
 

 

A >100 Gbps Inline AES-GCM Hardware Engine and 

Protected DMA Transfers between SGX Enclave and 

FPGA Accelerator Device 

Santosh Ghosh, Luis S Kida, Soham Jayesh Desai, Reshma Lal 

Security and Privacy Research, Intel Labs 

Intel Corporation 

2111 NE 25th Ave, Hillsboro, OR 97124  
Santosh.Ghosh@intel.com, luis.s.kida@intel.com 

Abstract. This paper proposes a method to protect DMA data transfer that can 

be used to offload computation to an accelerator.  The proposal minimizes 

changes in the hardware platform and to the application and SW stack. The paper 

describes the end-to-end scheme to protect communication between an applica-

tion running inside a SGX enclave and a FPGA accelerator optimized for band-

width and latency and details the implementation of AES-GCM hardware en-

gines with high bandwidth and low latency. 
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1 Introduction 

Compute intensive applications are increasingly run on the cloud for benefits such as 

scalability and elasticity, reduction of IT costs, and business continuity. Cloud Service 

Providers (CSP) are starting to offer transfer of workloads to accelerators for better 

performance and energy efficiency.  

Today, many applications have confidentiality requirements because information 

leak may cause loss of privacy or of intellectual property, or they cannot accept wrong 

results and must have integrity in the computation.  These applications may utilize con-

fidential computing offered by major CSPs [1][2][3] that provide hardware supported 

Trusted Execution Environment (TEE) based on Intel® Software Guard Extensions 

(SGX)[4]. Today, these applications may not benefit from heterogeneous computing 

because the TEE may not extend to the accelerator and the workload transfer to accel-

erators is not protected. For example, applications that analyze high volume of confi-

dential data or use proprietary algorithms and require workload acceleration are ex-

posed to exploits of vulnerabilities in system software (OS and VMM) and physical 

attacks to the link between CPU and accelerator. 

Mechanisms to protect computation offload have been proposed using architectural 

enhancements to the accelerator and/or to the hardware support in the CPU for the TEE 

along with encryption of the communication between the TEE in the CPU and a trusted 

execution environment in the accelerator. But implementation of hardware changes to 
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the CPU or to the accelerator are in most cases not under control of the CSPs or their 

customers and encryption consumes resources and adds performance overhead that re-

duce the benefit of acceleration.  For example, Graviton[5] reports overhead of 17%-

33% largely from encryption and decryption of the transfers and requires architectural 

changes to the GPU to create a trusted execution environment in the GPU to resist po-

tential exploits from a compromised host driver that manages GPU resources. HIX[6] 

reports 26% average performance overhead for protected offload to GPU and requires 

modifications to the CPU to enforce context isolation, changes to the PCIe interconnect 

to support integrity, and changes to the OS to move GPU resource management from 

the OS to a service enclave.  

We take hardware accelerated Deep Learning Network (DNN) inferencing as refer-

ence use case to propose a mechanism to protect the data transfers between an applica-

tion running inside a TEE and an accelerator with low performance overhead.  An im-

portant goal of our research was that the mechanism could run on existing hardware 

platforms or require hardware changes only to the device to make deployment of con-

fidential heterogeneous computing practical in the near future. We also attempt to min-

imize changes to current software stacks, applications, and accelerators to lower the 

barrier of adoption. 

1.1 Scope 

A full protection scheme includes the device authentication, attestation, and key ex-

change to bind the application to the accelerator.   In this paper, it is assumed the device 

has . The protocols described here start from a state with the device bound to the appli-

cation via a shared key configured on the device after attestation.  It is also assumed the 

protected SW on the host discovers the address layout of the registers and buffers in the 

device securely prior to the start of protected communication. The buffer for each func-

tion on the device is fixed or negotiated between the protected SW and device logic and 

must be protected from address remapping.  How the application discovers the address 

mapping and capabilities are also not covered in this paper and assumed known to the 

application before protected communication starts. The paper does not discuss the de-

vice requirements to protect the workload during execution inside the device. Nor dis-

cuss device management by the OS/VMM such as device assignment and device re-

covery. Protection from Denial of Service (DoS) and Side Channel Attacks (SCA) are 

considered out of scope of the current work. 

In scope is protection of data transfer via DMA between a device and a ring 3 enclave 

with confidentiality, integrity, replay protection and redirection protection in the pres-

ence of an adversary who is in control of system software (OS and VMM). The adver-

sary may also steal, modify, or inject data in the physical link.   

Within this scope we identified DNN inference which has growing importance in 

heterogeneous computing as the reference use case. And propose a cryptographic pro-

tocol and its hardware implementation in the device that meets the data transfer band-

width for it on a currently available platform without additional buffering.  The perfor-

mance requirements instigated the implementation of AES-GCM authenticated encryp-

tion algorithm in HW with the following novel features: 
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• In-line Encryption Capability: Data is encrypted/decrypted and processed through 

Galois Field Multipliers in pipeline during transfer. No additional buffer is included 

to store data nor to stall transfers for crypto processing. 

• High Throughput: We implemented parallel AES pipelines and Galois Field mul-

tipliers to meet 100Gbps DMA throughput.  

• Minimal Initial Latency for Setup: The proposed engines are self-capable for com-

puting the Round keys, Authentication key (H) and a few powers of H at initializa-

tion. The whole initialization takes 19 clock cycles for DMA and 16 clock cycles for 

MMIO for a given key. 

• On-time Authentication Tag: There are stringent latency requirements for compu-

ting and validating Authentication Tag for DMA and MMIO transactions. Integrity 

against Authentication Tag is validated per clock for each 32-bit/64-bit MMIO trans-

action. And for DMA, we update the intermediate Tag in each clock cycle as: Tag = 

Tag×H4 + d1×H4 + d2×H3+ d3×H2+ d4×H, where d1, d2, d3, d4 represents 512-bit 

data/clock; and compute the final Tag at the end of all data transmission with mini-

mal additional cycles.  

The paper describes in section 2 the contour conditions and rationale for the design 

choices that led to the proposed protection protocol described in section 3 and to the 

architecture of crypto engines in section 4. Section 4 describes the design challenges 

and microarchitecture techniques of the novel AES-GCM engines.  Section 5 reports 

the prototyping of the encryption engines and the performance of the high bandwidth 

DMA crypto engine on a sample application before conclusions in section 6. 

2 Design Decisions 

This section discusses the rationale behind the design decisions that shaped the archi-

tecture of the proposed solution. We chose to protect confidential computing applica-

tions running on SGX TEE because it is used in public cloud confidential computing 

[1][2][3] and because SGX enclaves are harder to protect because they do not include 

the OS kernel drivers in its Trusted Computing Base (TCB).  A proposal that protects 

communication from potentially compromised drivers will likely also be effective in 

TEEs where the OS kernel drivers are in the TCB and would not be compromised. 

A fundamental choice was to constrain to proposals that can run on an existing hard-

ware platform and software stack with modifications adopters could implement them-

selves. We set out to investigate protection with end-to-end cryptography that binds the 

application in the enclave to the accelerator.  With one encryption endpoint inside the 

enclave, the solution does not require additional TEE HW support because data is en-

crypted as it leaves the enclave and decrypted and integrity checked as it enters the 

TEE.  With the other endpoint in the device, data is also encrypted as it leaves the device 

and decrypted and integrity checked as it enters the device. In this architecture the de-

vice is assumed to have proved its trustworthiness via attestation.    

Our chosen protection scheme creates an encrypted tunnel between the two trusted 

endpoints leaving the transport link hardware outside of the TCB. We selected an in-

tegrity protection scheme that carries integrity information out of band to avoid changes 
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to existing data transport protocols.  We prototyped the architecture on a platform where 

the device is directly connected to the CPU through PCIe but the work may apply to 

other connectivity models and communication protocols because there is no depend-

ency on support from the transport link to our cryptographic protocol. 

We chose AES-GCM authentication encryption because it provides confidentiality, 

integrity and replay protection, and it can operate on arbitrary sized data, and the cipher 

text is of the same length as the plaintext.  

We narrowed the scope of the devices and applications covered by our proposal to 

maximize optimization for performance and developer experience. To meet our goal of 

developing a solution that can be prototyped and deployed on existing platforms, we 

elected to start with protection of computation offload to accelerator devices based on 

FPGAs. FPGAs are reconfigured in current cloud computation usage and are modifia-

ble by the CSP, application owner or accelerator board manufacture to add functionality 

such as data encryption. While the hardware in accelerators based on GPUs and ASICs 

can only be modified by the manufacturer of the silicon devices.  Current usage models 

of FPGA accelerators are simpler, typical FPGA accelerators use cases have a single 

context and single user and support a simpler data sharing model. This simplifies the 

protection mechanism as it does not require implementation of isolation of multiple 

concurrent workloads and only transfer data through DMA and MMIO. While more 

complex accelerators such as GPUs support multiple concurrent workloads and has 

more tightly coupled data sharing models such as use of shared virtual memory. 

We selected the OpenCL framework for heterogeneous platforms to guide our design 

and optimization choices because the OpenCL framework abstracts the hardware plat-

form to a simpler common denominator where devices may not share memory with the 

host CPU. Data is transferred through buffers using DMA. MMIO is mostly used to 

control the device.   The OpenCL application running on the host CPU has control over 

computation execution.  The data transfer for processing in the accelerator is in two 

steps. First, SW configures the accelerator to transfer data through DMA. On the second 

step, it directs the accelerator to process the data after the transfer is complete.  Trans-

fers of final or intermediate results from the device are also transferred back to the 

application by DMA in two steps. First, the application configures the DMA to transfer 

the results back when it learns results are ready either by polling or by an interrupt from 

the device. Second, it consumes the results after learning the DMA has completed. This 

execution model with a clear demarcation between completion of data transfer and data 

consumption allows the insertion of verification of integrity of the transfer before the 

accelerator or the application consumes the data. 

We selected image recognition using deep neural networks (DNN) accelerated with 

FPGAs as the reference use case because these applications are growing in importance 

as cloud workloads.  For example, Project Brainwave [7] offers DNN models acceler-

ated by FPGA as a service. We used the image recognition examples distributed with 

Intel® OpenVINO [8]  image recognition framework accelerated with Intel® FPGA Ac-

celeration Stack [9] a by Intel® Programmable Acceleration Card (PAC) [10] as refer-

ence to guide our optimizations and as a prototype vehicle.    

Fig 1 shows a block diagram of the SW stack and PAC card with the placement of 

the encryption engines that form the encrypted tunnel to protect data transfer.  The User 
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Mode Drive (UMD) runs inside the enclave and access plaintext while the Kernel Mode 

Driver (KMD) while runs outside the enclave and only sees ciphertext.  The RTL mod-

ule intercepts all data transfer to the accelerator kernel.  The FPGA hardware is all 

trusted. 
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Fig. 1. Architecture of the protection mechanism in the prototyping environment. 

 

We chose to place the encryption and integrity verification for the application in the 

User Mode Drive to keep the changes to the SW stack mostly outside the application 

to ease the developer experience.  The larger TCB which includes the application and 

the driver stack running inside the enclave is the tradeoff for fewer changes to the ap-

plication to adopt data protection.  Encryption in the FPGA is placed outside the bound-

ary of the acceleration kernel to minimize the changes to existing acceleration architec-

tures which ease porting to protect the architecture.  

Execution profiling of the example applications showed that time spent in computa-

tion in the CPU and FPGA is much larger than the time transferring data and that time 

on DMA data transfer dominates the time spent on MMIO.  For this reason, we elected 

to focus our initial work on optimization of the performance of DMA and prototyping 
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hardware implementations of encryption for DMA in the FPGA. We leave performance 

optimization of the user mode drivers for future work. 

This protocol encrypts as it writes secrets out of protected memory and decrypts as 

it reads secrets into protected memory.  This choice was key to minimize latency and 

to reduce changes to the application to adopt protection.  The protocol doesn’t require 

double buffering, one buffer to decrypt/encrypt and one to move across the boundary 

between protected and unprotected memory. This avoided allocation of an additional 

memory buffer and additional data transfer relative to the current implementation.  On 

the software side, the function that moves data to the enclave reads encrypted data from 

unprotected memory and writes decrypted data into protected memory. And the func-

tion that moves data outside the enclave reads data in the enclave and writes encrypted 

data out to unprotected memory. In the device hardware, encryption is implemented 

inline to not need additional block memory, a precious resource, based on examples of 

acceleration kernels in the OpenVINO distribution that use almost all block memory in 

the FPGA. 

 

3 Proposed Data Transfer Protocol 

We propose a protocol that protects confidentiality, integrity and also offers protection 

against replay and remap attacks on transfers between a shared buffer in the host 

memory and a buffer in local device memory accessible only by the device. The DMA 

controller (DMAC) resides on the device to access local device memory. The host con-

figures the DMAC interface through MMIO.  

The protocol uses AES-GCM authenticated encryption of the data payload to pro-

vide confidentiality, replay protection and data ordering within the data transfer.  It also 

uses AES-GCM authenticated encryption of MMIO to protect the integrity of the con-

figuration of the DMA which prevents an untrusted agent from using DMA to corrupt 

private memory in the device.   

The protocol protects MMIO to prevent tampering with the configuration of the tar-

gets of the DMA in the device memory which may corrupt the device memory and 

affect the integrity of the computation. The location of the buffer in host memory re-

mains under control of the OS/VMM. The protocol configures the target addresses in 

host memory given by the OS/VMM without resulting in compromise of integrity of 

computation.  Any difference in the data transferred from the one intended by the ap-

plication that could be caused by remapping of the addresses in the host memory would 

be detected by data integrity verification of the payload.   

The DMA UMD is extended to encrypt/decrypt as it copies data to/from the host 

DMA buffer and to verify the integrity of the transfer before returning to the calling 

application.  The DMA UMD verifies the integrity of the transfer by comparing authen-

tication tags (AT) calculated by the driver on the data inside the enclave against the AT 

calculated by the device on data in device memory. The DMA UMD can read the AT 

from the accelerator via MMIO which does not require protection because AT transfer 

does not need confidentiality, and any integrity violation would only result in denial of 
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service. The result of the verification is returned reliably to the application since the 

UMD driver and the application are inside the same enclave.  

For protected DMA transfers from host to device, the DMA UMD initializes the 

hardware encryption engine, and encrypts data and calculates the AT as it moves data 

outside the enclave to the host DMA buffer before calling the DMA KMD to perform 

the DMA transfer. When the KMD returns after completion of the DMA transfer, the 

UMD commands the hardware crypto engine in the device to finalize the authentication 

tag calculation over the entire DMA. The UMD reads the device’s AT to compare to 

the AT it calculated.  If they match, the UMD returns the status of a successful DMA 

transfer.   

The reference hardware platform and sample application support a single DMA 

transfer running at a time, and instantiate a module that sorts memory read responses 

to enforce strict ordering.  This allowed multiplexing of the hardware crypto engine to 

protect memory responses for DMA transfers from host to device and memory write 

requests for DMA transfers from host to device. The crypto engine is placed where it 

intercepts all DMA memory transactions and calculates the AT over all data received 

since initialization until asked to finalize AT calculation.    

Figure 2 illustrates the protected DMA transfer from device to host that also executes 

in there phases. First, the DMA UMD initializes the hardware crypto engine. Next it 

configures the descriptors and calls the DMA KMD. The crypto engine encrypts data 

and calculates AT as the memory write requests generated by the DMA controller 

passes through the crypto engine on their way out of the device. On the third phase, 

after the data has been transferred, the DMA UMD decrypts and calculates the AT as 

it copies the data from the host DMA buffer into the enclave.  The DMA UMD reads 

the AT calculated by the device on the data written out, and compares to the AT it 

calculated on the received data.  
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Fig. 2. Protected DMA from device local memory to host memory 

By transferring the Authentication Tag via MMIO we were able to keep the DMA 

payload the same size to reuse of the existing DMA kernel mode driver and buffer 

memory allocation with no change.  This minimized the changes to the application and 

to the OS to implement protection. The application adds logic to handle DMA transfer 

integrity errors but otherwise, changes to protect DMA payload are kept mostly to the 

User Mode Drivers (UMD) to add a phase before transfer to initializes the crypto engine 

and a phase after the transfer to verify the integrity.   

 



9 

3.1 Protected MMIO 

In addition to configuration of the DMA controller, other device registers may compro-

mise computation in ways that are not easily detectable by the application or are irre-

versible. For example, a read or write to a device register may reset portions of the 

device, select different computation on the accelerator, trigger computation, cause soft 

errors or even permanent damage by changing voltage, clock, or temperature operation 

limits.  To avoid these hazards we insert hardware logic in the device on the path of 

MMIO transactions to enforce that access to security sensitive registers is integrity pro-

tected and originated by the enclave to which the device is currently assigned. MMIO 

requests that fail these tests are blocked from reaching the accelerator register. The ap-

plication must be changed to replace access to security sensitive MMIO with a protocol 

executed in three phases that can be encapsulated in a function or sub-routine.   

1. The function computes the authentication tag (AT) of the request and writes it by 

MMIO to a register in the accelerator that is not protected. The address offset of the 

register on the device is included in the AT to prevent misdirection of the request. 

2. The function sends the MMIO request of the protected register to the device.  The 

integrity verification logic in the device intercepts MMIO requests to protected ad-

dress offsets, calculates the authentication tag and compares to the authentication tag 

currently stored in the device. The device exposes the status of the MMIO request in 

a protected register. The device only executes MMIO requests that pass integrity 

check.  If integrity check passes, it exposes the authentication tag calculated by the 

device in an unprotected register and executes the MMIO request. If the integrity 

test fails, the authentication tag register is not updated, and on failure of a MMIO 

read request the device also returns a constant for MMIO read response.  

3. The function confirms the MMIO request succeeded and returns the MMIO integrity 

verification status to allow the application to stop execution when an integrity failure 

is detected. For a MMIO read, the function calculates the authentication tag of the 

MMIO read response and reads the authentication exposed by the device with an 

MMIO read to confirm the data received and the data sent by the device are the same 

and from the requested register. For a MMIO write request the function reads the 

protected status bit following this protocol for protected MMIO read.  

Figure 3 illustrates the flow diagram for protection of a MMIO read and Figure 4 illus-

trates the flow to protect MMIO writes which uses the protected MMIO read flow to 

retrieve the status flag of integrity verification.  
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Fig. 3. Protected MMIO read flow diagram 

This scheme binds the device to its assigned owner cryptographically because pro-

tected registers can only be accessed with the protocol regardless of how the register is 

mapped by the OS/VMM and which process requests access because the logic in the 

device intercepts all MMIO requests to the protected address offsets.  An actor without 

the key cannot perform an MMIO to a protected register.   The application must be 

upgraded to use the protected MMIO protocol to access security sensitive registers. 

Conversely, device registers that are managed by other SW such as the OS should not 

be in address offsets protected by the device.  For devices that have to support access 

to the same register by both the OS and the application, the application and OS would 

have to be enhanced so the application intermediates access to secure sensitive registers 
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for the OS.  The device must provide means for the OS to regain control of the device 

from the application but also ensure secrets from the application are erased first.  These 

requirements are not discussed in this paper. 

 

Fig. 4. Protected MMIO write flow uses protected MMIO read to verify integrity 

 

3.2 Performance Analysis of the Protocol 

Profiling of computation offload of the selected applications showed that the bulk of 

the data transfer time is spent on a few relatively large DMA transfers. Accordingly, 

we focused our efforts in improving performance of DMA transfers. In order for hard-

ware encryption in the FPGA to impose no restriction on bandwidth of DMA transfers 

nor require memory blocks to buffer data we set the requirement for the hardware 

crypto engine to match the bandwidth of the internal bus. The protocol was designed to 
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initialize the pipeline of the crypto engine once before start of data transfer and calculate 

integrity over all the payload with a single AT calculation at the end.  The combination 

of support for the maximum throughput and one AT for the transfer makes the latency 

overhead of protection in hardware almost independent of throughput and length of the 

DMA transfer. The hardware latency is approximately the time to fill the encryption 

pipeline and to calculate the final AT. Protection in SW optimizes latency by replacing 

copy of data though the enclave boundary with moving data across the boundary as part 

of encryption/decryption to avoid moving data twice, beyond that we made no further 

optimization of the drivers.  For the sizes of DMA transfers profiled SW latency will 

be much longer than HW latency. 

While protection on one MMIO has a high overhead, we do not expect a measurable 

impact on performance for the selected class of applications based on our profiling of 

MMIO transactions.  When protection is enabled, 1 MMIO read to a protected register 

is replaced with logic that adds 2 MMIO read and 2 MMIO write to copy AT, and 2 

encryption/decryption and AT calculations.  A MMIO write to a protected register ads 

3 MMIO read, 3 MMIO write, and 3 encryption/decryption and AT calculations of 

overhead. A MMIO write adds more overhead because it verifies success by reading a 

status flag in a protected register.   

Although the time spent on MMIO is short on the applications profiled, we opti-

mized the performance of the hardware implementation. The MMIO crypto engine was 

designed so the engine pipeline is initialized only once, the crypto engine doesn’t have 

to be re-initialized before each MMIO transaction. The throughput of authentication tag 

calculation matches the throughput of the internal MMIO data bus as not to impose 

bandwidth restrictions.  We minimized the latency of AT calculation as it is in the crit-

ical path of the protected MMIO protocol.   

4 High performance Crypto Engine Implementation  

As described in the prior section, there are two different crypto requirements to mini-

mize performance overhead to protect data transfer between host and accelerator. The 

bulk of data is transferred over DMA with inline encryption on a 512-bit wide bus; 

whereas to configure secure-DMA we need a set of out of band MMIO transactions 

with confidentiality & integrity protections. Figure 5 depicts the top level block dia-

gram of the proposed encryption and authentication engine for securing inline DMA 

and MMIO transactions. We implement the AES-GCM algorithm for this purpose, so 

there is an AES pipeline datapath, Galois Field Multipliers for Authentication Tag com-

putation with related registers and control circuits.  
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Fig. 5. Top lebel block diagram for AES-GCM Engine for DMA and MMIO 

To meet latency and throughput requirements, we implemented two independent 

engines for DMA and MMIO transactions in between host and FPGA. For DMA we 

need to encrypt/decrypt 512-bit inline data in each clock cycle and compute related 

Galois Field operations for partial authentication tag generation to match the internal 

bus used for memory transactions. At the end of the final block processing we need to 

compute the final Tag with minimal additional latency. On the other hand, for MMIO 

we need to encrypt/decrypt and compute/validate the authentication tag for every 32-

bit/64-bit MMIO read/write requests and read responses in one clock cycle to match 

the throughput of the bus.  

Our goal was to implement the optimal AES-GCM HW engines that can be inte-

grated easily and demonstrated running in the FPGA of the PAC PCIe accelerator card 

without limiting throughput. The PAC is connected to the Host via a PCIe interface 

running @100Gbps. Internal to the FPGA the data bus that carries DMA memory trans-

actions and MMIO transactions are 512-bit wide and run @200Mhz. We implement 

our AES-GCM engines that can be instantiated inline on the 512-bit bus and operate at 

200MHz or higher clocks. The following subsections describe the microarchitecture 

design challenges and the novel techniques that are applied to implement the AES-

GCM engines.  

 

4.1 Microarchitecture of the 512-bit Inline AES-GCM Engine 

Figure 6 depicts the microarchitecture of the HW engine that can process 512-bit 

inline data for AES-GCM encryption/decryption and partial authentication tag genera-

tion. To accommodate 512-bit inline data, the current AES-GCM pipeline has four AES 

encryption unrolled engines (1 round in each pipeline depth/stage) which run in parallel 

in CTR mode. There are five parallel 128-bit Galois Field Multipliers that are divided 

into two pipeline stages. Additionally, there are internal counters and other control logic 

to generate the encrypted counter streams, to compute the length of the data stream, and 

to control other microarchitectural operations to compute the final authentication tag.  
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Fig. 6. Microarchitecture of the 512-bit AES-GCM HW engine. 

Our objective was to design the pipeline for AES-GCM that can process 512-bit data 

in each clock cycles at 200MHz clock to provide 100Gbps throughput. We targeted the 

Intel Arria 10 FPGA used in the PAC for demonstrating results. Our AES engine is 

based on GF((24)2) for which the datapath for one round is suitable for a 200MHz clock 

period implementations, that is, the logic fitted in the FPGA meets timing. We imple-

mented depth-10 pipeline for AES128 with one round in each clock period. Many AES 

implementations have been reported in the literature in the last 3 decades. Therefore we 

are not providing any further details about the internals of our AES engine based on 

GF((24)2) and are not side-channel protected. Interested readers can follow [19 - 23].  

We implemented the Galois Field GF(2128) multiplier for tag computation based on 

the hybrid Karatsuba multiplier [16] [18]. However, the critical path of the 128-bit mul-

tiplier circuit and polynomial reduction circuit do not fit within a single 200MHz clock 

period. Therefore, we split the Karatsuba multiplier and reduction datapath into two 

pipeline stages and put a pipeline register in between them. The first stage of the pipe-

line consists of the 32-bit hybrid Karatsuba multiplier circuit implemented with three 

16-bit regular multiplier and the Karatsuba layer to produce 63-bit results. The second 

stage consists of 64-bit and 128-bit levels for Karatsuba multiplication and the XOR 

based reduction logic for irreducible polynomial x128+x7+x2+x+1. The critical paths of 

each of the stages fit, allowing us to run the complete AES-GCM engine at 200MHz.  
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The two cycle latency for GF(2128) multiplication creates a challenge to process 512-

bit data in each cycle and run the pipeline. We took the following microarchitecture 

approaches to overcome this challenge. 

 

To recap, the authentication tag (tag) in AES-GCM is computed as:  

 

Tag = ( (A×Hn) ^ (d1×Hn-1) ^ … ^ (dn-2×H2) ^ (Len×H ) )  ^  ( Ek(IV||32{1’b1}) )  

 

Where, “A” represents Additional Authentication Data, d1 to dn-2 are 128-bit data 

blocks, “^” represents bitwise XOR operation, Ek is the AES encryption with the secret 

key k, IV represents the initial vector, and × is the GF(2128) multiplication. We compute 

the Tag for the DMA transactions of 512-bit/clock as follows: 

 

Step 1: Initialization: Tag = A×H, T2 = 0, T3 = 0; 

Step 2: Repeat:  

Clock 1: Tag = (Tag ^ T2 ^ T3) ×H8  

                                 T2 = d1×H8 ^ d2×*H7 ^ d3×H6 ^ d4×H5 

Clock 2: T3 = d1×H4 ^ d2×*H3 ^ d3×H2 ^ d4×H 

Step 3: Capture Length: Tag = Tag×H ^ Len×H 

Step 4: Final Tag: Tag = Tag ^ Ek(IV||32{1’b1}). 

 

Where, H, H2, H3, H4, H5, H6, H7, H8 are precomputed during setup stage and stored in 

registers. We incorporated five Galois Field multipliers to the AES-GCM engine to 

compute all five multiplications in parallel. This works well if the DMA transfer is a 

multiple of 1024 bits, which would not always be the case. Therefore, the actual micro-

architecture is much more complex than what is represented in the steps above. For 

example, to support data sizes of multiples of 512 bit we keep track of the last 512-bit 

block internally; and multiply them with lower powers of H as represented in Step 

2/Clock 2 when the engine receives the “last_in” pulse, to signal completion of data 

transfer. Things are even more complex if the block of data is a multiple of 128-bit but 

not a multiple of 512-bit. We select the H powers accordingly based on the length of 

the final block to handle this scenario. In this implementation we restrict support to data 

lengths that are multiple of 128-bit.   

 

We use a “start” pulse to initiate the engine. The secret key and IV are applied to the 

engine with the start pulse. After receiving a start pulse the machine pushes a block of 

all zeros as the first input to the AES Pipeline-1 for encryption by the input key to 

generate the authentication key H. Additionally, at the start pulse the engine initializes 

its counters and related control logic. In the following cycle, it initializes all four AES 

pipelines with CTR, CTR+1, CTR+2 and CTR+3.  It increments all counters by 4 and 

repeats for 9 cycles to fill the pipeline. On the 10th clock cycle, the computed H value 

is registered on the AES pipeline output. In the following cycle, the H value is pushed 

into a Galois Field multiplier to compute H2. On this same clock, the encrypted initial 

values of the four counter reach the output registers of the four AES pipeline and so we 

stop the AES pipeline and continue to precompute the other H power values (H3 to H8). 
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Since each Galois Field multiplication requires two clock cycles, we require four addi-

tional cycles to compute H3 to H8. At this point the engine asserts ready_for_data = 1.  

 

Once the DMA protection engine asserted the ready-for-data signal, it is ready for 

DMA data streaming. It can grab 512-bit plaintext/ciphertext data in each clock cycle 

and produce the corresponding ciphertext/plaintext in the following clock cycle. It also 

executes the operations related to AT calculation in parallel with the cipher-

text/plaintext generation. Figure 7 provides the execution flow of the DMA Protection 

Engine during data streaming operation. 

 

DMA Security Engine is ready-for-data

Execute Step 2 of Authentication Tag 
computation on 512-bit ciphertext. Note that,  
ciphertext is available after XOR for encrypt; 
whereas, for decrypt it is the actual input  data.  

Capture 512-bit input data and XOR them 
with the current outputs of the AES pipelines

The Engine updates the Tag register, 
releases the encrypt/decrypt output 
and sets up the  output_valid to logic 1.

input_valid = 1

Yes

No

Wait and stall

last = 1

Start executions for Step 3 
and Step 4

Count 10 clock cycles to complete 
the encryption of IV||32{1'b1}

Compute final Tag, generate the 
predone pulse  

Release Tag and generate done pulse

Yes

Set busy status to logic 0 and stop

No

 

Fig. 7. The DMA protection engine data streaming flow 

After encrypting/decrypting all data blocks, the engine expects a last_in input pulse 

to produce the final Tag by computing Step 3 and Step 4 described above. These two 

steps include two Galois Field multiplications, one AES encryption and two XOR op-

erations. The operations in Step 3 takes just 2 clock cycles in the DMA Protection En-

gine. Step 4 involves an AES operation on IV||32{1’b1} which starts in parallel with 

Step 3 but takes 10 clock cycles and is followed by an XOR for computing the final 

Tag output. In total, Step 3 and Step 4 take 11 clock cycles.  
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4.2 The 32/64-bit Inline Encryption & Tag generation for MMIO 

The initialization of DMA involves reading and writing a set of 32-bit or 64-bit values 

to addressable DMA controller and crypto engines registers. We call them MMIO trans-

actions. As described in section 3, protected MMIO transactions are necessary to pro-

tect the configuration and initialization of the DMA controller. To protect these MMIO 

transactions it is necessary to provide cryptographic confidentiality and integrity assur-

ance. These MMIO may be back to back operations. Therefore an inline encryption/de-

cryption and Tag generation/validation must protect one MMIO in every clock cycle to 

keep up to the performance of the original platform. 

 

 

Fig. 8. Microarchitecture of the 32-bit/64-bit inline encryption and authentication engine. 

We implemented a separate AES-GCM pipeline engine to enable inline 32-bit / 64-

bit encryption & authentication in each cycle as shown in Fig 8. The architecture con-

sists of three AES128 pipelines to encrypt the 128-bit string of zero (for H), counter 1 

(for final Tag) and 2 (for data encryption). After these encryptions are completed in the 

first 10 pipeline stages we start computing the Tag. We instantiated the same Galois 

Field multiplier circuit used for DMA processing in the MMIO AES_GCM engine. 

Each multiplier requires two pipeline stages. We compute Tag = (((d×H) ^ length)×H) 

^ E(iv,32’d1) inline on every cycle for independent 32-bit/64-bit data in five pipeline 

stages after the AES last round pipeline stage. In total, this AES-GCM engine for inline 
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encryption and Tag generation has a pipeline of depth15 and  16 clock cycles of latency. 

This engine is capable of computing the encryption/decryption and Tag computation 

for one 128-bit input block in each clock cycle. For MMIO transaction we had no ad-

ditional authentication data (AAD). However, it would be easy to accommodate AAD 

in the pipeline stages involved in Tag computation.  

5 Results 

We implemented the DMA crypto engine and the MMIO crypto engine in Verilog RTL. 

Table 1 provides the fitting report on Intel Arria 10 FPGA. Our microarchitectures and 

RTL are platform and technology independent and are flexible enough for implemen-

tation on both an FPGA and an ASIC. When synthesized and fitted on the Arria-10 

10AT115S2F45E2SG device by themselves, the DMA engine requires 47K adaptive 

logic modules (ALM) and the MMIO engine requires 23K ALM an do not require any 

block memory nor DSP block of the FPGA. The maximum operating clock frequency 

reported by the Quartus timing analyzer tool is 309.78MHz for DMA. Our DMA engine 

is capable of processing 512-bit data in each cycle, which translates to a 154.89 Gbps 

throughput. Similarly, our AES-GCM engine used to protect MMIO is capable of pro-

cessing up to 128-bit data in each 302.5 MHz clock cycle resulting in 38.72 Gbps 

throughput. 

Table 1 also provides a comparative analysis of our AES-GCM engines to other re-

ported works. Since the existing designs are reported for different FPGA devices it is 

difficult to perform a comparison. However, our AES-GCM engine for DMA provides 

4.2x higher throughput when compared to the highest performant existing design [18] 

when both are operating at their respective maximum supported frequencies. 

Table 1. Implementation results and comparison with existing AES-GCM 

AES-GCM 

Engines 
Device 

Key 

schedule 

Resource utilization 

[LUT/ALM, BRAM] 

Throughput 

[Gbps] 

Ours for DMA Arria 10 Y 47K 154.89 

Ours for MMIO Arria 10 Y 23K 38.72 

[18] Virtex 5 Y 30K 36.92 

[16] Virtex 5 Y 26K 16.9 

[14] Virtex 5 N 22K 29.7 

 

We integrated the DMA data crypto engine to the GoogleNet.fp11, AlexNet.fp11 and 

Resnet18.fp16 acceleration kernel architectures distributed in the Deep Learning Ac-

celeration (DLA) [24] package to prototyped protection of DMA data transfer without 

the protection against address remap and corruption to device memory the integration 

of the MMIO protection would afford. 

The accelerator architecture in the PAC has multiple clock domains to run different 

units at different speeds. The data bus where the DMA crypto engine was instantiated 

runs at 200MHz clock domain and so our AES-GCM engines are connected to the same 

clock domain to perform inline encryption/decryption. As reported in Table 1 our AES-
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GCM engines have maximum operating frequency higher than 200 MHz, and we are 

confident they would also operate at 200MHz clock at the slow corner conditions.  

The acceleration kernel was synthesized and fitted to the Arria 10 GX FPGA based 

Intel Programmable Acceleration Card (PAC) [10] with different seeds until the gener-

ated bitstream met timing. The process was repeated after adding the logic to integrate 

a single DMA crypto engine that is multiplexed to interpose the paths of memory read 

responses and of memory write requests that travel on different busses. Table 2 shows 

the resource utilization report of FPGA logic in thousands of ALM for DNN accelera-

tors with and without encryption of DMA data added. It would be expected that higher 

resource utilization would make fitting the accelerator with the encryption protection 

harder but the number of attempts to generate the first bitstream meeting timing was 

not consistently larger for the designs with protection. Averaging over the generation 

of multiple bitstreams that meet timing may show more consistency in the effort to 

synthesize and in the overhead of resource utilization as measured by the difference 

between the designs with and without protection. 

Table 2. Resource utilization impact of DMA data protection 

Accelerator architecture 
Resnet18.fp16 

[ALM] 

GoogleNet.fp11 

[ALM] 

AlexNet.fp11 

[ALM] 

Unprotected  260K 267K 305K 

DMA crypto integrated  312K 308K 357K 

Overhead  52K 41K 47K 

 

Table 3 shows preliminary latency measurements of an image classification appli-

cation that uses OpenVINO accelerated with FPGA classifying 1 image of 228x228 

pixels with and without protection averaged over 49,920 times.  The overhead is meas-

ured as the difference between the time spent on data transfer with and without protec-

tion. The relative overhead values are the latency as a percentage of the transfer time 

and total inference time on the architecture without protection.  The measurements were 

taken on a platform with Intel® Coffee Lake Server  2.60 GHz 8 cores CPU, Intel® 

Programmable Acceleration card with Intel Arria® 10 GX FPGA, CentOS 7.4, Kernel 

3.10.0, and Intel® FPGA Acceleration Stack (version 1.1).  While the complete archi-

tecture was designed to include MMIO protection for an application hosted inside the 

enclave on a cloud server where other applications are also running, we measured the 

application with protection of MMIO not implemented, not running in an enclave, and 

running in isolation in the platform.  

 

Table 3. Latency of DMA transfer and classification for 1 image 

Accelerator architecture  Resnet18.fp16  GoogleNet.fp11 AlexNet.fp11 

Total inference [ms] 7.36 2.51 11.5 

Transfer time [ms] 0.152 0.152 0.111 

Protected transfer [ms] 0.275 0.276 0.196 

Overhead [ms] 0.123  0.124 0.085 

Transfer overhead [%] 81 % 82 % 77 % 

Inference overhead [%] 1.7% 4.9% 0.74% 
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Preliminary latency measurements of classification of 1 image of 228x228 on an 

image recognition application based on OpenVINO accelerated with FPGA with and 

without protection of Table 3 show transfer overhead of approximately 80% and infer-

ence overhead of less than 5% in accordance to the fraction data transfer relative to total 

computation.  The DMA crypto engine instantiated inline as a pipeline stage on the data 

bus adds an estimated 150 ns (30 clocks * 5 ns) of latency per DMA transfer. For the 

number and size of DMA transfers to classify one image in the applications (5 to 6 

DMA transferring a total of approximately 600 KB), the overhead observed on transfer 

latency is dominated by SW encryption. 

6 Conclusion 

In this work we observe the increasing use of heterogeneous cloud computing and select 

the DNN inferencing use case to propose a solution to protect data transfer to enable 

confidential heterogeneous computing. Further, we prototype the architecture to solve 

critical implementation challenges identified and validate performance and feasibility. 

We give evidence that the latency to protect data transfer can be made low enough to 

make it a practical solution for confidential computation offload with our implementa-

tion of highly optimized AES-GCM authenticated encryption in hardware.  

Proposing a scheme that is feasible and practical for deployment in existing plat-

forms was a key concern for this work.   We believe this work is practical for deploy-

ment on devices for which encryption logic consumes a small fraction of total resources 

and device attestation and key exchange are supported.   
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