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Abstract. Most of blockchains do not scale well, i.e., they cannot process quickly large amounts of
transactions. Moreover, using blockchains can be expensive in real life, since blockchain operations cost
fees. One of the remedies for these problem are off-chain (or: Layer-2 ) protocols where the massive
bulk of transactions is kept outside of the main blockchain. In the optimistic case, off-chain protocols
drastically improve scalability, since typically the users only need to communicate with the blockchain
when they enter, or when they exit the system. In the pessimistic case when parties are malicious a
“smart contract” running on the underlying blockchain guarantees that no coins are stolen.
In this work we initiate the study of the inherent limitations of off-chain protocols. Concretely, we
investigate the so-called Plasma systems (also called “commit chains”), and show that malicious parties
can always launch an attack that forces the honest parties to communicate large amounts of data
to the blockchain. More concretely: the adversary can always (a) either force the honest parties to
communicate a lot with the blockchain, even though they did not intend to (this is traditionally called
mass exit); or (b) an honest party that wants to leave the system needs to quickly communicate large
amounts of data to the blockchain. What makes these attacks particularly hard to handle in real life
(and also making our result stronger) is that these attacks do not have so-called uniquely attributable
faults, i.e. the smart contract cannot determine which party is malicious, and hence cannot force it to
pay the fees for the blockchain interaction. An important implication of our result is that the benefits of
two of the most prominent Plasma types, called Plasma Cash and Fungible Plasma, cannot be achieved
simultaneously. Our results apply to every Plasma system, and cannot be circumvent by introducing
additional cryptographic assumptions.

1 Introduction

Blockchains are a disruptive new technology proposed initially by Satoshi Nakamoto [32] around a decade
ago. It can be viewed as a method for achieving consensus in distributed systems. The blockchain itself is a
public database (also called the ledger), whose content is known to all the parties in the system, and whose
state is maintained by special parties called miners. Parties can publish messages on the ledger, subject to
some correctness rules, and typically paying some fees to the miners. Publishing messages and achieving
consensus about the state of the blockchain may be delayed by some (bounded) time called finality. The
primary applications of this technology are currently within the financial sector. In fact, originally, in [32],
blockchain was proposed as a way to deal with the problem of “double spending” in a cryptocurrency called
Bitcoin. In this case the messages simply describe the transfers of coins, and are typically called transactions.

One of the main challenges of several popular blockchains, such as the ones used by Bitcoin or Ethereum
[38], is their limited scalability, i.e., they can process only a limited number of transaction per second, and
it takes a long time until finality on transactions is reached. For example, Bitcoin can process at most 7
transactions per second, and its finality is between 10 and 60 minutes (depending on the required security
level). The scalability problem can be addressed in two ways. The first one is to improve the consensus
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algorithm. The second one, which is particularly relevant to this work, is known under the name “Layer-2
solutions”.

Layer-2 solutions for the scalability problems. These techniques (also called “off-chain protocols”)
rely on so-called smart contracts [35] (or simply: “contracts”), which informally speaking, are “self-executa-
ble” agreements described in form of computer programs. Several blockchain platforms (e.g., Ethereum,
Hyperledger Fabric, or Cardano) have a mechanism for deploying and executing such contracts. Typically,
it is assumed that contracts are deterministic and have a public state. Moreover, they can own some coins.
Executing a contract costs fees that depend on the computational complexity of the given operation, and on
the amount of data that needs to be transmitted to the contract.

The off-chain protocols address the scalability problem by keeping the massive bulk of transactions outside
of the blockchain (“off -chain”). The parties that are involved in the protocol rely on a smart contract that
is deployed on the ledger of the underlying cryptocurrency, but they try to minimize interacting with it.
Typically, this interaction happens only when the parties join and leave the protocol, or when they disagree.
Since all parties know that in case of disagreement, disputes can always be settled on the ledger, there is no
incentive for the users to disagree, and honest behavior is enforced.

In the optimistic case, when the parties involved in the protocol play honestly, and the off-chain trans-
actions never hit the ledger, these protocols significantly reduce transaction fees and allow for instantaneous
executions. Off-chain protocols also resemble an idea explored in cryptography around two decades ago under
the name “optimistic protocols” [1, 7]. In this model the parties are given access to a trusted server that is
“expensive to use”, and hence they do not want to contact it, unless it is absolutely necessary

There has been significant progress in developing off-chain technologies within the last years. One impor-
tant class of these technologies is known under the name “off-chain channels” (see, e.g., [9, 12, 13, 15, 16, 17,
21, 29, 30, 34]), others include protocols that use the off-chain “verification games” [23, 36]. An important
type of off-chain protocols is known under the name “Plasma” (another name for this type of protocols,
proposed in [25], is: “commit chains”, see footnote 7 on page 6), which comes in many variants and has been
discussed in countless articles (see Sect. 1.2). Essentially, the main idea of Plasma is to construct protocols
in which a single operator can provide a “simulated ledger”, in which other parties can deposit their coins,
and then perform operations between each other. The key feature of Plasma is that its users do not need
to trust the operator, and in particular if they discover that she is cheating, then they can safely withdraw
their funds. The latter is called an exit from the simulated ledger, and requires communication with the
underlying ledger.

The various types of off-chain protocols provide different trade-offs. For instance, the off-chain channels
offer instant finality, but in contrast to Plasma are more costly to maintain [21]. Moreover: even within the
Plasma ecosystem several different trade-offs exist. One of the most fundamental ones is between the two
types of Plasma systems: Plasma Cash and Fungible Plasma (such as Plasma MVP). The former one enjoys
as a nice security property of lacking “mass exists”, while the latter one is more practical in the sense that
under the normal circumstances exiting the system does not require much interaction with the blockchain.
It is very natural to ask if one can have a Plasma that combines the benefits of both of these approaches.
In this work we negatively answer the question whether such Plasma systems exist by showing that there
is an (unconditional) separation between these two trade-offs. We achieve this by developing the first lower
bound for off-chain protocols. An important practical implication of our result is that the benefits of the
most popular Plasma variant – Plasma Cash and Fungible Plasma – cannot be achieved simultaneously.

1.1 Informal description of Plasma

In this section we explain the basic idea of Plasma, and introduce some standard terminology. Since it is an
informal presentation, we mix the definition of the protocol with its construction. In the formal sections of
the paper these two parts are separated (the definition appears in Sect. 2, and the constructions in Appx. A).

Plasma protocols come in different variants (see Sect. 1.2), however, they are all based on a single
framework proposed in [33]. We describe it informally below (for the formal definition see Sect. 2). The
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parties that execute Plasma are: the users U1, . . . , Un, and the operator Op. Moreover, the parties have
access to a contract on the blockchain. In our formal modeling this contract will be represented as a trusted
interactive machine Γ with public state, owning some amount of coins. Each user Ui has some number of
coins initially deposited in his Plasma account which is maintained by Γ . This number is called a balance
and is denoted with bi ∈ Z≥0. Users’ balances are changing dynamically during the execution of the protocol.
The total number of coins owned by the contract Γ is equal to the sum of all balances of its users. A vector−→
b := (b1, . . . , bn) is called a Plasma chain. When referring to the underlying blockchain (i.e. the one on
which Γ is deployed) we use the term main chain. Note that the operator Op has no account. His only role
is to facilitate transfers between the users. In some variants of Plasma (see Sect. 1.2) the operator blocks
some coins that can be used to compensate the users their losses in case she misbehaves. This amount of
coins is called operator’s collateral.

Let us briefly describe the different operations that parties of the Plasma protocol can execution during
the lifetime of the system. We divide time into epochs (say: 1 epoch takes 1 hour). In each ith epoch the
operator sends some information Ci to the contract Γ . We can think of Ci as “compressed” information about
the vector (b1, . . . , bn) containing the users’ balances. By “compressed” we mean that |Ci| is much shorter
than the description of (b1, . . . , bn), and usually its length is constant for every epoch. We will refer to Ci as
a “commitment” to (b1, . . . , bn). The length of Ci is called the commit size.

In each epoch every user Ui can request to exit, by which we mean that all bi coins from her Plasma
account get converted to the “real” coins on the main chain, and she is no longer a part of this Plasma chain
(which, in our formal modeling will be indicated by setting bi := ⊥). Plasma’s security properties guarantee
that every user can exit with all the coins that she currently has in the given Plasma chain. It is often
required that exiting can be done cheaply, and in particular that the total length of the messages sent by the
exiting user to Γ is small. The amount of data that a user needs to send to Γ in order to exit the Plasma
chain is called the exit size.

Finally, any two users of the same Plasma chain can make transfers between each other. Suppose Uk wants
to transfer v coins from her account to Uj . This transfer operation involves only communicating with Uj ,
and with the operator Op, while no interaction with the contract Γ is needed. Under normal circumstances
(i.e. when the operator is honest) the next Plasma block that is committed to the main chain will simply
have v coins deduced from Uk’s account and v coins added to Uj ’s account.3

Challenges in designing Plasma systems. The main challenge when designing a Plasma system is to
guarantee that every user can exit with her money. Technically, this is usually achieved as follows. Each Ci is
a commitment of (b1, . . . , bn) computed using a Merkle tree (for the definition of “Merkle trees” and “Merkle
proofs” see Appx. A.1). The honest operator Op is obliged to obey to the following rule:

Explaining commitments — each time it sends Ci to contract Γ , it sends the corresponding
−→
b :=

(b1, . . . , bn) to all the users.

Technically, sending
−→
b to the users can be realized, e.g., by publishing it on the operator’s web-page (we

also say that this vector is published off-chain). Every user Uj can now check if she has the correct amount
on her account and if Ci was computed correctly. Moreover, thanks to the properties of Merkle trees, Uj has
a short proof of size O(log(n)) that bj has been “committed” into Ci.

The above considers the case when the operator is honest. If she is corrupt things get more complicated.
Note that Ci sent by the operator to Γ is publicly known (due to the properties of the underlying blockchain).
Hence, we can assume that all the users agree on whether Ci was published and what is its exact value.
The situation is different when it comes to the vector

−→
b that should be published off-chain. In particular,

if
−→
b has not been published, then the users have no way to prove this to Γ . This is because of the fact

that whether some data has been published off-chain or not does not have a digital evidence that can be

3 To keep things simple, in this paper we do not discuss things like “transfer receipts”, i.e., confirmations for the
sender that the coins have indeed been transferred.
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interpreted by Γ . This leads us to the following attack that can be carried out by a malicious operator, and
is intensively studied by the cryptocurrency community (see, e.g., [5]).

Data unavailability attack — in this attack the corrupt operator publishes Ci but does not publish
−→
b .

What makes this attack particularly problematic, is the fact that it comes at no cost for the operator. This
is the case because from the point of view of the smart contract Γ , the operator behaves honestly, and hence
the users cannot complain to Γ and request, e.g., that Op sends

−→
b to Γ . Note that determining if this attack

happened is “subjective”, i.e., every user Uj has to detect it herself. Moreover, in case of data unavailability
it is impossible for a contract Γ to determine whether Uj or Op is dishonest, since a sheer declaration of Uj
that Op did not send him the data obviously cannot serve as a proof that it indeed happened. This leads to
the following definition.

Non-uniquely attributable faults — this refers to the situation when the contract has to intervene in
the execution of the protocol (because the protocol is under attack), but it unable to determine which
party misbehaved (see, e.g., [2]).

Non-uniquely attributable faults appear typically in situations when a party claims that it has not received
a message from another party. In contrast if a contract is able to determine which party is corrupt then we
have a uniquely-attributable fault. A typical example of such a fault is when a party signs two contradictory
messages. Unfortunately, non-uniquely attributable faults are hard to handle in real life, since it is not clear
which party should pay the fees for executing the smart contract, or which party should be punished for
misbehaving. In particular, what is unavoidable in such a case is that a malicious party P can force another
participant P ′ to loose money on fees (potentially also loosing money herself). This phenomenon is known
as griefing [2].

When a user realizes that the operator is dishonest, then she often needs to start quickly interacting with
Γ in order to protect her coins. This action has to be done quickly, and has to be performed by each honest
user. This leads to the following definition.

Forced on-chain action of size α — this term refers to the situation that honest parties that did not
intend to perform an exit are forced by the adversary to quickly interact with the smart contract Γ , and
the total length of the messages that they sent to Γ is α. Informally, when α is large (e.g. α = Ω(n)) we
will say this is a mass forced on-chain action.

Note that this definition talks about all honest “parties”, and hence it includes also the case when the operator
is honest, but it is forced to act because of the behavior of the corrupt users. Typically α = Ω(n) and by
“quickly” we mean “1 epoch”. In most Plasma proposals [3, 27, 33] “interacting with the smart contract”
means simply exiting the Plasma chain with all the coins. Hence, a more common term for this situation
is “mass exit”. Since in our work we are dealing with the lower bounds, we need to be ready to cover also
other, non-standard, ways of protecting honest users’ coins. For example, it could be the case that a user
Uj does not exit immediately, but, instead, keeps her coins in a special account “within Γ ” and withdraws
them much later. Of course, this requires interacting with Γ immediately, but, technically speaking does not
require “exiting”. To capture such situations, we use the term “forced on-chain action”, instead of “mass exit”.

After a party announces an exit, we need to ensure that she is exiting with the right amount of coins.
The main problem comes from the fact that we cannot require that users exit from the last Ci by sending
the explanation for her balance bi to Γ . This is because it could be the case that a given user does not know
the explanation

−→
b of Ci (due to the data unavailability attack). For a description of how this can be done

in practice see [3, 33], or (in our simplified model) Appx. A.
Mass exits (or large forced on-chain actions) caused by data unavailability are considered a major problem

for Plasma constructions. They are mentioned multiple times in the original Plasma paper [33] (together with
some ad-hoc mechanism for mitigating them). They are also routinely discussed on “Ethereum’s Research
Forum”4, with even conferences organized on this topic5. One of the main reasons why the mass exits
4 Available at: ethresear.ch.
5 See: ethresear.ch/t/data-unavailability-unconference-devcon4.
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are so problematic is that they may results in blokchain congestion (i.e., situations when too many users
want to send transactions to the underlying blockchain). Moreover, the adversary can choose to attack
Plasma precisely in the moments when the blockchain is already close to being congested (see, e.g., [39]
for a description of real-life incident of the Ethereum blockchain congestion). She can also attack different
Plasma chains (established over the same main chain) so their users simultaneously send large amounts of
data to the blockchain. In order to be prepared for such events in real-life Plasma proposals it is sometimes
suggested that the time T for reacting to data unavailability should be very large (e.g. T = 2 weeks). This,
unfortunately, has an important downside, namely that also an honest coin withdrawal requires time T .

