim, and hence runs in time Oλ(d).

• Accumulation prover: Pρ(apk = ck, [qi = (q.xi, q.wi)]
n
i=1) computes a commitment to the degree

deg(pi) − 1 witness polynomial wi for each input q.xi = (Ci, zi, vi). The time to generate these n
commitments dominates the running time of P.

• Accumulator size: The accumulator instance acc.x consists of a polynomial commitment C, an evaluation
point z and an evaluation claim v. The accumulator witness acc.w is a polynomial of degree d. (Separately,
the accumulation proof πV contains O(n) group and field elements; this efficiency measure is not so
important.)

• Accumulation verifier: Vρ(avk, [qi.x]ni=1, acc.x, πV) computes a random linear combination between 2n
commitments, and hence its running time is as claimed.

• Decider: D(dk, acc) simply invokes PCHC.Check, which in turn invokes PCHC.Commit, and checks that
the output matches the accumulator.

6.3 Knowledge soundness

Since we do not distinguish queries and prior accumulators, and since our predicate does not access the
random oracle, we can simplify the knowledge soundness condition. In particular, it suffices to demonstrate

32

that for every expected polynomial-time adversary P̃ and auxiliary input distribution D there exists an
expected polynomial-time extractor E such that for every set Z the following condition holds:

Pr


(pp, ppΦ, iΦ, acc, [qi.x]ni=1, ai, ao) ∈ Z

∧
∀ i ∈ [n], Φ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)(

iΦ acc
[qi]

n
i=1 ao

)
← E(pp, ppΦ, ai)



≥ Pr


(pp, ppΦ, iΦ, acc, [qi.x]ni=1, ai, ao) ∈ Z

∧
Vρ(avk, [qi.x]ni=1, acc.x, πV) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)

ppΦ ← H(1λ)
ai← D(1λ)(

iΦ acc ao
[qi.x]ni=1 πV

)
← P̃ρ(pp, ppΦ, ai)

(apk, avk, dk)← Iρ(pp, ppΦ, iΦ)


− negl(λ) .

The remainder of this subsection is dedicated to proving the above statement. We first establish some
useful notation for algorithms with access to oracles. We then give two key technical tools: an expected-
time forking lemma with negligible loss, and an expected-time variant of the zero-finding game lemma of
[BCMS20]. Finally, we apply these tools to prove the knowledge soundness property.

6.3.1 Notation for oracle algorithms

Let A be a t-query oracle algorithm with access to an oracle ρ : {0, 1}∗ → {0, 1}λ. For ~h = (h1, . . . , ht) ∈
({0, 1}λ)t, we denote by (q, y; Γ)← A

~h(x; r) the following procedure: run A on input x and randomness r,
and answer the i-th query qi of A to its oracle with hi for each i; then, when A outputs (q, y), if q = qk for
some k, let k be the smallest such, and output (q, y; Γ = [(qi, hi)]

k
i=1); otherwise, output (q, y;⊥). Note that

Γ is truncated to (and includes) the first appearance of the query q. We will write (q, y; Γ) ← Aρ(x; r) to
denote the same procedure where hi is defined (adaptively) to be ρ(qi) for each i.

We assume without loss of generality that A makes no oracle query more than once; in particular, we
can interpret Γ as partial function {0, 1}∗ ⇀ {0, 1}λ. For q in the support of Γ, we denote by Γ[q 7→ x] the
partial function identical to Γ except that Γ(q) = x. If the randomness r is omitted it is assumed to be chosen
uniformly.

6.3.2 An expected-time forking lemma

We give an expected-time forking lemma that is suitable for our setting. Crucially, the lemma gives a
guarantee for extracting from expected-time adversaries, which will be important for extracting recursively;
and it suffers only a negligible loss in success probability.

Lemma 6.3. Let A be a t-query oracle algorithm running in expected time tA, G be a parameter generation
algorithm, and p be a t-time computable predicate. For any set Z, define

δZ := Pr

 Γ 6= ⊥ ∧ (pp, y) ∈ Z
∧ p(pp, q, y,Γ) = 1

∣∣∣∣∣∣∣
pp← G(1λ)

~h← ({0, 1}λ)t

(q, y; Γ)← A
~h(pp)

 .

33

Then there exists a t-query oracle algorithm B running in expected time O(tN · tA) such that for all Z,

Pr

 Γ 6= ⊥ ∧ (pp, y1) ∈ Z
∧∀j ∈ [N], p(pp, q, yj ,Γ[q 7→ gj]) = 1

∧∀j 6= k ∈ [N], gj 6= gk

∣∣∣∣∣∣∣
pp← G(1λ)

~h← ({0, 1}λ)t

(q, [gi, yi]
N
i=1; Γ)← B

~h(pp, 1N)

 ≥ δZ − 2N
√
t

2λ/2
.

