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Abstract—Off-chain channel networks are one of the most
promising technologies for dealing with blockchain scalability
and delayed finality issues. Parties that are connected within
such networks can send coins to each other without interacting
with the blockchain. Moreover, these payments can be “routed”
over the network. Thanks to this, even the parties that do not
have a channel in common can perform payments between each
other with the help of intermediaries.

In this paper, we introduce a new notion that we call
Non-Atomic Payment Splitting (NAPS) protocols that allow the
intermediaries in the network to split the payments recursively
into several sub-payments in such a way that the payment can
be successful “partially” (i.e. not all the requested amount may
be transferred). This is in contrast with the existing splitting
techniques that are “atomic” in the sense that they did not
allow such partial payments (we compare the “atomic” and “non-
atomic” approach in the paper). We define NAPS formally, and
then present a protocol, that we call “ETHNA”, that satisfies
this definition. ETHNA is based on very simple and efficient
cryptographic tools, and in particular does not use any expensive
cryptographic primitives. We implement a simple variant of
ETHNA in Solidity and provide some benchmarks. We also report
on some experiments with routing using ETHNA.

I. INTRODUCTION

Blockchain technology [26] allows a large group of parties
to reach consensus about contents of an (immutable) ledger,
typically containing a list of transactions. In blockchain’s
initial applications these transactions were simply describing
transfers of coins between the parties. One of the very promis-
ing extensions of the original Bitcoin ledger, are blockchains
that allow to register and execute the so-called smart contracts
(or simply “contracts”), i.e., formal agreements between the
parties, written down in a programming language and having
financial consequences (for more on this topic see, e.g., [6,
11, 21]). Probably the best-known example of such a system
is Ethereum [34]. One of the main limitations of several
blockchain-based systems is delayed finality, lack of scalabil-
ity, and non-trivial transaction fees. For example, in Bitcoin
it takes at least around 10 minutes to confirm a transaction,
at most 7 transactions per second can be processed, and the
average transaction fee is currently typically over 1 USD.

Off-chain channels [7, 30, 31] are a powerful approach
for dealing with these issues. The simplest example of this
technology are the so-called “payment channels”. Informally,
such a channel between Alice and Bob is an object in which
both parties have some coins. A channel has a corresponding
smart contract on the blockchain that can be used for resolving
conflicts between the parties. The parties open a channel
by depositing some coins in it. They can later change the
balance of the channel (i.e. information on how the channel’s
coins are distributed between Alice and Bob, respectively)
just by exchanging messages, and without interacting with the

blockchain The channel can be closed by Alice or Bob, in
which case the last channel’s balance is used to determine
how many coins are transferred to each of them. Since updates
do not require blockchain participation (they are done “off-
chain”), each individual update is immediate (its time is deter-
mined by the network speed) and at essentially no cost. The
only operations that involve blockchain are: “opening” and
“closing” the channel. Hence, this approach also significantly
improves scalability. All these advantages hold only if Alice
and Bob are cooperating. In the “pessimistic” case (when
one of them is malicious) there are no benefits of using this
technology, and the only thing that is guaranteed is that the
honest party does not loose her coins. This is ok, since in
practice, it is expected that in a vast majority of cases the
parties are cooperating (i.e. “behaving optimistically”). We
provide more background on the off-chain channels in the
next section. As we explain there, channels can form networks
which can serve for sending coins between the parties that do
not have a channel between each other. The main contribution
of this work is a novel algorithm for sending such payments.

II. BACKGROUND AND OUR CONTRIBUTION

In order to explain our contribution we need to provide an
introduction to channel networks. This is done in Sec. II-A.
Readers familiar with this topic can go quickly over it,
just paying attention to some terminology and notation that
we use(in particular: “pushing”, “acknowledging” payments,
“cash functions”, “n¢”, “P � P ′”). We then outline our
contribution in Sec. II-B. In this informal description we
assume that the maximal blockchain reaction time is 1 hour
(we often write “h” for an hour).

A. Introduction to channel and their networks
As mentioned above, a payment channel is opened when

Alice and Bob deploy a smart contract on the ledger, and
deposit some number of coins (say: x, and y, respectively)
into it. The initial balance of this channel is: “x¢ in Alice’s
account, y¢ in Bob’s account” (or [Alice 7→ x,Bob 7→ y] for
short). We model amounts of coins as non-negative integers,
and write “n¢” to denote n coins. This balance can be updated
(to some new balance [Alice 7→ x′,Bob 7→ y′], such that
x′ + y′ = x + y) by just exchanging messages between the
parties. The corresponding smart contract guarantees that each
party can at any time close the channel and get the money that
correspond to her latest balance. Only the opening and closing
operations require interaction with the blockchain. For more
on how it is done see, e.g., [10]).

Now, suppose we are given a set of parties P1, . . . , Pn
and channels between some of them. These channels natu-
rally form an (undirected) channel graph, which is a tuple
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G = (P, E ,Γ) with the set of vertices P equal to {P1, . . . , Pn}
and set E of edges being a family of two-element subsets of P .
The elements of P will be typically denoted as “Pi � Pj”
(instead of {Pi, Pj}). Every Pi � Pj represents a channel
between Pi and Pj , and the cash function Γ determines the
amount of coins available for the parties in every channel.
More precisely, every Γ(Pi� Pj) is a function f of a type
f : {Pi, Pj} → Z≥0. We will often write ΓPi�Pj to denote
this function. The value ΓPi�Pj (P ) denotes the amount of
coins that P has in her account in channel Pi � Pj . A
path (in G) is a sequence Pi1 _ · · · _ Pit such that for
every j we have Pij � Pij+1

∈ E . In this paper, for the
sake of simplicity, we assume that (a) the channel system is
deployed with some initial value of Γ0, which evolves over
time, resulting in functions Γ1,Γ2, . . ., (b) once a channel
system is established, no new channels are created (i.e., E
remains fixed), and (c) no coins are added to the the existing
channels, i.e., the total amount of coins available in every
channel e = Pi � Pj never exceeds the total amount
available in it initially.

Channel graphs can serve for secure payment sending. Let
us recall how this works in the most popular payment channel
networks, such as Lightning or Raiden. Our description is
very high-level (for the details, see, e.g., [30]). Consider the
following example: we have three parties: P1, P2, and P3 and
two channels: P1 � P2 and P2 � P3 between them. Now,
suppose the sender P1 wants to send v¢ to the receiver P3

over the path P1 _ P2 _ P3, with P2 being an intermediary
that routes these coins. This is done as follows. First, party
P1 asks P2 to forward v¢ in the direction of P3 (we call such
a request pushing coins from P1 to P2). The proof that P3

received these coins has to be presented by P2 within 2 hours
(denote this proof with π — we will discuss how π looks like
in a moment). If P2 manages to do it by this deadline, then
she gets these coins in her account in the channel P1 � P2.
To guarantee that this will happen, P1 initially blocks these
coins in the channel P1 � P2. These coins can be claimed
back by P1 if the 2 hours have passed, and P2 did not claim
them. In a similar way, P2 pushes these coins to P3, i.e., she
offers P3 to claim (by providing proof π within 1 hour) 6¢ in
the channel channel P3 � P4. Now, suppose that party P3

claims her v¢ in channel P2 � P3. This can only be done
by providing a proof π that she received these coins. We call
this process acknowledging the payment. Party P2 and P2 can
now claim her coins in channel P1 � P2 by submitting an
acknowledgment containing the proof π.

In the above example the amount of coins that can be pushed
via a channel Pi � Pi+1 is upper-bounded by the amount
of coins that Pi has in this channel. Therefore the maximal
amount of coins that can be pushed over path P1 _ P2 _ P3

is equal to the minimum of these values. We will call this
value the capacity of a given path.

On the technical level, in the Lightning network the proof
π is constructed using so-called hash-locked transactions, and
“smart contracts”1 that guarantee that nobody looses money.

1Recall that Lightning is built over Bitcoin, which has a very limited “smart
contract” support, hence these “smart contracts” are different that the ones
considered in this paper, see [30].

This is possible thanks to the way in which the n hours”
deadlines in the channels P1 � P2 and P2 � P3 are chosen.
An interesting feature of this protocol is that proof π serves
not only for internal purposes of the routing algorithm, but
can also be viewed as the output of the protocol which can
be used by P1 as a receipt that she transferred some coins to
P4. In other words: P1 can use π to resolve disputes between
with P4, either in some smart contract (that was deployed
earlier, and uses the given PCN for payments), or outside of
the blockchain.

B. Our contribution

One of the main problems with the existing PCNs is that
sending a payment between two parties requires a path from
the sender to the receiver that has sufficient capacity. This
problem is amplified by the fact that capacity of potential paths
can change dynamically, as several payments are executed in
parallel. Although usually the payments are very fast, in the
worst case they can be significantly delayed since each “hop”
in the network can take as long as the pessimistic blockchain
reaction time. Therefore it is hard to predict exactly what will
be the capacity of a given path even in very close future. This
is especially a problem if capacity of a given channel is close
to being completely exhausted (i.e. it is close to zero, because
of several ongoing payments). Some research [8] suggests
that while Lightning is very efficient in transferring small
amount of coins, transferring the larger ones is much harder,
and in particular transfers of coins worth $200 succeed with
probability 1%. A natural idea for solving this problem is to
split the payments along the way into several sub-payments.
This was described in several recent papers (see, e.g., [12, 13,
27, 28, 32]). However, up to our knowledge all these papers
considered so-called “atomic payment splitting”, meaning that
either all the sub-payments got through, or none of them.
In this paper we prose a new, alternative technique that we
call “non-atomic payment splitting” that does not have this
feature, and hence is more flexible. (We provide a comparison
between atomic and non-atomic splitting in Sec. III-2.) More
concretely, our contribution can be summarized as follows.

1) We introduce the concept of non-atomic payment split-
ting by defining formally a notion of Non-Atomic Payment
Splitting (NAPS) protocols. In our definition we require that
splitting is done ad-hoc by the intermediaries, possibly in a
reaction to dynamically changing capacity of the paths, or
to the fees. Perhaps the easiest way to describe NAPS is to
look at the payment networks as tools for outsourcing payment
delivery. For example, in the scenario from Sect. II-A party
P1 outsources to P2 the task of delivering 6¢ to P4, and gives
P2 three hours to complete it (then P2 outsources this task
to P3 with a more restrictive deadline). The sender might
not be interested in how this money is transferred, and the
only thing that matters to her is that it is indeed delivered
to the receiver, and that she gets the receipt. In particular,
the sender may not care if the money gets split on the way
to the receiver, i.e., if the coins that he sends are divided
into smaller amounts that are transferred independently over
different paths. In many cases the sender may also be OK with
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not all the money being transferred at once. More precisely,
suppose that he intends to transfer u¢ to the receiver. Then he
can also accept the fact that v < u coins were transferred
(due to network capacity limitations), and try to transfer
the remaining u − v coins later (in another “installments”).
Also, in many cases (e.g. BitTorrent-type file sharing) the
goods that the seller delivers in exchange for the payment
can be divided into very small units, and sent to the buyer
depending on how many coins have been transferred so far.
Finally, in several cases (e.g. depositing coins in so-called
“cryptocurrency exchanges”) uploading a non-full amount is
“better than nothing”. NAPS protocol permits such recursive
non-atomic payment splitting into “sub-payments” and partial
transfers of the coins.

2) We construct a protocol that we call ETHNA (see
Appx. A for an explanation of this name choice) that satisfies
the NAPS definition. In ETHNA the “sub-receipts” for sub-
payments are aggregated by the intermediaries into one short
sub-receipt, so that their size does not grow with the number
of aggregated sub-receipts. This is done very efficiently, and in
particular avoiding using advanced and expensive techniques
such as non-interactive zero knowledge or homomorphic sig-
nature schemes and hash functions. Instead, we rely on a
technique called “fraud proofs” in which an honest behavior
of parties is enforced by a punishing mechanism (this method
was used before, e.g., in [11, 17, 29, 33]). We stress that the
amount of data that is passed between two consecutive parties
on the path does not depend on the number of sub-payments
in which the payment is later divided. The same applies to the
data that these two parties send to the blockchain in case there
is a conflict between them. We summarize the complexity of
ETHNA in Sec. VI-B.