Plasma Cash vs. Fungible Plasma. An interesting variant of Plasma that partly addresses the problem
of data unavailability is called Plasma Cash [4, 27]. In this proposal, each coin in a Plasma chain is a distinct
object that has its own identifier (think of it as a “serial number”). Since in this approach “coins” can be
arbitrary items (without a fixed financial value) this variant of Plasma is also called non-fungible (while the
standard Plasma is fungible). To distinguish standard Plasma from Plasma Cash, the former is also sometimes
referred to as “Minimal Viable Plasma” (“Plasma MVP”) [3] or NOCUST [25] (another similar approach is
StarkDEX [20], see Sect. 1.2 for more on this). In this paper we call this variant “Fungible Plasma”. Note that
the distinction between non-fungible and fungible systems is different from the distinction between so-called
“UTXO” and ”account based” systems, see, e.g., [40].

Consider a non-fungible Plasma that supports coin identifiers from some set C. In a non-fungible Plasma
the Plasma chain is of a different form than before: instead of a vector of balances

−→
b , it is a function

f : C → {U1, . . . , Un,⊥} that assigns to every coin c ∈ C its current owner f(c) (or ⊥ if the coin has been
withdrawn). Similar to before the commitment to the value of f will be done using Merkle trees. Whenever
a coin is withdrawn its identifier c is sent to the smart contract Γ , and hence it becomes public. This is
important for the mechanism that prevents parties from stealing coins. To this end, each user U monitors Γ ,
and sends a complaint whenever some (corrupt) user U ′ tries to withdraw one of U ’s coins. For the contract
Γ to decide if c belongs to U or U ′ can require some additional interaction, but the system is designed in
such a way that the honest user is guaranteed that finally she will win such dispute. Hence, every malicious
attempt to withdraw someone else’s coin will be stopped.

The main difference between Plasma Cash and Fungible Plasma is that every user has to “protect” only
her own coins. Thanks to this, even in case of the data unavailability attack, each honest user U does not
need to immediately take any action. Instead, she can just monitor the contract Γ , and has to act only if
someone tries to withdraw one of U ’s coins. Of course, the corrupt user can still force all the honest ones to
quickly act on the blockchain. However, this requires much more effort from them than in Fungible Plasma.
Namely: they need to massively (and at once) withdraw lots of coins of the honest users, hence forcing the
honest users to react. This is “fairer” since forcing the honest users to make some effort requires similar effort
from the dishonest ones. Most importantly, however, this attack has uniquely-attributable faults.

This advantage of Plasma Cash comes at a price, namely the “exit size” is not constant anymore, as
it depends on the number of coins that a user has (since each coin has to be withdrawn “independently”).
The Ethereum research community has been making some efforts to deal with this problem. One promising
approach is to “compress” the information about withdrawn coins. For example one could assume that the
identifiers in C are natural numbers. Then a user U who owns coins from some interval [a, . . . , b] (with a, b ∈ N)
could simply withdraw them by posting a message “User U withdraws all coins from the interval [a, . . . , b]
(instead of withdrawing each i ∈ [a, . . . , b] independently). This, of course, works only if the coins that
users own can be divided into such intervals. Some authors (in particular V. Buterin) have been suggesting
“defragmentation” techniques for achieving such a distribution of coins.6 This is based on the assumption
that the parties periodically cooperate to “clean up” the system. Hence, it does not work in a fully malicious
settings (if the goal of the adversary is to prevent the cleaning procedure).

6 Buterin has 3 “takes” on Plasma defragmentation. See ethresear.ch/t/plasma-cash-defragmentation and subse-
quent posts by Buterin on the Ethereum Research Forum.
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1.2 The landscape of Plasmas

Soon after the original groundbreaking work on Plasma [33], some concrete variants have been proposed.
Some of them we already described in Sect. 1.1. Since this paper focuses on the impossibility results, we do
not provide a complete overview of the many different variants that exist and what features they achieve
(for diagram that attempts to “systematize” them see Fig. 5 on page 33 in the appendix). Plasma projects
that are frequently mentioned in the media are Loom, Bankex, NOCUST and OmiseGO [31, 37]. This area
is mostly developed by a very vibrant on-line community that typically communicates results in form of so-
called “white-papers”, blog articles, or post on discussion forums (such as the “Ethereum Research Forum”,
see footnote 4 on page 4). A notable exception are NOCUST and NOCUST-ZKP described in [25]. This
work, up to our knowledge, is the first academic paper on this topic. It provides a formal protocol description
(with several interesting innovations such as “ Merkle interval trees”) and a security argument. Moreover,
the authors of [25] describe a version of NOCUST that puts a collateral on the operator (this is done in
order to achieve instant finality). The authors of [25] (see also [21]) introduce the term “commit chains”7.
Yet, unfortunately, they do not define a full formal security model that we could re-use in our work.

Let us also mention some of the so-called “distributed exchanges” that look very similar to Plasma. One
example is StarkDEX (informally described in [20]), which is also based on the idea of a central operator
batching transactions using Merkle trees, and a procedure for the users to “escape” from the system if
something goes wrong. This protocol uses non-interactive zero-knowledge protocols to ensure correctness
of the operator’s actions (similar approach has been informally sketched in the original Plasma paper [33],
and has been also used in NOCUST-ZKP [25]). While zero knowledge can be used to demonstrate that
some data was computed correctly, it cannot be used to prove that the off-chain data was published at all.
Consequently, the authors of this system also encountered the challenge of handling the data unavailability
attack. Currently, in StarkDEX this problem is solved by introducing an external committee that certifies
if data is available.8 StarkDEX plans to eventually replace the committee-based solution with an approach
that is only based on trusting the underlying blockchain. Our result however shows that in general this will
be impossible, as long as fungibility and short exits are required (unless the operator puts a huge collateral).

1.3 Our contribution and organization of the paper

We initiate the study of lower bounds (or: “impossibility results”) in the area of off-chain protocols. Our
results can also be viewed as a part of a general research program of “bringing order to Plasma”. We believe
that the scientific cryptographic community can provide significant help in the efforts to systematize this
area, and to determine the formal security guarantees of the protocols (in a way that is similar to the work
on “Bitcoin backbone” [19], or more recently on “Mimblewimble” [18], state channels [11], or the Lightning
Network [26]). Investigating the limits of what Plasma can achieve is part of this process. We focus on
proving lower bounds that concern the necessity of mass forced on-chain actions, especially caused by the
attack that have no uniquely attributable faults (as a result of data unavailability). This is motivated by
the fact that such attacks are particularly important for the off-chain protocols: since the main goal of such
protocols is to move the transactions off -chain, the necessity of quickly acting on-chain can be viewed as a
big disadvantage.

We start with a formal definition of Plasma (this is done in Sect. 2). Since in this work we are interested
only in the impossibility results, our definition is very restrictive for practical systems. By “restrictive” we
mean that we make several assumptions about how the protocol operates. For example we have very strict
synchronicity rules, and in particular we only allow the users to start the Plasma operations in certain
moments (see “payment orders” and “exit orders” phases in Sect. 2.1). Obviously, such restrictions make our
lower bounds only stronger, since they also apply to a more realistic model (without such restrictions). We

7 In this paper we choose the name “Plasma” since it currently seems to be more popular in the cryptocurrency
community. Although proper names have been used in the past in this area (think, e.g., of the “Paxos” family of
consensus protocols), arguably “commit chains” may be a slightly better name for a family of protocols.

8 See their FAQs at https://www.starkdex.io.
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believe that fully formalizing real-life Plasma (e.g. in the style of [12, 13, 26]) is an important future research
project, but it is beyond the scope of this work.

Our main result is presented in Thm. 1, stated formally in Sect. 3. It states that in certain cases the
adversary can force mass on-chain actions of the honest users of any Plasma system. One subtle point that
we want to emphasize is that whenever we talk about “forcing actions” on the honest users, we mean a
situation when the users that did not want to exit (in a given epoch) are forced to act on-chain. This is
important, as otherwise our theorem would hold trivially (one can always imagine a scenario when lots of
users decide to exit Plasma because of some other, external, reasons). The notion of “wanting to exit” is
formalized by an environment machine Z (borrowed from the Universal Composability framework [8]) that
“orders” the parties to behave in certain way.

More formally, Thm. 1 states that in Plasma either there exists an attack that provokes a mass action, or
there is an attack that requires a party that exits to post long messages on the blockchain (i.e. this Plasma
has large exits). Moreover, both attacks have no uniquely attributable faults. Note that, strictly speaking,
this theorem also covers Plasma systems where the commit size is large (even Ω(n))9, but in this case it
holds trivially since the honest operator needs to send the large commitments to Γ even if everybody is
honest (hence: there is an “unprovoked” mass action in every epoch).

The most interesting practical implication of this theorem is that it confirms the need for “two different”
Plasma flavors, at least as long as we do not want to require the operator to put aside a collateral of size
comparable to the total amount of coins in the system10. One way to look at it is: either we want to have
a Plasma system that does not have large exists, in which case we need to have (non-uniquely attributable)
mass actions (this is Fungible Plasma/Plasma MVP); or alternatively we insist on having Plasma without
such mass actions, but then we have to live with large exits (as in Plasma Cash). Our theorem implies that
there is no Plasma that would combine the benefits of both Fungible Plasma and Plasma Cash, and hence
can serve as a justification why both approaches are complementary. Before our result one could hope that
the opposite is true and that, e.g., the only reason why Plasma Cash is popular is its relative simplicity
(compared to Fungible Plasma). Besides of this reason, and the general scientific interest, we believe that
our lower bound has some other important practical applications. In particular, lower bounds often serve as a
guideline for constructing new systems or tweaking the definitions. We hope it will contribute to consolidate
the countless research efforts in constructing new Plasma systems11 and simplify identifying proposals that
are not sound (e.g., because they claim to achieve the best of both worlds).

Let us also stress that our Thm. 1 does not rely on any assumptions of complexity-theoretic type and does
not use a concept of “black-box separations” [22]. This means that the lower bound that we prove cannot be
circumvent by introducing any kind of strong cryptographic assumptions. Hence, of course, it also holds for
Plasmas that use non-interactive zero-knowledge (like NOCUST-ZKP [25] or StarkDEX [20]). Moreover, we
manage to generalize our lower bound. Thm. 1 even holds for Plasma systems where the operator deposit
a certain amount of coins for compensating parties for malicious behavior (e.g., it could be used when a
malicious operator does not explain commitments).

For completeness, we also describe “positive” results, i.e., two protocols that satisfy our security definition
(Plasma Cash and Fungible Plasma). They are briefly described in Sect. 2.3, and the actual constructions
appear in Appx. A. We stress that we do not consider it to be a part of our main contribution, and we do
not claim novelty with these constructions, as they strongly rely on ideas published earlier (in particular [3,
4, 20, 25, 27, 33]).

9 Plasma systems with unbounded commit size are not interesting from the practical point of view since they do not
bring any advantages to the users. Moreover, they can be trivially constructed just by putting every transaction
on the main chain.

10 This would clearly by impractical for most of the applications. Actually most of Plasma constructions assume no
such collateral at all.

11 see https://ethresear.ch/c/plasma/.
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1.4 Notation

For a formal definition of an interactive (Turing) machine and a protocol, see, e.g., [8]. In our modeling
the communication between the parties is synchronous and happens in rounds (see Sect. 2). During the
execution of the protocol a party P may send messages to a party P ′. A transcript of the messages sent from
P to P ′ is a sequence {(mi, ti)}`i=1, where each mi was sent by P to P ′ in the ti-th round. A transcript of
messages sent from some set of parties to a different set of parties is a sequence {(Wi,W

′
i ,mi, ti)}`i=1, where

each mi was sent by Wi to W ′i in the ti-th round. By the length of a transcript we mean its bit-length (in
some fixed encoding). We sometimes refer to it also as communication size (between the parties). A function
negl : N→ R is negligible if for every positive integer c there exists an integer N such that for all x > N we
have that |negl(x) | < x−c. The probability of some sequence of events {Ei}∞i=1 is overwhelming if a function
f defined as f(i) := 1− Pr[Ei ] is negligible. Equality of distributions is denoted as “ d=”.

2 Plasma Payment Systems

A Plasma payment system (or “Plasma” for short) is a protocol Π consisting of a randomized non-interactive
machine Ψ representing the setup of the system; deterministic12 interactive poly-time machines U1, . . . , Un,
Op representing the users and the operator of the Plasma system (respectively); and a deterministic interac-
tive poly-time machine Γ , which represents the Plasma contract. We use the notation U = {U1, . . . , Un} to
refer to the set of users of the system. The contract machine Γ has no secret state, and moreover its entire
execution history is known to all the parties. We can think of it as a Turing machine that keeps the entire
log of its execution history, and moreover all the other parties in the system have a (read-only) access to this
log. The Plasma system comes with a parameter γ ∈ R≥0 called operator’s collateral fraction. Informally,
this parameter describes the amount of coins that are held by the operator as a “collateral” (as a fraction
of user’s coins). These coins can be used to cover users’ losses if the operator misbehaves. This is formally
captured in Sect. 2.2 (see “limited responsibility of the operator”). If γ = 0 then we say that the operator is
not collateralized. We introduce the notion of collateral in order to make our results stronger and to cover
also cases of real-life systems that have such a collateral (e.g., NOCUST, see Sect. 1.2).

