

A >100 Gbps Inline AES-GCM Hardware Engine and

Protected DMA Transfers between SGX Enclave and

FPGA Accelerator Device

Santosh Ghosh, Luis S Kida, Soham Jayesh Desai, Reshma Lal

Security and Privacy Research, Intel Labs

Intel Corporation

2111 NE 25th Ave, Hillsboro, OR 97124
Santosh.Ghosh@intel.com, luis.s.kida@intel.com

Abstract. This paper proposes a method to protect DMA data transfer that can

be used to offload computation to an accelerator. The proposal minimizes

changes in the hardware platform and to the application and SW stack. The paper

describes the end-to-end scheme to protect communication between an applica-

tion running inside a SGX enclave and a FPGA accelerator optimized for band-

width and latency and details the implementation of AES-GCM hardware en-

gines with high bandwidth and low latency.

Keywords: cryptographic protection, heterogeneous computation, protected

transfer, hardware for AES-GCM, TEE, SGX, FPGA, and accelerator.

1 Introduction

Compute intensive applications are increasingly run on the cloud for benefits such as

scalability and elasticity, reduction of IT costs, and business continuity. Cloud Service

Providers (CSP) are starting to offer transfer of workloads to accelerators for better

performance and energy efficiency.

Today, many applications have confidentiality requirements because information

leak may cause loss of privacy or of intellectual property, or they cannot accept wrong

results and must have integrity in the computation. These applications may utilize con-

fidential computing offered by major CSPs [1][2][3] that provide hardware supported

Trusted Execution Environment (TEE) based on Intel® Software Guard Extensions

(SGX)[4]. Today, these applications may not benefit from heterogeneous computing

because the TEE may not extend to the accelerator and the workload transfer to accel-

erators is not protected. For example, applications that analyze high volume of confi-

dential data or use proprietary algorithms and require workload acceleration are ex-

posed to exploits of vulnerabilities in system software (OS and VMM) and physical

attacks to the link between CPU and accelerator.

Mechanisms to protect computation offload have been proposed using architectural

enhancements to the accelerator and/or to the hardware support in the CPU for the TEE

along with encryption of the communication between the TEE in the CPU and a trusted

execution environment in the accelerator. But implementation of hardware changes to

mailto:Santosh.Ghosh@intel.com

2

the CPU or to the accelerator are in most cases not under control of the CSPs or their

customers and encryption consumes resources and adds performance overhead that re-

duce the benefit of acceleration. For example, Graviton[5] reports overhead of 17%-

33% largely from encryption and decryption of the transfers and requires architectural

changes to the GPU to create a trusted execution environment in the GPU to resist po-

tential exploits from a compromised host driver that manages GPU resources. HIX[6]

reports 26% average performance overhead for protected offload to GPU and requires

modifications to the CPU to enforce context isolation, changes to the PCIe interconnect

to support integrity, and changes to the OS to move GPU resource management from

the OS to a service enclave.

We take hardware accelerated Deep Learning Network (DNN) inferencing as refer-

ence use case to propose a mechanism to protect the data transfers between an applica-

tion running inside a TEE and an accelerator with low performance overhead. An im-

portant goal of our research was that the mechanism could run on existing hardware

platforms or require hardware changes only to the device to make deployment of con-

fidential heterogeneous computing practical in the near future. We also attempt to min-

imize changes to current software stacks, applications, and accelerators to lower the

barrier of adoption.

1.1 Scope

A full protection scheme includes the device authentication, attestation, and key ex-

change to bind the application to the accelerator. In this paper, it is assumed the device

has . The protocols described here start from a state with the device bound to the appli-

cation via a shared key configured on the device after attestation. It is also assumed the

protected SW on the host discovers the address layout of the registers and buffers in the

device securely prior to the start of protected communication. The buffer for each func-

tion on the device is fixed or negotiated between the protected SW and device logic and

must be protected from address remapping. How the application discovers the address

mapping and capabilities are also not covered in this paper and assumed known to the

application before protected communication starts. The paper does not discuss the de-

vice requirements to protect the workload during execution inside the device. Nor dis-

cuss device management by the OS/VMM such as device assignment and device re-

covery. Protection from Denial of Service (DoS) and Side Channel Attacks (SCA) are

considered out of scope of the current work.

In scope is protection of data transfer via DMA between a device and a ring 3 enclave

with confidentiality, integrity, replay protection and redirection protection in the pres-

ence of an adversary who is in control of system software (OS and VMM). The adver-

sary may also steal, modify, or inject data in the physical link.

Within this scope we identified DNN inference which has growing importance in

heterogeneous computing as the reference use case. And propose a cryptographic pro-

tocol and its hardware implementation in the device that meets the data transfer band-

width for it on a currently available platform without additional buffering. The perfor-

mance requirements instigated the implementation of AES-GCM authenticated encryp-

tion algorithm in HW with the following novel features:

3

• In-line Encryption Capability: Data is encrypted/decrypted and processed through

Galois Field Multipliers in pipeline during transfer. No additional buffer is included

to store data nor to stall transfers for crypto processing.

• High Throughput: We implemented parallel AES pipelines and Galois Field mul-

tipliers to meet 100Gbps DMA throughput.

• Minimal Initial Latency for Setup: The proposed engines are self-capable for com-

puting the Round keys, Authentication key (H) and a few powers of H at initializa-

tion. The whole initialization takes 19 clock cycles for DMA and 16 clock cycles for

MMIO for a given key.