3) We provide a formal security analysis of ETHNA.
More precisely we prove that ETHNA satisfies the the NAPS
definition. We also analyze ETHNA’s complexity.

4) We also implement ETHNA contracts in Solidity
(the standard language for programming smart contracts in
Ethereum), and we provide some routing experiments. We
describe this implementation and provide some benchmarks in
Sec. VII-1. We stress, however, that routing algorithms are not
the main focus of this work, and further research on designing
algorithm that exploit non-atomicity of payment splitting.

C. Other related work and organization of the paper

Some of the related work was mentioned already before.
Off-chain channels are a topic of intensive research, and
there is no space here to describe all the recent exciting
developments [1, 4, 9, 10, 11, 13, 14, 19, 20, 22, 23, 24, 25] in
this area. The reader can also consult SoK papers on off-chain
techniques [15, 16]. Partial coin transfers were considered in
[28], but with no aggregation techniques and ad-hoc splitting.
In a recent, very interesting paper Bagaria et al. [2] proposed
a Boomerang system which allows to split the payments (by
the sender) into multiple parts in a “redundantly” and tolerate
the fact that only some of them succeed. The papers [2, 12,
28] focus on routing techniques, which is not the main focus
of the paper.

Organization of the rest of the paper: The next two
section contain an informal description of our ideas: in Sec. III
we provide an overview of NAPS definition, and in Sec. IV
we describe the main design principles of ETHNA. Then, in
Sec. V we provide the formal NAPS definition, and in Sec. VI
the detailed description of ETHNA, together with security
proof. Hence, in some sense Sec. V contains the “formal
details” of Sec. III, and Sec. VI – the details corresponding
to Sec. IV. An overview of our implementation and the
simulations is presented in Sec. VII.

Notation: For standard definitions of cryptographic al-
gorithms such as signature schemes or hash functions, see,
e.g., [18]. When we say that a message is “signed by some
party” we mean that it was signed using some fixed signature
scheme that is existentially unforgeable under chosen-message
attack. Natural numbers are denoted with N. We will also use
the notion of nonces. Their set is denoted with N . We assume
that N = N. We use some standard notation for functions,
string operations, and trees. For completeness it is presented
in Appx. B.

III. OVERVIEW OF THE NAPS DEFINITION

Let us now explain informally the NAPS protocol features
(for a formal definition see Sec. V). As highlighted above,
the main advantage of NAPS protocols over the existing
PCNs is that they allow ad-hoc splitting of a payment into
sub-payments Throughout this paper we use the following
convention: our protocols are run by a set of parties denoted
P = {P1, . . . , Pn}, where P1 be the sender, P2, . . . , Pn−1 be
the intermediaries, and Pn be the receiver. Moreover, let v be
the amount of coins that P1 wants to send to Pn, and let t
be the maximal time until when the transfer of coins should
happen. Since in general P1 can perform multiple payments to
Pn, we assume that each payment comes with a nonce µ ∈ N
that can be later used to identify this payment. Sometimes we
will simply call it “payment µ”. In this paper we present our
protocol in a stand-alone way, i.e., we do not take into account
possible parallel executions of the same protocol (e.g., with
P2 being the sender and P1 being one of the intermediaries)
and other ones. This is done purely for the sake of simplicity,
and we conjecture that our protocol satisfies such stronger
“composability” [3] properties. We leave analyzing this as an
open research direction.

1) NAPS behavior when everybody is honest: For sim-
plicity we start with an informal description of how NAPS
protocols operate when all the parties are honest. The security
properties (taking into account malicious behavior of the
parties) are described informally in Sec. III-3, and formally
defined in Sec. V. The easiest way to understand NAPS is
to look a the example on Fig. 1. We provide a more general
description below. Let us start by describing how the protocol
looks like from the point of view of the sender P1. Let
Pi1 , . . . , Pit be the neighbors of P1, i.e., parties with which P1

has channels. Suppose the balance of each channel P1 � Pij
is [P1 7→ xi, Pij 7→ yj ] (meaning that P1 and Pij have xi and
yj coins in their respective accounts in this channel). Now,
P1 chooses to push some amount vj of coins to Pn via some
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(a) The channel graph with the initial coin distribution.
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(b) The sender P1 wants to send 7¢ to the receiver P6. She splits
these coins into two amounts: 6¢ pushed to P2 and 1¢ is pushed
to P3. This is indicated with labels (1) and (2) respectively. Then
(3) party P3 simply pushes 1¢ further to P6. Party P2 splits 6¢
into 3¢+ 3¢, and pushes 3¢ to both P4 (4) and P5 (5). Path P4 _
P6 initially had capacity 2 only (see Fig. (a) above), but luckily
in the meanwhile 1¢ got unlocked (6) for P4 in channel P4 �
P6, and hence (7) party P4 pushes all 3¢ to P6. No coins got
unlocked in channel P5 � P6, so P5 pushes only 2¢ to P6. The
channel balances correspond to the situation after the coins are
pushed (except of channel P4 � P6 where we also indicated the
fact that 1¢ got unlocked (6)).
Each party P can also decide on her own about the timeout t of
each sub-payment that she pushes (this timeout in hours is indicated
with “h”). The only restriction is that t has to come at least 1 hour
before the time she has to acknowledge that sub-payment back.
This is because P needs this “safety margin” of 1 hour in case
P ′ is malicious, and the acknowledgment has to be done “via the
blockchain”.

P1 P2

P3

P4

P5

P65 6ack. 5¢

0

2

ack. 1¢

1

3

ack. 2¢

0 4ack. 3¢

9

2

ack. 1¢

0 4ack. 3¢

0

3

ack. 2¢

(c) Party P6 acknowledges sub-payment of 1¢ to P3, which,
in turn acknowledges it to P1. Party P6 also acknowledges sub-
payment of 3¢ to P4 and 2¢ to P5, who later acknowledge them
to P2. Once P2 receives both acknowledgments she “aggregates”
them into a single acknowledgment (for 5¢) and sends it to P1.
As a result 5¢ + 1¢ = 6¢ are transferred from P1 to P6. The
channel balances correspond to the situation after the coins were
acknowledged. Note that these actions can happen concurrently,
e.g., acknowledgments along the path P6 _ P3 _ P1 can be
arbitrarily interleaved with what is done in the other parts of the
graph (even before steps (4) and (5) on Fig. (b) above started)

Fig. 1: An example of a NAPS protocol execution. An edge
“ Pi Pjx y ” denotes the fact that there exists a channel
between Pi and Pj , and the parties have x and y¢ in it,
respectively. We stress that actions from Figs. (b) and (c) can
be interleaved (see caption under Fig. (c) for an example)

Pij , and set up a deadline tj for this (we will also call vj a
sub-payment of payment µ). This results in: (a) the balance
[P1 7→ xi, Pij 7→ yj ] changing to [P1 7→ xi − vj , Pij 7→ yj ],
(b) the amount of coins that P1 still wants to transfer to Pn
being decreased as follows: v := v − vj , and (c) Pij holding
“vj coins that she should transfer to Pn within time tj .

It is also OK if Pij transfers only some part v′j < vj of
this amount (this can happen, e.g., if the paths that lead to
Pn via Pj do not have sufficient capacity). In this case, P1

has to be given back the remaining (“non-transferred”) amount
r = vj − v′j . More precisely, before time tj comes, party Pij
acknowledges the amount v′j that she managed to transfer. This
results in (1) changing the balance of the channel P1 � Pij
by crediting v′j coins to Pij ’s account in it, and (2) r coins to
P1’s account. Moreover (3) P1 adds back the non-transferred
amount r to v, by letting v := v + r. Here (1) corresponds to
the fact that Pij has to be given the coins that she transferred
(and hence “lost” in the other channels”), and (2) comes from
the fact that not all the coins were transferred (if Pij managed
to transfer all the coins, then, of course, r = 0). Finally, (3) is
used for P1’s “internal bookkeeping” purposes, i.e., P1 simply
writes down the fact that r coins “were returned” and still need
to be transferred.

While party P1 waits for Pij to complete the transfer that it
requested, she can also contact some other neighbor Pik asking
her to transfer some other amount vk to Pn. This is done in
exactly the same way as transferring coins via Pij (described
above). In particular, the effects on the balance of the channel
P1 � Pik are as before (with subscript “j” replaced with
“k”). In the example on Fig. 1 party P1 splits 7 coins into
6 (that she pushes to P2) plus 1 that she pushes to P3. In
more advanced cases several such transfers can be done in
parallel with other neighbors of P1. Moreover, P1 can push
several sub-payments (of payment µ) to one neighbor. For
example, P1 can push again some new amount to Pij hoping
that maybe this time there will be more capacity available for
routing payments via this party.

This process can be repeated by the intermediaries. Let P
be a party that holds some coins that were “pushed” to it by
some P ′ (and that originate from P1 a have to be delivered
to Pn). Now, P can split them further, and moreover she can
decide on her own how this splitting is done depending, e.g.,
on the current capacity of the possible paths leading to Pn.
For instance, Pij can decide to split vij further to between its
neighbors in the same way as P1 split u between its neighbors.
The payment splitting can be done in an arbitrary way, except
of two following restrictions. First of all, we do not allow are
“loops” (i.e. paths that contain the same party more than once),
as it is hard to imagine any application of such a feature. In
the basic version of the protocol we assume that the number of
times a given payment sub-payment is split by a single party
P is bounded by a parameter δ ∈ N, called arity (for example
arity on Figs. 1 is at most 2). In Appx. E2 we present an
improved protocol where δ is unbounded (at a cost of a mild
increase of the pessimistic number of rounds of interaction).
As already mentioned, the most important feature of NAPS is
the non-atomicity of payments. We discuss it further below.
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2) Atomic vs. non-atomic payment splitting: As already
highlighted in Sec. II-B the previous protocols on payment
splitting always required payments to be atomic, meaning that
in order for a payment to succeed all the sub-payments had to
reach the receiver. Technically, this means that in order to issue
a receipt for any of the sub-payments (this receipt is typically
a pre-image of a hash function, see, e.g., [12]) all of them
need to reach the receiver. This has several disadvantages:
(1) the coins remain blocked in every path at least until the
last sub-payment arrives to the receiver, (2) the success of
a given sub-payment dependents not only on the subsequent
intermediaries, but also on the other “sibling”paths (this prob-
lem was observed in [12] where it is argued that this risk may
lead to intermediaries rejecting sub-payments that were split
before, see Sec. 3.1 of [12]). Finally, atomic payments may
result in the “deadlock” situations in the network. Since this
may be of independent interest, we describe it in more detail
below. Consider a channel graph as below (for simplicity we
do not specify the coin amounts on the right-hand-sides of the
channels, as they are irrelevant to this example).

P1 P3

P5

P4P2

2¢

2¢

1

1

1

1

1

1

Now suppose that P1 and P2 decide to send 2¢ each to P5

via P3 and P4. If now P1 pushes 1¢ to P3 and at the same
time P2 pushes 1¢ to P4, then none of the payments can be
completed (since the channels P3 � P5 and P4 � P5 do
not have sufficient capacity). On the other hand: if we allow
non-atomic payments then each payment will partially succeed
(i.e. each sender will send 1¢ to the receiver P5). They may
then try to send the remaining amounts after some time when
new capacity in these channels is available. This is of course a
very simple scenario, but it can be generalized to much larger
graphs, and to more complicated “deadlocks”.

On the other hand, “atomicity” and even “fine grained atom-
icity” can be also obtained in ETHNA by a small modification
of the protocol. We write more about it in Sec. E1. Let us
also remark that atomic payment splitting in general seems
to be easier to achieve, which is probably the reason why
there has been more focus on them in the literature (with
papers focusing more on other aspects of this problem, such
as routing algorithms, e.g. [12]). Finally, let us stress that we
do not claim that non-atomicity is in any way superior to
atomicity. We think that both solutions have their advantages
and disadvantages, and there exist applications where each of
them is better than the other one.

3) NAPS security properties: In the description in Sec. III-1
we assumed that all the parties are behaving honestly. Like all
the other PCNs, we require that NAPS protocols work also if
the parties are malicious, and in particular, no honest party P
can loose money, even if all the other parties are not following
the protocol and are working against P . The corrupt parties
can act in a coalition, which is modeled by an adversary Adv.
For the sake of simplicity we assume synchronous network,
with Adv being rushing. Formal security definition appears in
Sec. V Let us now informally list the security requirements,
which are quite standard, and hold for most PCNs (including

Lightning).
The first property is called “fairness for the sender”. To

define it, note that as a result of payment µ (with timeout t),
the total amount of coins that each party P has in the channel
with other parties typically changes. Let netµ(P ) denote the
amount of coins that P gained in all the channels. Of course
netµ(P ) can be negative if P lost −netµ(P ) coins. We require
that by the time t an honest Pi holds a receipt of a form

“an amount v of coins has been transferred
from P1 to Pn as a result of payment µ”, (1)

with v ≤ u. Moreover, under normal circumstances, i.e. when
everybody is honest, v is equal to −netµ(P1) (i.e. the sum
of the amounts that P1 lost in the channels). In case some
parties (other than P1) are dishonest, the only thing that they
can do is to behave irrationally, and let v ≥ −netµ(P1), in
which case P1 holds a receipt for transferring more coins
than she actually lost in the channels. Note that introducing
receipts makes our model stronger than the models that have
no receipts (e.g. [30]). This is because the “no receipts”
settings makes sense only under the assumption that the sender
and the receiver trust each other, and in particular the receiver
is not corrupt (which is is a stronger security assumption that
the one that we use in our paper). A receipt can be later used
in another smart contract (e.g., a contract that delivers some
digital goods whose amount depends on v). “Fairness for the
receiver” is defined analogously, i.e.: if P1 holds a receipt (1)
then typically v = net(Pn), and if some parties (other than
Pn) are dishonest, then they can make v ≤ netµ(Pn). In other
words, P1 cannot get a receipt for an amount that is higher than
what Pn actually received in the channels. Finally, we require
that the following property called “balance neutrality for the
intermediaries” holds: for every honest P ∈ {P2, . . . , Pn−1}
we have that netµ(Pn) ≥ 0. Again: if everybody else is honest
then we have equality instead of inequality.

IV. OVERVIEW OF THE ETHNA PROTOCOL

After presenting NAPS definition, let us now explain the
main ideas behind the protocol ETHNA protocol that realizes
it (for a formal description of the construction see Sec. VI, and
for an overview of the implementation see Sec. VII-1). A very
important feature of ETHNA is that it permits “sub-receipt
aggregation”, by which we mean the following. Consider some
payment µ. Each time after Pn receives some sub-payment v
that reached it via some path Π = P1 _ Pi1 _ · · · _ Pit it
issues a sub-receipt and sends it to Pn−1. Each intermediary
that received more than one sub-receipt can aggregate them
into one short sub-receipt that she sends further in the direction
of P1. Finally, P1 also produces one short receipt for the entire
payment. This results in small communication complexity, and
in particular, the pessimistic gas costs are low. We discuss
this in more detail in Secs. VI-B and VII-1. One option
for doing this would be to let the sub-receipt be signed
using a homomorphic signature scheme, and then exploit this
homomorphism to aggregate the sub-receipts. In this paper
we use a simpler solution that can be efficiently and easily
implemented in the current smart-contract platforms.
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Very informally speaking, we ask Pn to perform the “sub-
payment aggregation herself” (this is done at the moment
of signing a sub-receipt, and does not require any further
interaction with Pn). Then, we just let the other parties verify
that this aggregation was performed correctly. If any “cheating
by Pn” is detected (i.e. some party discovers that Pn did not
behave honestly) then a proof of this fact (called a “fraud
proof”) will count as a receipt that a full amount has been
transferred to Pn. From the security point of view this is ok,
since an honest Pn will never cheat (and hence, no “fraud
proof” against him will ever be produced). Thanks to this
approach, we completely avoid using any expensive advanced
cryptographic techniques (such as homomorphic signatures,
or non-interactive proofs). Below we explain the main idea of
ETHNA by considering the example from Fig. 1.

A. The “everybody is honest” case

Again, we start with describing how the protocol works
when everybody is honest, and then (in Sec. IV-B) we show
how the malicious behavior is prevented.

1) Invoice sending: The protocol starts with the receiver Pn
sending to P1 an “invoice” that specifies (among other things)
the identifier µ of the payment, and the maximal amount v
of coins that Pn is willing to accept. As we explain below,
this invoice may be later used together with “fraud proofs” to
produce a proof that all the v coins were transferred to Pn (if
she proves to be malicious).

2) Pushing sub-payments: Pushing sub-payments is done
by sending messages containing information about the path
that the sub-payment “traveled” so far (together with the
amount of coins to be pushed and a timeout information), and
simultaneously blocking coins in the underlying channels. The
messages sent between the parties on Fig. 1a are presented on
the picture below.

P1 P2

P3

P4

P5

P6
(push, P1 _ P2,

6¢, 3h)

(pus
h, P1 _ P3, 1

¢, 2h)

(push, P
1 _

P
2

_
P
5 , 3¢, 2h)

(push, P1 _ P2

_ P4, 3¢, 2h)

(push, P1 _ P3 _ P6 , 1¢, 1h)

(pu
sh,
P1

_ P2
_

P5
_ P6, 2

¢, 1
h)

(push, P1 _ P2 _
P4 _ P6, 3¢, 1h)

Whenever a message “(push, π, v, t)” is sent from P to P ′, the
party P blocks v coins in channel P � P ′ for time t. These
coins can be claimed by P ′ is she provides a corresponding
sub-receipt within time t. Otherwise it can be reclaimed back
by P .

3) Acknowledging sub-payments by the receiver: The re-
ceiver P6 acknowledges that sub-payments by sending signed
sub-receipts back to the intermediaries, and simultaneously
claiming the coins that were blocked in the corresponding
channels. Simultaneously the receiver P6 creates a graph
called “payment tree” that is stored locally by P6 and grows
with each acknowledged sub-payment. Consider now Fig. 1c.
As explained before, the order of message acknowledgment
can be arbitrary. In what follows we assume that P6 first
acknowledges the sub-payment that came along the path

P1 _ P3 _ P6. This means that P6 “accepts” that 1¢ will
be transferred to her from P1 via path P1 _ P3 _ P6, or, in
other words: 1¢ will be “passed” through each of P1, P3, and
P6 (note that we included here the sender P1 and the receiver
Pn). This can be depicted as the following graph that consists
of a single path that we denote α:

P1 P3 P6 =: α1¢ 1¢ 1¢ (2)

In order to acknowledge the sub-payment that was pushed
along the path P1 _ P3 _ P6 party P6 signs α and sends it
to P3. Such signed information (in a slightly generalized form)
will be called a “sub-receipt” (see Sec. VI). By providing this
sub-receipt party P6 also gets 1¢ in the P3 � P4 (that were
blocked by P3 in this channel when the “push” message was
sent). The graph from Eq. (2) is the first version of the payment
tree that, as mentioned above, the receiver P6 stores locally.

Now, suppose the next sub-payment that P6 wants to
acknowledge is the one that came along the path P1 _ P2 _
P4 _ P6, i.e., P6 accepts that 3¢ will be transferred to her
from P1 via path P1 _ P2 _ P4 _ P6. The receiver P6 now
modifies the payment tree as follows:

P1 P34¢

P2 P4 P6

P61¢ 1¢

=: β
3¢

3¢ 3¢
(3)

Analogously to what we saw before, this tree represents the
total amounts of coins that will be “passed” through different
parties from P1 to P6 after the acknowledgment of this sub-
payment is completed. On Eq. (3) the thick line (denoted β)
corresponds to the “new” path, and the thin one is taken from
Eq. (2), except that P1 is labeled with “4¢”. This is because
the total amount of coins that will be passed through P1 is
equal to the sum of the coins passed before (1¢) and now
(3¢). Observe also that P6 appears in “two copies” on Eq. (3).
The is because the graph that we construct is a tree (actually
every leaf of a payment tree will be labeled by the receiver).
Party P6 now signs path β to create a sub-receipt that she
sends to P4 in order to claim 3¢ in the channel P4 � P6.

Finally, P6 acknowledges the sub-payment that came along
the path P1 _ P2 _ P5 _ P6. This is done similarly to what
we did before. The resulting tree is now as follows.

P1 P36¢

P2 P4 P6

P61¢ 1¢

3¢ 3¢

P5 P6

5¢

2¢
2¢ =: γ

(4)

Note that we performed “summing” in two places on Eq. (4):
at the node P1 (where we computed 6¢ as 4¢ + 2¢) and an
P2 (where 5¢ = 2¢ + 3¢). Labeled path γ is now signed by
P6 and sent to P5 as sub-receipt in order to claim 2¢.

The payment trees whose examples we saw on Eqs. (2)–(4)
are defined formally (in a slightly more general version) in
Sec. VI-A2 on p. 11. Their main feature is that value of coins
in the label on each node P is equal to the sum of the labels
of the children of P . By a standard recursive application of
this observation this implies that the coin value in a label of
P is equal to the sum of labels in the leaves of the sub-tree
rooted in P . In particular: the label in the root of the entire
tree is equal to the sum of the values in the leaves.
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4) Acknowledging sub-payments by the intermediaries: We
now show how the intermediaries P2, . . . , P5 acknowledge the
sub-payments. On a high level this is done by propagating the
sup-receipts (issued by P6) from right to left. Note, that each
party may receive several such sub-receipts (if she decided
to split a given sub-payment). Let S be the set of such
sub-receipts (such sets will be called “payment reports”, see
Sec. VI for their formal definition). When a party P wants to
acknowledge the sub-payment she chooses (in a way that we
explain below) one of the sub-receipts ζ from her set S. She
then forwards it back in the left direction to the party P ′ that
pushed the given sub-payment to her. As a result P gets v¢
in the channel P ′ � P . To determine the value of v¢ the
following rule is used: it is defined to be the label of P on
the path ζ. Given this, the rule for choosing ζ ∈ S is pretty
natural: P simply chooses such the ζ that maximizes v. Such
ζ will be called a “leader” of S (at node P ). See Sec. VI for
the formal definition of this notion. To illustrate it let us look
again at out example from Fig. 1.

First, observe that P3 holds only one sub-receipt (i.e.: the
signed path α). She simply forwards it to P1 and receives 1¢
in the channel P1 � P3. Note that this is exactly equal to
the value that she “lost” in the channel P3 � P6, and hence
the balance neutrality property holds. The situation is a bit
more complicated for P2 since she holds two paths signed by
the receiver: β (defined on Eq. (3)) and γ (from Eq. (4)). By
applying the rule described above P2 chooses the leader ζ at
P2 to be equal to γ (since 5¢ > 3¢). This is depicted below
(the shaded area indicates the labels that are compared).

P14¢ P2 P4 P6β = 3¢ 3¢ 3¢

P16¢ P2 P5 P65¢ 2¢ 2¢γ = (5)

What remains is to argue about balance neutrality for P2, i.e.
that number of coins received by P2 in the channel P1 � P2

is equal to the sum of coins that she “lost on the right-hand
side”. In this particular example it can be easily verified just by
looking at Eq. (5) (5¢ are “gained”, and 2¢+3¢ are “lost”). In
the general case the formal proof is based on the property that
that value of coins in the label on each node P in a payment
tree is equal to the sum of the labels of the children of P . See
Sec. VI, and particular Claim 1, for the details.

5) Final receipt produced by P1: Once all the sub-payments
are over P1 decides to conclude the procedure and obtain the
final receipt for the entire payment (see Eq. (1) on page 5).
Again, P1 holds a “payment report” S, i.e. a set of paths
signed by P6. In the case of our example these paths are: α
(sent to P1 by P3) and γ (sent by P2). Party P1 chooses her
“receipt” in a similar way as the intermediaries choose which
sub-receipt to forward. More precisely, let ζ be the path that
is the leader of S at node P1. This path becomes the final
receipt. The amount of coins that are transferred is equal to
the label of P1 in ζ. In our case, the leader ζ is clearly γ
(since its label at P is “6¢”, while the label of γ at P is “1¢”,
cf. Eqs (2) and (4)). Hence, γ becomes the final receipt for
the payment of 6 coins.

“Fairness for the sender” follows from the same argument
as the “balance neutrality for the intermediaries”. For “fairness

for the receiver” observe that ζ is signed by the receiver, and
is taken from the payment tree (created and maintained by the
receiver). To finish the argument recall that: (a) as observed
before the label in the root of such a tree is always equal to the
sum of the labels in its leaves, and (b) this sum is exactly equal
to the total amount of coins that the receiver received from its
neighbors during this payment procedure. For the details see
Lemma 2 on page 12.

B. Dealing with malicious behavior

The main type of malicious behavior that we have to deal
with is cheating by the receiver Pn whose goal could be to
get more coins than appears on the final receipt held by the
sender P1. This could potentially be done at the cost of P1

or some of the intermediaries. So far, we have not described
how to guarantee that Pn produces the sub-receipts correctly.
As already highlighted, our trick is to let the malicious Pn
produce the sub-receipts in an arbitrary way, and later let other
parties verify Pn’s operation. This is based on the idea of
“fraud proofs”: if an intermediary P finds a proof that Pn is
cheating she can automatically claim all the coins that were
pushed to her by forwarding this proof “to the left”. In this
way the cheating proof reaches the sender P1 who can now
use it as the receipt for transferring the full amount that was
requested (recall that P1 holds an “invoice” from Pn).

Suppose, e.g., that in our scenario P6 cheats by sending to
P5, instead of γ (see Eq. (4)), the following sub-receipt:

P1γ̂ := 5¢ P2 P5 P64¢ 2¢ 2¢ (6)

The receiver does it in order to make P1 hold a receipt for 5¢,
while in fact receiving 6¢. Party P5 has no way to discover
this fraud attempt (since from her local perspective everything
looks ok), so 2¢ get transferred to P6 in the channel P5 � P6.
Party P5 forwards γ̂ to P2 and gets 2¢ in the channel P2 � P5

(hence the “balance neutrality” property for her holds). Now
look at this situation from the point of view of P2. In addition
to γ̂ she got one more sub-receipt, namely β (see, e.g., Eq. (5)).
Party P2 preforms a “consistency check” by combining γ̂ and
β. This is done by trying to locally reconstruct the part of the
payment tree that concerns P2. This is done as follows. First
observe that the value on the label of P1 in β is 4¢, which is
smaller than the label of P1 in γ̂ (which is equal to 5¢). This
means that β had to be signed by P6 before she signed γ̂.
Hence P2 first writes down β, and then on top of it she writes
γ̂ (possibly overwriting some values). Normally (i.e. when P6

is honest) this should result in a sub-tree of the tree from
Eq. (4). However, since P6 was cheating the resulting graph
is different. Namely, P2 reconstructs the following:

P15¢ P2 P4 P63¢ 3¢

P5 P6

4¢

2¢
2¢

(7)

It is now obvious that P6 is cheating, since the labels on the
children of P2 sum up to 5¢, which is larger than 4¢ (the label
of P2). This “inconsistency” is marked as a shaded region on
Eq. (7). Hence the set {β, γ̂} is a “fraud proof” against P6.
As described above, once we get such a proof we are “done”:
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simply each intermediary can use it to claim all the money
that was blocked for her, and the receiver can use it as a
receipt that all the coins were transferred. Let us stress that,
of course, none of the parties knows a priori if P6 is cheating
or not, and therefore in reality the above “consistency check”
is performed always.

V. NAPS FORMAL SECURITY DEFINITION

We now proceed to the formal exposition of the ideas
already presented informally in Sec. III. Below ∆ denotes
maximal blockchain reaction time (typically: ∆� 1).

1) Payment routes: We start with defining a generalization
of the term “payment paths” that were introduced in Sec. III.
As already explained, to be as general as possible, the NAPS
definition permits that several sub-payment of the same pay-
ment µ are routed via the same party independently. Moreover,
we allow using the same path for more than one sub-payment
of the same payment. Consider, e.g., the following scenario:
3¢ is sent on a path P1 _ P2 _ P3. This amount is first split
by P1 as: 2¢ + 1¢. The 2¢ is split again as: 1¢ + 1¢ and sent
to P3, while 1¢ is just delivered directly to P3 without being
split further. Pictorially:

P13¢

1¢

2¢
P2

1¢

1¢

1¢

P3

Obviously all the 3 coins above traveled along the same
path, but nevertheless they have to be considered as separate
sub-payments. In order to uniquely identify each of them,
we introduce a concept of “payment routes” that are very
similar to “payment paths”, except that they contain additional
information that makes them unique (in the situations as
above). More concretely, a “route” is a “path” with nonces
added in every hop. For example, the nonces added to the
scenario above are as follows.

P13¢ µ1

1¢ µ′2

2¢ µ2

P2

1¢ µ′′3

1¢ µ′3

1¢ µ3

P3

This results in the following routes:
〈(P1, µ1), (P2, µ2), (P3, µ3)〉, 〈(P1, µ1), (P2, µ2), (P3, µ

′
3)〉,

and 〈(P1, µ1), (P2, µ
′
2), (P3, µ

′′
3)〉. We can think of every µi

as being “contributed” by Pi. Moreover, we assume that µ1

(“contributed” by the sender P1) is equal to the nonce that
identifies the entire payment. Formally, for a channel graph
G = (P, E,Γ) a string π = 〈(Pi1 , µ1), . . . , (Pi|π| , µ|π|)〉 is
a payment route over G for payment µ if each µi ∈ N is a
nonce and Pi1 _ · · · _ Pi|π| is a path in G that has at least
two elements, its first element is equal to P1, its last element
is equal to Pn, and it has no loops (i.e. every element from P
appears in π at most once). We assume that a payment route
corresponding to a payment µ will always start with (P1, µ)
(hence, as already mentioned above µ1 := µ). We say that
P appears on π (at position j) if we have that P = Pij . A
payment route prefix (over G) is a string π′ that is a prefix of
some payment route over G.

2) Modeling parties and channels: Suppose G = (P, E ,Γ)
is a channel graph. In our formal modeling every edge
e = P � P ′ ∈ E has a corresponding machine denoted

Ce. We assume that Ce has two special registers denoted
Ce.cash(P ) and Ce.cash(P ′). The values in these registers
are non-negative integers, and Ce.cash(P ) denotes the amount
of coins that P ∈ e has in her account in Ce. Recall also
that CP�P ′ .cash can be viewed as a function CP�P ′ .cash :
{P, P ′} → Z≥0. Channel machines can interact with P
and P ′, and have a state (for this reason we will refer
to the as “state channels”). See, e.g., [5, 11] (or ETHNA
implementation described in Sec. VII-1) on how to implement
state channels in real life.

Another “special” machine is the receipt verification ma-
chine RVM. The role of RVM is to model the fact that the
receipts produced by P1 need to be publicly-verifiable, so, e.g.,
they can be used later in another smart contract, see Sec. III-3
(it plays a role similar to the so-called “validation function”
defined in Sec. 2.3 of [12]). We stress that the RVM has very
limited interaction with the other machines. In fact, the only
interaction that happens is: P1 sends a message to RVM, and
RVM decides if it is a valid receipt and outputs information
on how many coins were transferred within a given payment.
Hence, we can think of RVM as an efficiently computable
(“non-interactive”) function.

3) The adversary and the environment: The protocol is
attacked by a polynomial-time rushing adversary Adv who can
corrupt some parties (when a party is corrupt Adv learns all
its secrets and takes a full control over it). The adversary can
also send messages to the honest parties that influence their
behavior in the protocol, and receive messages from them. A
party that has not been corrupt is called honest. We assume
that Adv gets G as input.

To model the fact that the parties can make internal de-
cisions about the protocol actions we use a concept of an
environment [3] that is responsible for “orchestrating” the
execution. We model it by a poly-time interactive machine
Env. The party machines interact with the environment Env via
messages starting with “env-” prefix. The environment sends
the following messages to the parties: “env-send” and “env
-receive” — sent simultaneously to P1 and Pn (respectively)
and used to initiate a payment µ, messages “env-push” — to
push sub-payments further, and messages “env-acknowledge”
— to acknowledge a payment. The parties respond with mes-
sages “env-pushed” and “env-acknowledge”— to signal that
a sub-payment was pushed and acknowledged (respectively).
The reason to have the env-pushed and env-acknowledged
messages is purely technical2 For reference, these messages
and their syntax are summarized on a cheat sheet on Fig. 4
(see p. 16). We assume that the environment gets the channel
graph G as input. The environment Env is called admissible
if it satisfies certain criteria presented on Fig. 2.

It maintains a set Ω of “open push requests” (see Fig. 2)
and functions sent , value, and timeout that are used to store
information about these requests. We say that a party P has an
open push request if there exists π ∈ Ω such that P appears

2Under the normal circumstances, if Env asked to P to push a sub-payment
to P ′ then in the next round she will receive an “env-pushed” message from
P ′. Of course, this does not need to be the case when P or P ′ are corrupt and
hence the the “env-pushed” message is needed. The same applies to “env
-acknowledge” and “env-acknowledged”.
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Env takes as input a channel graph G = (P, E ,Γ), where Γ will be
treated as a variable that will be changing throughout the execution
of Env (the values P, E will remain constant). It also defines the
following variables:

• Ω — a set of payments routes (initially empty) called the open
push requests. When we say that we open a push request π, we
mean that we add π to Ω. When we say that we close a push
request π we mean that we remove π from Ω.

• sent , value, timeout — functions of a type Ω→ Z≥0.
The environment interacts with the parties in an arbitrary way, as
long as certain restrictions are satisfied. We specify “conditions”
on when a message that Env receives is valid (if they are not met,
then the message is ignored). Both the outgoing and incoming
messages can result in modifications of the variables (we call these
modifications the “side effects”).

• Env sends a (env-send, v, µ, t) to P1 and (env-receive, v, µ, t)
to Pn.
Restrictions: (a) these messages have to be sent simultaneously,
(b) the nonce µ has not been used before in the env-send and env
-receive messages.

• Env receives (env-pushed, (π||(P, µ)), v, t) from a party P .
Restrictions: t > τ , where τ is the current time.
Side effects: open a push request (π||(P, µ)) and let
sent((π||(P, µ))) := 0 and value((π||(P, µ))) := v and
timeout((π||(P, µ))) := t.
We require that in time t the latest Env sends (env
-acknowledge, (π||(P, µ))) (see below) to party P .

• Env receives (env-acknowledged, (π||(P, µ)||(P ′, µ′)), v) from
a party P .
Condition: a push request (π||(P, µ)||(P ′, µ′)) is open.
Side effects: let sent((π||(P, µ))) := sent(π||(P, µ))) + v and
ΓP�P ′(P ) := ΓP�P ′(P ) + v′ − v and ΓP�P ′(P ′) :=

ΓP�P ′(P ′) + v, where v′ := value((π||(P, µ)||(P ′, µ′)).
• Env sends (env-push, (π||(P, µ)||(P ′, µ′)), v, t) to a party P .
Restrictions: (a) no env-push request with the same
argument (π||(P, µ)||(P ′, µ′)) has been sent before, (b) a
push request (π||(P, µ)) is open, (c) at most δ − 1
requests env-push with the argument (π||(P, µ)) have
been sent before, (d) t ≤ timeout(π||(P, µ)) − ∆,
(e) v ≤ value(π||(P, µ)) − sent(π||(P, µ)), and
(f) v ≤ ΓP�P ′(P ).
Side effects: let ΓP�P ′(P ) := ΓP�P ′(P )− v.

• Env sends (env-acknowledge, (π||(P, µ)||(P ′, µ′))) to a
party P ′.
Restriction: a push request (π||(P, µ)||(P ′, µ′)) is open. No
push request (π||(P, µ)||(P ′, µ′)||π′) (for π′ 6= ε) is open.
Side effects: close this push request.

Fig. 2: Admissible Env for ETHNA with arity δ.

on π. The main idea behind the “admissible environment”
is that it restricts us to the environments that satisfy some
natural correctness requirements, such as “do not push more
coins than you hold in a given sub-payment”. These conditions
are called “restrictions”. Most of the actions result in some
modification of the internal variables of Env. These restrictions
are called “side effects”. The environment is also responsible
for terminating the protocol. More concretely, we say that the
protocol terminated is Env stops. The environment can only
do it if there are no open push requests.

4) The network model: We assume a synchronous commu-
nication network, i.e., the execution of the protocol happens
in rounds. The notion of rounds is just an abstraction which

simplifies our model, and was used frequently in this area in
the past (see, e.g., [10, 11]). Whenever we say that some op-
eration (e.g. sending a message or simply staying in idle state)
takes at most τ ∈ N ∪ {∞} rounds we mean that it is up to
the adversary to decide how long this operation takes (as long
as it takes at most τ rounds). We assume that every machine
is activated in each round. The communication between each
two parties P and P ′ takes 1 round. Communicating with the
state channel machines is a bit more subtle and it is therefore
described in a separate section below.

5) Immediate vs. non-immediate messages to the state chan-
nel machines: One subtle point in modeling the state channels
as machines is their response time. In real life executing
state channel machines is done via an update procedure (see,
e.g., [11]) where the parties mutually sign the new state of the
channel. This procedure takes two rounds of communication
in the optimistic case (i.e. when both parties are honest).
The pessimistic case is a bit more tricky, since in general
each update may require interacting with the blockchain. In
some cases, however, even in the pessimistic case we can
think of the update as being immediate. This happens when
a party P updates the channel P � P ′ in a way that is
beneficial for P ′ (e.g., P transfers money to P ′). In this
case P just sends a new signed state of the channel and she
does not need to wait for P ′’s confirmation (and therefore
the whole update procedure takes just 1 round, even if P ′

is dishonest P ′). The same situation happens in channels. In
particular, if P pushes a sub-payment to P ′ she does not
need to hold a confirmation that P ′ received this message.
In the worst case (if P ′ is dishonest) simply this sub-payment
not result in any coins being transferred. The situation is of
course different for acknowledgments: here P ′ needs to get a
confirmation from P that she received the acknowledgment.
It is therefore convenient to distinguish between immediate
and non-immediate updates to a channel P � P ′. The
“immediate” take 1 round (since no confirmation is needed),
and the “non-immediate” ones take 2 rounds if both parties are
honest, and they may take up to ∆ rounds if one of {P, P ′}
is dishonest.

6) The definition: A Non-Atomic Payment Splitting (NAPS)
protocol Π for a channel graph G = (P, E ,Γ) is a tuple
consisting of: the party machines P1, . . . , Pn, the state channel
machines Ce (for every e ∈ E), and the receipt verification ma-
chine RVM that for every A and Env satisfy the functionality
and security requirements described below.

Functionality requirements: The following must hold for
every NAPS protocol with overwhelming probability. Guar-
anteed sending: Suppose P1 and Pn are honest, and they
both simultaneously receive messages (env-send, v, µ, t) and
(env-receive, v, µ, t) (respectively) from Env. Then in the next
round P1 sends (env-pushed, (P1, µ), v, t) to Env. Guaranteed
pushing: Suppose P and P ′ are honest, and P receives a
message (env-push, (π||(P, µ)||(P ′, µ′)), v, t) from Env (for
some π, v, t, µ, and µ′). Then in the next round P ′ sends a
message (env-pushed, (π||(P, µ)||(P ′, µ′)), v, t) to Env. This
is the only case when P ′ sends an env-pushed message to Env
with this route prefix. Guaranteed acknowledgment by P ′ ∈
{P2, . . . , Pn}: Suppose P and P ′ are honest, and P ′ receives



10

a message (env-acknowledge, (π||(P, µ)||(P ′, µ′))) from Env
(for some π, µ and µ′), and let v := sent((π||(P, µ)||(P ′, µ′)).
Then in the next round P sends a message (env-acknowledged,
(π||(P, µ)||(P ′, µ′)), v) to Env. This is the only case when P
sends an env-pushed message to Env with this route prefix.
Guaranteed acknowledgment by P1: Suppose P1 is honest and
it receives a message (env-acknowledge, (P1, µ)) from Env
(for some µ). Let v := sent((P1, µ)). Then in the next round
the receipt verification machine outputs (v, µ).

Security requirements: Suppose some execution was per-
formed and terminated. Let Γ̂ be a cash function describing
the amount of coins in the state channels after this execution,
i.e, let every Γ̂(e) be equal to a function f : e → Z≥0

such that f(P ) := Ce.cash(P ). Now, look at this execution
from a perspective of some party machine P . Let U be
the set of all parties that have a channel with P , i.e., let
U = {P ′ : such that (P � P ′) ∈ E}. The net result
of P in this execution (so far) is defined as net(P ) :=∑
P ′∈U Γ̂P�P ′(P )−ΓP�P ′(P ). This can be extended to the

state channels, namely, the net result of channel e in this exe-
cution (so far) is defined as net(e) :=

∑
P∈e Γ̂e(P )−Γe(P ).

Let us also define the total transmitted sum of coins until
this moment as

∑
(µ,v)∈W v, where W is the set of outputs

of RVM. The following requirements (already discussed in-
formally in Sec. III-3) must hold for every NAPS protocol
with overwhelming probability. Fairness for the sender P1:
Suppose that P1 is honest and has no open push request. Then
net(P1) + v ≥ 0. Fairness for the receiver Pn: Suppose that
Pn is honest. Then net(Pn)−v ≥ 0. Balance neutrality of the
intermediaries: Suppose that P ∈ {P2, . . . , Pn−1} is honest
and has no open push request, then net(P ) ≥ 0. “No money
printing” in the state channel machines: For every channel
P � P ′ we have that net(P � P ′) ≤ 0.

VI. FORMAL DESCRIPTION OF THE ETHNA PROTOCOL

Let us start with providing formal description of some of the
terms that were already informally introduced in Sec. IV. For
a graph G and a nonce µ, a sub-receipt (over G, for payment
µ) is a pair (π, λ) signed by Pn such that π is a payment route
over G (for payment µ), and λ is a non-increasing sequence
of positive integers, such that |λ| = |π|. We will denote it
with *π, λ+. A payment report for µ is a set S of sub-receipts
for µ such that π identifies a member of S uniquely, i.e.:
(*π, λ+ ∈ S and * π, λ′+ ∈ S) implies λ = λ′. For example,
α, β, and γ in Sec. IV-A are sub-receipts, and the set {β, γ}
(see Eq. (5)) is a payment report (except that in that informal
description we omitted the nonces). For a payment report S
a sub-receipt *(π, λ+ is a leader of S at node P if P appears
on π at some position i, and for every *π′, λ′+ ∈ S we have
that λ[i] ≥ λ′[i]. This notion was already discussed in Sec. IV,
where in particular we said that the leader of a payment report
{α′, γ} (on Eq. (5)) is γ. In normal cases (i.e. if Pn is honest)
the leader is always unique, and is equal to the last sub-receipt
of a from *(π||σ′), λ′+ signed by Pn, however in general this
does not need to be the case. When we talk about the leader of
S at P we mean *(π||P ||σ), λ+ that is the smallest according
to some fixed linear ordering.

As already mentioned in Sec. II-B, ETHNA is constructed
using “fraud proofs”. Formally, a fraud proof (for µ) is a pay-
ment report Q for µ of a form Q = {*(σ||πi), λi+}mi=1, where
all the πi[1]’s are pairwise distinct3, such that the following
condition holds: maxi:=1,...,m λi[|σ|] <

∑m
i:=1 λi[|σ|+ 1] For

an example of a fraud proof (with nonce missing from the
picture) see Eq. (7). If ETHNA has arity at most δ (see
Sec. III) then we require that m ≤ δ. Informally speaking
this conditions means simply that in Q the largest label of σ
is at smaller than the sum of all labels of σ’s children. If none
of the subsets of a payment report S is a fraud proof then we
say that S is consistent. As we show later (cf. Lemma 1) if
Pn is honest then S is always consistent.

1) Size of the fraud proofs.: Note that the description of
set Q as defined above can be quite large (it is of size O(δ ·
(`+κ)), where δ is ETHNA’s arity, ` is the maximal length of
payment routes, and κ is the security parameter (we need this
to account for the signature size). Luckily, there is a simple
way the “compress” it to O(δ · κ) (where κ is the security
parameter) by exploiting the fact that the only values that are
needed to prove cheating are the positions on the indices |σ|
and |σ|+ 1 of the λ’s. We describe further compression ideas
in Appx. E2.

A. The actual protocol

The formal description of ETHNA appears on Figs. 3 (it
uses a sub-routine algorithm AddΦ that we describe below).
Let us first comment on the types of messages that are
sent within the protocol (see also the cheat sheet on Fig. 4
on p. 16 in the appendix). The parties communicate with
each other only via the state channels (except of the first
“invoice” message sent from Pn to P1). The messages that
are used are: “push” to push a sub-payment (the corresponding
message sent by the channel to the other party is “pushed”),
“acknowledge” to acknowledge a sub-payment (the corre-
sponding message is “acknowledged”), and “fraud-signal” to
signal fraud (the corresponding message is “fraud-signalled”).
The messages sent by P1 to the RVM are either “acknowledge”
(if everything went ok), or “fraud-signalled”. Let us now
describe the individual procedures. In our description we make
several simplifications, e.g., we ignore some special, but rare
cases (like Pn not acknowledging some payments at all). Let G
be the channel graph. As already mentioned before, the main
idea is to let the sender Pn perform the payment aggregation
herself, and to “punish” her in case she cheats. Cheating will
be proven using the fraud proofs defined above. Of course, if
Pn is honest then nobody can produce a valid fraud proof (we
prove it in Lemma 1). Therefore the punishment for cheating
can be arbitrarily severe. As explained before, in our settings
we simply let a fraud proof serve as a receipt (see Eq. (1))
that all the coins were transferred.

Going a bit more into the details, the protocol for every
new payment µ of value v starts when P1 and Pn receive
“env-send” and “env-receive” messages from the environment
(with parameters v, µ, and t, where t specifies the maximal

3In other words: the paths in Q form a tree with exactly one vertex π that
has more than on child.
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time when the payment has to be completed). As a reaction Pn
sends a signed pair (invoice, µ, u, t) (called an invoice) to P1.
If later P1 obtains a fraud proof Q for µ then (invoice, µ, u, t)
together with Q will serve as a receipt that all the u¢ were
transferred in payment µ. This is ok, since the protocol is
constructed in such a way that Pn never pushes more coins
than u to her neighbors (within payment µ). Let us now
provide some more information on how the coins are pushed
and acknowledged.

1) Pushing payments.: Initially no coins have been trans-
ferred within payment µ, so P1 holds all u of them. Pushing
payments is done in a recursive way. Suppose P holds some
number v of coins that were pushed to P via some path π
(in case P = P1 this path is simply 〈(P1, µ)〉). Let t be
the deadline until this payment has to be completed. Party P
holds a variable Sπ that she uses for bookkeeping purposes.
Variable Sπ contains a payment report and is initially empty.
Upon receiving a message env-push(π||(P ′, µ′), v′, t′) from
the environment party P pushes v′¢ to a neighbor P ′ of hers.
This is done by sending a push message in the state channel
P � P ′ and blocking v′¢ of P in it. This message comes
with a parameter (π||(P ′, µ′)) (where µ′ is some fresh nonce)
and a deadline t′ < t−∆ until when this payment has to be
completed. As in the case of Lightning (see Sec. II-A) this
message is immediate since it imposes no commitments on
P ′ . Before describing how the payments are acknowledged
by the intermediaries, and how the final receipt is produced
by P1 let us present the procedure for the receiver Pn.

2) Payment acknowledgment by Pn.: For every payment
µ party Pn maintains a payment tree Φµ that is initially
empty. Payment trees were already discussed in Sec. IV-A (in
particular: Eqs. (2)–(4) on p. 6 contain examples of such trees).
For a formal definition consider some fixed µ and G. During
the execution of ETHNA for G and µ, several sub-payments
are delivered to Pn. Let π1, . . . , πt denote the consecutive
paths over which these sub-payments go (of course they need
to be distinct), and let vi ∈ Z>0 be the amount of coins
transmitted with each πi. Let R := {(πi, vi)}ti=1. Formally
a payment tree tree(R) is a pair (T,L), where T is the set
of all prefixes of the πi’s, i.e., T :=

⋃
i prefix(πi), (for the

standard notation for the trees see Appx. B). If ETHNA has
arity δ then the arity of T in every node π||(P, µ) is at most
δ. Then for every π ∈ T we let L(π) :=

∑
i:π∈prefix(πi) v

i.
In other words: every payment route prefix π gets labeled by
the arithmetic sum of the value of the payments that were
“passed through it”. Obviously, the label L(ε) of the root
node of tree(R) is equal to the sum of all vi’s, and hence
it is equal to the total number of coins transferred by the
sub-payments in R. We also have that for every payment
route prefix σ L(σ) =

∑
π is a child of σ L(π). It is also easy

to see that tree(R) can be constructed “dynamically” by
processing elements of R one after another. More precisely,
this is done as follows. We start with an empty tree Φ, and
then iteratively apply the algorithm AddΦ (see Alg. 1) for
(π1, v1), (π2, v2), . . ..
From the construction of the algorithm it follows immediately
that of Pn starts with Φ being an empty tree, and then
iteratively applies AddΦ to (πi, vi)’s for i = 1, . . . , t, then the

Algorithm 1: AddΦ(π, v)

assumption: v ∈ Z>0 and π 6∈ T
This algorithm operates on a global state Φ = (T,L). Its
side effect is a change of the global state.

for j = 1, . . . , |π| do
if π|j ∈ T then

let L(π|j) := L(π|j) + v
else

let T := T ∪ {π|j} let L(π|j) := v

output 〈L(π[1]), . . . ,L(π|π|)〉 (the labels on path π)

final state of Φ is equal to tree(R). For example, if Pn applies
this procedure to the situation on Fig. 1c she obtains the trees
depicted on Eqs. (2)–(4). For a payment tree Φ = (T,L) and
π ∈ T define labels(Φ, π) as the sequence (of length |π|)
of all labels leading from the tree root to π, i.e., for every
i = 1, . . . , |π| let labels(Φ, π)[i] := L(π|i). The following
lemma (whose proof appears in Appx. C) shows that if Pn
applies the AddΦ algorithm correctly, then the resulting sets
S are never inconsistent (and hence no “fraud proof” will ever
be produced against an honest Pn).

Lemma 1. Suppose a party Pn executes AddΦ multiple times
(for some payment µ, and starting from Φ = ∅) and signs
every output. Let S be the set of sub-receipts signed by party
Pn during the execution of the AddΦ algorithm. Then S is
consistent.

Party Pn waits for push requests. Each such a message
arrives from one of Pn’s neighbors in G and is transmitted
via some state channel P � Pn of G . They all come with
parameters π, v, and t, where π is a payment route (starting
with (P1, µ) and with Pn appearing as its last element), v is
the number of pushed coins, and t is a timeout for this sub-
payment. The receiver now decides on the number v′ ≤ v of
coins that she is willing to accept from this sub-payment. She
then runs AddΦµ(π, v′). Recall that this results in updating
state Φµ and producing an output λ (equal to the labels on
path π after updating the state). Party Pn acknowledges the
sub-receipt of v′¢ by sending a signed pair *π, λ+ back to
the state channel P � Pn, and claims v′¢ from the amount
locked in P � Pn by P . As in Lightning, this message is not
immediate. Party P learns *π, λ+ within 1 hour. Observe that
from the fact that L(σ) =

∑
π is a child of σ L(π) (see above)

we get that λ[1] is equal to the sum of all the coins that were
so far transmitted to Pn within payment µ.

3) Payment acknowledgment by the intermediaries.: Let us
now go back to party P that pushed some coins to P ′ via
channel P � P ′ and waits receive acknowledgment from
P ′ (via the same channel). For a moment suppose the P is
an intermediary. Let P ′′ be the party that earlier pushed v¢
to P . In the most likely case P receives some *φ, λ+ (with
π being a prefix of φ). In this case she adds *φ, λ+ to Sπ .
The state channel is constructed in such a way that φ[|π|+ 1]
coins (from those that were locked by P ) are transferred to
P ′, while the rest goes back to P . Once P gets an (env
-acknowledge, π)) message (this can only happen if there are
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no open push request for sub-payments of π) she looks at
Sπ . If it is consistent then she finds the leader *(π||σ̂), λ̂+
of this set at P . Party P acknowledges π by sending back
*(π||σ̂), λ̂+ to P ′′� P . At the same time she claims λ[|π|]¢
from the coins locked in this channel. Observe that since
Sπ is consistent, thus λ[|π|] is at least as large as the sum∑

*(π||σ),λ+∈Sπ λ[|π|+ 1], and this sum is exactly equal to the
total number of coins that P “payed” to the parties to which
she pushed this payment. Hence she never looses money.

The second option is that Sπ is inconsistent. Let w be the
fraud proof. Party P simply sends w back to P ′′ (over the
channel P ′′� P ). Think of it as “throwing an exception” in
recursive application of “pushing” procedure. In some sense
w is a “wild card” that allows to claim all the v¢ that were
pushed to a party that presents it. Since it works “universally”
no honest party looses money. In particular, although P ′′ has
to accept that all the coins were “transferred” to P , she can
later use the same w to claim all the coins that were blocked
by the party that pushed this payment to her.

4) Receipt by the sender.: For the sender P1 the protocol
works similarly, except that P1 does not “push” messages
back, but simply outputs them as a receipt. More precisely if
S(P1,µ) is consistent and no fraud proof have been received,
then let *φ̂, λ̂+ be the leader of S(P1,µ) at P1. In this case
case party P1 concludes that λ̂[1]¢ were transferred, and *φ̂, λ̂+
is the receipt. Otherwise let w be the fraud proof. Then P1

concludes that all u¢ were transferred and a pair (w, *µ, u+) is
the receipt (the “*µ, u+” component is needed to demonstrate
what was the maximal transmitted value that Pn agreed for).

B. Analysis

We already argued informally about ETHNA’s security
while presenting it. Formal security analysis of this protocol
is given in the proof of the following lemma.

Lemma 2. Assuming that the underlying signature scheme is
existentially unforgeable under a chosen message attack, the
ETHNA is a Non-Atomic Payment Splitting protocol for every
channel graph G = (P, E ,Γ).

Proof sketch. We show that the functionality and security
requirements from Sec. V hold in presence of an arbitrary
adversary Adv and any admissible Env. The functionality re-
quirements follow easily from the construction of the protocol,
so it remains is to argue about the security requirements. First,
it is easy to see that at a moment if some party P gets a “fraud
proof” (either by finding it herself, or because of receiving it
from some other party) then her security is guaranteed. This
is because if such a P is an intermediary, then she can claim
all the coins that were pushed to her (and she never pushes
forward more coins than this), so balance neutrality holds for
her. If P is the sender, then she simply uses this proof as
her receipt that all the coins were transferred, and therefore
fairness for the sender holds. On the other hand, as proven
in Lemma 1, if Pn is honest then no fraud proof will ever be
produced, so this mechanism constitutes no risk to the fairness
of the receiver. Hence, for every P we can assume that she
does not get a fraud proof. For P 6= Pn this means that the

part of the payment report that she gets is always consistent,
which means that what she transfer in the sub-payments to the
other parties is at most what she gets herself (for the party that
pushed a given sub-payment to her). Hence balance neutrality
for the intermediaries holds. Using a very similar argument we
can show that fairness for the sender is also provided. Fairness
for the receiver follows from the fact that in the payment tree
the label in the root is equal to the sum of the labels in the
leaves (which is equal total amount of coins that Pn “looses”
in the channels). The complete proof is moved to Appx. D.

When analyzing security of the off-chain protocols one
typically considers the optimistic scenario (when the parties
are cooperating) and the pessimistic one when the malicious
parties slow down the execution.

Time complexity: In the optimistic case the payments are
almost immediate. It takes 1 for a payment to be pushed, and
2 rounds to be acknowledged (since for acknowledgment the
messages sent to state channels are not immediate). Hence in
the most optimistic case the time for executing a payment is
3 · ` (where ` is the depth of the payment tree). During the
acknowledgment every malicious party can delay the process
by time at most ∆. Hence, the maximal pessimistic time is
(1 + ∆) · `.

Blockchain costs: The second important measure are the
blockchain costs, i.e., the fees that the parties need to pay.
Below we provide a “theoretical” analysis of such costs (by
this we mean that we abstract away from practical features
of Ethereum). For results of concrete experiments see VII-1.
Note that in the optimistic case these the only costs are
channel opening and closing, and hence they are independent
of the tree depth and of its arity. In the pessimistic case
all the messages in state channels need to be sent “via the
blockchain”. This is especially unpleasant, since its not clear
whose fault it was, and who should pay the fees (in other
words: this fault is “non-uniquely attributable” and can lead
to “griefing”, see, e.g. [10, 13] for an explanation of these
notions). Let us consider two cases. In the first case there
is no fraud proof. Then, the only message that is sent via
the blockchain is acknowledge(*φ, λ+), which has size linear
O(`+κ) (where ` is as above, and κ is the security parameter,
and corresponds to space needed to store a signature). The
situation is a bit different if a fraud proof appears. As remarked
in Sec. VI-1 the size of a fraud proof is O(δ ·(`+κ)), where δ
is ETHNA’s arity, ` is the maximal length of payment routes,
and κ is the security parameter. Note that the fraud proof is
“propagated”, i.e., even if a given intermediary decided to keep
its arity small (i.e.: not to split her sub-payments in too many
sub-payments), she may be forced to pay fees that depend on
some (potentially larger) arity. This could result in griefing
attacks and it is the reason why we introduced a global bound
on the arity. There are many ways around this. First of all, we
could modify the protocol in such a way that the fraud proofs
by Pn are posted directly in a smart contract on a blockchain
in such a way that all the other parties do not need to re-post
it, and can just refer to it. This would mean that the fees are
payed only by the first party that discovers the fraud proof. She
could then be compensated from a deposit put aside before the
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(a) The parties

Party P1

Wait to receive messages (env-send, u, µ, t) from the environment
Env. Handle each such a message as follows.

If in the next round you receive a message (invoice, µ, u, t) signed
by Pn then store it, and execute the route handling procedure
procedure handle-route(〈(P1, µ)〉, v, t) defined below.
If the output of this procedure is (fraud-signal, w) then send
(fraud-signal, w, *µ, u+) to RVM. Otherwise (i.e. if it was a
“acknowledge” message) simply send this output to RVM.

Party Pi ∈ {P2, . . . , Pn−1}

Wait to receive messages (pushed, π, v, t) from some CP�Pi .
Handle each such a request by the route handling procedure
handle-route(π, v, t) defined below.

handle-route(π, v, t)
Let Sπ be a variable containing a set of sub-receipts that initially is
empty, send (env-pushed, π, v) to Env and wait for the following
messages from Env:
• (env-push, (π||(P ′, µ′)), v′, t′) — handle each such a message
by executing the following push handling procedure:

handle-push((π||(P ′, µ′)), v′, t′)

Send a message (push, (π||(P ′, µ′)), v′, t′) to CPi�P ′ , and
wait to receive one of the following messages from CPi�P ′ :
– (acknowledged, (π||(P ′, µ′)), empty) — then send a mes-
sage (env-acknowledged, (π||(P ′, µ′)), 0) to Env,

– (acknowledged, *ψ, λ+), where ψ is such that (π||(P ′, µ′))
is a prefix of ψ — then store *ψ, λ+ in Sπ by letting
Sπ := Sπ ∪ {*ψ, λ+}. Let v̂ := λ[|π| + 1]. Send (env
-acknowledged, (π||(P ′, µ′)), v̂) to Env, and

– (fraud-signalled, w) — then store w and send a message (env
-acknowledged, (π||(P ′, µ′)), v′) to Env.

Then end the handle-push procedure.

• (env-acknowledge, π) — do the following
– If you stored (fraud-signalled, w) (for some (P ′, µ′)) or if
Sπ is inconsistent and w is the fraud proof — then output
(fraud-signal, w).

– Otherwise: if Sπ is empty then output (acknowledge,
π, empty).

– Otherwise let *ψ, λ+ be the leader of Sπ at P̃ , where P̃ is the
last party on π. Output (acknowledge, π, *ψ, λ+).

After producing the output end the handle-route procedure.

After this procedure terminates send its output back to CP�Pi .

Party Pn
Wait to receive messages (env-receive, u, µ, t) from the environ-
ment Env. Handle each such a request as follows.

First, sign a message (invoice, µ, u, t) and send it to P1. Let Sµ
be a variable containing a payment report that initially is empty,
Wait to receive messages (pushed, π, v, t) from some CP�Pn .
Handle each such a message as follows. Once you receive
it send (env-pushed, π, v, t) to Env and wait to receive (env
-acknowledge, π, v′) from Env. Once this happens, execute
AddSµ(π, v′). Let *π, λ+ be the output of this procedure. Send
a message (acknowledge, *π, λ+) to CP�Pn .

(b) The state channel machine CPi�Pj

Recall that the values of registers CPi�Pj .cash(Pi) and
CPi�Pj .cash(Pj) were pre-loaded before the execution started.
Wait for the messages (push, (π||(P, µ)||(P ′, µ′)), v, t) from P ∈
Pi � Pj (where P ′ := other-party(P )) such that (a) t ≤
τ + ∆ (where τ is the current time), (b) (π||(P, µ)||(P ′, µ′)) is
a payment route prefix, (c) v ≤ CPi�Pj .cash(P ), and (d) you
have not previously received a push request with the same pa-
rameters. Upon receiving such a message let CPi�Pj .cash(P ) :=
CPi�Pj .cash(P )−v, and send (pushed, (π||(P, µ)||(P ′, µ′)), v, t)
to (P ′, µ′). Then wait until one of the following happens:
• you receive a message (acknowledge, *ψ, λ+) from (P ′, µ′)
where ψ is a route with a prefix (π||(P, µ)||(P ′, µ′)) — then
let v̂ := λ[|π| + 2]. Let CPi�Pj .Γ(P ′) := CPi�Pj .Γ(P ′) +
v̂, and CPi�Pj .Γ(P ) := CPi�Pj .Γ(P ) + v − v̂, then send
(acknowledged, *ψ, λ+) to P ,

• you receive a message (fraud-signal, w) from P ′ where w is an
fraud proof — then let CPi�Pj .Γ(P ′) := CPi�Pj .Γ(P ′)+v and
forward this message to P ,

• time t comes — then let CPi�Pj .cash(P ) :=
CPi�Pj .cash(P ) + v and send a message
(acknowledged, (π||(P, µ)||(P ′, µ′)), empty) to P .

(c) The receipt verification machine RVM

Wait for one of the following messages from P1:
• (acknowledge, ((P1, µ), empty)) — then output (µ, 0).
• (acknowledge, *((P1, µ)||ψ), (v||λ)+) — then output (µ, v).
• (fraud-signal, w, *µ, u+), where w is a fraud proof for some route
σ, and ν is the nonce in the first element of σ — then output (µ, u).

For a given µ output a pair that contains it only once (i.e. after
outputting (µ, v) ignore all the future calls that would lead to
outputting (µ, v′) for some v′).

Fig. 3: The ETHNA protocol

protocol starts. Moreover, the proof size can be significantly
reduced using techniques described in Appx. E2.

VII. PRACTICAL ASPECTS

In this section we provide information about practical
experiments of ETHNA implementation. The source code is
available at github.com/Sam16450/NAPS-EthNA.

1) Implementation in Solidity: We implemented a simple
version of ETHNA in Solidity. Compared to the version
described in this paper, this preliminary version lacks the

ability to add nonces. The following table summarizes the
execution costs in terms of thousands of gas, and depending
on the arity and the maximal path length.
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Above, constructor denotes the procedure for deploying a
channel, close corresponds to closing a channel without dis-
agreement, addState is used to register the balance in case of
disagreement, addCheatingProof is used to add a fraud proof,
addCompletedTransaction — to add a sub-receipt when no
cheating was discovered, and closeDisagreement – to finally
close a channel after disagreement. Assuming cost 1,000 gas
= $0.00018 (according to ethgasstation.info this is the
average rate as of Jan 21st, 2020) we get that the most
expensive action (deploying a channel, addCheatingProof)
costs $0.43.

2) Simulation results: Although routing algorithms are not
the main topic of this work, we also performed some ex-
periments with a routing algorithm built on top of ETHNA.
In our experiments we used the following approach. The
network graph was taken from the Lightning network (from
the website gitlab.tu-berlin.de/rohrer/discharged-pc-data) with
aprrox. 6, 000 nodes and 30, 000 channels. Channel’s ca-
pacities are chosen according to the normal distribution
N (200, 50). Each transaction was split by applying the fol-
lowing rules. The sender and the intermediaries look at the
channel graph and search for the set X of shortest paths that
lead to the receiver (and have different first element). Then
they split the payment in values that are proportional to the
capacity of the first channel in the path. In our simulations we
performed 100, 000 transaction. The results are below.

Above, the “success ratio’ denotes the probability of success of
an average payment. “Lightning” refers to standard Lightning
routing, and “Lightning+” to the Lightning algorithm that
attempts to push payments multiple time. Transaction values
are chosen uniformly from set (x0, x1), where in (a) we have
(x0, x1) = (10, 500) and in (b) we have x0 = 150, 200, 300,
and 400 and x1 always set to 500. Our experiments show that
for such large payments even this simple routing algorithm
for ETHNA works much better than Lightning. We leave
designing better routing algorithms for ETHNA as an direction
for future work.
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APPENDIX

A. ETHNA’s name explanation
We call our protocol ETHNA, in reference to Etna, one of

the highest active volcanoes in Europe. This is because the
coin transfers in ETHNA resemble a lava flood (with large
streams recursively bifurcating into small sub-streams). The
letter “h” is added so that the prefix “Eth-” is reminiscent of
ETH, the symbol of Ether (the currency used in Ethereum),
and “NA” stands for “Non-Atomic”.

B. Standard function and string notation
By [ai 7→ x1, . . . , am 7→ xm] we mean a function f :

{ai, . . . , am} → {x1, . . . , xm} such that for every i we have
f(ai) := xi. Let A be some finite alphabet. Strings δ ∈ A∗
are frequently denoted using angle brackets: δ = 〈δ1, . . . , δm〉.
Let δ be a string 〈δ1, . . . , δn〉. For i = 1, . . . , n let δ[i] denote
δi. Let ε denote an empty string, and “||” denote concatenation
of strings. We overload this symbol, and write δ||a and a||δ to
denote δ||〈a〉 and 〈a〉||δ, respectively (for δ ∈ A∗ and a ∈ A).
For k ≤ n let δ|k denote δ’s prefix of length k. A set of
prefixes of δ is denoted prefix(δ) (note that it includes ε).

We define trees as prefix-closed sets of words over some
alphabet A. Formally, a tree is a subset T of A∗ such that
for every δ ∈ T we have that any prefix of δ is also in T .
Any element of T is called a node of this tree. For two nodes
δ, β ∈ T such that β = δ||a (for some a) we say that δ is the
parent of β, and β is a child of δ. A labeled tree over A is
a pair (T,L), where T is a tree over A, and L is a function
from T to some set of labels. For δ ∈ T we say that L(δ) is
the label of δ.
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P1 · · · Pi Pi−1 · · · Pn

environment Env(Γ)

state channel
machine CPi�Pi+1

state channel
machine CPn−1�Pn

receipt verification
machine RVM

↓ acknowledge
fraud-signal

↓ acknowledge

pushed ↑

↓
env-send
env-push
env-acknowledge

env-pushed
env-acknowledged ↑

↓ env-push
env-acknowledge

env-pushed
env-acknowledged ↑

↓ env-receive
env-acknowledge

env-pushed ↑

↓
push
acknowledge
fraud-signal

pushed
acknowledged
fraud-signalled

↑

← invoice

Message syntax

Types of variables

• v — a positive integer denoting amounts of coins,
• µ — a nonce,
• π — payment path prefix over G, and
• t — time.

Messages sent and received by Env

The environment Env sends the following messages to the
parties:
• (env-send, v, µ, t) (this message is sent only to P1),
• (env-receive, v, µ, t),
• (env-push, π, v, t), and
• (env-acknowledge, π).

The environment Env also receives the following messages from
the parties:
• (env-pushed, π, v, t), and
• (env-acknowledged, π, v).

Messages exchanged between the parties

Party Pn sends to party P1 a message:
• (invoice, µ, u, t) (singed by Pn).

Messages exchanged between the parties and the state
channel machines
The parties send the following messages to the state channel
machines:
• (push, π, v, t),
• (acknowledge, R), where R is either equal to (π, empty)

(where “empty” is a keyword) or it is equal to *ψ, λ+,
where (ψ, λ) is a sub-receipt over G, and

• (fraud-signal, w), where w is an fraud proof,
The state channel machines send the following messages to the
parties:
• (acknowledged, R), where R is as above, and
• (fraud-signalled, w), where w is an fraud proof.

Messages send by P1 to RVM

Party P1 sends the following messages to the receipt verification
machine RVM:
• (acknowledged, R), where R is as above, and
• (fraud-signal, w, *µ, u+), where w is a fraud proof.

Fig. 4: The flow of messages exchanged in the system, and their syntax.
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C. Proof of Lemma 1

Take an arbitrary payment route prefix σ and an arbitrary
set Q ⊆ S that has a form Q = {*(σ||πi), λi+}mi=1. Without
loss of generality assume paths in Q are sorted according to
the time by which the paths in this set were signed (starting
from the first). From the fact that in the Add algorithm the
values in the labels can only increase we get that

max
i=1,...,m

λi[|σ|] = λm[|σ|].

From the fact that L(σ) =
∑
π is a child of σ L(π) (see

Sec. VI-A2) we know that the time when path *(σ||πm), λm+
was signed all the children on σ in the tree T were labeled by
values that sum up to λm[|σ|]. The sum

∑m
j:=1 λi[|σ|+ 1] is

at most equal to this value. This is because (a) it is a subset
of the set of all children of σ, and (b) these paths were signed
earlier than when *(σ||πm), λm+ is signed (here we again use
the fact that in the Add algorithm the values in the labels can
only increase). Altogether we get that

max
i:=1,...,m

λi[|σ|] ≥
m∑
i:=1

λi[|σ|+ 1],

and hence Q cannot be a fraud proof (see Sec. VI for the
definition of fraud proofs). Therefore S does not have fraud
proofs, and hence it is consistent.

D. Proof of Lemma 2

We need to show that the functionality and security require-
ments from Sec. V hold in presence of an arbitrary adversary
Adv and any admissible Env.

The functionality requirements follows easily from the
construction of the protocol. Let us now argue about the
security requirements. We start with showing the balance
neutrality for the intermediaries. Suppose an honest party
Pi ∈ {P2, . . . , Pn−1} starts a handle-route(π, v, t) procedure
(see Fig. 3). During this execution she initiates a number of
handle-push procedures. Let us look at the execution of some
handle-push((π||(P ′, µ)), v′, t′). At the beginning Pi sends
a message (env-push, (π||(P ′, µ)), v′, t′) to CPi�P ′ . As a
result, CPi�P ′ removes v coins from Pi’s account. From the
construction of the state channel machine it is clear that in time
t′+∆ the latest party P receives one of the following messages
back from CPi�P ′ (each of them results in transferring back
to her account in CPi�P ′ some amount z of coins):
• a message (acknowledged, (π||(P ′, µ′)), empty) — in

this case z = v,
• a message (acknowledged, *ψ, λ+) (where π is a prefix

of ψ) — in this case z is equal to the last element of λ.
• a message (fraud-signalled, w) — in this case z = 0.

Call (v−z) the coins gained by Pi in effect of the handle-push
procedure and denote it with gainedPi(π).

The handle-route(π, v, t) procedure ends when Pi receives
a message (env-acknowledge, π) from Env (from the construc-
tion of Env it follows that this message must be sent by Env
in time t the latest). Once this happens, party Pi sends one
of the following messages to CP�Pi (each of them results in
transferring to her account in CPi�Pi some amount of y¢):

• a message (fraud-signal, w) — in this case y = v,
• a message (acknowledge, π, empty) — in this case y = 0,

or
• a message (acknowledged, *ψ, λ+) — in this case y = v̂,

where v̂ is equal to the last element of λ[|π|+ 1].
We will call y the coins lost by Pi in effect of the handle-push
procedure and denote it with lostPi(π).

Claim 1. For every honest P ∈ {P2, . . . , Pn−1} let π
be some payment route such that a handle-route(π, v, t)
procedure has been executed (for some v and t), and let
Π be the set of all payment routes (π||(P ′, µ)) such that
handle-push((π||(P ′, µ)), v′, t′) had been executed. Then we
have

gainedPi(π) ≥
∑
π′∈Π

lostPi(π
′) (8)

Proof. First, observe that if Pi sends to CP�Pi a message
(fraud-signal, w) then Eq. (8) must hold, because in this case
gainedPi(π) = v, while

∑
π′∈Π lostPi(π

′) ≤ v (this follows
from the fact that an admissible Env never asks Pi to push
more coins in total than v, see Fig. 2). Hence, what remains
is to consider the case when no cheating was detected by Pi
and in particular Sπ is consistent. Let S = {*φi, λi+}mi=1.
From the construction of the protocol we get that

gainedPi(π) := λ(|π|),

where *ψ, λ+ is the leader of Sπ at Pi. This, from the
consistency of Sπ is at least equal to

m∑
j:=1

λi[|σ|+ 1],

which, in turn is equal to lostPi(π
′). This finishes the proof

the claim.

Let us now go back to the proof of Lemma 2. It is easy to
see that for every P ∈ {P1, . . . , Pn−1} we have that

net(P ) =
∑
π

gainedP (π)−
∑
σ

lostP (σ),

where the sums are taken over all π’s such that
handle-route((π||P ), v, t) (for some v and t) has been exe-
cuted, and all σ’s such that handle-push((π||P ||P ′), v, t) (for
some v, t, and P ′) has been executed. Hence, by applying
Claim 1 we obtain that net(P ) ≥ 0, and the balance neutrality
holds.

To show fairness for the sender observe that the procedure
for P1 is very similar to the procedure for the intermediaries.
Essentially, the only differences are as follows. First of all P1,
instead of receiving an (pushed, π, v, t) message from a state
channel machine, receives an (env-send, v, µ, t) message from
Env and (in the next round) a signed message (invoice, µ, u, t)
from Pn. Secondly, the fraud-signal message has a different
syntax (see Fig. 3 (a)). Thirdly, RVM does not transfer any
coins to P1’s account (in fact, there are not “accounts” in
this machine). Instead RVM outputs (µ, y). Despite of these
differences, the proof is essentially the same as the one for
the intermediaries. The main difference is that the gainedP1

is now defined with respect to the values output by the receipt
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verification machine RVM. Namely, once this machine outputs
(v, µ) we let

gainedP1
((P1, µ)) := (µ, v)

(while the definition of lostP1
remains as for the other Pi’s).

We can show that for every µ the total sum of coins that P1

looses as a result of executing handle-route((P1, µ), v, t) in
his channels with other parties, is not greater than v′, where
(µ, v′) is the value output by RVM. This, of course, implies
that the total amount of coins that P1 looses cannot be larger
than the value of transmitted. The proof goes along the same
lines as above. In particular we use the fact that the P1 cannot
loose more coins that u (this follows the construction of Env),
and therefore if P1 detects inconsistency, the fairness for P1

is guaranteed to hold, as P1 can always make RVM output
(v, µ), by sending to it the inconsistency proof together with
(invoice, µ, u, t).

To show fairness for the receiver, consider some nonce µ
such that Pn received a message (env-receive, v, µ, t) from
Env (for some u and t). Recall (see Fig. 3 (a)) that Pn
constructs a payment tree Φµ by executing AddSµ(π, v′) each
time when it receives a message (env-acknowledge, π, v′). By
Lemma 1 Φµ is always consistent. Recall also that Pn sends
a message (acknowledge, *π, λ+) to CP�Pn (for some P ).
We have that λ[|π|] := v′, and therefore Pn gains v′¢ in the
channel CP�Pn . The following invariant has to holds. Let Sµ

be equal to the total amount of coins that Pn gained this way,
and let *ψ̂, λ̂+ be the leader of Φµ at Pn. Then

Sµ = λ̂[n].

Hence, no matter what a (potentially malicious) P1 sends to
the receipt verification machine RVM, this machine will never
output (v, µ), with v > Sµ. Hence, the fairness for the receiver
holds.

Finally, it is also easy to see that the “no money printing”
holds for every state channels machine CPi�Pj . This is be-
cause each such a machine will add at most v¢ to the accounts
of Pi and Pj , and this will happen only after deducing v¢ from
an account of one of them.

E. Extensions

In this section we show some extensions of ETHNA. Formal
proof that such “extended ETHNAs” satisfy NAPS definition
is will be presented in the full version of this paper.

1) Obtaining atomicity and partial atomicity in ETHNA:
ETHNA can be easily converted into a payment system
for atomic payments in the following way. Consider some
payment µ for v¢. We simply let any sub-receipt for a
sub-payment count as the receipt for the entire payment µ,
and at the same time we instruct the receiver Pn to start
acknowledging payments, i.e., signing such receipts only if
she receives all the sub-payments (for the full amount v). This
works since (a) as long as Pn did not receive the full amount,
there is no receipt that she receive any coins, and (b) once
she does it it is in her own best interest to acknowledge all
sub-payments (and claim all the coins). This can be naturally
generalized further to obtain “partial atomicity” where, e.g.,

the receiver can either receive 0¢, v/2¢, or the full amount
of v¢. This way of obtaining atomicity may be used in the
applications like the one described very recently in [12], where
in Sec. 3.1 describe a way to obtain “unlinkability” in atomic
payment splitting. The main idea there is to hide the fact that
a given payment has been already split. The “atomic ETHNA”
satisfies this property, while avoiding using homomorphic hash
functions (used in [12]). We leave a full comparison of these
two approaches as a direction for future work.

2) Reducing the size of the fraud proofs: Recall that a fraud
proof is a payment reportQ of a formQ = {*(σ||πi), λi+}mi=1,
all the πi[1]’s are pairwise distinct, such that the following
condition holds:

max
i:=1,...,m

λi[|σ|] <
m∑
i:=1

λi[|σ|+ 1]. (9)

Hence, in the most straightforward implementation it is of
length Ω(δ · (` + κ)), where δ is ETHNA’s arity, ` is the
maximal length of payment routes, and κ is the security
parameter

We now show how to reduce this to O(δ · κ). We do it
by designing an algorithm that signs the sub-receipts *φ, λ+
in a different way. Let H be a collision-resistant hash func-
tion, and let (KGen,Sig,Vf) be a signature scheme. Suppose
(sk, pk)←$ KGen(1κ) is the key pair of Pn. To sign (φ, λ)
we define a new signature scheme (KGen,Sig,Vf) (i.e. we
later let *φ, λ+ := ((φ, λ), σ), where σ := Sig′sk((φ, λ))).
Let KGen′ := KGen. To define Sig((φ, λ)) first define
〈h1, . . . , h|φ|〉 recursively as:

h1 := H(φ[1]),

and for j := 2, . . . , |φ|:

hj := H(φ[j], hj−1).

Then let Sig((φ, λ)) := 〈σ1, . . . , σ|φ|〉, where for each j we
have:

σj := Sigsk(hj , λ[j])

Verification of this signature is straightforward. It is also easy
to see that if (KGen,Sig,Vf) is existentially unforgeable under
chosen message attack, then so is (KGen′,Sig′,Vf ′), assuming
the signed messages are of a form (φ, λ), where φ is the
payment path4. For a message M let {M}Pn denote M signed
with (KGen′,Sig′,Vf ′). It is easy to see that now a fraud proof
from Eq. (9) can be compressed to a sequence{({

h
|σ|
i , λi[|σ|]

}
Pn
, πi[1],{

h
|σ|+1
i , λi[|σ|+ 1]

}
Pn

)}m
i=1

.
(10)

such that Eq. (9) holds (above “πi[1]” is needed to check
correctness of h

|σ|+1
i ). Since all the signed values are of

size linear in the security parameter, and m ≤ δ we get
that Eq. (10) is O(δ · κ). Note that this requires the parties

4This assumption is needed since payment paths have a clearly marked
“ending”, namely they have to finish with (Pn, µn), for some µn Otherwise
it would be possible to attack this scheme by taking a prefix of a signed
message and a prefix of its signature.
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(and, pessimistically, the state channel contract) to verify
m signatures. This can be reduced to 1 signature by using
signature aggregation techniques, the simplest one being the
Merkle trees technique, where we hash all pairs (hj , λ[j])
using Merkle hash and sign only the top of the tree. Note
that this introduces additional data costs of size O(κ · log δ).

Further proof size reduction using “bisection”: Finally,
let us remark that the proof Eq. (10) can be further compressed
by allowing interaction between the party that discovered
cheating (denote it P ) and Pn. This is similar to the bisection
technique [17, 33]. Suppose P realized that Eq. 9 does not
hold. She can then divide the set of paths in Q into two halves
For convince suppose m is even and let

A :=

m/2∑
i:=1

λi[|σ|+ 1],

and

B :=

m∑
i:=m/2+1

λi[|σ|+ 1].

P can now challenge Pn (on the blockchain) to provide her
own calculations of the above sums5. Let A′ and B′ be Pn
respective answers. Then one of the following has to hold:
• maxi:=1,...,m λi[|σ|] < A′+B′ – then P obtains the fraud

proof and we are done.
• A′ < A or B′ < B – then we can apply this procedure

recursively.
It is easy to see that in logarithmic number o rounds P obtains
a fraud proof. Note that this fraud proof is short, so it can be
easily propagated to other parties (who do not need to repeat
the above “game” with Pn).

5Since elements of Q can be sorted such a challenge is short.
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