The protocol is attacked by a randomized poly-time adversary A. We assume that A can corrupt any
number of users and the operator, but she cannot corrupt the contract Γ (hence Γ can be thought of as
a trusted third party). Once A corrupts a party P , she learns all its secrets, and takes full control over
it (i.e. she can send messages on behalf of P ). A party that has not been corrupted is called honest. An
execution of a Plasma payment system Π is parametrized by the security parameter 1λ.

To model the fact that users preform actions, we use the concept of an environment Z (which is also a
poly-time machine) that is responsible for “orchestrating” the execution of the protocol. The environment
can send and receive messages from all the parties (it also has full access to the state of Γ ). It also knows
which parties are corrupt and which are honest. For an adversary A and an environment Z, a pair (A,Z)
will be called an attack (on a given Plasma system Π) The contract machine Γ can output special messages
(attribute-fault, P ) (where P ∈ U ∪ {Op}). In this case we say that Γ attributed a fault to P . We require
that the probability that Γ attributes a fault to an honest party is negligible in λ. An attack (A,Z) has no
attributable faults if the probability that Γ attributes a fault to some party is negligible.

2.1 Protocol operation

Let us now describe the general scheme in which a Plasma payment protocol operates. In this section, we
focus only on describing what messages are sent between the parties. The “semantics” of these messages,
and the security properties of the protocol are described in Sect. 2.2. We assume that all the parties are
connected by authenticated and secret communication channels, and a message sent by a party P in the ith
round, arrives to P ′ at the beginning of the (i+1)th round. The communication is synchronous and happens

12 We assume that these machines are deterministic, since all their internal randomness will be passed to them by Ψ .
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in rounds. It consists of three stages, namely: “setup”, “initialization”, and “payments”. The execution starts
with the setup stage. In this stage parameter 1λ is passed to all the machines in Π. Upon receiving this
parameter, machine Ψ samples a tuple (ψU1

, . . . ψUn , ψOp , ψΓ ) (where each ψP ∈ {0, 1}∗). Then for each
P ∈ {U1, . . . , Un,Op, Γ} the string ψP is passed to P . Afterwards, the parties proceed to the initialization
stage. In this stage the environment generates a sequence (ainit1 , . . . , ainitn ) of non-negative integers and passes
it to the contract Γ (recall that the state of Γ is public, and hence, as a consequence, all the parties in
the system also learn the ainiti ’). Then the protocol proceeds to the payment stage. This stage consist of an
unbounded number of epochs. Each ith epoch (for i = 1, 2, . . .) is divided into two phases.

Payment phase. In this phase the environment sends a number of payment orders to the users (for simplic-
ity we assume that this happens simultaneously in a single round). Each order has a form of a message
“(send, v, Ui)”, where v ∈ Z≥0, and Ui ∈ U . It can happen that some users receive no payment orders in
a given epoch. It is also ok if a user receives more than one order in an epoch. Informally, the meaning of
these messages is as follows: if a user Uj receives a “(send, v, Ui)” message, then he is ordered to transfer
v coins to user Ui. We require that this message can only be sent if none of bi and bj are equal to ⊥ (i.e.:
if none of Ui and Uj “exited”, see below). The parties execute a multiparty sub-protocol. During this
executions some of the users send a message “(received, v, Ui)” to the environment Z. This sub-protocol
ends when Γ outputs a message payments-processed.

Exit phase. In this phase the environment sends exit orders to some of the users (again: this happens in a
single round). Each such order is simply a message “exit”. Informally, sending this message to some Ui
means that Ui is ordered to exit the system with all his coins. The environment can send an exit message
to Ui only if bi 6= ⊥ (i.e. Ui has not already “exited”, see below). The parties again execute a multiparty
protocol. The protocol ends when Γ outputs a sequence

{(exited, Uij , vij )}mj=1, (1)

where m is some non-negative integer, and each Uij ∈ U and vij ∈ Z≥0. For each Uij in Eq. (1) we say
that Uij exited (with vij coins), and we let bij := ⊥. We require that no party can exit more than once.
In other words: it cannot happen that two messages (exited, Ui, v) and (exited, Ui, v

′) are ever issued by
Γ .

We make some assumptions on the communication between the parties. Informally we require that if U and
U ′ are some honest users, then the procedure of transferring coins from U to U ′ is done by a “sub-protocol”
involving only parties in the set U and U ′. Since we do not have a concept of “sub-protocol” this is formalized
as follows:

Communication locality. Two honest users U and U ′ exchange messages only in epochs in which they do
transactions between each other (i.e. a message (send, U, v) is sent by Z to U ′, for some v).

This requirement is very natural since Plasma is supposed to work even when an arbitrary set of users
is corrupt. Hence, relying on the other users’ help in financial transfers would be impractical. Up to our
knowledge all “pure” Plasma proposals in the literature satisfy this requirement. On the other hand: it may
not hold if we incorporate to Plasma some techniques that are built on top of it, and assume some type of
cooperation between larger sets of parties (in spirit of consensus mechanisms). Examples include: Buterin’s
Plasma Chash defragmentation (where a large set of users has to regularly cooperate in order to “clean-
up” the system), and StarkDEX’s “data availability committee” (see Sect. 1.2), if we treat the committee
members as “users”. One way to view our result is that it implies that such techniques are inherent for every
fungible Plasma.

2.2 Security properties

During the interaction with the protocol, the environment keeps track of balances of honest users (we do not
define balances of dishonest users). Formally, for each honest user Ui it maintains a variable bi ∈ Z≥0 ∪ {⊥}
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(a balance of Ui), where the symbol “⊥” means that a party exited. It also maintains a variable t ∈ Z≥0
(initially set to 0) that is used to keep track on the amount of coins that have been withdrawn. The rules for
maintaining these variables are as follows. Initially, for each i := 1, . . . , n the environment Z lets bi := ainiti .
Whenever Γ outputs (exited, Ui, v) (for some Ui and v) we let bi := ⊥ and increment t by v. Each time
Z receives a message (received, v, Ui) from some honest Uj , it adds v to bj (recipient balance) and, if Ui
(sender) is honest too, subtracts v from bi. We require that the environment never issues an order if Ui or
Uj exited (i.e. if bi = ⊥ or bj = ⊥). The environment also never sends an order exit to the same user more
than once, and it never sends exit order to a user Ui that already exited (i.e. such that bi = ⊥). We now
have the following security properties.

Responsivness to “send” orders. Suppose Op, Ui, and Uj are honest, and the environment issued an order
(send, v, Ui) to Uj then in the same epoch party Ui sends a message “(received, v, Uj)” to the environment.

Correctness of “received” messages. Suppose Ui and Uj are honest and Ui outputs a message “(received, v, Uj)”,
then environment has issued an order (send, v, Ui) to Uj in the same epoch.

Responsivness to “exit” orders. Suppose Ui is honest and the environment issued an order exit to Ui
then in the same epoch Γ outputs a message (exited, Ui, v) (for some v).

No forced exits if operator honest. Suppose Op and Ui are honest and Γ outputs message (exited, Ui, v)
at epoch r, then environment has sent the order exit to Ui in the same epoch r.

Fairness for the users. If Γ outputs a message (exited, Ui, v) (for some honest Ui) then v ≥ bi (where bi
is the current balance of Ui).

Limited responsibility of the operator. If the operator is honest, then the total amount of coins that
are withdrawn from the system is at most ainit1 + · · · + ainitn . Otherwise (if she is dishonest) the total
amount of coins that are withdrawn from the system is at most d(1+γ)(ainit1 + · · ·+ainitn )e. This definition
captures the notion of operator’s collateral, and the fact that it is used (to cover users’ losses) if the
operator is caught cheating.

If an attack (A,Z) succeeds to violate any of the requirements from this section, then we say that (A,Z)
broke a given Plasma payment system. We say thatΠ is secure if for every environment (A,Z) the probability
that A breaks Π is negligible in 1λ.

As explained in the introduction, certain attacks on Plasma are of particular importance, due to the fact
that they are hard to handle in real life. We say that (A,Z) force an on-chain action of size M (in some
epoch i) if the following happened. Let T be the set of honest parties that did not receive any order from
Z in epoch i. Then the total length of messages sent by parties from T to Γ is at least M . As explained in
the introduction, the term that is more standard than “forced on-chain action” is “mass exit”. See 1.1 for a
discussion why “forced on-chain action” is a better term when impossibility results are considered.

2.3 Plasma constructions

We now describe the core idea behind the fungible and non-fungible Plasma constructions, the details of
these protocols can be found in Appx. A. We stress that we do not claim novelty with these construction
as they are strongly based on the ideas published earlier [3, 4, 20, 25, 27, 33]. The description of these
constructions is provided only for the sake of completeness.

In both of these constructions the operator creates two Merkle trees per epoch, the first tree is used to
store the transactions submitted by the users in the current epoch. In the fungible construction the second
tree is used to store the final balances of user in each epoch i.e. the ith leaf stores a tuple of the form (Ui, bi)
where Ui is the identifier if the ith user and bi is the balance of this party. In the non-fungible construction
the second tree stores the coin id and its latest owner i.e. the ith leaf stores a tuple of the form (id , Ui) (we
note that for technical reasons that are mentioned in the full description of the protocol the tuple also stores
the previous owner of the coin and the epoch number in which it was transferred). Every epoch, the operator
sends the Merkle root of these two trees to Γ , yet in order to prevent the operator from submitting arbitrary
or invalid values, Op also has to submits a non-interactive succinct proof which guarantees consistency. More
precisely, for the fungible Plasma this proof guarantees that the balances of users are updated correctly and
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according to the transactions made in this epoch (which are stored in the transaction Merkle tree). And in
the non-fungible Plasma the proof guarantees that the owner of the coins are updated correctly according
to the transactions stored in the first Merkle tree. Parties can exit the Plasma system by submitting their
balance or coins (which are stored in the leafs of the second Merkle tree) and a proof that they do have a
Merkle proof for these leafs (where the Merkle root is already stored on Γ ) to the contract Γ .

As mentioned in previous sections, the operator can simply cheat by not publishing the list of transactions
and balances (or coins) to some of the users (i.e. mount a data unavailability attack). This attack prevents
users from exiting since they no longer have access to their Merkle proofs. In our fungible Plasma construction,
users who do not receive the transaction or balance list from the operator must exit (at the end of the payment
phase) by sending their proof and balance from the last epoch. In order to avoid recalculation and submission
of the Merkle roots by Op to Γ , parties who still remain in the system must update their balance locally by
removing the transactions made by these exiting parties and recalculate their balance. Hence, users of the
fungible Plasma (when exiting) must provide a non-interactive succinct proof that they have updated their
balance correctly. In the non-fungible Plasma however users who do not receive the transaction or coin list
do not have to exit. The only ambiguity that must be addressed is the ownership of coins that are transferred
in this epoch. To this end the sender must submit a confirmation message to the receiver after it receivers
the transaction and coins list from the operator. This confirmation message is in fact the proof that the
receiver must submit when it exits. In the non-fungible Plasma malicious users may try to exit coins that
they no longer own. To mitigate this attack, users are allowed to challenge exits by posting their latest coin
and proof to the contract. If the epoch number stored in the challenger’s coin is newer, the (outdated) exit
is no longer valid and the malicious user can be punished.

3 Our main result

We now present Thm. 1, which is the main result of this paper. The main implication of this theorem is
that for every non-collateralized Plasma system there exists an attack that provokes a mass forced on-chain
action, i.e., it forces the honest users to make large communication with the contract even if they did not
receive any exit order from the environment (see point 1 in the statement of the theorem), unless a given
Plasma system has large exits (point 2). Moreover, this can be done by an attack that has no uniquely
attributable faults. This fact cannot be circumvented by putting a collateral on the operator, unless this
collateral is very large.

Theorem 1 (Mass forced on-chain actions or large exits without uniquely attributable faults are necessary).
Let Π be a secure Plasma payment system with n users and let γ ≥ 0 be the operator’s collateral fraction.
Then either

1. there exists an attack on Π that causes a forced on-chain action of size greater than (n−dγne·log2 n−5)/4
with probability at least 1/16 + negl(λ), or

2. there exists an attack on Π such that one honest user, when ordered to exit by the environment, makes
communication to Γ of size at least (n− dγne · log2 n− 5)/4 with probability at least 1/16 + negl(λ).

Moreover, both attacks have no uniquely attributable faults.

One way to look at this theorem is as follows. First, consider a non-collateralized Plasma, i.e., assume that
γ = 0. Let P1 be a class of non-collateralized Plasmas that with overwhelming probability do not have
uniquely attributable forced on-chain actions (of any size larger than 0). In this case point 1 cannot hold,
and hence, every Plasma Π ∈ P1 needs to satisfy point 2. This means that there exists an attack on every
Π ∈ P1 such that one honest user, when ordered to exit by the environment, makes communication to Γ of
size at least (n − 5)/4 with probability around 1/16. Or, in other words: every Plasma from class P1 must
have a large exist size with noticeable probability. We know Plasma with such properties: it is essentially
Plasma Cash (see Sect. 2.3).

On the other hand, let P2 be a class of non-collateralized Plasmas that with high probability have no
large exits, in the sense of point 2 of Thm. 1. This means that point 1 has to hold, which implies that every

11



Π ∈ P2 needs to have large (at least around (n − 5)/4) non-uniquely attributable mass forced on-chain
actions. Plasma with such properties is called Fungible Plasma (see Sect. 2.3). Hence, informally speaking,
Thm. 1 states that we cannot have the “best of two types of Plasma” simultaneously.

If we consider non-zero collaterals, i.e., we let γ > 0 then the situation does not improve much, unless the
collateral fraction is large, i.e., the total collateral blocked by the operator is at least around 1/ log2 n times
the amount of coins that the users hold13. This essentially means that we cannot get around the bounds from
Thm. 1 by introducing collateral, unless the amount of coins blocked in operator’s collateral in of roughly
the same order as the total amount of coins stored by the users.

Finally, let us comment how some trivial versions of Plasma “fit” into Thm. 1. For example, consider
Plasma in which the operator always puts all the transactions on-chain. Of course, the details would need to
be worked out, but clearly such a Plasma can be made secure. The existence of such a trivial Plasma does
not contradict our Thm. 1, since it clearly satisfies point 1: a large number of transfers in one epoch will
cause a forced mass on-chain action (by the operator). Similarly, requiring every user to put each transaction
on-chain would satisfy point 1. This is because in the definition of a forced on-chain action we count also
messages sent by the honest parties who did receive a transfer order (as long as they did not receive an exit
order). The proof of Thm. 1 appears in Sect. 4 below.

4 Proof of Thm. 1

Before we present the proof let us introduce some auxiliary machinery. This is done in the next section.

4.1 Isolation scenario

Let Π be a Plasma payment system, let Z be an environment, and let W be some subset of the users of Π.
We now introduce a procedure that we call isolation of W. In this scenario Π is executed as in the normal
execution, except that we “isolate” the users W ⊆ U from the operator. More precisely: all the messages
sent between any U ∈ W and the operator Op are dropped, i.e., they never arrive to the destination. This
scenario can be viewed as an “attack” although it does not fit into the framework from Sect. 2.1, since it
violates the assumption that messages sent by an honest party to another honest party always arrive to the
destination.

Although the isolation scenario cannot be performed within our model, it can be “emulated” by corrupting
either the operator Op, or the users from W. In the first case we corrupt the operator and instruct him to
behave as if she was honest, except that she does not send messages to the users inW and ignores all messages
sent by these users. This will be called the data unavailability (DU) attack against W by the operator. In the
second, symmetric case (the pretended data unavailability (PDU) attack by W on the operator) we corrupt
the users inW. Then, every user U ∈ W behaves as if she was honest, except that she does not send messages
to Op, and ignores all messages from Op.

If this is the only type of malicious behavior, then “from the point of view” of all the other parties, and,
most importantly, from the point of view of the contract machine Γ , it is impossible to say who is corrupt
(the users in W or the operator Op). More precisely, we have the following.

Observation 1. Let Π be a Plasma payment system and consider the attack that isolates users in some
set W from the operator. Let Z be an arbitrary environment and let T W,Zisolate be the random variable denoting
the transcript of messages received by Γ . Moreover, let T W,ZPDU and T W,ZDU be the random variable denoting
he transcripts of messages received by Γ in the PDU attack and in the DU attack (respectively), both with
environment Z. Then T W,ZDU

d
= T W,Zisolate

d
= T W,ZPDU .

This fact is useful in the proof of the following simple lemma.

13 This is because we need to have γ ≈ 1/ log2 n to make the expression “(n− dγne · log2 n− 5)/4” equal to 0.
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Lemma 1. Fix an arbitrary Plasma Π. Let W be some set of users. Suppose A performs a DU attack
against W or a PDU attack by W (either by corrupting the operator or by corrupting the users), and let Z
be arbitrary. Then the attack (A,Z) has no uniquely attributable faults.

Proof. From the security of Π we get that if the users are corrupt then the probability that Γ attributes a
fault to them is negligible. Symmetrically, if the operator is corrupt then the probability that Γ attributes
a fault to the her is negligible. By Observation 1 the transcripts of messages received by Γ in both attacks
are distributed identically, so the probability that Γ attributes any fault has to be negligible.

4.2 Proof overview

Fix some secure Plasma payment system Π that works for n users. We construct either an attack such that

Pr

 the set of all honest users makes communication to Γ of
size at least (n− dγne · log2 n− 5)/4 (without receiving an

exit order from the environment)

 ≥ 1/16 + negl(λ) , (2)

or an attack such that

Pr

[
user U1, when ordered to exit by the environment, makes
communication to Γ of size at least (n−dγne · log2 n− 5)/4

]
≥ 1/16 + negl(λ) . (3)

In both of these attacks the amount of coins given to the users is n, but our proof can be generalized to
cover cases when it is required that the amount of coins is larger than n (we comment more on this at the
end of Sect. 4). On the other hand, the proof does not go through in the (unrealistic) case when this amount
is very small (sublinear in n).

The attacks that we construct in both cases ((2) and (3)) have no uniquely attributable faults. Note
that for n ≤ 5 Eq. (3) holds trivially, and therefore we can assume that n > 5. Let Υ denote the family
of all non-empty proper subsets of {U2, . . . , Un}, i.e. sets V such that ∅ ( V ( {U2, . . . , Un} (note that
U1 6∈ V). Since we assumed that n > 5 we have that log |Υ | = log2(2

n−1− 2) ≥ n− 2, and, in particular, Υ is
non-empty. In the proof we construct an experiment (presented on Fig. 2 and denoted Exp(V)) and analyze
its performance, assuming that V is sampled uniformly at random from Υ . Depending on this analysis, the
experiment Exp(V) can be “transformed” into an attack that satisfies Eq. (2) or Eq. (3).

Experiment Exp(V) “simulates” an execution of two epochs of Plasma Π. In the first epoch the adversary
isolates the users in {U2, . . . , Un} \ V from the operator (in the attacks that we construct later this will be
done either by corrupting these users, or the operator). The environment gives 1 coin to each user U ∈ U .
Then, in the “payment” phase of the first epoch all the users from V transfer their coins to U1. In the “exit”
phase of the first epoch user U1 receives an exit order from the environment and consequently exists with all
her coins. Note that in the first epoch every party behaved honesty (except of the isolation attack against
the users in {U2, . . . , Un} \V), and hence U1 is guaranteed to successfully exit with her coins (she has 1 such
coin from the “initialization” phase, and |V| coins that were transferred to her by the users in V).

Of course the honest parties from {U2, . . . , Un} \ V will usually realize that they are isolated from the
operator. As a reaction to this they may send some messages to Γ . This, in turn can provoke the other parties
to react by sending their messages to Γ . Hence, in general there can be a longer interaction between all the
parties and Γ in this phase. Let T 1 be the transcript of the messages sent by the users in {U2, . . . , Un} \ V
to Γ in both phases, let T 2 be the messages sent by the users in V and the operator to Γ in both phases,
let T 3 be the messages sent by U1 to Γ in the “payment” phase, and finally let T 4 be the messages sent by
U1 to Γ in the “exit” phase. The first epoch of the experiment Exp(V) and the transcripts are depicted on
Fig. 1.

Before discussing the second epoch of the experiment, let us note that in the first epoch the only way
in which we deviate from the totally honest execution is the “isolation” of {U2, . . . , Un} \ V. This will later
allow us to be “flexible” and corrupt different sets of parties ({Op} or {U2, . . . , Un} \ V) depending on the
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results of our analysis of Exp(V). This will be different in the second epoch, where we always assume that
parties from V are corrupt. This is ok because while constructing the attacks that satisfy (2) or (3) we will
only use the first epoch of Exp(V). The only reason to have the second epoch of Exp(V) is to make sure that
the users have to send large amounts of data to Γ during the first epoch, as otherwise corrupt V can steal
the money (in the second epoch).

users U2, … ,U𝑛 ∖ 𝒱users 𝒱
user U1

1+|𝒱|

1 1 1 1 1 1 1 1 1

payment phase

inital accounts

accounts after
the first epoch⊥ 0 0 0 0 1 1 1 1

operator Op

exit phase

users isolated from the operatorusers not isolated from the operator

main 
chain

𝒯4
T1T2

T2 T3

Fig. 1: The first epoch of the experiment Exp(V). Above, gray circles denote the parties (the operator Op,
the user U1, users V, and the remaining users {U2, . . . , Un} \ V), and the T i’s denote the transcripts of the
communication with Γ (see, e.g., Sect. 4.2 for their definitions).

Let us now present some more details of the second epoch. Initially we corrupt all the users from V
and “rewind” them to the state that they had at the beginning of the first epoch. This is done in order
to let them “pretend” that they still have their coins. We then let all of them try to (“illegally”) exit with
these coins. Technically, “rewinding a user U ” is done via a procedure denoted ReconstructU (presented on
Fig. 3). This procedure outputs the state that U would have at the end of the “payment” phase if she did not
transfer her coins to U1. To make it look consistent with the state of Γ , this procedure takes as input the
transcripts defined above. Then, each user U ∈ V tries to exit (in the “exit” phase) from her state computed
by ReconstructU . Also the honest users try to exit (they receive an “exit” order from the environment). Let
Q be the set of users that managed to exit with at least 1 coin. From the security of Plasma we get that Q is
equal to the set of honest users ({U2, . . . , Un} \ V) plus a small (of size at most dγne) subset D of dishonest
users (see Lemma 2 for details).

The key observation is now that all that is needed to “simulate” the second epoch of Exp(V) are the
transcripts T 1, T 2, T 3, and T 4. On the other hand V can be approximately computed from Q (i.e. we can
compute V with elements D missing, where |D| = dγne). Hence the variable (T 1, T 2, T 3, T 4) carries enough
information to “approximately” describe V. Thanks to this we can construct a “compression” algorithm that
“compresses” a random V ←$Υ by simulating the first epoch of Exp(V) and obtaining (T 1, T 2, T 3, T 4) and
then “decompresses” it by simulating the second epoch, and computing the output as V := {U2, . . . , Un} \Q
(the additional dγne elements can be simply listed as an additional output of C and passed to D as input
that has to be added to the output of D).

On the other hand, clearly (for completeness we show this fact in Lemma 1), a random V ←$Υ with high
probability cannot be compressed to a string that is significantly shorter than log |Υ | ≥ n− 2. This implies
that with a noticeable probability |(T 1, T 2, T 3, T 4)| ≈ n − dγne log2 n, where dγne log2 n is the number of
bits needed to describe set D (for concrete parameters and a formal proof see Lemma 3).

Obviously, the above fact implies that for at least one i ∈ {1, . . . , 4} we have that T i ≥ (n−dγne log2 n)/4
with noticeable probability (see Eq. (9) for concrete parameters). The rest of the proof of Thm. 1 is based
on the case analysis of the implications of “T i ≥ n/4” for different i’s. More concretely, we show that in
the first three cases (i = 1, 2, and 3) we can construct attacks that satisfy Eq. (2), and in case i = 4 — an
attack that satisfies Eq. (3). All these attacks are based on the experiment Exp(V) from Fig. 2, but are only
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using its first epoch. In the proof we exploit the fact that the only malicious behavior that happens in this
epoch is the “isolation” (i.e. not sending messages). Hence, we can use Observation 1 and “switch” between
scenarios when different groups of parties are corrupt (while still getting the same transcripts T i). Moreover
these attacks do not have uniquely attributable faults.

4.3 Technical proof details

We are now ready to present the details of the proof of Thm. 1. As mentioned above, in the proof we use
an intuitive fact that no algorithm C (even computationally unbounded) can compress a random element X
of finite set X into a string Y that is smaller than log2 |X | in such a way that a “decompression” algorithm
D can with a high probability “decompress” it, i.e., such that D(C(X)) = X. This is formalized in Lemma 1
(note that we also allow C and D to take an auxiliary random input R). This result is standard, but for
completeness we prove it in Appx. B.

Lemma 1. Let 1λ be a security parameter, let {Xλ}∞λ:=1 and {Rλ}∞λ:=1 be families of finite sets such that
log2 |Xλ| and log2 |Rλ| are polynomial in λ. For each λ let Xλ be a random variable distributed uniformly
over Xλ, and let Rλ be an arbitrary random variable over Rλ that is independent from Xλ (for simplicity
assume that the value of 1λ is encoded in Rλ). Suppose (C,D) is a pair of arbitrary functions, such that for
each λ the function C takes as input a pair (x, r) ∈ Xλ×Rλ and outputs a value y ∈ {0, 1}∗, and D takes as
input a pair (y, r) ∈ {0, 1}p(λ) ×Rλ and outputs x ∈ Xλ. Assume also that

Pr[D(C(Xλ, Rλ), Rλ) = Xλ ] is overwhelming in λ. (4)

Then for every κ ∈ N we have that

Pr[|C(Xλ, Rλ)| ≤ log2 |Xλ| − κ− 1] ≤ 2−κ + negl(λ) (5)

(for some negligible function negl).

We now construct experiment Exp(V) (for V ∈ Υ ) that was already informally discussed in Sect. 4.2. It is
presented on Fig. 2 (it uses a sub-routine a sub-procedure Reconstruct presented on Fig. 3). The experiment
takes two epochs. In the first one (see also Fig. 1) the only deviation from the original protocol execution is
that we isolate set {U2, . . . , Un} \ V from the operator (see Sect. 4.1). Hence, “from the point of view of the
outside viewer” (and in particular: from the point of view of the contract Γ ), up until the end of the first
epoch it is impossible to determine who is corrupt.

This changes in the second epoch, where in Step 7 the users from V try to (“illegally”) exit with 1
coin each. This is done by each U rewinding her state to the initial one, using the ReconstructU procedure
(depicted also on Fig. 3). This procedure takes as input ψU , ψΓ (i.e. the initial values that U and Γ receive
in the setup stage, recall that this includes U ’s randomness), and the transcript of the messages sent by all
the parties to Γ (i.e. (T 1, T 2, T 3, T 4)) and reconstructs the state of U . This reconstruction is done as if no
transfer order was made to U . We now have the following lemma that, informally speaking, states that if Π
is secure then the set of parties that managed to exit in the experiment on Fig. 2 has to be roughly equal to
the set of honest parties from {U2, . . . , Un}.

Lemma 2. Suppose V ←$Υ and let Q be the set of users that exited in the experiment Exp(V) (see Step 7 on
Fig. 2) with at least 1 coin, and let V ′ be the users that did not exit, i.e., V ′ := {U2, . . . , Un} \Q. Then with
an overwhelming probability (in λ) it holds that: (a) V ′ ⊆ V and (b) |V \ V ′| ≤ dγne (where the probability is
taken over the choice of set V and over the randomness of all the parties).

Proof. First, it is easy to see that every user from set {U2, . . . , Un} \ V can exit with her 1 coin. More
precisely, with an overwhelming probability we have that {U2, . . . , Un} \ V ⊆ {U2, . . . , Un} \ V ′. This follows
immediately from the “fairness for the users” and responsiveness to “send” and “exit” orders. Clearly this
implies that V ′ ⊆ V, and we are done with the first part of the proof.
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Procedure Exp(V), where V ∈ Υ

Initialization

1. In the initialization stage the environment gives to every user Ui, exactly one coin, i.e., she lets (ainit1 , . . . , ainitn ) :=
(1, . . . , 1).

The payment phase of epoch 1

2. During this phase we isolate the users of the set {U2, . . . , Un}\V from the operator (see Sect. 4.1), but except
of this all the parties behave honestly.
At the beginning of the “payment” phase the environment orders every user U from V to send her coin to U1,
i.e., it sends an order send(U1, 1) to U .

3. At the end of this phase the environment receives messages {received(U, 1)}U∈V from U1.

The exit phase of epoch 1

4. The environment asks U1 to exit with all its coins, i.e., she sends to U1 an exit order. As a result Γ outputs a
message (exited, U1, |V|+ 1). Denote the transcripts of messages sent in the first epoch to Γ as follows:
– T 1 — the messages sent by the parties in {U2, . . . , Un} \ V in both phases,
– T 2 — the messages sent by the parties in V and the operator in both phases,
– T 3 — the messages sent by U1 in the “payment” phase, and
– T 4 — the messages sent by U1 in the “exit” phase.

The payment phase of epoch 2

5. At the beginning of the second epoch A corrupts U1, the operator, and all the users in V and for every U ∈ V
runs the procedure

ReconstructU
(
ψU , ψΓ , T 1, T 2, T 3, T 4)

(see Fig. 3 on the next page), where ψ’s are taken from the output of the setup procedure. The goal of this is
to reconstruct the state of each U ∈ V as if U did not make any transfers in the first epoch. Denote this state
with stateU . The users from V execute the second epoch starting from this state.

6. In the second epoch there are no payments.

The exit phase of epoch 2

7. During the “exit” phase every user U attempts to exit with 1 coin. More precisely, in the first round of the
“exit” phase simultaneously the following happens:
– For every user U ∈ V the adversary simulates the behavior of U from state stateU (computed above), and

assuming the environment sent a message exit to U .
– The environment sends a message exit to every U ′ ∈ {U2, . . . , Un} \ V.

During this phase the operator Op and U1 remain silent, i.e. they do not send any messages. We can assume
this, since they are corrupt (see 5), so the adversary has a full control over them.
Once this phase ends, some of the parties from set {U2, . . . , Un} manage to exit with 1 coin. Denote this set
with Q, i.e., let: Q := {Ui : i ≥ 2 and Γ outputs (exited, U, 1)}.

Fig. 2: Procedure Exp(V) describing the behavior of the adversary and the environment. It uses as a sub-
routine a sub-procedure ReconstructU presented on Fig. 3.
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Sub-procedure ReconstructU
(
ψU , ψΓ , T 1, T 2, T 3, T 4

)
Here U ∈ {U2, . . . , Un}, ψU and ψΓ is the setup information of U and Γ , respectively, and the transcripts T 1 and
T 2 are defined in Step 4 of Exp(V). In this sub-procedure we simulate the behavior of U during the “payment”
phase, as if no order that involves U was made by the environment, and isolating U from the operator Op.

1. In the setup stage pass ψU to U .
2. Then start the simulation of U step-by-step. The main difficulty is handling the communication with the other

parties. This is done as follows.
Communication with the operator Op: We isolate U from Op, and hence all the messages sent from U

to Op are ignored, and no messages going backward are produced (of course, this typically will mean that
U concludes that Op is corrupt).

Communication with the contract machine Γ : Recall that U has a complete access to the internal state
of Γ . To provide it to “simulated U ” simultaneously with U execute Γ (initiating it with ψΓ ). Ignore all
the messages that U sends to Γ . On the other hand: deliver the all the messages from T 1, T 2, T 3, and T 4

to Γ .
Communication with other users: Since U is not involved in any order, by the “communication locality”

property no other honest user U ′ ∈ U sends or receives a message from U , so we do not need to simulate
this communication.

3. Output the stateU (the internal state of U).

Fig. 3: Procedure Exp(V) describing the behavior of the adversary and the environment (continued from the
previous page) and a sub-procedure ReconstructU .

For the second part we need to show that no more than dγne parties from V are able to exit with any
non-zero amount of coins. This follows from Plasma’s security properties. More precisely: at most d(1+γ)ne
coins can be withdrawn from Γ (from the “limited responsibility of the operator”). Moreover, |V| coins have
to be withdrawn by U1 and n− |V| have to be withdrawn by the users (here we use “responsiveness to send
and to exit orders” and “fairness for the users”). Therefore the amount of coins that can be withdrawn by the
dishonest users is (with overwhelming) probability at most d(1 + γ)ne − |V| + n − |V| = dγne. Since every
corrupt user tries to withdraw 1 coin, we obtain that |V \ V ′| ≤ dγne. This finishes the proof of Lemma 2.

Lemma 2 is useful in showing the following fact that essentially states that if Plasma is secure then the total
transcript of messages sent to Γ by the parties in the first epoch has to be large.

Lemma 3. Consider experiment Exp(V) with V ←$Υ . Then

Pr
[
|T 1|+ |T 2|+ |T 3|+ |T 4| ≤ n− dγne log2 n− 5

]
≤ 1/4 + negl(λ) , (6)

where the probability is taken over the choice of set V and over the randomness of all the parties

Proof. We show how Lemma 2 can be used to construct a “compression” algorithm for a set V ∈ Υ . A
compression procedure C and a decompression procedure D that are depicted on Fig. 4. They are built
using “approximate compression procedures” Ĉ and D̂ (presented on the same figure). Here “approximate”
corresponds to the fact that the set produced as a result of the decompression can be a subset of the set
that was compressed, but the difference between the two sets has cardinality bounded by dγne. Let V ′ be
the output of D̂. We first show that

with an overwhelming probability V ′ ⊆ V and |V \ V ′| ≤ dγne. (7)

To see why it holds, observe that procedures Ĉ and D̂ just repeated the scenario from the experiment Exp(V)
on Fig. 2. The only difference is that procedures (Ĉ, D̂) reconstructed the internal state of all the parties,
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while in Exp this was done only for the users from V (see Step 5 on Fig. 2). We have the following lemma that
essentially states that ReconstructU correctly reconstructs the state of the honest parties after the “payment”
phase of the experiment on Fig. 2.

Fact 1. Let V be an arbitrary set from the Υ family. Then for every U ∈ {U2, . . . , Un} \ V we have that the
output of ReconstructU (ψU , ψΓ , T 1, T 2) is equal to the value of stateU at the end of Step 4 of the experiment
Exp(V) on Fig. 2.

Proof. Recall that each U ∈ {U2, . . . , Un} \ V is not involved in any transaction in the “payment” phase.
Therefore the only external information that U can see is the state of Γ . Since the state of Γ depends only
on the messages that Γ receives (i.e. (T 1, T 2, T 3, T 4)), which is identical in the experiment Exp(V) and
Reconstruct, there is no difference in the information that U receives in both cases. Thus, the output needs
to be the same.

Coming back to the proof of Lemma 3, from Lemma 2 we now get that V ′ ⊆ V and |V \ V ′| ≤ dγne. Hence
Eq. (7) is proven.

Let us now analyze the compression procedures (C,D). Recall that C is a function that takes two inputs:
the input that it is going to “compress” (in our case it is the set V ∈ Υ ), and “randomness” (here this is
the random variable Ψ(1λ)). The intuition behind this construction is quite simple: C simply outputs the
output of Ĉ and additionally a description of the set D that will be used by D to “correct” the output of
D̂. This correction is done by simply adding D to the output of D. Hence, it is easy to see that Eq. (7)
implies that Pr

[
D̂(Ĉ(V,

−→
ψ ),
−→
ψ ) = V

]
is overwhelming. We now apply Lemma 1 to this fact with Xλ := V

and Rλ := Ψ(1λ), and κ := 2, obtaining:

Pr
[
|C(V,

−→
ψ )| ≤ log2 |Υ | − 3

]
≤ 1/4 + negl(λ) . (8)

Now observe that the output o C is a pair ((T 1, T 2, T 3, T 4),D)), where D has size at most dγne. Hence the
output of C has length at most |T 1|+ |T 2|+ |T 3|+ |T 4|+ dγne log2 n. We therefore get that Eq. (8) implies
that Pr[T 1| + |T 2| + |T 3| + |T 4| + dγne log2 n ≤ n − 5] ≤ 1/4 + negl(λ) (where we also used the fact that
log2 |Υ | ≥ n− 2). This is equivalent to Eq. (6), and hence the proof of Lemma 3 is finished.

We now use Lemma 3 to show that we can either construct (A,Z) that satisfies Eq. (2), or (A,Z) that
satisfies Eq. (3). Clearly if |T 1|+ |T 2|+ |T 3|+ |T 4| > n−dγne log2 n− 5 then there exits i ∈ {1, 2, 3, 4} such
that |T i| > (n− 5)/4. Hence from Lemma 3 we get that for at least one i we have that

Pr
[
|T i| > (n− dγne log2 n− 5)/4

]
≥ 1/16 + negl(λ) . (9)

We consider each cases (i = 1, 2, 3 and 4) separately below. In our proof, in cases i = 1, 2, and 3 we show
that Eq. (2) holds, and in case i = 4 we show Eq. (3). In all the cases we assume that V ←$Υ .

First, suppose Eq. (9) holds for i = 1. Let A and Z be the adversary and the environment that perform
the Steps 1—4 of the experiment on Fig. 2. Moreover suppose A isolates the users in set {U2, . . . , Un} \ V
from the operator Op by corrupting Op (hence: this is a data unavailability attack against these users). Since
{U2, . . . , Un} \ V is the set of honest parties that did not receive an exit order and (by Observation 1) T 1 is
the transcript of messages that they sent to Γ , thus we get a forced on-chain action, and Eq. (2) is satisfied.

Now, assume Eq. (9) holds for i = 2. Let (A,Z) be defined as in the previous case, except that now the
adversary corrupts the parties in {U2, . . . , Un} \ V, who now launch a pretended data unavailability attack
on the operator. By Observation 1 we get that the transcript of messages sent by parties in V ∪ {Op} to Γ
is distributed identically to T 2. Since V ∪ {Op} are honest and did not receive an exit order, thus Eq. (2) is
proven.

Next, suppose Eq. (9) holds for i = 3. This is handled as case i = 1 above (remember that U1 is honest),
except that the attack that we construct stops after the “payment” phase of the first epoch. Because of
this U1 does not receive the exit order in this phase, the definition of forced on-chain action is satisfied. By
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“Approximate compression procedure” Ĉ(V,
−→
ψ )

1. Emulate the execution of the Plasma protocol Π under the experiment Exp described on Fig. 2. and output
(T 1, T 2, T 3, T 4).

“Approximate decompression procedure” D̂((T 1, T 2, T 3, T 4),
−→
ψ )

1. Simulate the “exit” phase from Step 5 on Fig. 2. Note that you do not know V, and hence cannot just repeat
it step-by-step. We show that the knowledge ((T 1, T 2, T 3, T 4),

−→
ψ ) suffices for this simulation. This is done as

follows. First for every U ∈ U run the sub-procedure ReconstructU (ψU , ψ, T 1, T 2, T 3, T 4) to obtain stateU .
2. Then starting from Step 5, simultaneously for every user U ∈ V the adversary simulates the behavior of U

from state stateU (computed above), and assuming the environment Z sent a message exit to U . For this to
work, we need to simulate also Γ . We use the fact that Γ is deterministic, and we know its input ψΓ , as well
as the messages it receives (since they are described in the transcripts. During this phase the operator Op
and U1 remain silent (cf. step 7 on Fig. 2). This is needed, since Op and U1 “know” V so it is impossible to
simulate them here (this is precisely the reason why in this step we have to corrupt U1).

3. Once this phase ends let Q be the set of those parties from {U2, . . . , Un} that managed to exit with 1 coin.
Output the set of these parties that did not manage to exit, i.e.: V ′ := {U2, . . . , Un} \ Q.

(a)

Compression procedure C(V,
−→
ψ )

1. Let (T 1, T 2, T 3, T 4) := Ĉ(V,
−→
ψ ).

2. Recall that D((T 1, T 2, T 3, T 4),
−→
ψ ) may not be equal to V, but with very high probability

D((T 1, T 2, T 3, T 4),
−→
ψ ) ⊆ V and the difference between these two sets is of cardinality at most dγne. Let

D be this difference, i.e., Let D := V \ D̂((T 1, T 2, T 3, T 4),
−→
ψ ).

3. If |D| > dγne then output an arbitrary fixed value. Otherwise output ((T 1, T 2, T 3, T 4),D).

Decompression procedure D(((T 1, T 2, T 3, T 4),D),
−→
ψ )

1. Output D̂((T 1, T 2, T 3, T 4),
−→
ψ ) ∪ D.

(b)

Fig. 4: “Approximate compression procedure” (on Fig. (a)), and compression procedure that is built on top
of the approximate one (on Fig. (b))
.

Observation 1 the transcript of messages that U1 sends to Γ in this phase is distributed identically to T 3

and hence Eq. (2) holds.

Finally, let Eq. (9) hold for i = 4. In this case let (A,Z) be as in case i = 1. Again, by Observation 1,
T 4 is distributed identically to the transcript of messages that U1 sends to Γ in the real attack by (A,Z).
Since this is sent as a reaction to Ext message from Z, thus we get that Eq. (3) holds.

To finish the proof of Thm. 1 observe that the only thing that the adversaries A (defined above) do is
“data unavailability”, or “pretended data unavailability” attacks, thus, by Lemma 1 these attacks have no
uniquely attributable faults.

19



Remark. In Thm. 1 we give the environment freedom to choose the number a of coins given to the users, and
in the proof we rely on this assumption (by choosing this number to be equal to n, see a discussion below
Eq. (3)). It is easy to see that our proof would go through even if it was required that a is arbitrarily large.
The only difference would be that instead of giving 1 coin to every user, the environment would give to each
user Ui (for i > 1) ba/nc coins, and to user U1 the environment would give the remaining coins (say). The
rest of the proof would be essentially identical to the proof of Thm. 1.

Conclusion. The main contribution of this work is that we have shown that the distinction Plasma Cash and
Fungible Plasma is inherent, i.e., we ruled out the possibility of constructing Plasma that combines benefits
of both Plasmas. We believe that, besides of the general scientific interest, our work (especially ruling out
existence of some Plasma constructions) can help the practical blockchain community in developing Plasma
protocols, and in general can bringing more understanding in what is possible and what is impossible in
the area of off-chain protocols, and under what assumptions. It can also serve as a formal justification why
“hybrid” approaches (such a “rollups”) [6] may be need in real life.
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A Concrete Plasma constructions

In this section we describe a two Plasma protocols (one fungible and one non-fungible) in details. We note
that in the Plasma community there are many different proposals for fungible and non-fungible Plasma
payment systems, yet here we only provide two simple protocols. We omit defining the deposit protocol
for these systems in order to be concise and follow our framework from Sect. 2. The constructions that we
present here are based on the existing prior work [3, 4, 20, 25, 27, 33], and are included in this paper only
for the sake if completeness. In particular, some aspects of these protocols are similar to the protocol defined
in [25]. For example in both approaches the operator submits SNARKS in order to convince the ledger that
it has processed the transactions correctly or parties can challenge a malicious operator every epoch. Yet,
unlike [25] we use simple Merkle trees, instead of the Merkleized Interval Tree-Structure introduced there,
in order to store the balances and transactions.

Similar to [13], in order to to be concise, we use the following notation for sending and receiving messages.
Instead or writing “Send message m to party P we write m ↪−→ P and the notation m ←−↩ P means that an
entity received the message m from party P . In addition we use the attribute tuple definition from [12, 13,
14]. Let L be tuple of values, the individual values in L are called attributes where these attributes are
identified using keywords. More formally, a tuple is a function from the set of its attributes to {0, 1}∗ and is
refereed to as attribute tuple. To identify the value of an attribute in a tuple L, we use the keyword attr and
notation L.attr.

A.1 Preliminaries

Merkle Tree. Most Plasma payment schemes use a data structure called Merkle tree in order to store
the balances or transactions made by the users. Here we give a short introduction to Merkle trees and the
notation used in the protocols presented in this section. Let H be a collision resistant hash function (see, e.g.,
[24]) and (x1, · · · , xn) a list of values (for simplicity we assume n = 2k for some k). A Merkle tree is created
by hashing the elements x2l−1 and x2l for l ∈ {1, · · · , n/2} and getting n/2 values h2l−1,2l = H(x2l−1, x2l).
This process is repeated on the hashed values. Eventually the last element created, also known as the Merkle
root, is h1,··· ,n = H(h1,··· ,n/2, hn/2+1,··· ,n). In other words a Merkle tree is a binary tree where the leafs are
(x1, · · ·xn) and the internal nodes are the hashes of the respective child nodes. One can prove the inclusion
of an element xi by providing a set of internal hash values of the tree. We omit the details on how to create
and verify Merkle proofs and reference to [24].

Signature Schemes. Cryptographic signature schemes (also called digital signature scheme) are used in
order to authenticate the sender of a message. These schemes consist of three algorithms Gen that outputs a
pair of public and private keys (pk, sk), Sig that gets as input a message m and the secret key sk and outputs
a signature σm and Vf that gets as input a public key pk , a message m and signature σm and outputs 0 or
1 where 1 means that the signature is valid. It must hold that Vfpk (m,Sigsk (m)) = 1 except with negligible
probability over λ. Informally, a party should not be able to create a valid signature σ for a fresh message m
and public key pk without knowledge of sk . This property is called existentially unforgeability under chosen
message attack. For a formal definition of a digital signature scheme, we refer the reader to [24].

Succinct Non-interactive ARgument of Knowledge. SNARKS are succinct non-interactive proof
systems in which the prover with a witness x convinces the verifier that is satisfies some relation C(x, y) = z,
where C is some public circuit and y, z are public values. The main property is succinctness which guarantees
that verifying the proof can be done in computation independent of the secret value x. Soundness of the
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proof systems guarantees the verifier that if the prover does not know such x it cannot convince the verifier
except with negligible probability. In addition the proof π is succinct, namely polynomial in the security
parameter for some fixed polynomial. Lastly verifying the proof should take time Oλ(|C| + |x| + |y|). We
refer the reader to, e.g., [28] for a formal definition of SNARKS where the authors provide a proof scheme
in which proofs have constant size (they are independent of the circuit or input size). More precisely for 80
bits of security the proof size is 230 bytes, and 288 bytes for 128 bits of security. Note that for our use case
we do not require the zero-knowledge property, namely the verifier can learn some information about the
prover’s input. We say that a party creates a SNARK proof when this party must provide a proof that some
execution was carried out correctly and the outputs are indeed valid.

A.2 Fungible Plasma

We now present a fungible Plasma construction satisfying our model and definitions from Sect. 2. In a
fungible Plasma the size of the exit message sent by users to Γ are short yet an adversary can force users
to exit. This construction is inline with the second case of Theorem 1. More precisely, honest users can
be forced to exit their balance. Recall, that according to our definition every Plasma construction has two
phases in each epoch: the “payment” phase and the “exit” phase. The main idea of the protocol is that parties
(operator and users) must prove the consistency and correctness of the values they send to the contract. Upon
receiving the transactions from the users, the operator creates two Merkle commitments in each epoch: one
for the transactions made in this epoch and one for the resulting balances after applying these transactions
to the balances that the users had at the beginning of this epoch. In addition the operator creates a succinct
proof that the balances are updated correctly. The operator sends the Merkle roots of these two trees to the
contract together with the proof that they were created correctly and the balances were updated according
to the transactions. This completes the description in the “all honest” case.

As we have discussed in the previous sections, the operator may misbehave by, e.g., not explaining the
commitments to the users and causing data unavailability. In this case the users cannot exit based on their
latest balance that takes into account the transactions of the current epoch. Therefore during the transaction
phase after the operator has submitted the Merkle commitments to the contract, parties that are unhappy
with the operator’s work can exit the Plasma system from the commitment that was put by the operator
in the previous epoch (i.e., with the balance they had in the last round). This can be done by sending the
appropriate Merkle proofs for the user’s balance in the previous epoch to the contract.

An additional technicality arises in case when the malicious operator explains to some subset of parties
X the Merkle commitment, while he does not explain it to some other subset of users Y . In this case –
as just discussed – the parties from subset Y will exit, but the users that received the correct explanation
may want to remain in the Plasma system. Since in the current epoch (before the operator committed the
Merkle roots to the contract), transactions still may have happened between users from set X and Y , we
introduce a special mechanism that allows parties from X to “revert” all transactions that happened in the
current epoch and involved users from subset Y . This is achieved as follows. All parties in subset X locally
re-compute their balance by removing the transactions involving the users in Y and create a succinct proof
that this re-computation was done correctly. This proof can then be used as part of an exit during the “exit”
phase (see below), or when the user wants to exit during the transaction phase in the next epoch. Finally,
we note that this re-calculation may also happen due to malicious users, in which case the operator proceeds
as described above, and will use the proof when creating the Merkle tress in the next epoch.

Finally, the “exit” phase begins. During the “exit” phase users simply submit their recalculated balance
and corresponding succinct proof that this recalculation was done correctly (if needed) and there exists a
Merkle proof for their balance in the current epoch.

We note that the total communication between Op and Γ per epoch includes only two hashes and a
SNARK proof. In addition the exits made by parties only include a SNARK proof, its recalculated balance
and Merkle leaf. Hence the operators commitment size per epoch is p(λ) for some fixed polynomial p; and
the amount of data that a user needs to communicate during an exit is O(p(λ) + dlog(b)e+ dlog(n)e) where
b is the total balance of all users at the setup stage, dlog(b)e and dlog(n)e are the number of bits required to

23



store the balance of each party and their identity (by giving each user a unique index). Therefore, we obtain
the following theorem.

Theorem 2 (Existence of Plasma). Let λ ∈ N be the security parameter, n be the number of users and b be the
initial total balance. Let p be a universal polynomial (independent of n and b). Suppose that digital signatures,
SNARKs and collision resistant hash functions exists. Then there exists a secure Plasma payment system
Π where the communication complexity of Op in every epoch with Γ is p(λ), and the total communication
complexity of each user with Γ is O(p(λ) + dlog(b)e+ dlog(n)e).

Setup and terminology. We assume that at the beginning of the protocol all parties have access to the initial
balances of each user b0i . During the execution of the protocol, the operator maintains for each epoch r ≥ 1
the balance of the user at the end of this epoch denoted by bri . In addition the operator stores a list of all
transactions sent to it in epoch r which we denote by Txr. A transaction tx is a tuple of sender, receiver,
value, number of epoch and unique nonce i.e. (send, Ui, Uj , v, r,nonce). During the protocol these values will
also be sent by the operator to the users so that they also locally maintain these values. We will in this case
usually omit to explicitly mention the superscript r.

The contract Γ has a total balance denoted to by Γ.balance which initially is set to
∑
i∈[n] b

0
i . In addition

Γ stored for each epoch r the Merkle root values rootrbalance and rootrTx. Here the first is a commitment to the
balance br := (br1, . . . , b

r
n) in epoch r, and rootrTx is a commitment to the transactions Txr that the operator

received during epoch r.
We use the notation m.root to refer to the Merkle root of tree m, m.leafi and m.proofi refer to the ith

leaf and its Merkle proof in tree m. We note that the order of elements in the balance tree matter, in other
words a correct balance tree must have the balance of the ith user in it’s ith leaf. To be concise in the
protocol we say “apply transaction list Txr to the balances in br−1” which simply means that for all tuples
(send, Ui, Uj , v, r,nonce) ∈ Txr update bri ← br−1i − v and brj ← br−1j + v. We assume that all users are
connected with authenticated communication channels.

“Payment” Phase in epoch r

Party Ui ∈ U upon (send, v, Uj)←−↩ Z:

1. Let bi denote the balance of user Ui when receiving the above message. If bi ≥ v and Uj has not exited: Set
bi ← bi − v and add tx := (send, Ui, Uj , v, r,nonce) to your local transaction list Txi. Send (tx , Sigski(tx ))
↪−→ Op .

Operator Op upon
(tx := (send, Ui, Uj , v, r,nonce), σtx )←−↩ Ui:

2. Denote by bi the current balance of party Ui when Op receives the above message. If the transaction is
signed correctly by Ui namely Vfpki(tx, σtx ) = 1, bi ≥ v, r is the current epoch, nonce has not been used in
a transaction before and neither Ui nor Uj have exited: Set bi ← bi − v and add (tx , σtx ) to the list Txr.

Operator Op at the end of “payment” phase:

Denote by br−1 and Txr−1 the balances and transactions from epoch r − 1. The operator Op carries out the
following steps:

3. Correcting br−1 and Txr−1: For all users Ui that have exited during epoch r−1 (either during the “payment”
or “exit” phase) but were involved in transactions in epoch r−1 (i.e., there are transactions in Txr−1, where
they are part of): revert these transactions and denote by br−1 and Txr−1 the corrected balance and
transactions for epoch r − 1.

4. Correcting Txr: For all users Ui that have exited during epoch r − 1 but were involved in a transaction
during epoch r: eliminate these transactions from Txr.
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5. Check validity of transactions: Delete transactions from Txr that satisfy one of the following criteria:
– they are not signed by their senders.
– they are not for epoch number r.
– they don’t have a unique nonce.

6. Compute new balances: Apply transactions from Txr to balances br−1. Let the resulting balance be br.
Compute Merkle roots rootrbalance and rootrTx from br, respectively Txr.

7. Create succinct proof of correct computation: Create succinct non-interactive proof πOp that shows that the
steps (3)-(6) were carried out correctly with respect to the Merkle commitments rootr−1

balance, root
r−1
Tx stored

on the contract Γ during epoch r − 1, the Merkle commitment rootrbalance, root
r
Tx computed in Step (6) and

the list of exits that occurred during epoch r − 1.
8. Send (root, rootrbalance, root

r
Tx, πOp) ↪−→ Γ to the contract Γ and (block, br,Txr) ↪−→ Ui to all users.

Contract Γ upon (root, rootrbalance, root
r
Tx, πOp)←−↩ Op:

9. Verify the proof πOp given the values rootr−1
balance, root

r−1
Tx currently stored on Γ , the values rootrbalance, root

r
Tx

just received from the operator Op and the list of exits from epoch r − 1. If the verification succeeds, store
rootrbalance, root

r
Tx in the contract Γ .

User Ui upon storage of new roots on Γ :

10. If Ui has received (block, br,Txr) ←−↩ Op check if these values match with rootrbalance, root
r
Tx stored in the

contract Γ . If the checks fail or the operator did not send (block, br,Txr), send the message (exit, `i, b
′
i, πi)

↪−→ Γ where `i = (Ui, bi) (and calculation of b′i and πi are explained at the end of this phase).

Contract Γ upon (exit, `i, v
′, πi)←−↩ Ui:

11. Parse `i as (Ul, v) and add (Ul, r) to E .
12. Check if πi given the value rootr−1

balance and `i is valid , Ul = Ui (the owner of the leaf sent the exit request),
Ui did not send an exit message before and Γ.balance ≥ v′.

13. If the checks succeed, set Γ.balance← Γ.balance− v′ and output (exited, Ui, v
′) ↪−→ Z.

14. Otherwise output (exited, Ui, 0) ↪−→ Z

End of “Payment” Phase/ Start of “Exit” Phase

User Ui at the end of “payment” phase:

15. Create Merkle trees mbalance and mTx from br and Txr. Set `i ← mbalance.leafi and proof ← mbalance.proofi.
16. For all tx ∈ Txr such that the receiver is Ui and the sender did not exit during the “payment” phase output

(received, v, Uj) ↪−→ Z where Uj is the sender and v is the value of the transaction.
17. For all transactions made to and from Ui in Txr, if the other party exited during the “payment” phase of

this epoch: Recalculate the balance bri after removing these transactions and denote it by b′i.
18. Create a succinct proof πi that shows Step 17 is done correctly and there exits a Merkle proof for the leaf

`i with Merkle root rootrbalance (stored on the Γ ) and store πi, bi and b′i where bi = b′i.

Operator Op at the end of “payment” phase:

19. For all users recalculate their balances by removing the transactions made to and from parties who exited
in the “payment” phase of this epoch and store them in the list (b1, · · · , bn).

Exit Phase

– Z sends messages of the form exit to users in epoch r.
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Party Ui ∈ U upon exit←−↩ Z in exit Phase:

1. Output (exit, `i, bi, πi) ↪−→ Γ where `i = (Ui, b
r
i ).

Contract Γ upon (exit, `i, v
′, πi)←−↩ Ui:

2. Parse `i as (Ul, v) and add (Ul, r) to E .
3. Check if, the πi given the value rootnew

balance stored on Γ , `i and v′ is valid, Ul = Ui (the owner of the leaf sent
the exit request), Ui did not send an exit message before and Γ.balance ≥ v′

4. If the checks succeed, set Γ.balance← Γ.balance− v′ and output (exited, Ui, v
′) ↪−→ Z

5. Otherwise output (exited, Ui, 0) ↪−→ Z

We now show that the above protocol satisfies the security properties from Sect. 2.2.

Responsiveness to “send” orders: We show that if a user Uj receives the order (send, v, Ui) ←−↩ Z in epoch
r, Ui outputs (received, v, Ui) ↪−→ Z in the same epoch if Ui, Uj and Op are honest. The user Ui outputs
(received, v, Ui) ↪−→ Z at the end of “payment” phase at Step (16), if the transaction (send, Uj , Ui, v, r,nonce)
is stored in the transaction list Txr and neither itself nor Uj exited during this phase. Since Uj is honest and
by assumption receives the order (send, v, Ui)←−↩ Z, it will send (tx := (send, Ui, Uj , v, r,nonce),Sigski(tx )) ↪−→
Op in Step (1) and the operator will store (send, Ui, Uj , v, r,nonce) in the list of transactions Tx in Step (2).
Neither Ui nor Uj will exit during the “payment” phase (at Step 10) since the (honest) operator sends the
correctly calculated Merkle roots rootrbalance and rootrTx and proof to Γ during Steps (3)-(8) and also sends
br and Txr to Ui and Uj in Step (8). Hence this protocol has responsiness to “send” orders.

Correctness of “received”: We show that if a user Ui outputs (received, 1, Uj) ↪−→ Z in epoch r, user Uj
has received the order (send, i, Ui) ←−↩ Z in epoch r if both Ui and Uj are honest. We observe from the
protocol that Ui outputs (received, v, Uj) ↪−→ Z at the end of “payment” phase at Step (16) if the transaction
tx := (send, Uj , Ui, v, r,nonce) is stored in the list Txr. Op can only include tx and create a correct snark
during Steps (3)-(8), if tx signed correctly by Uj . Hence except with negligible probability of forging a
signature or SNARK proof, Uj has signed tx and Uj only signs such a message in Step 1 if it has received
the order (send, v, Ui)←−↩ Z. Hence correctness of “received” holds except with negligible probability.

Responsiveness to “exit” orders: We show that if an honest user Ui receives (exit)←−↩ Z in epoch r, Γ outputs
(exited, Ui, v) ↪−→ Z for some value v in the same epoch. We first observe that Γ always outputs (exited, Ui, v)
↪−→ Z if an exit message (exit, ext) ↪−→ Γ is sent by Ui (yet the value v can be different based on the validity of
the exit message). We now show that Ui submits an exit request to Γ in epoch r. Assume that the operator
is honest. In this case Ui does not exit during the “payment” phase and submits an exit during the “exit”
phase and hence Γ outputs (exited, Ui, v) ↪−→ Z. Now assume that the operator is dishonest (and does not
send the br and Txr to Ui). In this case Ui submits an exit message during the “payment” phase in Step (10).
Hence as we can see Ui submits an exit message either during the “payment” phase if Op is malicious or
during the “exit” phase otherwise.

Fairness for the users: We prove this property by an induction. We want to show that at any epoch an honest
user can exit and it will only stay in the system (does not exit in “payment” phase) if it can exit during the
“exit” phase of the same epoch or “payment” phase of the next epoch. We first show this for epoch 1. At
the beginning of the protocol all parties have a correct Merkle proof of their initial balance. Let the initial
balance of Ui be bi. Assume that the operator is dishonest (i.e. the operator does send correct br and Txr

to Ui at Step 8). Then Ui submits an exit order during the “payment” phase in Step 10. Since Ui has a valid
Merkle proof, the checks made by Γ upon receiving (exit, `i, v

′, πi)←−↩ Ui in the “payment” phase at Step 12
return true, namely Ui has sent a correct SNARK that proves it has a valid Merkle proof with Merkle root
rootold for Merkle leaf leaf and v is its correct (potentially) re-calculated balance. Each party can exit at
most once and the balance of all other parties is Γ.balance− bi. Hence the last check namely Γ.balance ≥ bi
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will also return true except with negligible probability of another (malicious) users finding a collision for the
hash function such that this user can submit a valid Merkle proof for a leaf (Uj , b′j) where b′j > bj or forging
a SNARK proof. Therefore the contract will output (exited, Ui, bi) ↪−→ Z with overwhelming probability. Now
consider the case where Ui does not exit during the “payment” phase. This means that Op has sent the br

and Txr to Ui. Ui’s balance in br is correctly updated (according to the transactions sent and received by
Ui), and

∑
bj∈m.balances bj ≤ Γ.balance. Ui recalculates her balance according to the protocol description and

creates the snark proof for it in Steps (15)-(18). Hence analogous to the argument made above, during the
“exit” phase the contract will output (exited, Ui, bi) ↪−→ Z except with the negligible probability of a user Uj
or Op forging a proof or forging an invalid Merkle proof.

In addition we can conclude that the users will only remain in the system and don’t exit during the
“payment” phase, if they can exit in the “exit” phase of epoch 1 and subsequently in the next “payment”
phase in epoch 2. Hence using the same argument made above, and assuming that in the r − 1th epoch Ui
has a correct Merkle proof and succinct proof of her updated balance, Ui can exit in epoch r and in addition
will only proceed (stay in the system and not exit during “payment” phase) to epoch r+1 if it has a correct
Merkle proof of her balance in epoch r.

Therefore the users can exit their balance with overwhelming probability in any (polynomial number of)
rounds except with negligible probability.

No forced exits, if operators honest: We show that if Ui and Op are honest and Γ outputs message
(exited, Ui, v) at epoch r, then environment has sent the order exit to Ui in the same epoch r. As we saw
in Fairness for the users, if the operator is honest, an honest Ui does not exit during the “payment” phase.
Hence if Ui exits in epoch r it exits during the “exit” phase in which it must have received (exit)←−↩ Z.

Fairness for the operator: Since the total amount of balance in the contract namely Γ.balance is equal to the
sum of all initial balances and before outputting (exited, Ui, v) ↪−→ Z the contract checks if Γ.balance ≥ v, the
total amount of coins withdrawn from the system is less than or equal to the sum of the initial balances of
all parties.

A.3 Non-Fungible Plasma (aka “Plasma Cash”)

We now present a non-fungible Plasma construction satisfying our model and definitions from Sect. 2. In a
non-fungible Plasma the size of the exit messages sent by users to Γ are larger than the fungible Plasma, yet
the users cannot be forced to exit. This construction is inline with the first case of Theorem 1. It is similar
to Plasma Cash description of [27].

Similar to the fungible Plasma construction from Sect. A.2, the non-fungible Plasma construction also has
two phases in each epoch, the “payment” phase and the “exit” phase. The main idea behind the non-fungible
Plasma construction is to combine the consistency and correctness proof of the construction in Sect. A.2
while instead of storing the balance of each party we assign to each coin the user it belongs to (without loss
of generality we assume all coins have the same value). Subsequently, instead of storing the balances of the
users in the Merkle tree as described in Sect. A.2 the coins are stored in the Merkle tree. Each coin has
a unique identifier, the id of its current owner, the id of its last owner and the number of epoch in which
it was transferred. We note that it is not possible to split these coins into multiple coins with less values
and therefore this class of Plasma protocols are called non-fungible. We now explain the “all honest” case
for non-fungible Plasma systems. Upon receiving the transactions from the users (which now transfers the
ownership of coins), the operator creates two Merkle commitments in each epoch: one for the transactions
made in this epoch and one for the coins after applying these transactions to the coins at the beginning of
this epoch. In addition the operator creates a succinct proof that the ownership of the coins are updated
correctly. The operator sends the Merkle roots of these two trees to the contract alongside the proof that
they were created correctly and the coins ownership were updated according to the transactions.

As in the fungible Plasma construction, the operator may misbehave by, not explaining the commitments
to the users and causing data unavailability. But unlike the fungible Plasma, in the non-fungible construction
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the users do not have to submit an exit immediately and only stop making transactions. There is only one
problem that must be addressed, if the latest commitment is not explained, who owns the coins transferred
during this epoch: the sender or the receiver? To address this ambiguity we require the senders to sign and
submit a “confirmation” message to the receiver after the operator explains the commitment. This resolved
the ambiguity since the receiver only considers the transaction to be completed if it receives the confirmation
message and the operator explains the commitment. The users who sent coins in this epoch create a succinct
proof that they have a Merkle proof for the current epoch and the coin they transferred and have a signed
confirmation message.

Finally, the “exit” phase begins. During this users submit their coins and corresponding succinct proof
for these coins. One problem that can arise in this phase is users exiting coins they have already transferred
to another user. To mitigate this issue users can challenge exits by providing their succinct proof for this
coin. We note that the contract can compare the epochs in which this Merkle proof is generated and if the
challenger provides a more recent proof the exit is canceled.

As in fungible Plasma, the total communication between Op and Γ per epoch includes only two hashes
and a SNARK proof. In addition the exits made buy parties per coin includes a SNARK proof and Merkle
leaf. Yet a user with many coins must submit all SNARK proofs and Merkle leaf it has. In addition users
must challenge invalid exits for the coins it owns. On the other hand no user is forced to exit and therefore
this protocol does not have mass exit. Hence, we obtain the following theorem.

Theorem 3 (Existence of Plasma Without Mass Exit). Let λ ∈ N be the security parameter, n be the
number of users and b be the initial total balance. Let p be a universal polynomial (independent of n and b).
Suppose that digital signatures, SNARKs and collision resistant hash functions exists. Then there exists a
secure Plasma payment system Π where:

– the communication complexity of Op with Γ is of size p(λ) in every epoch, and
– the communication complexity of each exit is of size O(p(λ) + dlog(b)e+ dlog(n)e) where at most b such

exits are carried out by each user.

We recall that users may be forced to submit challenge messages for invalid exit messages where the size of
this challenges message per coin is equal to the size of an exit message. Yet Γ can determine which user acted
maliciously, the user challenging an exit, or the user who submitted the challenged exit. Hence in practice,
in case an exit is challenged successfully, the exiting party (who is now proven to be malicious) compensates
the cost of submitting the challenge message (e.g. the transaction fee cost). Therefore the communication
cost of challenge messages is not mentioned as a parameter of the protocol.

Setup and terminology. We now recall the relevant setup and terminologies from Sect. A.2 and modify them
for the non-fungible construction. We assume that at the beginning of the protocol all parties have access to
the initial set of coins of each user b0i . A coin c is a tuple of unique id, current owner, previous owner and the
number of epoch in which the ownership of this coin was transferred from the previous owner to the current
owner i.e. (id , Ui, Uj , r). In addition users posses a succinct proof per coin which allows them to submit a valid
exit message at the first epoch. During the execution of the protocol, the operator maintains for each epoch
r ≥ 1 the set of coins belonging to each user at the end of this epoch denoted by bri . In addition the operator
stores a list of all transactions sent to it in epoch r which we denote by Txr. A transaction tx is a tuple of
sender, receiver, coin, a succinct proof, number of epoch and unique nonce i.e. (send, Ui, Uj , c, πc, r,nonce).
A confirmation message is a tuple of sender, receiver, coin id, i.e. (confirm, Ui, Uj , id).

The contract Γ has a total balance denoted to by Γ.balance which initially is set to the total number of
coins i.e.

∑
i∈[n] |b0i | where |b0i | is the number of elements in the set b0i . In addition Γ stored for each epoch r

the Merkle root values rootrbalance and rootrTx. Here the first is a commitment to the coin sets br := (br1, . . . , b
r
n)

in epoch r, and rootrTx is a commitment to the transactions Txr that the operator received during epoch r.
We use the notation m.root to refer to the Merkle root of tree m, m.leafi and m.proofi refer to the ith

leaf and its Merkle proof in tree m. As before the order of elements in the balance tree matter, in other
words a correct balance tree must have the coin with id id in it’s ith leaf. We use the notation c.id, c.owner,
c.preowner and c.epoch to refer to the id, current owner, previous owner and epoch number of coin c. To be
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concise in the protocol we say “apply transaction list Txr to the coins in br−1” which simply means that for
all tuples (send, Ui, Uj , c, πc, r,nonce) ∈ Txr remove c from the set br−1i , update c such that c.preowner = Ui,
c.owner = Uj , c.epoch = r and add the updated c to br−1j . We assume that all users are connected with
authenticated communication channels. Without loss of generality we assume that the environment only
sends send orders with value equal to 1.

“Payment” Phase in epoch r

Party Ui ∈ U upon (send, 1, Uj)←−↩ Z:

1. Let bi denote the set of all coins belonging to user Ui when receiving the above message. If bi is not empty and
Uj has not exited: Select one of the coins from bi denoted to by (c, πc, conf , σconf ). Remove this tuple from
bi and add tx := (send, Ui, Uj , c, conf , σconf , r,nonce) to your local transaction list Txi. Send (tx , Sigski(tx ))
↪−→ Op .

Operator Op upon (tx := (send, Ui, Uj , c := (id , Ui, Uk, r
′),

conf := (confirm, Uk, Ui, id), σconf , r,nonce), σtx )←−↩ Ui:

2. Denote by bi the current set of all coins belonging to user Ui when Op receives the above message. If c ∈ bi
and neither Ui nor Uj have exited check:
– the transaction is signed correctly by Ui namely Vfpki(tx, σtx ) = 1
– r is the current epoch
– nonce has not been used in a transaction before
– the confirmation signature is signed correctly by the previous owner namely Vfpkk (conf , σconf ) = 1

If all the above conditions hold: Remove coin c from bi and add (tx , σtx ) to the list Txr.

Operator Op at the end of “payment” phase:

Denote by br−1 and Txr−1 the set of coins and transactions from epoch r − 1. The operator Op carries out the
following steps:

3. Correcting br−1: For all users Ui that have exited during epoch r − 1, remove coin set bi from br−1.
4. Correcting Txr: For all users Ui that have exited during epoch r − 1 but were involved in a transaction

during epoch r: eliminate these transactions from Txr.
5. Check validity of transactions: Perform the checks in step (2) on all transactions in Txr and if any of the

checks fail remove this transaction from Txr (this repeated check is necessary in order to prove the validity
of the remaining transactions and creating the succinct non-interactive proof).

6. Update coins: Apply transactions from Txr to br−1. Let the resulting coin set be br. Compute Merkle roots
rootrbalance and rootrTx from br, respectively Txr.

7. Create succinct proof of correct computation: Create succinct non-interactive proof πOp that shows that the
steps (3)-(6) were carried out correctly with respect to the Merkle commitments rootr−1

balance, root
r−1
Tx stored

on the contract Γ during epoch r − 1, the Merkle commitment rootrbalance, root
r
Tx computed in Step (6) and

the list of exits that occurred during epoch r − 1.
8. Send (root, rootrbalance, root

r
Tx, πOp) ↪−→ Γ to the contract Γ and (block, br,Txr) ↪−→ Ui to all users.

Contract Γ upon (root, rootrbalance, root
r
Tx, πOp)←−↩ Op:

9. Verify the proof πOp given the values rootr−1
balance, root

r−1
Tx currently stored on Γ , the values rootrbalance, root

r
Tx

just received from the operator Op and the list of exits from epoch r − 1. If the verification succeeds, store
rootrbalance, root

r
Tx in the contract Γ .

User Ui upon storage of new roots on Γ :
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10. If Ui has received (block, br,Txr) ←−↩ Op check if these values match with rootrbalance, root
r
Tx stored in the

contract Γ .
11. If the checks fail ignore all incoming send orders from the environment Z and set bi to be equal to b′i
12. If the checks succeed, for all transactions where Ui is the sender in this epoch, create a SNARK proof πc that

shows there exists a Merkle proof for the leaf `c := c with Merkle root rootrbalance and a signed confirmation
message, namely conf := (confirm, Ui, c.owner, c.id), Sigski(conf ). Send (πc, conf , Sigski

(conf )) ↪−→ Uj and set
b′i to be equal bi.

13. For all transactions made in this epoch where Ui is the receiver, if Ui receives (πc, conf , σconf )←−↩ c.preowner,
check if πc given rootc.epochbalance stored in Γ is valid and the confirmation signature is signed correctly namely
Vfc.preowner(conf , σconf ) = 1 where conf = (confirm, c.preowner, Ui, c.id): Store (c, πc, conf , σconf ) in the set bi
output (received, 1, c.preowner) ↪−→ Z and set b′i = bi.

“Exit” Phase

– Z sends messages of the form exit to users in epoch r.

Party Ui ∈ U upon exit←−↩ Z in exit Phase:

1. for all coins (c, πc, conf , σconf ) ∈ bi Output (exit, c, πc) ↪−→ Γ .

Contract Γ upon (exit, c, πc)←−↩ Ui:

2. Parse c as (id , Ul, Uj , r
′). If, the πc given the value rootr

′
balance stored on Γ , pk j (public key of the previous

owner) and c is valid, Ul = Ui (the owner of the leaf sent the exit request), Ui did not send an exit message
for c before and no tuple with the same id id is stored in E that is not marked blamed during previous
epochs (this coin is not exited in previous epochs): Add (id , Ui, Uj , r

′) to E .

User Ui upon storage of new exit (id , Ul, Uk, r′) on Γ :

3. If there exits a tuple (c, πc, conf , σconf ) ∈ bi where c.id = id and c.epoch > r′: output (challenge, c, πc) ↪−→ Γ

Contract Γ upon (challenge, c, πc)←−↩ Ui:

4. Parse c as (id , Ux, Uy, r′′). Check if, the πc given the value rootr
′′

balance stored on Γ , pky and c is valid, Ux = Ui
(the owner of the coin sent the challenge) and there exists a tuple of the form (id , Ul, Uk, r

′) in the exit list
E and r′′ > r′.

5. If the checks succeed (the exit is invalid) mark (id , Ul, Uk, r
′) as blamed and output (attribute-fault, Ul) ↪−→

Z, otherwise (the challenge is invalid) output (attribute-fault, Ui) ↪−→ Z.

Contract Γ at the end of “exit” phase:

6. For all exit messages of the form (id , Ui, Uj , r
′) stored in E during the current epoch r that are not marked

blamed , if Γ.balance ≥ v set Γ.balance = Γ.balance−v and output (exited, Ui, v) ↪−→ Z where v is the number
of such tuples where the first element is Ui.

We now show that the above protocol satisfies the security properties from Sect. 2.2.

Responsiveness to “send” orders: We show that if a user Uj receives the order (send, 1, Ui) ←−↩ Z in epoch
r, Ui outputs (received, 1, Ui) ↪−→ Z in the same epoch if Ui, Uj and Op are honest. The user Ui outputs
(received, 1, Uj) ↪−→ Z at the end of “payment” phase in Step (13) if it receives a valid proof πc given rootc.epochbalance

stored in Γ and a correctly signed confirmation signature. Since Uj is honest it will output (tx := (send, Ui, Uj ,
c, conf , σconf , r,nonce),Sigski(tx )) ↪−→ Op in Step (1) after receiving (send, 1, Ui)←−↩ Z and the operator will
store (send, Ui, Uj , v, r,nonce) in the list of transactions Txr in Step (2). Since the operator is honest, it
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follows Steps (3)-(8) and the new Merkle roots will be stored on Γ in Step (9). Finally the operator sends br
and Txr to Uj in Step (10) and subsequently Uj sends a valid proof and confirmation message in Step (12)
to Ui. Hence this protocol has Responsiness to “send” orders.

Correctness of “received”: We show that if a user Ui outputs (received, 1, Uj) ↪−→ Z in epoch r, user Uj has
received the order (send, 1, Ui)←−↩ Z in epoch r if both Ui and Uj are honest. We observe from the protocol
that Ui outputs (received, 1, Uj) ↪−→ Z at the end of “payment” phase in Step (13). Op can only include tx
and create a correct snark in steps Steps (3)-(8), if tx signed correctly by Uj . Hence except with negligible
probability of forging a signature or SNARK proof, Uj has signed tx and Uj only signs such a message if
it has received the order (send, 1, Ui) ←−↩ Z. Hence Correctness of “received” holds except with negligible
probability.

Responsiveness to “exit” orders: We show that if an honest user Ui receives (exit)←−↩ Z in epoch r, Γ outputs
(exited, Ui, v) ↪−→ Z for some value v in the same epoch. We first observe that Γ always outputs (exited, Ui, v)
↪−→ Z in Step (6) of the “exit” phase if an exit message (exit, c, πc) ↪−→ Γ is sent by Ui (yet the value v can
be different based on the validity of the exit message). In addition An honest Ui submits an exit message if
it owns some coins (the set bi is not empty) with a valid proof. Hence this protocol has Responsiveness to
“exit” orders.

Fairness for the users: First we observe that each coin must have a valid proof and is only added to the exit
list once according to the checks done in Step (2) of the “exit” phase. In addition each coin’s proof guarantees
that the there exists a valid Merkle proof for this coin (for a Merkle roots stored on the contract) and the
previous owner of this coin has signed a confirmation message. We have to show that for all coins belonging
to a user Ui who exits in an epoch, Γ will not mark the exits as blamed and no other user can successfully
exit this coin. We observe that an exit (id , Ui, Uj , r

′) sent by Ui is marked blamed if and only if another
user Uj sends a message (challenge, c, πc) where c.id = id , c.epoch > r′ and πc is a valid proof. But since
Ui is honest, it would only submit an exit for coins it actually owns and has not transferred to other users.
Therefore either Uj has forged a valid proof πc or it has forged a correctly signed transaction made by Ui.
Both of these cases can happen with only negligible probability and therefore an exit submitted by an honest
user will not be marked blamed . Analogous to the argument made before no malicious user can submit a
valid exit for a coin it has never owned before except with negligible probability. Lastly if a previous owner
of a coin submits an exit for this coin, the current owner of the coin, namely Ui, can successfully challenge it
since it posses the coin c and valid proof πc such that c.epoch is more recent in this coin. Hence the Fairness
for the users hold except with negligible probability

No forced exits, if operators honest: User only submit an exit request (exit, c, πc) ↪−→ Γ in Step (1) of the
“exit” phase if and only if it receives an exit order from the environment. As explained in the proof of
Responsiveness to “exit” orders, Γ only outputs (exited, Ui, v) ↪−→ Z if it receives an exit request from Ui.
Hence this protocol does not force users to exit.

Fairness for the operator: Since the total amount of balance in the contract namely Γ.balance is equal to the
the number of all initial coins and before outputting (exited, Ui, v) ↪−→ Z the contract checks if Γ.balance ≥ v,
the total amount of coins withdrawn from the system is less than or equal to the sum of the initial coins of
all parties.

B Proof of Lemma 1

We start with the following fact.

Fact 2. Let X be a random variable distributed uniformly over some finite set X , let R ∈ R be a random
variable that is independent from X, letm be some integer, and let (C : X×R → {0, 1}m,D : {0, 1}∗×R → X )
be an arbitrary pair of functions. Then

Pr[D(C(X,R), R) = X ] ≤ 2m/|X |. (10)
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Proof. We use the concepts of min-entropy (denoted “H∞”), and average (conditional) min-entropy (denoted
“H̃∞”), see [10]. Define a random variable C as C := C(X,R). The probability in Eq. (10) is clearly upper
bounded by

E(c,r)←$ (C,R)

[
max
x

(Pr[X = x |C = c,R = r ])
]
, (11)

which is equal to 2−H̃∞(X|C,R). By part (b) of Lemma 2.2 of [10] we have that H̃∞(X|C,R) ≥ H̃∞(X|R)−m =
log2 |X | −m (where in the last equality we used the fact that X is uniform over X and independent from
R). We hence get that (11) is at most 2− log2 |X |+m, which is equal to 2m/|X |. This finishes the proof.

We are now ready to prove Fact 1. Fix an arbitrary κ. Let E be the event in (5) whose probability we
need to bound, i.e.: let

event E := “C(Xλ, Rλ)| ≤ log2 |Xλ| − κ− 1”.

Let us modify C so that its output is of fixed length `(λ) := log2 |Xλ|−κ (for all arguments (x, r) ∈ Xλ×Rλ).
To this end, define a new compression function C′ as follows:

– If E did not occur then let C′(Xλ, Rλ) be equal to some default value, say: 0`.
– If E did occur then let

C′(Xλ, Rλ) := 0`(λ)−|C(Xλ,Rλ)|−1 ||1|| C(Xλ, Rλ), (12)

Clearly (12) is well-defined (since if E occurred, thus `(λ) − |C(Xλ, Rλ)| − 1 ≥ 0). It is also easy to see
that |C′(Xλ, Rλ)| = `(λ).

For (y, r) ∈ {0, 1}∗ ×Rλ let us define D′(y, r) as follows:

1. if y = 0` then output some default value from Xλ,
2. otherwise parse y as if it was an output of Eq. (12) and recover the value z := C(Xλ, Rλ) (it is easy to

see that this value is unique: the decoding just discards the leading string 0∗1). Output D(z, r).

We now have that

Pr[D′(C′(Xλ, Rλ), Rλ) = Xλ ] (13)
≤ 2`(λ)/|Xλ|
= 2log2 |Xλ|−κ/|Xλ|
≤ 2−κ, (14)

where (13) follows from Fact 2. It is also easy to see that if E occurred then the probability of successful
encoding and decoding is the same for (C,D) and (C′,D′). More formally:

Pr[D′(C′(Xλ, Rλ), Rλ) = Xλ | E ]

is equal to
Pr[D(C(Xλ, Rλ), Rλ) = Xλ | E ] .

Since, by Eq. (14) we know that Pr[D′(C′(Xλ, Rλ), Rλ) = Xλ ] is at most 2κ, and from assumption (4) we
have that Pr[D(C(Xλ, Rλ), Rλ) = Xλ] is overwhelming, this implies that Pr[E ] is at most 2−κ + negl(λ),
where negl is some negligible function.14.

14 Here we use the following simple fact. If Pr[A ] ≥ 1− ε and Pr[B ] ≤ δ and (*) Pr[A | E ] = Pr[B | E ] then Pr[E ] ≤
δ+ε. To see why it holds, observe that (*) is equivalent to Pr[A ∩ E ] = Pr[B ∩ E ], and clearly Pr[A ∩ E ] ≥ Pr[E ]−ε,
while Pr[B ∩ E ] ≤ δ. Hence, altogether Pr[E ]− ε ≤ δ, which implies that Pr[E ] ≤ δ + ε.

Above, this fact is used with A being the event that D′(C′(Xλ, Rλ), Rλ) = Xλ, and B being the event that
D(C(Xλ, Rλ), Rλ) = Xλ. Moreover, ε is negligible (since 1− ε is overwhelming), and δ = 2−κ.
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Fig. 5: The “Plasma World Map” illustrating the different flavors of Plasma. It ap-
peared on ETH Research Forum in November 2018 (see: https://ethresear.ch/t/
plasma-world-map-the-hitchhiker-s-guide-to-the-plasma/4333).

33

https://ethresear.ch/t/plasma-world-map-the-hitchhiker-s-guide-to-the-plasma/4333
https://ethresear.ch/t/plasma-world-map-the-hitchhiker-s-guide-to-the-plasma/4333

	Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma

