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Abstract

Classically, selective-opening attack (SOA) has been studied for randomized primitives, like randomized
encryption schemes and commitments. The study of SOA for deterministic primitives, which presents some
unique challenges, was initiated by Bellare et al. (PKC 2015), who showed negative results. Subsequently,
Hoang et al. (ASIACRYPT 2016) showed positive results in the non-programmable random oracle model. Here
we show the first positive results for SOA security of deterministic primitives in the standard (RO devoid)
model. Our results are:

• Any 2t-wise independent hash function is SOA secure for an unbounded number of “t-correlated” mes-
sages, meaning any group of up to t messages are arbitrarily correlated.

• An analogous result for deterministic encryption, from close variant of a NPROM scheme proposed by
Hoang et al.

• We connect the one-more-RSA problem of Bellare et al. (J. Cryptology 2003) to this context and
demonstrate this problem is hard under the Φ-Hiding Assumption with large enough encryption exponent.

Our results indicate that SOA for deterministic primitives in the standard model is more tractable than prior
work would indicate.
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1 Introduction

In this paper, we study selective-opening-attack (SOA) security of some deterministic primitives, namely hash
functions and (public-key) deterministic encryption, extending the work of Hoang et al. [19] in addition to an-
swering some open questions there.

1.1 Background and Motivation

SOA security. Roughly, SOA security of a cryptographic primitive refers to giving the adversary the power
to adaptively choose instances of the primitive to corrupt and considering security of the uncorrupted instances.
SOA grew out of work on non-committing and deniable primitives [15, 10, 24, 13, 11, 9, 25, 6, 28], which are
even stronger forms of security. Namely, SOA has been studied in a line of work on public-key encryption and
commitments started by Bellare, Hofheinz, and Yilek [3, 2, 20, 18, 7, 21]. When considering adaptive corruption,
SOA arguably captures the security one wants in practice. Here we only consider sender SOA (i.e., sender, not
receiver, corruption), which we just refer to SOA security in the remainder of the paper for simplicity.

SOA for deterministic encryption. SOA security has usually been studied for randomized primitives,
where the parties use random coins that are given to the adversary when corrupted, in particular randomized
encryption. The study of SOA for deterministic primitives, namely deterministic encryption was initiated by
Bellare et al. [1], who showed an impossibility result wrt. a simulation based definition. Subsequently, Hoang et
al. [19] proposed a comparison based definition and showed positive results in the non programmable random
oracle (RO) model [5, 23]. They left open the problem of constructions in the standard (RO devoid) model,
which we study in this work. In particular, Hoang et al. emphasized this problem is open even for uniform and
independent messages.

SOA for hash functions. In addition to randomized encryption, SOA security has often been considered for
randomized commitments. Note that a simple construction of a commitment in the RO model is H(x‖r) where
x is the input and r is the randomness (decommitment). Analogously to the case of encryption, we study SOA
security of hash functions. This can also be seen as studying the more basic case compared to deterministic
encryption, as Goyal et al. [17] did in the non-SOA setting. The practical motivation is password hashing — note
some passwords may be recovered by coercion, and one would like to say something about security of the other
passwords.

One-more RSA inversion problem. Finally, an influential problem that we cast in the framework of SOA
(this problem has not been explicitly connected to SOA before as far as we are aware) is the one-more RSA
inversion problem of Bellare et al. [4]. Informally, the problem asks that an adversary with many RSA challenges
and an inversion oracle cannot produce more preimages than number of oracle calls. Bellare et al. show this leads
to a proof of security of Chaum’s blind signature scheme in the RO model.

Challenges. For randomized primitives, a key challenge in security proofs has been that at the time the simu-
lator prepares the challenge ciphertexts it does not know the subset that the adversary will corrupt. Compared to
randomized primitives, deterministic primitives additionally presents some unique challenges in the SOA setting.
To see why, say for encryption, a common strategy is for the simulator to “lie” about the randomness in order to
make the message encrypt to the right ciphertext. However, in the deterministic case the adversary there is no
randomness to fake.

1.2 Our Contributions

Results for hash functions. We start with the study of a more basic primitive than deterministic encryption,
namely hash functions (which in some sense are the deterministic analogue of commitments). We note that SOA
notion for hash functions is stronger than the one-wayness notion. We point that the SOA adversary without
any opening could simply run the one-wayness adversary on each image challenge and recover the preimages.
Thus, SOA notion is strictly stronger than one-wayness. Here we show results for an unbounded number of “t-
correlated” messages, meaning each set of up to t messages may be arbitrarily correlated. Namely, we show that
2t-wise independent hash functions, which can be realized information-theoretically by a classical construction of
polynomial evaluation. We also consider the notion of t-correlated messages to be interesting in its own right,
and it captures a setting with password hashing where a password is correlated with a small number of others
(and it is even stronger than that, in that a password may be correlated with any small number of others).
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To show 2t-wise independent hash functions are SOA secure, we first show that in the information theoretic
setting, knowing the content of opened messages increases the upper-bound for advantage of adversary by at most
factor of 2. This is because the messages are independent and knowing the opened messages does not increase the
advantage of adversary on guessing the unopened messages. Then, we show that for any hash key s in the set of
“good hash keys”, the probability of H(s,X) = y is almost equally distributed over all hash value y. Therefore,
we can show for any hash key s in the set of “good hash keys” and any vector of hash values, opening does
not increases the upper-bound for advantage of adversary. Thus, it is only enough to bound the advantage of
adversary without any opening.

Constructions in the standard model. In the setting of deterministic encryption, it is easy to see the
same strategy as above works using lossy trapdoor functions [27] that are 2t-wise independent in the lossy mode.
However, for t > 1 we are not aware of any such construction and highlight this as an interesting open problem.1

Hence, we turn to build a D-SO-CPA secure scheme in the standard model. We give a new DPKE scheme using
2t-wise independent hash functions and regular lossy trapdoor function [27], which has practical instantiations,
e.g., RSA is regular lossy [22]. A close variant of our scheme is shown to be D-SO-CPA secure in the NPROM [19].
The proof strategy here is very similar to proof of hash function. We start by switching to the lossy mode and
then bound the advantage of adversary in the information theoretic setting.

Results for one-more-RSA. Bellare et al. [4] were first to introduce one-more-RSA problem. They show
assuming hardness of one-more-RSA inversion problem leads to a proof of security of Chaum’s blind signature
scheme [12] in the random oracle model. This problem is natural SOA extension of the one-wayness of RSA.
Intuitively, in the one-more inversion problem, the adversary gets a number of image points, and must output the
inverses of all image points, while it has access to the corruption oracle and can see the preimage of image points
of its choice. We note that the number of corruption queries is less than the number of image points. We show
that one-more inversion problem is hard for RSA with a large enough encryption exponent e. In particular, we
show that one-more inversion problem is hard for any regular lossy trapdoor function. Intuitively, we show that
in the lossy mode the images are uniformly distributed. Then we show that inverting even one of the images is
hard, since any preimage x is equally likely.

1.3 Discussion and Related Work

Seeing us as replacing random oracles. Another way of seeing our treatment of hash functions is as
isolating a property of random oracles and realizing it in the standard model, building on a line of work in
this vein started by Canetti [8]. In this context, it would be interesting to consider adaptive SOA security for
hash functions similar to [26] who consider adaptive commitments. We leave this as another open problem.
Additionally, it would be interested in our results allow replacing ROs in any particular higher-level protocol.

2 Preliminaries

2.1 Notation and Conventions

For a probabilistic algorithm A, by y←$A(x) we mean that A is executed on input x and the output is assigned
to y. We sometimes use y ← A(x; r) to make A’s random coins explicit. If A is deterministic we denote this
instead by y ← A(x). We denote by [A(x)] the set of all possible outputs of A when run on input x. For a finite
set S, we denote by s←$ S the choice of a uniformly random element from S and assigning it to s.

Let N denote the set of all non-negative integers. For any n ∈ N we denote by [n] the set {1, . . . , n}. For a
vector x, we denote by |x| its length (number of components) and by x[i] its i-th component. For a vector x of
length n and any I ⊆ [n], we denote by x[I] the vector of length |I| such that x[I] = (x[i])i∈I , and by x[I] the
vector of length n− |I| such that x[I] = (x[i])i/∈I . For a string X, we denote by |X| its length.

Let X,Y be random variables taking values on a common finite domain. The statistical distance between X
and Y is given by

∆(X,Y ) =
1

2

∑
x

∣∣Pr [X = x ]− Pr [Y = x ]
∣∣ .

1It is tempting to give a Paillier-based construction with a degree 2t polynomial in the exponent, but unfortunately the coefficients
don’t lie in a field so the classical proof of 2t-wise independence does not work.
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Game D-CPA1-REALA,M
DE (k)

param←$A.pg(1k)

(pk , sk)←$ Kg(1k)

m1←$M(1k, param)

For i = 1 to |m| do

c[i]← Enc(pk ,m1[i])

(state, I)←$A.cor(pk , c,param)

ω←$A.g(state,m1[I], param)

Return (ω = A.f(m1, param))

Game D-CPA1-IDEALA,M
DE (k)

param←$A.pg(1k)

(pk , sk)←$ Kg(1k)

m1←$M(1k, param)

For i = 1 to |m| do

c[i]← Enc(pk ,m1[i])

(state, I)←$A.cor(pk , c,param)

m0←$ ResampM(1k,m1[I], I,param)

ω←$A.g(state,m1[I], param)

Return (ω = A.f(m0,param))

Figure 1: Games to define the D-SO-CPA security.

We also define ∆(X,Y | S) = 1
2

∑
x∈S

∣∣Pr [X = x ] − Pr [Y = x ]
∣∣, for a set S. The min-entropy of a random

variable X is H∞(X) = − log(maxx Pr [X = x ]). The average conditional min-entropy of X given Y is

H̃∞(X|Y ) = − log(
∑
y

PY (y) max
x

Pr [X = x | Y = y ]) .

Entropy after information leakage. Dodis et al. [14] characterized the effect of auxiliary information on
average min-entropy:

Lemma 2.1 [14] Let X,Y, Z be random variables and δ > 0 be a real number.

(a) If Y has at most 2λ possible values then we have H̃∞(X | Z, Y ) ≥ H̃∞(X | Z)− λ.

(b) Let S be the set of values b such that H∞(X | Y = b) ≥ H̃∞(X | Y ) − log(1/δ). Then it holds that
Pr[Y ∈ S] ≥ 1− δ.

2.2 Public-Key Encryption

Public-key encryption. A public-key encryption scheme PKE with message-space Msg is a tuple of algorithms
(Kg,Enc,Dec) defined as follows. The key-generation algorithm Kg on input unary encoding of the security
parameter 1k outputs a public key pk and matching secret key sk . The encryption algorithm Enc on inputs a
public key pk and message m ∈ Msg(1k) outputs a ciphertext c. The deterministic decryption algorithm Dec on
inputs a secret key sk and ciphertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)] and
all m ∈ Msg(1k), it holds that Dec(sk , (Enc(pk ,m)) = m. We say that PKE is deterministic if Enc is deterministic.

D-SO-CPA security. Let DE = (Kg,Enc,Dec) be a D-PKE scheme. To a message sampler M and an
adversary A = (A.pg, A.cor, A.g, A.f), we associate the experiment in Figure 1 for every k ∈ N. We say that
DE is D-SO-CPA secure for a class M of efficiently resamplable message samplers and a class A of adversaries
if for every M∈M and any A ∈ A ,

Advd-so-cpa
DE,A,M(k)

= Pr
[

D-CPA1-REALA,MDE (k)⇒ 1
]
− Pr

[
D-CPA1-IDEALA,MDE (k)⇒ 1

]
is negligible in k.

2.3 Lossy Trapdoor Functions and Their Security

Lossy trapdoor functions. A lossy trapdoor function [27] with domain LDom, range LRng and lossiness τ is
a tuple of algorithms LT = (IKg, LKg, Eval, Inv) that work as follows. Algorithm IKg on input a unary encoding of
the security parameter 1k outputs an “injective” evaluation key ek and matching trapdoor td . Algorithm LKg on
input 1k outputs a “lossy” evaluation key lk. Algorithm Eval on inputs an (either injective or lossy) evaluation
key ek and x ∈ LDom(k) outputs y ∈ LRng(k). Algorithm Inv on inputs a trapdoor td and a y ∈ LRng(k) outputs
x ∈ LDom(k). We denote by Img(lk) the co-domain of Eval(lk, ·). We require the following properties:

Correctness: For all k ∈ N, all (ek , td) ∈ [IKg(1k)] and all x ∈ LDom(k) it holds that Inv(td ,Eval(ek , x)) = x.
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Key indistinguishability: We require that for every PPT distinguisher D, the following advantage be negligible
in k.

Advltdf
LT,D(k) = Pr [D(ek)⇒ 1 ]− Pr [D(lk)⇒ 1 ] .

where (ek , td)←$ IKg(1k) and lk←$ LKg(1k).

Lossiness: The size of the co-domain of Eval(lk, ·) is at most |LRng(k)|/2τ(k) for all k ∈ N and all lk ∈ [LKg(1k)].
We call τ the lossiness of LT.

t-wise independent. Let LT be a lossy trapdoor function with domain LDom, range LRng and lossiness τ . We
say LT is t-wise independent if for all lk ∈ [LKg(1k)] and all distinct x1, . . . , xt(k) ∈ LDom(k)

∆
(
(Eval(lk, x1), . . . ,Eval(lk, xt(k))), (U1, . . . , Ut(k))

)
= 0

where lk←$ LKg(1k) and U1, . . . , Ut(k) are uniform and independent on LRng(k).

Regularity. Let LT be a lossy trapdoor function with domain LDom, range LRng and lossiness τ . We say LT
is regular if for all lk ∈ [LKg(1k)] and all y ∈ Img(lk), we have Pr [Eval(lk, U) = y ] = 1/|Img(lk)|, where U is
uniform on LDom(k).

2.4 Hash Functions and Associated Security Notions

Hash functions. A hash function with domain HDom and range HRng is a pair of algorithms H = (HKg, h)
that work as follows. Algorithm HKg on input a unary encoding of the security parameter 1k outputs a key K.
Algorithm h on inputs a key K and x ∈ HDom(k) outputs y ∈ HRng(k). We say that H is t-wise independent if
for all k ∈ N and all distinct x1, . . . , xt(k) ∈ HDom(k)

∆
(
(h(K,x1), . . . , h(K,xt(k))), (U1, . . . , Ut(k))

)
= 0

where K←$ HKg(1k) and U1, . . . , Ut(k) are uniform and independent in HRng(k).

3 Selective Opening Security for Hash Functions

Bellare, Dowsley, and Keelveedhi [1] were the first to consider selective-opening security of deterministic PKE.
They propose a “simulation-based” semantic security notion, but then show that this definition is unachievable in
both the standard model and the non-programmable random-oracle model. Later in [19] Hoang et al. introduce
an alternative, “comparison-based” semantic-security notion and show that this definition is achievable in the
non-programmable random-oracle model but leave it open in the standard model. In this section, we extend their
definitions to hash function families and show that t-wise independent hash functions are selective opening secure
under this notion.

3.1 Security Notion

Message samplers. A message sampler M is a PPT algorithm that takes as input the unary representation 1k

of the security parameter and a string param ∈ {0, 1}∗, and outputs a vector m of messages. We require thatM be
associated with functions v and n such that for any param ∈ {0, 1}∗, for any k ∈ N, and any m ∈ [M(1k,param)],
we have |m| = v(k) and |m[i]| = n(k), for every i ≤ |m|. Moreover, the components of m must be distinct.
Let Coins[k] be the set of coins for M(1k, ·). Define Coins[k,m, I, param] = {ω ∈ Coins[k] | m[I] = m′[I],
where m′ ←M(1k,param;ω)}.

A message sampler M is (µ, d)-correlated if

• For any k ∈ N, any param ∈ {0, 1}∗, every m ∈ [M(1k,param)] and any i ∈ [v], m[i] have min-entropy at
least µ and is independent of at least v − d messages.

• Messages m[1], . . . ,m[v(k)] must be distinct, for any param ∈ {0, 1}∗ and any m ∈ [M(1k,param)].

Note that in this definition, d can be 0, which corresponds to a message sampler in which each message is
independent of all other messages and has at least µ bits of min-entropy.
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Game H-SO-REALA,M
H (k)

param←$A.pg(1k)

K←$ HKg(1k)

m1←$M(1k,param)

For i = 1 to |m1| do

h[i]← h(K,m1[i])

(state, I)←$A.cor(K,h, param)

ω←$A.g(state,m1[I], param)

Return (ω = A.f(m1,param))

Game H-SO-IDEALA,M
H (k)

param←$A.pg(1k)

K←$ HKg(1k)

m1←$M(1k,param)

For i = 1 to |m1| do

h[i]← h(K,m1[i])

(state, I)←$A.cor(K,h, param)

ω←$A.g(state,m1[I],param)

m0←$ ResampM(1k,m1[I], I, param)

Return (ω = A.f(m0, param))

Figure 2: Games to define the H-SO security.

Resampling. Following [3], let ResampM(1k, I,x,param) be the algorithm that samples r←$ Coins[k,m, I, param]
and returns M(1k,param; r). (We note that Resamp may run in exponential time.) A resampling algorithm of
M is an algorithm Rsmp such that Rsmp(1k, I,x,param) is identically distributed as ResampM(1k, I,x,param).
A message sampler M is efficiently resamplable if it admits a PT resampling algorithm.

H-SO security. Let H = (HKg, h) be a hash function family with domain HDom and range HRng. To an
adversary A = (A.pg, A.cor, A.g, A.f) and a message sampler M, we associate the experiment in Figure 2 for
every k ∈ N. We say that H is H-SO secure for a class M of efficiently resamplable message samplers and a
class A of adversaries if for every M∈M and any A ∈ A ,

Advh-so
H,A,M(k)

= Pr
[

H-SO-REALA,MH (k)⇒ 1
]
− Pr

[
H-SO-IDEALA,MH (k)⇒ 1

]
is negligible in k.

Discussion. We refer to the messages indexed by I as the “opened” messages. For every message m[i] that
adversary A opens, we require that every message correlated to m[i] to also be opened.

We show that it is suffices to consider balanced H-SO adversaries where output of A.f is boolean. We call A
δ-balanced boolean H-SO adversary if for all b ∈ {0, 1},∣∣∣Pr [ t = b : t←$A.f(m,param) ]− 1

2

∣∣∣ ≤ δ .

for all param and m output by A.pg and M, respectively.

Theorem 3.1 Let H = (HKg, h) be a hash function family with domain HDom and range HRng. Let A be a
H-SO adversary against H with respect to message sampler M. Then for any 0 ≤ δ < 1/2, there is a δ-balanced
boolean H-SO adversary B such that for all k ∈ N

Advh-so
H,A,M(k) ≤

(2
√

2

δ
+
√

2
)2
·Advh-so

H,B,M(k) .

where the running time of A is about that of B plus O(1/δ).

We refer to Appendix A for the proof of Theorem 3.1. Next, we give a useful lemma that we later use in our
proofs.

Lemma 3.2 Let X,Y be random variables where H̃∞(X | Y ) ≥ µ. For any 0 ≤ δ < 1/2, random variable Y is
a δ-balanced boolean. Then, H∞(X | Y = b) ≥ µ− log( 1

2 − δ) for all b ∈ {0, 1}.

Proof: We know that Pr [Y = b ] ≥ 1/2−δ, for all b ∈ {0, 1}. We also have that
∑
b Pr [Y = b ] maxx Pr [X = x | Y = b ] ≤

2−µ. Therefore, we obtain that maxx Pr [X = x | Y = b ] ≤ 2−µ(1/2− δ) for all b ∈ {0, 1}. Summing up, we get
H∞(X | Y = b) ≥ µ− log( 1

2 − δ) for all b ∈ {0, 1}. �
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3.2 Achieving H-SO Security

We show in Theorem 3.3 that pair-wise independent hash functions are selective opening secure when the messages
are independent and have high min-entropy. Specifically, we give an upper-bound for the advantage of H-SO
adversary attacking the pair-wise independent hash function. We first show that in the information theoretic
setting, knowing the content of opened messages increases the upper-bound for advantage of adversary by at
most factor of 2. This is because the messages are independent and knowing the opened messages does not
increase the advantage of adversary on guessing the unopened messages. We point that for any vector of hash
values and hash key, value I is uniquely defined (unbounded adversary can be assumed deterministic) and based
on the independence of the messages, we could drop the probability of opened messages in the upper-bound for
the advantage of adversary. Note that the adversary still may increase its advantage by choosing I adaptively
without seeing the opened messages, we later prove this is not the case.

We show in Lemma 3.4 that for any hash key s in the set of “good hash keys”, the probability of H(s,X) = y
is almost equally distributed over all hash value y. Therefore, we can show for any hash key s in the set of “good
hash keys” and any vector of hash values, opening does not increases the upper-bound for advantage of adversary.
Thus, it is only enough to bound the advantage of adversary without any opening.

Theorem 3.3 Let H = (HKg, h) be a family of pair-wise independent hash function with domain HDom and
range HRng. LetM be a (µ, 0)-correlated, efficiently resamplable message sampler. Then for any computationally
unbounded adversary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−µ|HRng(k)|2 .

Proof: We need the following lemma whose proof we’ll give later.

Lemma 3.4 Let H = (HKg, h) be a pair-wise independent hash function with domain HDom and range HRng.
Let X be a random variable over HDom such that H∞(X) ≥ η. Then, for all y ∈ HRng(k) and for any ε > 0,∣∣∣Pr [H(K,X) = y ]− |HRng(k)|−1

∣∣∣ ≥ ε|HRng(k)|−1 .

for at most 2−u fraction of K ∈ [HKg(1k)], where u = η − 2 log |HRng(k)| − 2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean adversary B. Observe that for computa-

tionally unbounded adversary B, we can assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we
can also assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote by Advh-so

H,B,M,s(k),
advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALBH,s(k)⇒ 1]

=

1∑
b=0

∑
I

Pr[B.cor(s,h)⇒ I ∧ B.g(s,m1[I],h[Ī])⇒ b ∧ B.f(m1)⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of B.cor on input s,y. We also define
M b
s,y = {m[Is,y] | B.g(s,m1[Is,y],y)⇒ b}, for b ∈ {0, 1}. Thus,

Pr[H-SO-REALBH,s(k)⇒ 1]

=

1∑
b=0

∑
y

Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m1)⇒ b]

The above probability is over the choice of m1. Similarly, we can define the probability of the experiment
H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑
b=0

∑
y

Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m1)⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m0)⇒ b]
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Assume wlog that above difference is maximized when b = 1. For d ∈ {0, 1}, we define Ed as an event where
h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y and B.f(md) = 1. Note that the messages are independent and has µ bits
of min-entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑
y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]

Note that m0 and m1 have the same distribution. Then, we have Pr[E0] = Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]].
Therefore, we obtain

Advh-so
H,B,M,s(k)

≤ 2 ·
∑
y

Pr[h[I] = y[I]] ·
(

Pr[h[I] = y[I] | B.f(m1) = 1]− Pr[h[I] = y[I]]
)

We define random variable X[i] = (m1[i] | B.f(m1) = 1), for all i ∈ [v]. From property (a) of Lemma 2.1 and
Lemma 3.2, we obtain that H∞(X[i]) ≥ µ− 3. For all i ∈ [v], we also have H∞(m1[i]) ≥ µ ≥ µ− 3. Moreover, we
know Lemma 3.4 holds for at most 2−u fraction of K ∈ [HKg(1k)], where u = µ− 3− 2 log |HRng(k)| − 2 log(1/ε);
we shall determine the value of ε later. Using union bound, for all X[i],m[i], where i ∈ [v] and for any ε > 0, we
obtain that for at least 1− 2v2−u fraction of K, we have

∣∣Pr [H(K,x[i]) = y[i] ]− |HRng(k)|−1
∣∣ ≤ ε|HRng(k)|−1,

for all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1− ε)|HRng(k)|−1 ≤ Pr [ h[i] = y[i] ] ≤ (1 + ε)|HRng(k)|−1. Let
|Is,y| = `. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑
y

|HRng(k)|−v(1 + ε)`
(

(1 + ε)v−` − (1− ε)v−`
)

≤ 2
(

(1 + ε)v − (1− ε)v
)

We also have (1 + ε)v = 1 +
∑
i

(
v
i

)
εi ≤ 1 +

∑
i ε
ivi. For εv < 1/2, we obtain that (1 + ε)v ≤ 1 + 2εv. Similarly,

we obtain that (1− ε)v ≥ 1− 2εv. Therefore, we have that Advh-so
H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑
s∈S

Pr [K = s ] ·Advh-so
H,B,M,s(k)

+
∑
s∈S

Pr [K = s ] ·Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u .

Finally, by substituting ε = 3
√

21−µ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−µ|HRng(k)|2 .

Using Theorem 3.1, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−µ|HRng(k)|2 .

This completes the proof of Theorem 3.3.

Proof of Lemma 3.4. We will need the following tail inequality for pair-wise independent distributions

Claim 3.5 Let A1, · · · , An be pair-wise independent random variables in the interval [0, 1]. Let A =
∑
iAi and

9



E(A) = µ and δ > 0. Then,

Pr [ |A− µ| > δµ ] ≤ 1

δ2µ
.

Proof of Claim 3.5. From Chebychev’s inequality, for any δ > 0 we have

Pr [ |A− µ| > δµ ] ≤ Var[A]

δ2µ2
.

Note that A1, · · · , An are pair-wise independent random variables. Thus, we have Var[A] =
∑
i Var[Ai].

Moreover, we know that Var[Ai] ≤ E(Ai) for all i ∈ [n], since the random variable Ai is in the interval [0, 1].
Therefore, we have Var[A] ≤ µ. This completes the proof of Claim 3.5.

We define px = Pr [X = x ], for any x ∈ HDom(k). We consider the probability over the choice of key K. For
every x ∈ HDom(k) and y ∈ HRng(k), we also define the following random variable

Zx,y =

{
px if H(K,x) = y

0 otherwise

We define random variable Ax,y = Zx,y2η. Note that for every x, H(K,x) is uniformly distributed, over the
uniformly random choice of K. Therefore, we have E(Zx,y) = px/|HRng(k)|, for every x, y. Let Zy =

∑
x Zx,y

and Ay =
∑
xAx,y. Then, we have E(Zy) = 1/|HRng(k)| and E(Ay) = 2η/|HRng(k)|. Moreover, for every x, y, we

know Ax,y ∈ [0, 1] and for every y, the variables Ax,y are pair-wise independent. Applying Claim 3.5, we obtain
that for every y and δ > 0

Pr

[ ∣∣∣∣Ay − 2η

|HRng(k)|

∣∣∣∣ ≥ δ2η

|HRng(k)|

]
≤ |HRng(k)|

δ22η
.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr

[ ∣∣∣∣Zy − 1

|HRng(k)|

∣∣∣∣ ≥ ε

|HRng(k)|

]
≤ |HRng(k)|

ε22η
.

Using union bound, we obtain that with probability |HRng(k)|2/ε22η = 2−u over the choice of K that
|Zy − 1/|HRng(k)|| ≥ ε/|HRng(k)|, for all y ∈ |HRng(k)|. This completes the proof of Lemma 3.4. �

We show in Theorem 3.6 that the 2d-wise independent hash functions are selective opening secure for (µ, d)-
correlated message samplers.

Theorem 3.6 Let H = (HKg, h) be a family of 2d-wise independent hash function with domain HDom and range
HRng. Let M be a (µ, d)-correlated, efficiently resamplable message sampler. Then for any computationally
unbounded adversary A,

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−µ|HRng(k)|2d .

Proof: We need the following lemma whose proof we’ll give later.

Lemma 3.7 Let H = (HKg, h) be a 2d-wise independent hash function with domain HDom and range HRng. Let
X = (X1, · · · , Xt), where t ≤ d and Xi is a random variable over HDom such that H∞(Xi) ≥ η, for i ∈ [t]. Then,
for all y = (y1, · · · , yt), where yi ∈ HRng(k) and for any ε > 0,∣∣∣Pr [H(K,X) = y ]− |HRng(k)|−t

∣∣∣ ≥ ε|HRng(k)|−t .

for at most 2−w fraction of K ∈ [HKg(1k)], where w = η − 2t log |HRng(k)| − 2 log(1/ε).

We begin by showing H is H-SO secure against any 1
4 -balanced boolean adversary B. Observe that for computa-

tionally unbounded adversary B, we can assume wlog that B.cor, B.g and B.f are deterministic. Moreover, we
can also assume that adversary B.cor pass K,h[Ī] as state st to adversary B.g. We denote by Advh-so

H,B,M,s(k),

10



advantage of B when K = s. For any fix key s we have

Pr[H-SO-REALBH,s(k)⇒ 1]

=

1∑
b=0

∑
I

Pr[B.cor(s,h)⇒ I ∧ B.g(s,m1[I],h[Ī])⇒ b ∧ B.f(m1)⇒ b]

For any y ∈ (HRng(k))×v and s ∈ [HKg(1k)], we define Is,y to be output of B.cor on input s,y. We also define
M b
s,y = {m[Is,y] | B.g(s,m1[Is,y],y)⇒ b}, for b ∈ {0, 1}. Thus,

Pr[H-SO-REALBH,s(k)⇒ 1]

=

1∑
b=0

∑
y

Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m1)⇒ b]

The above probability is over the choice of m1. Similarly, we can define the probability of the experiment
H-SO-IDEAL outputting 1. Therefore, we obtain

Advh-so
H,B,M,s(k) =

1∑
b=0

∑
y

Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m1)⇒ b]

− Pr[h = y ∧ m1[Is,y] ∈M b
s,y ∧ B.f(m0)⇒ b]

Assume wlog that the above difference is maximized when b = 1. For d ∈ {0, 1}, we define Ed as an event where
h[Is,y] = y[Is,y] and m1[Is,y] ∈ M1

s,y and B.f(md) = 1. Note that the messages are independent and has µ bits
of min-entropy. For convenience, we write I instead of Is,y. Then, we obtain

Advh-so
H,B,M,s(k) ≤ 2 ·

∑
y

Pr[E1] · Pr[h[I] = y[I] | B.f(m1) = 1]

− Pr[E0] · Pr[h[I] = y[I]]

Note that m0 and m1 have the same distribution. Then, we have Pr[E0] = Pr[E1] and Pr[E0] ≤ Pr[h[I] = y[I]].
We define random variable X[i] = (m1[i] | B.f(m1) = 1), for all i ∈ [v]. From property (a) of Lemma 2.1 and
Lemma 3.2, we obtain that H∞(X[i]) ≥ µ− 3. For all i ∈ [v], we also have H∞(m1[i]) ≥ µ ≥ µ− 3

Moreover, we know Lemma 3.4 holds for at most 2−u fraction ofK ∈ [HKg(1k)], where u = µ−3−2d log |HRng(k)|−
2 log(1/ε); we shall determine the value of ε later. Partition [v] to L1, · · · , Lv such that |Lk| ≤ d and for all
i, j ∈ Lk, messages m[i] and m[j] are correlated. Using union bound, for all y[Li] ∈ (HRng(k))×|Li|, where i ∈ [v]
and for any ε > 0, we obtain that for at least 1 − 2v2−u fraction of K, we have

∣∣Pr [H(K,x[Li]) = y[Li] ] −
|HRng(k)|−|Li|

∣∣ ≤ ε|HRng(k)|−|Li|, for all i ∈ [v] and x ∈ {m1,X}. Let S be the set of such K.

Now, we have for all s ∈ S and i ∈ [v], we obtain (1−ε)|HRng(k)|−|Li| ≤ Pr [ h[Li] = y[Li] ] ≤ (1+ε)|HRng(k)|−|Li|.
Let |Is,y| = `. Then,

Advh-so
H,B,M,s(k) ≤ 2 ·

∑
y

|HRng(k)|−v(1 + ε)`
(

(1 + ε)v−` − (1− ε)v−`
)

≤ 2
(

(1 + ε)v − (1− ε)v
)

We also have (1 + ε)v = 1 +
∑
i

(
v
i

)
εi ≤ 1 +

∑
i ε
ivi. For εv < 1/2, we obtain that (1 + ε)v ≤ 1 + 2εv. Similarly,
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we obtain that (1− ε)v ≥ 1− 2εv. Therefore, we have that Advh-so
H,B,M,s(k) ≤ 8εv. Then,

Advh-so
H,B,M(k) =

∑
s∈S

Pr [K = s ] ·Advh-so
H,B,M,s(k)

+
∑
s∈S

Pr [K = s ] ·Advh-so
H,B,M,s(k)

≤ max
s∈S

Advh-so
H,B,M,s(k) + 2v2−u .

Finally, by substituting ε = 3
√

21−µ|HRng(k)|2, we obtain

Advh-so
H,B,M(k) ≤ 16v 3

√
21−µ|HRng(k)|2d .

Using Theorem 3.1, we obtain for any unbounded adversary A

Advh-so
H,A,M(k) ≤ 2592v 3

√
21−µ|HRng(k)|2d .

This completes the proof of Theorem 3.6.

Proof of Lemma 3.7. We define px = Pr [ X = x ], for any x = (x1, · · · , xt), where xi ∈ HDom(k). We consider
the probability over the choice of key K. For every x and y, we also define the following random variable

Zx,y =

{
px if H(K,x) = y

0 otherwise

Let Ax,y = Zx,y2η. Note that for all i ∈ [t] and for every xi, H(K,xi) is uniformly distributed, over the
uniformly random choice of K. Moreover, H is t-wise independent. Therefore, we have E(Zx,y) = px/|HRng(k)|t,
for every x,y. Let Zy =

∑
x Zx,y and Ay =

∑
xAx,y. Then, we have E(Zy) = 1/|HRng(k)|t and E(Ay) =

2η/|HRng(k)|t. Moreover, for every x,y, we know Ax,y ∈ [0, 1] and for every y, the variables Ax,y are pair-wise
independent. Applying Claim 3.5, we obtain that for every y and δ > 0

Pr

[ ∣∣∣∣Ay −
2η

|HRng(k)|t

∣∣∣∣ ≥ δ2η

|HRng(k)|t

]
≤ |HRng(k)|t

δ22η
.

Substituting Zy for Ay and choosing δ = ε, we obtain that for every ε > 0,

Pr

[ ∣∣∣∣Ay −
2η

|HRng(k)|t

∣∣∣∣ ≥ ε2η

|HRng(k)|t

]
≤ |HRng(k)|t

ε22η
.

Using union bound, we obtain that with probability |HRng(k)|2t/ε22η = 2−w over the choice of K that
|Zy − |HRng(k)|−t| ≥ ε|HRng(k)|−t, for all y. Thus,∣∣Pr [H(K,X) = y ]− |HRng(k)|−t

∣∣ ≥ ε|HRng(k)|−t .

with probability at most 2−w over the choice of K. This completes the proof of Lemma 3.7. �

4 Selective Opening Security for Deterministic Encryption

In this section, we give two different constructions of deterministic public key encryption and show that they
achieve D-SO-CPA security. First, we show that lossy trapdoor functions that are 2t-wise independent in the
lossy mode are selective opening secure for t-correlated messages. However, it is an open problem to construct
them for t > 1.
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Game G0(k)

b←$ {0, 1} ; param←$A.pg(1k)

m1←$M(1k, param)

(ek , td)←$ IKg(1k)

c← Eval(ek ,m1)

(state, I)←$A.cor(ek , c, param)

m0←$ Rsmp(1k,m1[I], I,param)

ω←$A.g(state,m1[I], param)

t←$A.f(mb, param)

If (t = ω) then return b

Else return (1− b)

Game G1(k)

b←$ {0, 1} ; param←$A.pg(1k)

m1←$M(1k, param)

lk←$ LKg(1k)

c← Eval(lk,m1)

(state, I)←$A.cor(lk, c,param)

m0←$ Rsmp(1k,m1[I], I,param)

ω←$A.g(state,m1[I], param)

t←$A.f(mb, param)

If (t = ω) then return b

Else return (1− b)

Figure 3: Games G0, G1 of the proof of Theorem 4.1.

Hence, we give another construction of deterministic public key encryption using hash functions and lossy
trapdoor permutation and show it is selective opening secure. A close variant of this scheme is shown to be
D-SO-CPA secure in the NPROM [19]. Our scheme is efficient and only public-key primitive that it uses is a
regular lossy trapdoor function, which has practical instantiations, e.g., both Rabin and RSA are regular lossy.

4.1 Achieving D-SO-CPA Security

We start by showing that 2t-wise independent lossy trapdoor functions are selective opening secure. It was
previously shown by Hoang et al. [19] that D-SO-CPA notion is achievable under the random oracle model. They
leave it open to construct a D-SO-CPA secure scheme in the standard model. Here, we show that that a pair-wise
independent lossy trapdoor function is D-SO-CPA secure for independent messages. We also show that that a
2d-wise independent lossy trapdoor function is D-SO-CPA secure for (µ, d)-correlated message samplers.

First, we show in Theorem 4.1 that a pair-wise independent lossy trapdoor functions is D-SO-CPA secure for
(µ, 0)-correlated message samplers.

Theorem 4.1 LetM be a (µ, 0)-correlated, efficiently resamplable message sampler. Let LT be a lossy trapdoor
function with domain LDom, range LRng and lossiness τ . Suppose LT is pair-wise independent. Then for any
adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 ·Advltdf

LT,B(k) + 2592v 3
√

21−µ−2τ |LRng(k)|2 .

Proof: Consider games G0, G1 in Figure 3. Then

Advd-so-cpa
LT,A,M(k) = 2 · Pr [G0(k)⇒ 1 ]− 1 .

We now explain the game chain. Game G1 is identical to game G0, except that instead of generating an injective
key for the lossy trapdoor function, we generate a lossy one. Consider the following adversary B attacking the
key indistinguishability of LT. It simulates game G0, but uses its given key instead of generating a new one. It
outputs 1 if the simulated game returns 1, and outputs 0 otherwise. Then

Pr[G0(k)⇒ 1]− Pr[G1(k)⇒ 1] ≤ Advltdf
LT,B(k) .

Note that game G1 is identical to games H-SO-REAL or H-SO-IDEAL, when b = 1 or b = 0, respectively. Then

Advh-so
LT,A,M(k) = 2 · Pr [G1(k)⇒ 1 ]− 1 .

Note that LT is pair-wise independent and τ -lossy. Then, size of the range of LT in the lossy mode is at most
2−τ |LRng(k)|. From Theorem 3.3

Advh-so
LT,A,M(k) ≤ 2592v 3

√
21−µ−2τ |LRng(k)|2 .

Summing up,
Advd-so-cpa

LT,A,M(k) ≤ 2 ·Advltdf
LT,B(k) + 2592v 3

√
21−µ−2τ |LRng(k)|2 .

13



DE.Kg(1k)

(ek , td)←$ IKg(1k)

KH ←$ HKg(1k)

KG←$ GKg(1k)

pk ← (KH ,KG, ek)

sk ← (KH ,KG, td)

Return (pk, sk)

DE.Enc(pk ,m)

(KH ,KG, ek)← pk

r ← h(KH ,m)

y ← g(KG, r)⊕m
c← Eval(ek , y||r)
Return c

DE.Dec(sk , c)

(KH ,KG, td)← sk

y||r ← Inv(td , c)

m← g(KG, r)⊕y
Return m

Figure 4: D-PKE scheme DE[H,G, LT].

This completes the proof of Theorem 4.1.

Next, we show in Theorem 4.2 that a 2d-wise independent lossy trapdoor functions is D-SO-CPA secure for
(µ, d)-correlated message samplers.

Theorem 4.2 LetM be a (µ, d)-correlated, efficiently resamplable message sampler. Let LT be a lossy trapdoor
function with domain LDom, range LRng and lossiness τ . Suppose LT is 2d-wise independent. Then for any
adversary A,

Advd-so-cpa
LT,A,M(k) ≤ 2 ·Advltdf

LT,B(k) + 2592v 3

√
21−µ−2dτ |LRng(k)|2d .

The proof of Theorem 4.2 is very similar to the proof of Theorem 4.1.
Although that 2t-wise independent trapdoor functions are very efficient and secure against selective opening

attack, it is an open problem to construct them for t > 1. Hence, we give a new construction of deterministic
public key encryption that is selective opening secure. Our scheme DE[H,G, LT] is shown in Figure 4, where LT is
a lossy trapdoor function and H,G are hash functions. We begin by showing in Theorem 4.3 that DE is D-SO-CPA
secure for independent messages when H, G are pair-wise independent hash functions and LT is a regular lossy
trapdoor function.

Theorem 4.3 Let M be a (µ, 0)-correlated, efficiently resamplable message sampler. Let H = (HKg, h) with
domain {0, 1}n and range {0, 1}` and G = (GKg, g) with domain {0, 1}` and range {0, 1}n be hash function
families. Suppose H and G are pair-wise independent. Let LT be a regular lossy trapdoor function with domain
{0, 1}n+`, range {0, 1}p and lossiness τ . Let DE[H,G, LT] be as above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 ·Advltdf

LT,B(k) + 2592v
3
√

21−µ−2τ+2p .

Proof: We begin by showing the following lemma.

Lemma 4.4 Let H = (HKg, h) with domain {0, 1}n and range {0, 1}` and G = (GKg, g) with domain {0, 1}` and
range {0, 1}n be hash function families. Suppose H and G are pair-wise independent. Let LT be a regular lossy
trapdoor function with domain {0, 1}n+`, range {0, 1}p and lossiness τ . Let X be a random variable over {0, 1}n
such that H∞(X) ≥ η. Then, for all lk ∈ [LKg(1k)], all c ∈ Img(lk) and any ε > 0,∣∣∣Pr [DE.Enc(pk , X) = c ]− 2τ−p

∣∣∣ ≥ ε2τ−p .

for at most 2−u fraction of public key pk, where u = η + 2τ − 2p− 2 log(1/ε).

Proof of Lemma 4.4. We define px = Pr [X = x ], for any x ∈ {0, 1}n. We consider the probability over the
choice of public key pk . fix the lossy key lk ∈ [LKg(1k)], we consider the probability over the choice of KH ,KG.
For every x ∈ {0, 1}n and c ∈ Img(lk), we also define the following random variable

Zx,c =

{
px if DE.Enc(pk , x) = c

0 otherwise

Let Ax,c = Zx,c2
η. Note that that for every x, h(KH , x) is uniformly distributed, over the uniformly random

choice of KH . Moreover, for every x and KH , g(KG, h(KH , x)) is uniformly distributed, over the uniformly
random choice of KG. Since LT is a regular LTDF, we have E(Zx,c) = px · 2τ−p, for every x, c. Let Zc =

∑
x Zx,c
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Game G0(k)

b←$ {0, 1} ; param←$A.pg(1k)

m1←$M(1k, param)

(ek , td)←$ IKg(1k) ; KH ←$ HKg(1k)

KG←$ GKg(1k) ; pk ← (KH ,KG, ek)

c← DE.Enc(pk ,m1)

(state, I)←$A.cor(pk , c, param)

m0←$ Rsmp(1k,m1[I], I,param)

ω←$A.g(state,m1[I], param)

t←$A.f(mb, param)

If (t = ω) then return b

Else return (1− b)

Game G1(k)

b←$ {0, 1} ; param←$A.pg(1k)

m1←$M(1k, param)

lk←$ LKg(1k) ; KH ←$ HKg(1k)

KG←$ GKg(1k) ; pk ← (KH ,KG, lk)

c← DE.Enc(pk ,m1)

(state, I)←$A.cor(pk , c, param)

m0←$ Rsmp(1k,m1[I], I,param)

ω←$A.g(state,m1[I], param)

t←$A.f(mb,param)

If (t = ω) then return b

Else return (1− b)

Figure 5: Games G0, G1 of the proof of Theorem 4.3.

and Ac =
∑
xAx,c. Then, we have E(Zc) = 2τ−p and E(Ac) = 2η+τ−p. Moreover, for every x, c, we know

Ax,c ∈ [0, 1] and for every c, the variables Ax,c are pair-wise independent. Applying Claim 3.5, we obtain that
for every c and δ > 0

Pr
[ ∣∣Ac − 2η+τ−p

∣∣ ≥ δ · 2η+τ−p ] ≤ 2p−η−τ

δ2
.

Substituting Zc for Ac and choosing δ = ε, we obtain that for every ε > 0,

Pr
[ ∣∣Zc − 2τ−p

∣∣ ≥ ε · 2τ−p ] ≤ 2p−η−τ

ε2
.

Using union bound, we obtain that |Zc − 2τ−p| ≥ ε · 2τ−p with probability 22p−η−2τ/ε2 = 2−u over the choice of
KH ,KG, for all lk ∈ [LKg(1k)], all c ∈ Img(lk). This completes the proof of Lemma 4.4. �

Consider games G0, G1 in Figure 5. Then

Advd-so-cpa
DE,A,M(k) = 2 · Pr [G0(k)⇒ 1 ]− 1 .

We now explain the game chain. Game G1 is identical to game G0, except that instead of generating an injective
key for the lossy trapdoor function, we generate a lossy one. Consider the following adversary B attacking the
key indistinguishability of LT. It simulates game G0, but uses its given key instead of generating a new one. It
outputs 1 if the simulated game returns 1, and outputs 0 otherwise. Then

Pr[G0(k)⇒ 1]− Pr[G1(k)⇒ 1] ≤ Advltdf
LT,B(k) .

Similar to proof of Theorem 3.3, using Lemma 4.4, we obtain that

Pr [G1(k)⇒ 1 ] ≤ 1296v
3
√

21−µ−2τ+2p +
1

2
.

Summing up,
Advd-so-cpa

DE,A,M(k) ≤ 2 ·Advltdf
LT,B(k) + 2592v

3
√

21−µ−2τ+2p .

This completes the proof of Theorem 4.3.

We now extend our result to include correlated messages. We show that it is enough to use 2t-wise independent
hash functions to extend the security to t-correlated messages. Let DE[H,G, LT] be PKE scheme shown in Figure 4,
where LT is a lossy trapdoor function and H,G are hash functions. We show in Theorem 4.5 that DE is D-SO-CPA
secure for t-correlated messages when H,G are 2t-wise independent hash functions and LT is a regular lossy
trapdoor function.

Theorem 4.5 Let M be a (µ, d)-correlated, efficiently resamplable message sampler. Let H = (HKg, h) with
domain {0, 1}n and range {0, 1}` and G = (GKg, g) with domain {0, 1}` and range {0, 1}n be hash function
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Game ONE-MORE-INVA
TDF(k)

j ← 0 ; (ek, td)←$ Kg(1k)

For i = 1 to v do

x[i]←$ TDom(k)

y[i]← Eval(ek,x[i])

x′←$AC(ek,y)

Return (x = x′)

Oracle C(i)
j ← j + 1

If j ≥ v then

Return ⊥
Return x[i]

Figure 6: Games to define the One-More security.

families. Suppose H and G are 2d-wise independent. Let LT be a regular lossy trapdoor function with domain
{0, 1}n+`, range {0, 1}p and lossiness τ . Let DE[H,G, LT] be as above. Then for any adversary A,

Advd-so-cpa
DE,A,M(k) ≤ 2 ·Advltdf

LT,B(k) + 2592v
3
√

21−µ+2d(−τ+p) .

The proof of Theorem 4.5 is very similar to the proof of Theorem 4.3.

5 The One-More-RSA Inversion Problem

In this section, we recall the definition of one-more-RSA inversion problem. This problem is a natural extensions
of the RSA-inversion problem underlying the notion of one-wayness to a setting where the adversary has access to
a corruption oracle. Bellare et al. [4] first introduce this notion and show that assuming hardness of one-more-RSA
inversion problem leads to a proof of security of Chaum’s blind signature scheme in the random oracle model.
Here we show that one-more inversion problem is hard for RSA with a large enough encryption exponent e. In
particular, we show that one-more inversion problem is hard for any regular lossy trapdoor function.

5.1 Security Notion

Here we give a formal definition of one-more-RSA inversion problem. Our definition is more general and consider
this problem for any trapdoor function. Intuitively, in the one-more inversion problem, the adversary gets a
number of image points, and must output the inverses of all image points, while it has access to the corruption
oracle and can see the preimage of image points of its choice. We note that the number of corruption queries is
less than the number of image points.

Note that the special case of the one-more inversion problem in which there is only one image point is exactly
the problem underlying the notion of one-wayness.

One-more inversion problem. Let TDF = (Kg,Eval, Inv) be a trapdoor function with domain TDom(·) and
range TRng(·). To an adversary A, we associate the experiment in Figure 6 for every k ∈ N. We say that TDF is
one-more[v] secure for a class A of adversaries if for every any A ∈ A ,

Advone-more
TDF,A,v (k) = Pr

[
ONE-MORE-INVA,v

TDF(k)⇒ 1
]

is negligible in k.

5.2 Achieving One-More Security

We show in Theorem 5.1 that a regular lossy trapdoor function is one-more secure. We point out that, for large
enough encryption exponent e, RSA is a regular lossy trapdoor function.

Theorem 5.1 Let LT be a regular lossy trapdoor function with domain LDom, range LRng and lossiness τ . Then
for any adversary A and any v ∈ N,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + 2−τ .

Proof: Consider games G1–G3 in Figure 7. Then

Advone-more
LT,A,v (k) = Pr [G0(k)⇒ 1 ] .
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Game G0(k)

j ← 0

(ek , td)←$ IKg(1k)

For i = 1 to v do

x[i]←$ LDom(k)

y[i]← Eval(ek ,x[i])

x′←$AC(ek ,y)

Return (x = x′)

Game G1(k)

j ← 0

lk←$ LKg(1k)

For i = 1 to v do

x[i]←$ LDom(k)

y[i]← Eval(lk,x[i])

x′←$AC(lk,y)

Return (x = x′)

Oracle C(i) // G0–G2

j ← j + 1

If j ≥ v then

Return ⊥
Return x[i]

Game G2(k)

j ← 0

lk←$ LKg(1k)

For i = 1 to v do

y[i]←$ Img(lk)

x[i]←$ P(lk, y)

x′←$AC(lk,y)

Return (x = x′)

Game G3(k)

j ← 0 ; I ← ⊥
lk←$ LKg(1k)

For i = 1 to v do

y[i]←$ Img(lk)

x′←$AC(lk,y)

For i /∈ I do

x[i]←$ P(lk, y)

Return (x = x′)

Oracle C(i) // G3

j ← j + 1

I ← I ∪ {i}
If j ≥ v then

Return ⊥
x[i]←$ P(lk, y)

Return x[i]

Figure 7: Games G2, G3 of the proof of Theorem 5.1.

We now explain the game chain. Game G1 is identical to game G0, except that instead of generating an injective
key for the lossy trapdoor function, we generate a lossy one. Consider the following adversary B attacking the
key indistinguishability of LT. It simulates game G0, but uses its given key instead of generating a new one. It
outputs 1 if the simulated game returns 1, and outputs 0 otherwise. Then

Pr[G0(k)⇒ 1]− Pr[G1(k)⇒ 1] ≤ Advltdf
LT,B(k) .

Let P(lk, y) = {x | Eval(lk, x) = y}. In game G2, we reorder the code of game G1 producing vector y. Note that
LT is a regular lossy trapdoor function. Then, distribution of vector y is uniformly random on Img(lk) in game
G1. Thus, vectors x and y have the same distribution in game G1 and G2. Hence, the change is conservative,
meaning that Pr[G1(k) ⇒ 1] = Pr[G2(k) ⇒ 1]. Moreover, game G3 is identical to game G2. Thus, we have
Pr[G2(k)⇒ 1] = Pr[G3(k)⇒ 1].

Let y[I] be the unopened images, where |I| ≥ 1. Note that in game G3, for all i ∈ I, x[i] is chosen uniformly at
random after adversary A outputs x′. Therefore, we obtain Pr[G3(k)⇒ 1] ≤ 2−τ . Summing up,

Advone-more
LT,A,v (k) ≤ Advltdf

LT,B(k) + 2−τ .

This completes the proof of Theorem 5.1.

Acknowledgments

We thank Jonathan Katz for insightful conversations.

References

[1] M. Bellare, R. Dowsley, and S. Keelveedhi. How secure is deterministic encryption? In Public-Key Cryptography —
PKC 2015, volume 9020 of LNCS, pages 52–73. Springer, Heidelberg, Germany, 2015. (Cited on page 3, 6.)

[2] M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security against selective-opening.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 645–662, Cambridge,
UK, Apr. 15–19, 2012. Springer, Heidelberg, Germany. (Cited on page 3.)

[3] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure under
selective opening. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35, Cologne, Germany,
Apr. 26–30, 2009. Springer, Heidelberg, Germany. (Cited on page 3, 7.)

[4] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and the security
of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003. (Cited on page 3, 4, 16.)

17



[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In V. Ashby,
editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press. (Cited on page 3.)

[6] R. Bendlin, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Lower and upper bounds for deniable public-key encryption.
In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 125–142, Seoul, South Korea,
Dec. 4–8, 2011. Springer, Heidelberg, Germany. (Cited on page 3.)
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Return pars
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(r, param)← pars

(I, st)←$A.cor(k,h, param)

Return (I, st)

Algorithm B.g(st,m[I], pars)

(r,param)← pars

ω←$A.g(st,m[I], param)

Return 〈 r, ω〉

Algorithm B.f(m,pars)

(r,param)← pars

t←$A.f(m, param)

Return 〈 r, t〉

Figure 8: H-SO adversary B in the proof of Claim A.1.
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A Deferred Proofs

Proof of Theorem 3.1. The proof is similar to the proof of Theorem 3.1 from [16]. The proof of Theorem 3.1
follows from the following claims. We begin by showing that it is suffices to consider H-SO adversaries where the
output of A.f is boolean.

Claim A.1 Let H = (HKg, h) be a hash function family with domain HDom and range HRng. Let A be a H-SO
adversary against H with respect to message sampler M. Then, there is a boolean H-SO adversary B such that
for all k ∈ N

Advh-so
H,A,M(k) ≤ 2 ·Advh-so

H,B,M(k) .

where the running time of B is about that of A.

Proof: Consider adversary B in Figure 8. We define EA and EB to be events where games H-SO-REALA,MH and

H-SO-REALB,MH output 1, respectively. Hence,

Pr [EB ] = Pr [EA ] +
1

2
(1− Pr [EA ])

=
1

2
Pr [EA ] +

1

2
.

We also define TA and TB to be the events where games H-SO-IDEALA,MH and H-SO-IDEALB,MH output 1,

respectively. Similarly, we have Pr [TB ] = Pr [TA ]/2 + 1/2. Thus, we have Advh-so
H,A,M(k) ≤ 2 ·Advh-so

H,B,M(k).
This completes the proof.

Next, we claim that it is suffices to consider balanced H-SO adversaries meaning the probability the partial
information is 1 or 0 is approximately 1/2.

Claim A.2 Let H = (HKg, h) be a hash function family with domain HDom and range HRng. Let B be a
boolean H-SO adversary against H with respect to the message sampler M. Then for any 0 ≤ δ < 1/2, there is
a δ-balanced boolean H-SO adversary C such that for all k ∈ N

Advh-so
H,B,M(k) ≤

(2

δ
+ 1
)2
·Advh-so

H,C,M(k) .
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Algorithm C.pg(1k)

param←$B.pg(1k)

Return param

Algorithm C.f(m,param)

t←$B.f(m, param)

j←$ {1, · · · 2(1/δ) + 1}
If j ≤ 1/δ then return 0

If j ≤ 2(1/δ) return 1

Return t

Algorithm C.cor(k,h, param)

(I, st)←$B.cor(k,h, param)

Return (I, st)

Algorithm C.g(st,m[I],param)

ω←$B.g(st,m[I], param)

i←$ {1, · · · 2(1/δ) + 1}
If i ≤ 1/δ then return 0

If i ≤ 2(1/δ) return 1

Return ω

Figure 9: H-SO adversary C in the proof of Claim A.2.

where the running time of C is about that of B plus O(1/δ)

Proof: For simplicity, we assume 1/δ is an integer. Consider adversary C in Figure 9. Note that C is δ-balanced,
since for all b ∈ {0, 1} ∣∣∣Pr [ t = b : t←$ C.f(m,param) ]− 1

2

∣∣∣ ≤ 1

2/δ + 1
.

We define EB and EC to be events where games H-SO-REALB,MH and H-SO-REALC,MH output 1, respectively.
Let T be the event that i, j = 2/δ + 1. Therefore we have

Pr [EC ] = Pr [EC | T ] · Pr [T ] + Pr
[
EC | T

]
· Pr

[
T
]

=
( 1

2/δ + 1

)2
Pr [EB ] +

1

2
Pr
[
T
]
.

We also define TB and TC to be the events where games H-SO-IDEALB,MH and H-SO-IDEALC,MH output 1,
respectively. Similarly, we have

Pr [TC ] =
( 1

2/δ + 1

)2
Pr [TB ] +

1

2
Pr
[
T
]
.

Summing up, we obtain that Advh-so
H,B,M(k) ≤

(
2
δ + 1

)2
·Advh-so

H,C,M(k). This completes the proof of Claim A.2.
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