• On-time Authentication Tag: There are stringent latency requirements for compu-

ting and validating Authentication Tag for DMA and MMIO transactions. Integrity

against Authentication Tag is validated per clock for each 32-bit/64-bit MMIO trans-

action. And for DMA, we update the intermediate Tag in each clock cycle as: Tag =

Tag×H4 + d1×H4 + d2×H3+ d3×H2+ d4×H, where d1, d2, d3, d4 represents 512-bit

data/clock; and compute the final Tag at the end of all data transmission with mini-

mal additional cycles.

The paper describes in section 2 the contour conditions and rationale for the design

choices that led to the proposed protection protocol described in section 3 and to the

architecture of crypto engines in section 4. Section 4 describes the design challenges

and microarchitecture techniques of the novel AES-GCM engines. Section 5 reports

the prototyping of the encryption engines and the performance of the high bandwidth

DMA crypto engine on a sample application before conclusions in section 6.

2 Design Decisions

This section discusses the rationale behind the design decisions that shaped the archi-

tecture of the proposed solution. We chose to protect confidential computing applica-

tions running on SGX TEE because it is used in public cloud confidential computing

[1][2][3] and because SGX enclaves are harder to protect because they do not include

the OS kernel drivers in its Trusted Computing Base (TCB). A proposal that protects

communication from potentially compromised drivers will likely also be effective in

TEEs where the OS kernel drivers are in the TCB and would not be compromised.

A fundamental choice was to constrain to proposals that can run on an existing hard-

ware platform and software stack with modifications adopters could implement them-

selves. We set out to investigate protection with end-to-end cryptography that binds the

application in the enclave to the accelerator. With one encryption endpoint inside the

enclave, the solution does not require additional TEE HW support because data is en-

crypted as it leaves the enclave and decrypted and integrity checked as it enters the

TEE. With the other endpoint in the device, data is also encrypted as it leaves the device

and decrypted and integrity checked as it enters the device. In this architecture the de-

vice is assumed to have proved its trustworthiness via attestation.

Our chosen protection scheme creates an encrypted tunnel between the two trusted

endpoints leaving the transport link hardware outside of the TCB. We selected an in-

tegrity protection scheme that carries integrity information out of band to avoid changes

4

to existing data transport protocols. We prototyped the architecture on a platform where

the device is directly connected to the CPU through PCIe but the work may apply to

other connectivity models and communication protocols because there is no depend-

ency on support from the transport link to our cryptographic protocol.

We chose AES-GCM authentication encryption because it provides confidentiality,

integrity and replay protection, and it can operate on arbitrary sized data, and the cipher

text is of the same length as the plaintext.

We narrowed the scope of the devices and applications covered by our proposal to

maximize optimization for performance and developer experience. To meet our goal of

developing a solution that can be prototyped and deployed on existing platforms, we

elected to start with protection of computation offload to accelerator devices based on

FPGAs. FPGAs are reconfigured in current cloud computation usage and are modifia-

ble by the CSP, application owner or accelerator board manufacture to add functionality

such as data encryption. While the hardware in accelerators based on GPUs and ASICs

can only be modified by the manufacturer of the silicon devices. Current usage models

of FPGA accelerators are simpler, typical FPGA accelerators use cases have a single

context and single user and support a simpler data sharing model. This simplifies the

protection mechanism as it does not require implementation of isolation of multiple

concurrent workloads and only transfer data through DMA and MMIO. While more

complex accelerators such as GPUs support multiple concurrent workloads and has

more tightly coupled data sharing models such as use of shared virtual memory.

We selected the OpenCL framework for heterogeneous platforms to guide our design

and optimization choices because the OpenCL framework abstracts the hardware plat-

form to a simpler common denominator where devices may not share memory with the

host CPU. Data is transferred through buffers using DMA. MMIO is mostly used to

control the device. The OpenCL application running on the host CPU has control over

computation execution. The data transfer for processing in the accelerator is in two

steps. First, SW configures the accelerator to transfer data through DMA. On the second

step, it directs the accelerator to process the data after the transfer is complete. Trans-

fers of final or intermediate results from the device are also transferred back to the

application by DMA in two steps. First, the application configures the DMA to transfer

the results back when it learns results are ready either by polling or by an interrupt from

the device. Second, it consumes the results after learning the DMA has completed. This

execution model with a clear demarcation between completion of data transfer and data

consumption allows the insertion of verification of integrity of the transfer before the

accelerator or the application consumes the data.

We selected image recognition using deep neural networks (DNN) accelerated with

FPGAs as the reference use case because these applications are growing in importance

as cloud workloads. For example, Project Brainwave [7] offers DNN models acceler-

ated by FPGA as a service. We used the image recognition examples distributed with

Intel® OpenVINO [8] image recognition framework accelerated with Intel® FPGA Ac-

celeration Stack [9] a by Intel® Programmable Acceleration Card (PAC) [10] as refer-

ence to guide our optimizations and as a prototype vehicle.

Fig 1 shows a block diagram of the SW stack and PAC card with the placement of

the encryption engines that form the encrypted tunnel to protect data transfer. The User

5

Mode Drive (UMD) runs inside the enclave and access plaintext while the Kernel Mode

Driver (KMD) while runs outside the enclave and only sees ciphertext. The RTL mod-

ule intercepts all data transfer to the accelerator kernel. The FPGA hardware is all

trusted.

INTEL CPU

ring3

ring0
OSOPAE FPGA

kernel drivers

SGX

 UMD & OPAECrypto Lib

Application

Inference Engine

FPGA Plugin

OpenCL RT

PCIe

Board
logic

DMA

RTL
Crypto

MMIO

Compute
Kernel

(acceleration
architecture)Kernel

Interface

Memory
Interface

INTEL FPGA

PCI linkx

Fig. 1. Architecture of the protection mechanism in the prototyping environment.