Proof. The algorithm B
~h on input (pp, 1N) operates as follows.

1. Draw r ← {0, 1}R.
2. Run A~h(x; r) until it terminates and outputs (q, y; Γ). If Γ = ⊥ or p(x, q,Γ(q), y) = 0, output ⊥.

Otherwise let i = |Γ|; in particular, hi = Γ(q).
3. Set g1 := hi and y1 := y.
4. Set K := 1 and repeat the following until K = N :

(a) Draw h′i, . . . , h
′
t ← {0, 1}λ, and runAh1,...,hi−1,h

′
i,...,h

′
t(x; r) until it terminates and outputs (q′, y′; Γ′).

(b) If q′ = q and p(pp, q, y′,Γ[q 7→ h′i]) = 1, update K ← K + 1 and set gK := h′i and yK := y′.
5. Output (q, g1, y1, . . . , gN , yN).

Let Si := {(~h, r) : (q, y;D)← A
~h(x; r) ∧ p(x, q, y,D) = 1}, and let S :=

⋃t
i=1 Si. Define

pi(h1, . . . , hi−1; r) := |{h′i, . . . , h′t ∈ {0, 1}λ : (h1, . . . , hi−1, h
′
i, . . . , h

′
t, r) ∈ Si}|/2λ(t−i+1) .

Observe that if B samples r such that (~h, r) ∈ Si then the probability that a single iteration of Step 4
increments K is pi(h1, . . . , hi; r).

We see that B halts almost surely: if B does not terminate in Step 2 then pi(h1, . . . , hi−1; r) 6= 0. We
also observe that the probability that B terminates in Step 2, or that (pp, y1) /∈ Z, is at most 1− δZ .

We now bound the expected running time ofB. Let TA, TB be random variables denoting the running time
of A,B respectively, and let t(h1, . . . , hi−1; r) denote the expected running time of A~h(x; r) over uniformly
random hi, . . . , ht. For (~h, r) ∈ Si, the number of iterations between K ← k and K ← k + 1, which we
denoteX(k)

~h,r
, is geometrically distributed with parameter pi(h1, . . . , hi−1; r) 6= 0. We denote the time between

these increments of K by T (k)
~h,r

and note that for (~h; r) ∈ Si, E[T k~h,r
| X(k)

~h,r
= j] = j · t(h1, . . . , hi−1; r) by

linearity. Hence by law of total expectation,

E[TB] =
1

2λt+R

t∑
i=1

∑
(~h,r)∈Si

N∑
k=1

∞∑
j=1

Pr[X
(k)
~h,r

= j] · E[T
(k)
~h,r
| X(k)

~h,r
= j]

=
N

2λt+R

t∑
i=1

∑
(~h,r)∈Si

∞∑
j=1

(1− pi(h1, . . . , hi−1; r))j−1 · pi(h1, . . . , hi−1; r) · j · t(h1, . . . , hi−1; r)

=
N

2λt+R

t∑
i=1

∑
(~h,r)∈Si

t(h1, . . . , hi−1; r)/pi(h1, . . . , hi−1; r)

≤ N ·
t∑
i=1

∑
h1,...,hi−1,r

t(h1, . . . , hi−1; r)

2λ(i−1)+R
= tN · E[TA] .

where the inequality follows because for all functions f(h1, . . . , hi−1; r) into R,∑
(~h,r)∈Si

f(h1, . . . , hi−1; r) = 2λ(t−i+1) ·
∑

h1,...,hi−1,r
pi(h1,...,hi−1;r)6=0

f(h1, . . . , hi−1; r) · pi(h1, . . . , hi−1; r) .

34

It can be shown similarly that the expected number of iterations is at most tN , and so the probability
that B performs more than

√
t · 2λ/2 iterations is at most N

√
t · 2−λ/2. Conditioned on this, the probability

that in any iteration we draw h′i such that h′i = gj for any j < K is at most N
√
t2λ/2 · 2−λ = N

√
t · 2−λ/2.

Applying a union bound completes the proof.

6.3.3 Zero-finding games

The following lemma, due to [BCMS20], bounds the probability that applying the random oracle to a
commitment to a polynomial yields a zero of that polynomial. We refer to this as a zero-finding game. Here
we have adapted the lemma to expected-time adversaries; the proof is essentially unchanged.

Lemma 6.4 ([BCMS20]). Let F : N→ N, and CM = (Setup,Trim,Commit) be a commitment scheme. Fix
a number of variables M ∈ N and maximum degree N ∈ N. Then for every family of (possibly inefficient)
functions {fpp}pp and fields {Fpp}pp where fpp : Mpp → F≤Npp [X1, . . . , XM] and |Fpp| ≥ F (λ), and for
every message format L and t-query expected polynomial time oracle algorithm A, the following holds.

Pr


p 6≡ 0
∧

p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← CM.Setup(1λ, L)

(`, p ∈Mck, ω)← Aρ(pp)
ck← CM.Trim(pp, `)

C ← CM.Commit(ck, p;ω)
z ∈ FNpp ← ρ(C)

p← fpp(p)


≤

√
(t+ 1) · MN

F (λ)
+ negl(λ) .

Remark 6.5. For Lemma 6.4 to hold, the algorithms of CM must not have access to the random oracle ρ
used to generate the challenge point z. The lemma is otherwise black-box with respect to CM, and so CM
itself may use other oracles. The lemma continues to hold when A has access to these additional oracles. We
use this fact later to justify the security of domain separation.

6.3.4 Proof of knowledge soundness

We formally present the extractor below and then analyze why it satisfies the knowledge soundness definition.
LetAρ(pp, ppΦ, ai) be the algorithm which runs (iΦ, [qi.x]ni=1, acc = (C, z, v), πV = [(Wi, yi, y

′
i)]
n
i=1, ao)←

P̃ρ(pp, ppΦ, ai), sets q := (z, [yi, y
′
i]
n
i=1), and outputs (q, (iΦ, [qi.x]ni=1, acc, πV)). Define the forking lemma

predicate:

p(pp, ppΦ, q, y,Γ):
1. If Γ contains a collision, output 0.
2. Parse q as (z, [(yi, y

′
i)]
n
i=1), and y as (iΦ = d, [qi.x]ni=1, acc, πV). If z does not match the evaluation

point in acc.x, or [(yi, y
′
i)]
n
i=1 does not match πV, output 0.

3. Compute (apk, avk, dk)← I(pp, ppΦ, d).
4. Run V(avk, [qi.x]ni=1, acc.x, πV), answering its oracle queries according to Γ. If V asks a query

outside of the support of Γ, or rejects, output 0.
5. Run D(dk, acc); if it rejects, output 0.
6. Otherwise, output 1.

We may assume without loss of generality that A queries the oracle at the points (d, [(Ci, zi, vi,Wi)]
n
i=1) and

q. The probability that A finds a collision or an inversion6 is O(t2/2−λ), and so the output of A satisfies p
6An inversion is a query whose answer is equal to the first λ bits of any previous query, including itself.

35

with probability δ − negl(λ). Let B be the algorithm given by applying Lemma 6.3 to A, p.
For the purposes of the proof, we present the extractor as an algorithm with access to a random oracle;

the final extractor can then be obtained by simulating the oracle.

EρP̃(pp, ppΦ):
1. Run (q, α1, y1, . . . , α2n, y2n; Γ)← Bρ(pp, 12n).
2. For j ∈ [2n], parse yj as (i

(j)
Φ = d(j), [qi.x

(j)]ni=1, π
(j)
V , acc(j)) and acc(j) as ((G(j), z(j), v(j)), s(j)).

3. Set~s :=

 s(1)

...
s(2n)

, and set A :=


1 α1 . . . α2n−1

1
...

...
. . .

...
1 αj . . . α2n−1

j
...

...
. . .

...
1 α2n . . . α2n−1

2n

.

4. If A is invertible, compute (~p‖~w) := A−1 ·~s; otherwise, abort.
5. Output

(
iΦ, acc

(1), [qi = (qi.x
(1), pi)]

n

i=1, π
(1)
V

)
.

By Lemma 6.3, EP̃ runs in expected polynomial time and with probability δ−negl(λ) we have: (pp, ppΦ, y1) ∈
Z, ∀j 6= k ∈ [2n], αj 6= αk and ∀j ∈ [2n], p(pp, ppΦ, q, yj ,Γ[q 7→ αj]) = 1; call this event E.

Conditioned on E, we observe the following. First, since the αj are distinct, A is invertible. Next, let
(z, [(yi, y

′
i)]
n
i=1) := q; note that z(j) = z and (d(j), [qi.x

(j),W
(j)
i]ni=1) = Γ−1(z) = (d(1), [qi.x

(1),W
(1)
i]ni=1)

for all j, whence also π(j)
V = π

(1)
V for all j. For the remainder of the proof we therefore omit the superscripts

on d, z, qi.x = (Ci, zi, vi), and πV = [(Wi, yi, y
′
i)]
n
i=1. It is immediate that the knowledge soundness predi-

cate p is satisfied. We now show a sequence of two claims. The first shows that the extracted polynomials
~p, ~w are openings of the corresponding commitments, and that their evaluations at z are as claimed.

Claim 6.6. Conditioned on E, for each i ∈ [n], Ci = PCHC.Commit(ck, pi), Wi = PCHC.Commit(ck, wi),
deg(pi) ≤ d, deg(wi) ≤ d, pi(z) = yi and wi(z) = y′i.

Proof. Let ~C := (C1, . . . , Cn) and ~W := (W1, . . . ,Wn). Let~y := (y1, . . . , yn) and~y′ := (y′1, . . . , y
′
n). Then

for each j, let ((G(j), z, v(j)), p(j)) := acc(j), and let ~G := (G(1), . . . , G(2n)) and ~v := (v(1), . . . , v(2n)).
Since the verifier accepts (avk, [qi.x]ni=1, acc

(j).x, πV) for all j, it holds that ~v = A(~y‖~y′), and ~G =

A(~C‖ ~W). Moreover, since the decider accepts (avk, acc(j)) for all j, it holds for all j that G(j) =
PCHC.Commit(ck, s(j)), s(j)(z) = v(j) and deg(s(j)) ≤ d, from which the degree bounds on pi, wi fol-
low directly.

Using the homomorphic property of PCHC, and because (~C‖ ~W) = A−1~G, it holds thatCi =
∑

j A
−1
i,j G

(j) =

PCHC.Commit(ck,
∑

j A
−1
i,j s

(j)) = PCHC.Commit(ck, pi). Similarly, Wi = PCHC.Commit(ck, wi). In
addition, since (~y,~y′) = A−1~v, and p(j)(z) = v(j), we have that pi(z) =

∑
j A
−1
i,j v

(j) = yi, and
wi(z) =

∑
j A
−1
n+i,jv

(j) = y′i.

The second claim shows that the evaluations of the pi on the original query points zi are as claimed.

Claim 6.7. With probability at least δ − negl(λ), it holds that for all i ∈ [n], pi(zi) = vi.

Proof. Consider a slight modification to EP̃ which also outputs ~w. From the previous claim, if E occurs,
then for each i, the tuple (Ci, zi, vi,Wi) constitutes a binding commitment to the polynomial pi(X)− vi −
wi(X)(X − zi) of degree at most d+ 1, and pi(z) = yi, wi(z) = y′i. Since the verifier accepts the output

36

of EP̃, we have that z = Γ(d, [(Ci, zi, vi,Wi)]
n
i=1), and that yi − vi = y′i(z − zi). By Lemma 6.4, with

probability δ − negl(λ), pi(X)− vi − wi(X)(X − zi) is the zero polynomial, and so pi(zi) = vi.

Together these claims establish that with probability at least δ − negl(λ), for all i ∈ [n] it holds that
PCHC.Check(rk, (Ci, zi, vi), pi) = 1, which completes the proof of knowledge soundness.

37

7 Implementation

We contribute a generic and modular implementation of proof-carrying data based on accumulation schemes.
Our implementation includes several components of independent interest.

Framework for accumulation. We design and implement a generic framework for accumulation schemes
that supports arbitrary predicates/relations. The main interface is a Rust trait that defines the behavior of
any (atomic or split) accumulation scheme. We implement this trait for accumulation schemes for popular
polynomial commitments (and thus for popular SNARKs that rely on PC schemes, such as [CHMMVW20]).
In more detail, we implemented:
• the atomic accumulation scheme ASAGM in [BCMS20] for the PC scheme PCAGM;
• the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• the split accumulation scheme ASHC in Section 6 for PCHC.
Our framework also provides a generic trait for defining R1CS constraints for the verifier of an accumulation
scheme. We use this trait to implement R1CS constraints for all these accumulation schemes.

PCD from accumulation. We provide a generic construction of PCD from accumulation, which simultane-
ously supports the case of atomic accumulation from [BCMS20] and the case of split accumulation from
Section 5. Our code builds on and extends an existing PCD library that offers a generic “PCD” trait.7 We
instantiate this PCD trait via a modular construction, which takes as ingredients any NARK (as defined by
an appropriate trait), accumulation scheme for that NARK that implements the accumulation trait (from
above), and constraints for the accumulation verifier. We use our concrete instantiations of these ingredients
to construct PCD that is based on atomic accumulation of PCAGM and PCIPA, and split accumulation of PCHC.

Cycles of elliptic curves. All PCD constructions in our implementation rely on the technique of cycles of
elliptic curves [BCTV14]: PCD based on PCAGM uses cycles of pairing-friendly curves, while PCD based on
PCIPA and PCHC uses cycles of standard curves. For all of these, we rely on existing implementations from
the arkworks ecosystem:8 for pairing-friendly cycles we use the MNT cycle of curves (low security and
high security variants), while for standard cycles we use the Pasta cycle of curves [Hop20].

Proof-carrying data

Accumulation schemes

(+ verifier constraints)
AHP PC

PCAGM PCIPA PCHC

atomic
AS for
PCAGM

atomic
AS for 
PCIPA

split  
AS for  
PCHC

Marlin AHP

Non-interactive Arguments of Knowledge

Preprocessing
 SNARK 

 

(+ verifier constraints)
NARK

atomic
accumulation

for PC

split
accumulation

for PC

recursion via
atomic

accumulation

recursion via
sublinear

verification

recursion via
split

accumulation

accumulation
 for SNARK

accumulation
for NARK

Figure 5: Diagram illustrating components in our implementation. The gray boxes denote components that

exist in prior libraries, while the white boxes denote components contributed in this work.

7https://github.com/arkworks-rs/pcd
8https://github.com/arkworks-rs/curves

38

https://github.com/arkworks-rs/pcd
https://github.com/arkworks-rs/curves

8 Evaluation

We perform an evaluation focused on understanding the tradeoffs of atomic versus split accumulation in the
discrete logarithm setting.9 We compare two routes for recursion:
• recursion based on the atomic accumulation scheme ASIPA in [BCMS20] for the PC scheme PCIPA;
• recursion based on the split accumulation scheme ASHC in Section 6 for PCHC.
We proceed as follows. In Section 8.1 we compare the two polynomial commitment schemes PCIPA and PCHC,
and in Section 8.2 we compare the two corresponding accumulation schemes ASIPA and ASHC.

Experimental setup. All experiments are performed on a machine with an Intel Xeon 6136 CPU at 3.0 GHz.
The reported numbers are for schemes instantiated over the 255-bit prime-order Pallas curve in the Pasta
cycle [Hop20]; results for the Vesta curve in that cycle would be similar.

8.1 Comparing polynomial commitments based on DLs

We compare the performance of PCIPA and PCHC in Table 2, reporting experiments for an illustrative choice
of polynomial degree d. In both PC schemes all operations (commit, open, check) are linear in the degree
d, though for PCHC opening is concretely much cheaper than PCIPA (primarily because PCHC has a trivial
opening procedure). The main difference between the two PC schemes is that an evaluation proof in PCHC is
O(d) field elements while an evaluation proof in PCIPA is O(log d) group elements; this asymptotic difference
is apparent in the reported numbers (the proof size for PCHC is significantly larger than for PCIPA). We also
report lines of code to realize the same abstract PC scheme trait, to support the (intuitive) claim that PCHC is a
much simpler primitive than PCIPA.

PC scheme Commit Open Check |C| |π| LoC

PCIPA 8.0 s 106.6 s 8.2 s 33B 1.4 kB O(log d) G 1120
PCHC 8.1 s 0.43 s 8.3 s 33B 33.5MB O(d) F 608

Table 2: Comparison between the PC schemes PCIPA and PCHC for polynomials of degree d = 220.

8.2 Comparing accumulation schemes based on DLs

We compare the performance of ASIPA and ASHC in Table 3, reporting experiments for an illustrative choice of
polynomial degree d. We focus on the special case where the accumulation scheme is used to accumulate one
new polynomial evaluation claim into one old accumulator to obtain a new accumulator. Our experiments
indicate that ASHC is cheaper than ASIPA across all metrics except for accumulator size, and more generally
that performance is consistent with the asymptotic comparison from Table 1. In more detail:
• While prover time (per claim) in both ASIPA and ASHC are linear in the degree d, our experiments show that
ASIPA is concretely much more expensive than ASHC.

• Decider time in both ASIPA and ASHC are linear in the degree d, and our experiments show that the two
schemes have similar concrete performance.

• Verifier time (per claim) in ASIPA is logarithmic while in ASHC it is constant, and our experiments confirm
that ASIPA is concretely significantly more expensive than ASHC.

• Verifier constraint cost is much higher for ASIPA, even though both schemes use the same underlying
constraint gadget libraries.

9The pairing setting is also part of our implementation, as described in Section 7, but we do not include an evaluation for it here.

39

• The size of an atomic accumulator for ASIPA is logarithmic, and amounts to a few kilobytes; in contrast an
accumulator for ASHC is much larger, but is split into a short instance part (106 bytes) and a long witness
part (33.5 megabytes).

Overall the expensive parts of ASHC are exactly where intended (a large accumulation witness part) in exchange
for a very cheap verifier and a very short accumulation instance part; all other metrics are comparable to (and
concretely better than for) ASIPA.

scheme P V D |acc| |V| LoC

|x| |w| native constraints

ASIPA 117.6 s 14ms 8.3 s 1.58 kB 0 1006×103 664 1232
ASHC 25.2 s 2ms 8.1 s 106B 33.5MB 61×103 571 395

Table 3: Comparison between the accumulation schemes ASIPA and ASHC for polynomials of degree d = 220,
when accumulating one old accumulator and one evaluation claim into a new accumulator.

In Figure 6, we also compare |V| (the constraint cost of V) in both ASHC and ASIPA as we accumulate
polynomial evaluation claims of degree d in the range 210 to 220. As expected, the cost for ASHC is a small
constant, whereas the cost of ASIPA grows logarithmically (and is concretely much larger).

0

2x105

4x105

6x105

8x105

1x106

1.2x106

210 211 212 213 214 215 216 217 218 219 220

N
u
m

b
e
r

o
f

co
n
st

ra
in

ts

Degree

ASIPA

ASHC

Figure 6: Comparison of the constraint cost of the accumulation verifier V in ASIPA and ASHC when varying the
degree of the accumulated polynomial from 210 to 220.

40

A Split accumulation scheme for R1CS

We describe a split accumulation scheme AS = (G, I,P,V,D) for the NARK for R1CS in Figure 3. As a
subroutine we use an accumulation scheme ASHC = (GHC, IHC,PHC,VHC,DHC) for the Pedersen PC scheme
PCHC (e.g., the one we construct in Section 6). We use domain separation on the given random oracle ρ for
different tasks: we use ρHC to denote the oracle used for one invocation of ASHC; ρNARK to denote the oracle
used to run the NARK for R1CS; and ρAS to denote the random oracle used by AS for other tasks.
Predicate inputs. The predicate to accumulate is the NARK verifier, with the following split in a predicate
input q obtained from an R1CS instance x and proof π:

• The instance part of q consists of the R1CS input x, the first prover message (Cw, CA, CB, CC , Cq, Cw),
and the claimed evaluations sent in the second prover message (vA, vB, vC , vq, vH). This amounts to 6
group elements and |x|+ 5 field elements (which is short).

• The witness part of q consists of the openings sent in the second prover message (w, zA, zB, zC , q). This
amounts to O(n+m) field elements (which is proportional to the dimensions of the R1CS matrices).

Accumulator. The format of an accumulator acc is as follows:

• The instance part of acc consists of acc.x = (accHC.x, x, Cw, CA, CB, CC).

• The witness part of acc consists of acc.w = (accHC.w, w, zA, zB, zC).

Generator. The generator G runs GHC as a subroutine and outputs its output.
Indexer. The indexer I receives as input accumulation public parameters pp (output by G), predicate public
parameters ppΦ = ppNARK (they are the public parameters of the NARK per Definition 4.1), predicate index
iΦ = (A,B,C) (it is the index of the relation verified by the NARK per Definition 4.1), and works as follows:
• Hash the coefficient matrices: σ := ρAS(A,B,C) and τ := ρNARK(A,B,C).
• Set the degree bound to be d := m, the number of rows in each R1CS coefficient matrix.
• Trim the public parameters of PCHC for degree d: ck← CM.Trim(ppNARK, d+ 1). (In the NARK the public

parameters are the public parameters for the commitment scheme.)
• Invokes IHC(pp, ppΦ, d) to obtain (apkHC, avkHC, dkHC).
• Output (apk, avk, dk) :=

(
(σ, τ, apkHC), (σ, τ, avkHC), ((A,B,C), ck, dkHC)

)
.

Decider. The decider D receives as input the decision key dk = ((A,B,C), ck, dkHC) and an accumulator
acc (both instance and witness parts) and determines the validity of the accumulator as follows.
1. Set z := (acc.x, acc.w).
2. Check that acc.Cw = CM.Commit(ck, acc.w).
3. Check that acc.CA = CM.Commit(ck, acc.zA), acc.CB = CM.Commit(ck, acc.zB), acc.CC = CM.Commit(ck, acc.zC).
4. Check that acc.zA = A · z, acc.zB = B · z, acc.zC = Cz.
5. Check that DHC(dkHC, acc.accHC) = 1.
Prover. The prover P, given a random oracle ρ, receives as input the accumulator proving key apk =
(σ, τ, apkHC), inputs [qi = (q.xi, q.wi)]

n
i=1, and old accumulators [accj = (acc.xj , acc.wj)]

m
j=1, and outputs

a new accumulator acc = (acc.x, acc.w) and a proof πV that are computed as follows.
1. Compute α := ρAS(σ, [accj .x]mj=1, [qi.x]ni=1).
2. For each i ∈ [n], compute a combined polynomial evaluation instance qHC,i.x := (C, γ, v) and witness

qHC,i.w := f where

qHC,i.x.C := qi.CA + α · qi.CB + α2 · qi.CC + α3 · qi.Cq + α4 · qi.CH ,

41

qHC,i.x.γ := ρNARK(τ, qi.x, qi.{Cw, CA, CB, CC , Cq, CH}) ,

qHC,i.x.v := qi.vA + α · qi.vB + α2 · qi.vC + α3 · qi.vq + α4 · qi.vH ,

qHC,i.w.f := qi.zA + α · qi.zB + α2 · qi.zC + α3 · qi.q + α4 · qi.VH .

3. Accumulate all polynomial evaluations: (accHC, πV,HC) := PρHC(apkHC, [accj .accHC]mj=1, [qHC,i]
n
i=1).

4. Accumulate the linear computation for the instance part:

acc.x :=
∑m

j=1α
j · accj .x+

∑n
i=1α

m+i · qi.x ,

acc.Cw :=
∑m

j=1α
j · accj .Cw +

∑n
i=1α

m+i · qi.Cw ,

acc.CA :=
∑m

j=1α
j · accj .CA +

∑n
i=1α

m+i · qi.CA ,

acc.CB :=
∑m

j=1α
j · accj .CB +

∑n
i=1α

m+i · qi.CB ,

acc.CC :=
∑m

j=1α
j · accj .CC +

∑n
i=1α

m+i · qi.CC .

5. Accumulate the linear computation for the witness part:

acc.w :=
∑m

j=1α
j · accj .w +

∑n
i=1α

m+i · qi.w ,

acc.zA :=
∑m

j=1α
j · accj .zA +

∑n
i=1α

m+i · qi.zA ,

acc.zB :=
∑m

j=1α
j · accj .zB +

∑n
i=1α

m+i · qi.zB ,

acc.zC :=
∑m

j=1α
j · accj .zC +

∑n
i=1α

m+i · qi.zC .

6. Set acc.x := (accHC.x, x, Cw, CA, CB, CC) and acc.w := (accHC.w, w, zA, zB, zC).
7. Output the new accumulator acc := (acc.x, acc.w) and accumulation proof πV := πV,HC.

Verify. The verifier V, given a random oracle ρ, receives as input the accumulator verification key avk =
(σ, τ, avkHC), input instances [qi.x]ni=1, accumulator instances [accj .x]mj=1, a new accumulator instance acc.x,
and a proof πV, and determines whether to accept or reject as follows.
1. Compute α ∈ F as in Item 1 of the accumulation prover.
2. For each i ∈ [n], compute the polynomial evaluation instance qHC,i.x as in Item 2 of the accumulation

prover (excluding the witness computations) and check that

qi.vq · qi.vH = qi.vA · qi.vB − qi.vC .

3. Verify accumulation of polynomial evaluations: VρHC
HC (avkHC, [accj .accHC]mj=1, [qHC,i]

n
i=1, accHC, πV,HC) =

1.
4. Check the accumulation of linear computations by performing the assignments in Item 4 of the accumu-

lation prover as equality checks (between the new accumulator instance and the input instances and old
accumulator instances).

42

Acknowledgements

This research was supported in part by the Ethereum Foundation, NSF, DARPA, a grant from ONR, and the
Simons Foundation. Nicholas Spooner was supported by DARPA under Agreement No. HR00112020023.

References
[BBBPWM18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs

for Confidential Transactions and More”. In: Proceedings of the 39th IEEE Symposium on Security
and Privacy. S&P ’18. 2018, pp. 315–334.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the 35th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’16. 2016,
pp. 327–357.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the Theory of
Computing. STOC ’13. 2013, pp. 111–120.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Proof-Carrying Data from Accumulation Schemes”.
In: TCC ’20 (2020).

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Proceedings of the 14th
Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: Proceedings of the 34th Annual International Cryptology Conference. CRYPTO ’14.
2014, pp. 276–294.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Halo Infinite: Recursive zk-SNARKs from any Additive
Polynomial Commitment Scheme. Cryptology ePrint Archive, Report 2020/1536. 2020.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive Proof Composition without a Trusted Setup.
Cryptology ePrint Archive, Report 2019/1021. 2019.

[BMMTV19] B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for Inner Pairing Products and
Applications. Cryptology ePrint Archive, Report 2019/1177. 2019.

[BMRS20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. Coda: Decentralized Cryptocurrency at Scale.
Cryptology ePrint Archive, Report 2020/352. 2020.

[BN06] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model and a general forking
lemma”. In: Proceedings of the 13th ACM Conference on Computer and Communications Security.
CCS ’06. 2006, pp. 390–399.

[BR93] M. Bellare and P. Rogaway. “Random Oracles Are Practical: A Paradigm for Designing Efficient
Protocols”. In: Proceedings of the 1st ACM Conference on Computer and Communications Security.
CCS ’93. 1993, pp. 62–73.

[CCDW20] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward. Reducing Participation Costs via Incremental
Verification for Ledger Systems. Cryptology ePrint Archive, Report 2020/1522. 2020.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS”. In: Proceedings of the 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 738–768.

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Transparent Recursive Proofs
from Holography”. In: Proceedings of the 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 769–793.

43

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature Cards”. In:
Proceedings of the 1st Symposium on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331.

[CTV13] S. Chong, E. Tromer, and J. A. Vaughan. Enforcing Language Semantics Using Proof-Carrying
Data. Cryptology ePrint Archive, Report 2013/513. 2013.

[CTV15] A. Chiesa, E. Tromer, and M. Virza. “Cluster Computing in Zero Knowledge”. In: Proceedings of
the 34th Annual International Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT ’15. 2015, pp. 371–403.

[GT20] A. Ghoshal and S. Tessaro. Tight State-Restoration Soundness in the Algebraic Group Model.
Cryptology ePrint Archive, Report 2020/1351. 2020.

[Halo20] S. Bowe, J. Grigg, and D. Hopwood. Halo2. 2020. URL: https://github.com/zcash/
halo2.

[Hop20] D. Hopwood. The Pasta Curves for Halo 2 and Beyond. https://electriccoin.co/blog/
the-pasta-curves-for-halo-2-and-beyond/. 2020.

[KB20] A. Kattis and J. Bonneau. Proof of Necessary Work: Succinct State Verification with Fairness
Guarantees. Cryptology ePrint Archive, Report 2020/190. 2020.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: Proceedings of the 16th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

[Lin03] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation”. In: Journal
of Cryptology 16.3 (2003), pp. 143–184.

[Mina] O(1) Labs. Mina Cryptocurrency. https://minaprotocol.com/. 2017.

[NT16] A. Naveh and E. Tromer. “PhotoProof: Cryptographic Image Authentication for Any Set of Per-
missible Transformations”. In: Proceedings of the 37th IEEE Symposium on Security and Privacy.
S&P ’16. 2016, pp. 255–271.

[Pas03] R. Pass. “On Deniability in the Common Reference String and Random Oracle Model”. In: Pro-
ceedings of the 23rd Annual International Cryptology Conference. CRYPTO ’03. 2003, pp. 316–
337.

[Ped92] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”. In:
Proceedings of the 11th Annual International Cryptology Conference. CRYPTO ’91. 1992, pp. 129–
140.

[Pickles20] O(1) Labs. Pickles. URL: https://github.com/o1-labs/marlin.

[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space
Efficiency”. In: Proceedings of the 5th Theory of Cryptography Conference. TCC ’08. 2008, pp. 1–
18.

[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-Efficient zkSNARKs Without
Trusted Setup”. In: Proceedings of the 39th IEEE Symposium on Security and Privacy. S&P ’18.
2018, pp. 926–943.

44

https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://minaprotocol.com/
https://github.com/o1-labs/marlin

	Abstract
	Contents
	1 Introduction
	1.1 Contributions

	2 Techniques
	2.1 Accumulation: atomic vs split
	2.2 PCD from split accumulation
	2.3 NARK with split accumulation based on DL
	2.4 Split accumulation for Pedersen polynomial commitments
	2.5 Implementation and evaluation

	3 Preliminaries
	3.1 Non-interactive arguments in the ROM
	3.2 Proof-carrying data
	3.3 Instantiating the random oracle
	3.4 Post-quantum security
	3.5 Commitment schemes
	3.6 Polynomial commitments

	4 Split accumulation schemes for relations
	4.1 Accumulation schemes for certain predicates

	5 PCD from arguments of knowledge with split accumulation
	5.1 Construction
	5.2 Completeness
	5.3 Knowledge soundness
	5.4 Efficiency

	6 Accumulating Pedersen polynomial commitments
	6.1 Accumulation scheme for PC-HOM
	6.2 Proof of thm:hom-acc-security
	6.3 Knowledge soundness

	7 Implementation
	8 Evaluation
	8.1 Comparing polynomial commitments based on DLs
	8.2 Comparing accumulation schemes based on DLs

	A Split accumulation scheme for R1CS
	Acknowledgements
	References