We chose to place the encryption and integrity verification for the application in the

User Mode Drive to keep the changes to the SW stack mostly outside the application

to ease the developer experience. The larger TCB which includes the application and

the driver stack running inside the enclave is the tradeoff for fewer changes to the ap-

plication to adopt data protection. Encryption in the FPGA is placed outside the bound-

ary of the acceleration kernel to minimize the changes to existing acceleration architec-

tures which ease porting to protect the architecture.

Execution profiling of the example applications showed that time spent in computa-

tion in the CPU and FPGA is much larger than the time transferring data and that time

on DMA data transfer dominates the time spent on MMIO. For this reason, we elected

to focus our initial work on optimization of the performance of DMA and prototyping

6

hardware implementations of encryption for DMA in the FPGA. We leave performance

optimization of the user mode drivers for future work.

This protocol encrypts as it writes secrets out of protected memory and decrypts as

it reads secrets into protected memory. This choice was key to minimize latency and

to reduce changes to the application to adopt protection. The protocol doesn’t require

double buffering, one buffer to decrypt/encrypt and one to move across the boundary

between protected and unprotected memory. This avoided allocation of an additional

memory buffer and additional data transfer relative to the current implementation. On

the software side, the function that moves data to the enclave reads encrypted data from

unprotected memory and writes decrypted data into protected memory. And the func-

tion that moves data outside the enclave reads data in the enclave and writes encrypted

data out to unprotected memory. In the device hardware, encryption is implemented

inline to not need additional block memory, a precious resource, based on examples of

acceleration kernels in the OpenVINO distribution that use almost all block memory in

the FPGA.

3 Proposed Data Transfer Protocol

We propose a protocol that protects confidentiality, integrity and also offers protection

against replay and remap attacks on transfers between a shared buffer in the host

memory and a buffer in local device memory accessible only by the device. The DMA

controller (DMAC) resides on the device to access local device memory. The host con-

figures the DMAC interface through MMIO.

The protocol uses AES-GCM authenticated encryption of the data payload to pro-

vide confidentiality, replay protection and data ordering within the data transfer. It also

uses AES-GCM authenticated encryption of MMIO to protect the integrity of the con-

figuration of the DMA which prevents an untrusted agent from using DMA to corrupt

private memory in the device.

The protocol protects MMIO to prevent tampering with the configuration of the tar-

gets of the DMA in the device memory which may corrupt the device memory and

affect the integrity of the computation. The location of the buffer in host memory re-

mains under control of the OS/VMM. The protocol configures the target addresses in

host memory given by the OS/VMM without resulting in compromise of integrity of

computation. Any difference in the data transferred from the one intended by the ap-

plication that could be caused by remapping of the addresses in the host memory would

be detected by data integrity verification of the payload.

The DMA UMD is extended to encrypt/decrypt as it copies data to/from the host

DMA buffer and to verify the integrity of the transfer before returning to the calling

application. The DMA UMD verifies the integrity of the transfer by comparing authen-

tication tags (AT) calculated by the driver on the data inside the enclave against the AT

calculated by the device on data in device memory. The DMA UMD can read the AT

from the accelerator via MMIO which does not require protection because AT transfer

does not need confidentiality, and any integrity violation would only result in denial of

7

service. The result of the verification is returned reliably to the application since the

UMD driver and the application are inside the same enclave.

For protected DMA transfers from host to device, the DMA UMD initializes the

hardware encryption engine, and encrypts data and calculates the AT as it moves data

outside the enclave to the host DMA buffer before calling the DMA KMD to perform

the DMA transfer. When the KMD returns after completion of the DMA transfer, the

UMD commands the hardware crypto engine in the device to finalize the authentication

tag calculation over the entire DMA. The UMD reads the device’s AT to compare to

the AT it calculated. If they match, the UMD returns the status of a successful DMA

transfer.

The reference hardware platform and sample application support a single DMA

transfer running at a time, and instantiate a module that sorts memory read responses

to enforce strict ordering. This allowed multiplexing of the hardware crypto engine to

protect memory responses for DMA transfers from host to device and memory write

requests for DMA transfers from host to device. The crypto engine is placed where it

intercepts all DMA memory transactions and calculates the AT over all data received

since initialization until asked to finalize AT calculation.

Figure 2 illustrates the protected DMA transfer from device to host that also executes

in there phases. First, the DMA UMD initializes the hardware crypto engine. Next it

configures the descriptors and calls the DMA KMD. The crypto engine encrypts data

and calculates AT as the memory write requests generated by the DMA controller

passes through the crypto engine on their way out of the device. On the third phase,

after the data has been transferred, the DMA UMD decrypts and calculates the AT as

it copies the data from the host DMA buffer into the enclave. The DMA UMD reads

the AT calculated by the device on the data written out, and compares to the AT it

calculated on the received data.

8

Fig. 2. Protected DMA from device local memory to host memory

By transferring the Authentication Tag via MMIO we were able to keep the DMA

payload the same size to reuse of the existing DMA kernel mode driver and buffer

memory allocation with no change. This minimized the changes to the application and

to the OS to implement protection. The application adds logic to handle DMA transfer

integrity errors but otherwise, changes to protect DMA payload are kept mostly to the

User Mode Drivers (UMD) to add a phase before transfer to initializes the crypto engine

and a phase after the transfer to verify the integrity.

9

3.1 Protected MMIO

In addition to configuration of the DMA controller, other device registers may compro-

mise computation in ways that are not easily detectable by the application or are irre-

versible. For example, a read or write to a device register may reset portions of the

device, select different computation on the accelerator, trigger computation, cause soft

errors or even permanent damage by changing voltage, clock, or temperature operation

limits. To avoid these hazards we insert hardware logic in the device on the path of

MMIO transactions to enforce that access to security sensitive registers is integrity pro-

tected and originated by the enclave to which the device is currently assigned. MMIO

requests that fail these tests are blocked from reaching the accelerator register. The ap-

plication must be changed to replace access to security sensitive MMIO with a protocol

executed in three phases that can be encapsulated in a function or sub-routine.

1. The function computes the authentication tag (AT) of the request and writes it by

MMIO to a register in the accelerator that is not protected. The address offset of the

register on the device is included in the AT to prevent misdirection of the request.

2. The function sends the MMIO request of the protected register to the device. The

integrity verification logic in the device intercepts MMIO requests to protected ad-

dress offsets, calculates the authentication tag and compares to the authentication tag

currently stored in the device. The device exposes the status of the MMIO request in

a protected register. The device only executes MMIO requests that pass integrity

check. If integrity check passes, it exposes the authentication tag calculated by the

device in an unprotected register and executes the MMIO request. If the integrity

test fails, the authentication tag register is not updated, and on failure of a MMIO

read request the device also returns a constant for MMIO read response.

3. The function confirms the MMIO request succeeded and returns the MMIO integrity

verification status to allow the application to stop execution when an integrity failure

is detected. For a MMIO read, the function calculates the authentication tag of the

MMIO read response and reads the authentication exposed by the device with an

MMIO read to confirm the data received and the data sent by the device are the same

and from the requested register. For a MMIO write request the function reads the

protected status bit following this protocol for protected MMIO read.

Figure 3 illustrates the flow diagram for protection of a MMIO read and Figure 4 illus-

trates the flow to protect MMIO writes which uses the protected MMIO read flow to

retrieve the status flag of integrity verification.

10

Fig. 3. Protected MMIO read flow diagram

This scheme binds the device to its assigned owner cryptographically because pro-

tected registers can only be accessed with the protocol regardless of how the register is

mapped by the OS/VMM and which process requests access because the logic in the

device intercepts all MMIO requests to the protected address offsets. An actor without

the key cannot perform an MMIO to a protected register. The application must be

upgraded to use the protected MMIO protocol to access security sensitive registers.

Conversely, device registers that are managed by other SW such as the OS should not

be in address offsets protected by the device. For devices that have to support access

to the same register by both the OS and the application, the application and OS would

have to be enhanced so the application intermediates access to secure sensitive registers

11

for the OS. The device must provide means for the OS to regain control of the device

from the application but also ensure secrets from the application are erased first. These

requirements are not discussed in this paper.

Fig. 4. Protected MMIO write flow uses protected MMIO read to verify integrity

3.2 Performance Analysis of the Protocol

Profiling of computation offload of the selected applications showed that the bulk of

the data transfer time is spent on a few relatively large DMA transfers. Accordingly,

we focused our efforts in improving performance of DMA transfers. In order for hard-

ware encryption in the FPGA to impose no restriction on bandwidth of DMA transfers

nor require memory blocks to buffer data we set the requirement for the hardware

crypto engine to match the bandwidth of the internal bus. The protocol was designed to

12

initialize the pipeline of the crypto engine once before start of data transfer and calculate

integrity over all the payload with a single AT calculation at the end. The combination

of support for the maximum throughput and one AT for the transfer makes the latency

overhead of protection in hardware almost independent of throughput and length of the

DMA transfer. The hardware latency is approximately the time to fill the encryption

pipeline and to calculate the final AT. Protection in SW optimizes latency by replacing

copy of data though the enclave boundary with moving data across the boundary as part

of encryption/decryption to avoid moving data twice, beyond that we made no further

optimization of the drivers. For the sizes of DMA transfers profiled SW latency will

be much longer than HW latency.

While protection on one MMIO has a high overhead, we do not expect a measurable

impact on performance for the selected class of applications based on our profiling of

MMIO transactions. When protection is enabled, 1 MMIO read to a protected register

is replaced with logic that adds 2 MMIO read and 2 MMIO write to copy AT, and 2

encryption/decryption and AT calculations. A MMIO write to a protected register ads

3 MMIO read, 3 MMIO write, and 3 encryption/decryption and AT calculations of

overhead. A MMIO write adds more overhead because it verifies success by reading a

status flag in a protected register.

Although the time spent on MMIO is short on the applications profiled, we opti-

mized the performance of the hardware implementation. The MMIO crypto engine was

designed so the engine pipeline is initialized only once, the crypto engine doesn’t have

to be re-initialized before each MMIO transaction. The throughput of authentication tag

calculation matches the throughput of the internal MMIO data bus as not to impose

bandwidth restrictions. We minimized the latency of AT calculation as it is in the crit-

ical path of the protected MMIO protocol.

4 High performance Crypto Engine Implementation

As described in the prior section, there are two different crypto requirements to mini-

mize performance overhead to protect data transfer between host and accelerator. The

bulk of data is transferred over DMA with inline encryption on a 512-bit wide bus;

whereas to configure secure-DMA we need a set of out of band MMIO transactions

with confidentiality & integrity protections. Figure 5 depicts the top level block dia-

gram of the proposed encryption and authentication engine for securing inline DMA

and MMIO transactions. We implement the AES-GCM algorithm for this purpose, so

there is an AES pipeline datapath, Galois Field Multipliers for Authentication Tag com-

putation with related registers and control circuits.

13

AES Pipelines

Galois Field Multipliers

Registers

Counters
and

Control
Logic

Inputs Outputs

Fig. 5. Top lebel block diagram for AES-GCM Engine for DMA and MMIO

To meet latency and throughput requirements, we implemented two independent

engines for DMA and MMIO transactions in between host and FPGA. For DMA we

need to encrypt/decrypt 512-bit inline data in each clock cycle and compute related

Galois Field operations for partial authentication tag generation to match the internal

bus used for memory transactions. At the end of the final block processing we need to

compute the final Tag with minimal additional latency. On the other hand, for MMIO

we need to encrypt/decrypt and compute/validate the authentication tag for every 32-

bit/64-bit MMIO read/write requests and read responses in one clock cycle to match

the throughput of the bus.

Our goal was to implement the optimal AES-GCM HW engines that can be inte-

grated easily and demonstrated running in the FPGA of the PAC PCIe accelerator card

without limiting throughput. The PAC is connected to the Host via a PCIe interface

running @100Gbps. Internal to the FPGA the data bus that carries DMA memory trans-

actions and MMIO transactions are 512-bit wide and run @200Mhz. We implement

our AES-GCM engines that can be instantiated inline on the 512-bit bus and operate at

200MHz or higher clocks. The following subsections describe the microarchitecture

design challenges and the novel techniques that are applied to implement the AES-

GCM engines.

4.1 Microarchitecture of the 512-bit Inline AES-GCM Engine

Figure 6 depicts the microarchitecture of the HW engine that can process 512-bit

inline data for AES-GCM encryption/decryption and partial authentication tag genera-

tion. To accommodate 512-bit inline data, the current AES-GCM pipeline has four AES

encryption unrolled engines (1 round in each pipeline depth/stage) which run in parallel

in CTR mode. There are five parallel 128-bit Galois Field Multipliers that are divided

into two pipeline stages. Additionally, there are internal counters and other control logic

to generate the encrypted counter streams, to compute the length of the data stream, and

to control other microarchitectural operations to compute the final authentication tag.

14

Fig. 6. Microarchitecture of the 512-bit AES-GCM HW engine.

Our objective was to design the pipeline for AES-GCM that can process 512-bit data

in each clock cycles at 200MHz clock to provide 100Gbps throughput. We targeted the

Intel Arria 10 FPGA used in the PAC for demonstrating results. Our AES engine is

based on GF((24)2) for which the datapath for one round is suitable for a 200MHz clock

period implementations, that is, the logic fitted in the FPGA meets timing. We imple-

mented depth-10 pipeline for AES128 with one round in each clock period. Many AES

implementations have been reported in the literature in the last 3 decades. Therefore we

are not providing any further details about the internals of our AES engine based on

GF((24)2) and are not side-channel protected. Interested readers can follow [19 - 23].

We implemented the Galois Field GF(2128) multiplier for tag computation based on

the hybrid Karatsuba multiplier [16] [18]. However, the critical path of the 128-bit mul-

tiplier circuit and polynomial reduction circuit do not fit within a single 200MHz clock

period. Therefore, we split the Karatsuba multiplier and reduction datapath into two

pipeline stages and put a pipeline register in between them. The first stage of the pipe-

line consists of the 32-bit hybrid Karatsuba multiplier circuit implemented with three

16-bit regular multiplier and the Karatsuba layer to produce 63-bit results. The second

stage consists of 64-bit and 128-bit levels for Karatsuba multiplication and the XOR

based reduction logic for irreducible polynomial x128+x7+x2+x+1. The critical paths of

each of the stages fit, allowing us to run the complete AES-GCM engine at 200MHz.

15

The two cycle latency for GF(2128) multiplication creates a challenge to process 512-

bit data in each cycle and run the pipeline. We took the following microarchitecture

approaches to overcome this challenge.

To recap, the authentication tag (tag) in AES-GCM is computed as:

Tag = ((A×Hn) ^ (d1×Hn-1) ^ … ^ (dn-2×H2) ^ (Len×H)) ^ (Ek(IV||32{1’b1}))

Where, “A” represents Additional Authentication Data, d1 to dn-2 are 128-bit data

blocks, “^” represents bitwise XOR operation, Ek is the AES encryption with the secret

key k, IV represents the initial vector, and × is the GF(2128) multiplication. We compute

the Tag for the DMA transactions of 512-bit/clock as follows:

Step 1: Initialization: Tag = A×H, T2 = 0, T3 = 0;

Step 2: Repeat:

Clock 1: Tag = (Tag ^ T2 ^ T3) ×H8

 T2 = d1×H8 ^ d2×*H7 ^ d3×H6 ^ d4×H5

Clock 2: T3 = d1×H4 ^ d2×*H3 ^ d3×H2 ^ d4×H

Step 3: Capture Length: Tag = Tag×H ^ Len×H

Step 4: Final Tag: Tag = Tag ^ Ek(IV||32{1’b1}).

Where, H, H2, H3, H4, H5, H6, H7, H8 are precomputed during setup stage and stored in

registers. We incorporated five Galois Field multipliers to the AES-GCM engine to

compute all five multiplications in parallel. This works well if the DMA transfer is a

multiple of 1024 bits, which would not always be the case. Therefore, the actual micro-

architecture is much more complex than what is represented in the steps above. For

example, to support data sizes of multiples of 512 bit we keep track of the last 512-bit

block internally; and multiply them with lower powers of H as represented in Step

2/Clock 2 when the engine receives the “last_in” pulse, to signal completion of data

transfer. Things are even more complex if the block of data is a multiple of 128-bit but

not a multiple of 512-bit. We select the H powers accordingly based on the length of

the final block to handle this scenario. In this implementation we restrict support to data

lengths that are multiple of 128-bit.

We use a “start” pulse to initiate the engine. The secret key and IV are applied to the

engine with the start pulse. After receiving a start pulse the machine pushes a block of

all zeros as the first input to the AES Pipeline-1 for encryption by the input key to

generate the authentication key H. Additionally, at the start pulse the engine initializes

its counters and related control logic. In the following cycle, it initializes all four AES

pipelines with CTR, CTR+1, CTR+2 and CTR+3. It increments all counters by 4 and

repeats for 9 cycles to fill the pipeline. On the 10th clock cycle, the computed H value

is registered on the AES pipeline output. In the following cycle, the H value is pushed

into a Galois Field multiplier to compute H2. On this same clock, the encrypted initial

values of the four counter reach the output registers of the four AES pipeline and so we

stop the AES pipeline and continue to precompute the other H power values (H3 to H8).

16

Since each Galois Field multiplication requires two clock cycles, we require four addi-

tional cycles to compute H3 to H8. At this point the engine asserts ready_for_data = 1.

Once the DMA protection engine asserted the ready-for-data signal, it is ready for

DMA data streaming. It can grab 512-bit plaintext/ciphertext data in each clock cycle

and produce the corresponding ciphertext/plaintext in the following clock cycle. It also

executes the operations related to AT calculation in parallel with the cipher-

text/plaintext generation. Figure 7 provides the execution flow of the DMA Protection

Engine during data streaming operation.

DMA Security Engine is ready-for-data

Execute Step 2 of Authentication Tag
computation on 512-bit ciphertext. Note that,
ciphertext is available after XOR for encrypt;
whereas, for decrypt it is the actual input data.

Capture 512-bit input data and XOR them
with the current outputs of the AES pipelines

The Engine updates the Tag register,
releases the encrypt/decrypt output
and sets up the output_valid to logic 1.

input_valid = 1

Yes

No

Wait and stall

last = 1

Start executions for Step 3
and Step 4

Count 10 clock cycles to complete
the encryption of IV||32{1'b1}

Compute final Tag, generate the
predone pulse

Release Tag and generate done pulse

Yes

Set busy status to logic 0 and stop

No

Fig. 7. The DMA protection engine data streaming flow

After encrypting/decrypting all data blocks, the engine expects a last_in input pulse

to produce the final Tag by computing Step 3 and Step 4 described above. These two

steps include two Galois Field multiplications, one AES encryption and two XOR op-

erations. The operations in Step 3 takes just 2 clock cycles in the DMA Protection En-

gine. Step 4 involves an AES operation on IV||32{1’b1} which starts in parallel with

Step 3 but takes 10 clock cycles and is followed by an XOR for computing the final

Tag output. In total, Step 3 and Step 4 take 11 clock cycles.

17

4.2 The 32/64-bit Inline Encryption & Tag generation for MMIO

The initialization of DMA involves reading and writing a set of 32-bit or 64-bit values

to addressable DMA controller and crypto engines registers. We call them MMIO trans-

actions. As described in section 3, protected MMIO transactions are necessary to pro-

tect the configuration and initialization of the DMA controller. To protect these MMIO

transactions it is necessary to provide cryptographic confidentiality and integrity assur-

ance. These MMIO may be back to back operations. Therefore an inline encryption/de-

cryption and Tag generation/validation must protect one MMIO in every clock cycle to

keep up to the performance of the original platform.

Fig. 8. Microarchitecture of the 32-bit/64-bit inline encryption and authentication engine.

We implemented a separate AES-GCM pipeline engine to enable inline 32-bit / 64-

bit encryption & authentication in each cycle as shown in Fig 8. The architecture con-

sists of three AES128 pipelines to encrypt the 128-bit string of zero (for H), counter 1

(for final Tag) and 2 (for data encryption). After these encryptions are completed in the

first 10 pipeline stages we start computing the Tag. We instantiated the same Galois

Field multiplier circuit used for DMA processing in the MMIO AES_GCM engine.

Each multiplier requires two pipeline stages. We compute Tag = (((d×H) ^ length)×H)

^ E(iv,32’d1) inline on every cycle for independent 32-bit/64-bit data in five pipeline

stages after the AES last round pipeline stage. In total, this AES-GCM engine for inline

18

encryption and Tag generation has a pipeline of depth15 and 16 clock cycles of latency.

This engine is capable of computing the encryption/decryption and Tag computation

for one 128-bit input block in each clock cycle. For MMIO transaction we had no ad-

ditional authentication data (AAD). However, it would be easy to accommodate AAD

in the pipeline stages involved in Tag computation.

5 Results

We implemented the DMA crypto engine and the MMIO crypto engine in Verilog RTL.

Table 1 provides the fitting report on Intel Arria 10 FPGA. Our microarchitectures and

RTL are platform and technology independent and are flexible enough for implemen-

tation on both an FPGA and an ASIC. When synthesized and fitted on the Arria-10

10AT115S2F45E2SG device by themselves, the DMA engine requires 47K adaptive

logic modules (ALM) and the MMIO engine requires 23K ALM an do not require any

block memory nor DSP block of the FPGA. The maximum operating clock frequency

reported by the Quartus timing analyzer tool is 309.78MHz for DMA. Our DMA engine

is capable of processing 512-bit data in each cycle, which translates to a 154.89 Gbps

throughput. Similarly, our AES-GCM engine used to protect MMIO is capable of pro-

cessing up to 128-bit data in each 302.5 MHz clock cycle resulting in 38.72 Gbps

throughput.

Table 1 also provides a comparative analysis of our AES-GCM engines to other re-

ported works. Since the existing designs are reported for different FPGA devices it is

difficult to perform a comparison. However, our AES-GCM engine for DMA provides

4.2x higher throughput when compared to the highest performant existing design [18]

when both are operating at their respective maximum supported frequencies.

Table 1. Implementation results and comparison with existing AES-GCM

AES-GCM

Engines
Device

Key

schedule

Resource utilization

[LUT/ALM, BRAM]

Throughput

[Gbps]

Ours for DMA Arria 10 Y 47K 154.89

Ours for MMIO Arria 10 Y 23K 38.72

[18] Virtex 5 Y 30K 36.92

[16] Virtex 5 Y 26K 16.9

[14] Virtex 5 N 22K 29.7

We integrated the DMA data crypto engine to the GoogleNet.fp11, AlexNet.fp11 and

Resnet18.fp16 acceleration kernel architectures distributed in the Deep Learning Ac-

celeration (DLA) [24] package to prototyped protection of DMA data transfer without

the protection against address remap and corruption to device memory the integration

of the MMIO protection would afford.

The accelerator architecture in the PAC has multiple clock domains to run different

units at different speeds. The data bus where the DMA crypto engine was instantiated

runs at 200MHz clock domain and so our AES-GCM engines are connected to the same

clock domain to perform inline encryption/decryption. As reported in Table 1 our AES-

19

GCM engines have maximum operating frequency higher than 200 MHz, and we are

confident they would also operate at 200MHz clock at the slow corner conditions.

The acceleration kernel was synthesized and fitted to the Arria 10 GX FPGA based

Intel Programmable Acceleration Card (PAC) [10] with different seeds until the gener-

ated bitstream met timing. The process was repeated after adding the logic to integrate

a single DMA crypto engine that is multiplexed to interpose the paths of memory read

responses and of memory write requests that travel on different busses. Table 2 shows

the resource utilization report of FPGA logic in thousands of ALM for DNN accelera-

tors with and without encryption of DMA data added. It would be expected that higher

resource utilization would make fitting the accelerator with the encryption protection

harder but the number of attempts to generate the first bitstream meeting timing was

not consistently larger for the designs with protection. Averaging over the generation

of multiple bitstreams that meet timing may show more consistency in the effort to

synthesize and in the overhead of resource utilization as measured by the difference

between the designs with and without protection.

Table 2. Resource utilization impact of DMA data protection

Accelerator architecture
Resnet18.fp16

[ALM]

GoogleNet.fp11

[ALM]

AlexNet.fp11

[ALM]

Unprotected 260K 267K 305K

DMA crypto integrated 312K 308K 357K

Overhead 52K 41K 47K

Table 3 shows preliminary latency measurements of an image classification appli-

cation that uses OpenVINO accelerated with FPGA classifying 1 image of 228x228

pixels with and without protection averaged over 49,920 times. The overhead is meas-

ured as the difference between the time spent on data transfer with and without protec-

tion. The relative overhead values are the latency as a percentage of the transfer time

and total inference time on the architecture without protection. The measurements were

taken on a platform with Intel® Coffee Lake Server 2.60 GHz 8 cores CPU, Intel®

Programmable Acceleration card with Intel Arria® 10 GX FPGA, CentOS 7.4, Kernel

3.10.0, and Intel® FPGA Acceleration Stack (version 1.1). While the complete archi-

tecture was designed to include MMIO protection for an application hosted inside the

enclave on a cloud server where other applications are also running, we measured the

application with protection of MMIO not implemented, not running in an enclave, and

running in isolation in the platform.

Table 3. Latency of DMA transfer and classification for 1 image

Accelerator architecture Resnet18.fp16 GoogleNet.fp11 AlexNet.fp11

Total inference [ms] 7.36 2.51 11.5

Transfer time [ms] 0.152 0.152 0.111

Protected transfer [ms] 0.275 0.276 0.196

Overhead [ms] 0.123 0.124 0.085

Transfer overhead [%] 81 % 82 % 77 %

Inference overhead [%] 1.7% 4.9% 0.74%

20

Preliminary latency measurements of classification of 1 image of 228x228 on an

image recognition application based on OpenVINO accelerated with FPGA with and

without protection of Table 3 show transfer overhead of approximately 80% and infer-

ence overhead of less than 5% in accordance to the fraction data transfer relative to total

computation. The DMA crypto engine instantiated inline as a pipeline stage on the data

bus adds an estimated 150 ns (30 clocks * 5 ns) of latency per DMA transfer. For the

number and size of DMA transfers to classify one image in the applications (5 to 6

DMA transferring a total of approximately 600 KB), the overhead observed on transfer

latency is dominated by SW encryption.

6 Conclusion

In this work we observe the increasing use of heterogeneous cloud computing and select

the DNN inferencing use case to propose a solution to protect data transfer to enable

confidential heterogeneous computing. Further, we prototype the architecture to solve

critical implementation challenges identified and validate performance and feasibility.

We give evidence that the latency to protect data transfer can be made low enough to

make it a practical solution for confidential computation offload with our implementa-

tion of highly optimized AES-GCM authenticated encryption in hardware.

Proposing a scheme that is feasible and practical for deployment in existing plat-

forms was a key concern for this work. We believe this work is practical for deploy-

ment on devices for which encryption logic consumes a small fraction of total resources

and device attestation and key exchange are supported.

References

1. Azure Confidential Computing. https://azure.microsoft.com/en-us/solutions/confidential-

compute/

2. Google: Advancing Confidential Computing with Asylo.

https://cloud.google.com/blog/products/identity-security/advancing-confidential-

computing-with-asylo-and-the-confidential-computing-challenge

3. IBM Cloud Data Shield. https://www.ibm.com/cloud/blog/announcements/announcing-

ibm-cloud-data-shield-experimental

4. Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions and Soft-

ware Model for Isolated Execution. In The 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP ’13). 1–8.

5. Stvros Volos, Kapil Vaswani, Rodrigo Bruno. Graviton: Trusted Execution Environments

on GPUs. In Proceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’18)

6. Insu Jang, Taehoon Kim, Simha Sethumadhavan, Jaehyuk Huh. Heterogeneous Isolated Ex-

ecution for Commodity GPUs. In Proceedings of ASPLOS’19, April 13–17, 2019

7. Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield,

Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt, Shlomi Alkalay,

Hari Angepat, Derek Chiou, Alessandro Forin, Doug Burger, Lisa Woods, Gabriel Weisz,

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://www.ibm.com/cloud/blog/announcements/announcing-ibm-cloud-data-shield-experimental
https://www.ibm.com/cloud/blog/announcements/announcing-ibm-cloud-data-shield-experimental

21

Michael Haselman, Dan Zhang. Serving DNNs in Real Time at Datacenter Scale with Pro-

ject Brainwave . IEEE Micro | March 2018: , Vol 38: pp. 8-20

8. Intel® Distribution of OpenVINO™ toolkit

https://software.intel.com/en-us/openvino-toolkit

9. Intel® Acceleration Stack for Intel Xeon® CPU with FPGA

https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/ac-

celeration-stack.html

10. Intel® Programmable Accelerator Card with Intel Arria® 10 FPGA.

https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-

kits/altera/acceleration-card-arria-10-gx/overview.html

11. McGrew, D., Viega, J.: The security and performance of the Galois/Counter Mode (GCM)

of operation. Progress in Cryptology-INDOCRYPT, 377–413, (2005).

12. IEEE, IEEE Standard for Local and metropolitan area networks–Media Access Control

(MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption Standard– 256

(GCM-AES-256) Cipher Suite.Satoh, A.: High-speed hardware architectures for authenti-

cated encryption mode GCM. IEEE International Symposium on Circuits and Systems.

ISCAS (2006).

13. Crenne, J., Cotret, P., Gogniat, G., Tessier, R., Diguet, J.: Efficient key-dependent message

authentication in reconfigurable hardware. International Conference on Field Programmable

Technology (FPT), 1–6, (2011).

14. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: Authenticated encryption on FPGAs from

the static part to the reconfigurable part. Microprocessors and Microsystems (2014).

15. Zhou, G., Michalik, H., Hinsenkamp, L.: Efficient and High-Throughput Implementations

of AES-GCM on FPGAs. International Conference on Field-Programmable Technology,

FPT, 185–192, (2007).

16. Zhou, G., Michalik, H., Hinsenkamp, L.: Improving Throughput of AES-GCM with Pipe-

lined Karatsuba Multipliers on FPGAs. Journal of Reconfigurable Computing: Architec-

tures, Tools and Applications, 193–203, (2009).

17. Henzen, L., Fichtner, W.: FPGA parallel-pipelined AES-GCM core for 100g Ethernet ap-

plications. IEEE ESSCIRC, 202-205, (2010).

18. Abdellatif, M. K., Chotin-Avot, R., Mehrez, H.: AES-GCM and AEGIS: Efficient and High

Speed Hardware Implementations. J. Sign. Process Syst. (88), 1–12, (2017).

19. Mathew, S., Sheikh, F., Kounavis, M. E., Gueron, S., Agarwal, A., Hsu, S., Kaul, H., Anders,

M., Krishnamurthy, R.: 53 Gbps Native GF(2 4) 2 Composite-Field AES-Encrypt/Decrypt

Accelerator for Content-Protection in 45 nm High-Performance Microprocessors. J. Solid-

State Circuits 46(4), 767-776, (2011).

20. Gueron, S., Mathew, S.: Hardware Implementation of AES Using Area-Optimal Polynomi-

als for Composite-Field Representation GF(2^4)^2 of GF(2^8). ARITH16, 112-117, (2016).

21. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H., Paterson, K. G.: Pushing the Lim-

its: A Very Compact and a Threshold Implementation of AES. EUROCRYPT 2016, 69-88,

(2016).

22. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES Thresh-

old Implementation. Progress in Cryptology – AFRICACRYPT 2014, 267-284, (2014).

23. Baby Chellam, M., Natarajan, R.: AES Hardware Accelerator on FPGA with Improved

Throughput and Resource Efficiency. Arabian Journal for Science and Engineering,

Springer, 6873-6890, (2018).

24. Enno Luebbeers, Song Liu, Michael Chu Simplify Software Integration for FPGA acceler-

ators with OPAE Whitepaper https://01.org/sites/default/files/downloads/opae/open-pro-

grammable-acceleration-engine-paper.pdf

https://software.intel.com/en-us/openvino-toolkit
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/acceleration-stack.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/acceleration-stack.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx/overview.html
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf

