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Abstract. Algebraically simple PRFs, ciphers, or cryptographic hash
functions are becoming increasingly popular, for example due to their
attractive properties for MPC and new proof systems (SNARKs, STARKs,
among many others). In this paper, we focus on the algebraically simple
construction MiMC which became an attractive cryptanalytic target due
to its simplicity, but also due to its use as a baseline in an ongoing
competition for more recent designs exploring this design space.
For the first time, we are able to describe key-recovery attacks on all full-
round versions of MiMC over F2n , requiring half the codebook. Recovering
the key from this data for the n-bit version of MiMC takes the equivalent
of less than 2n−log2(n)+1 calls to MiMC and negligible amounts of memory.
The attack procedure is a generalization of higher-order differential crypt-
analysis, and it is based on two main ingredients: First, a zero-sum
distinguisher which exploits the fact that the algebraic degree of MiMC
grows much slower than originally believed. Second, an approach to turn
the zero-sum distinguisher into a key-recovery attack without needing to
guess the full subkey.
The attack has been practically verified on toy versions of MiMC. Note
that our attack does not affect the security of MiMC over prime fields.
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1 Introduction

The design of symmetric cryptographic constructions exhibiting a clear and
ideally low-degree algebraic structure is motivated by many recent use cases,
for example the increasing popularity of new proof systems such as STARKs
[9], SNARKs (e.g., Pinocchio [43]), Bulletproofs [20], and other concepts like
secure multiparty computation (MPC). To guarantee good performance in these
new applications, ciphers and hash functions are designed in order to minimize
the multiplications (either the total number of multiplications, the depth, or



other parameters related to the nonlinear operations). In contrast to traditional
cipher design, the size of the field over which these constructions are defined has
only a small impact on the final cost. In order to achieve this new performance
goal, some crucial differences arise between these new designs and traditional
ones. For example, we can consider the substitution (S-box) layer, that is, the
operation providing nonlinearity in the permutation: In these new schemes, the
S-boxes that compose this layer are relatively large compared to the ones used in
classical schemes (e.g., they operate over 64 or 128 bits instead of 4 or 8 bits)
and/or they can usually be described by a simple low-degree nonlinear function
(e.g., x 7→ xd for some d). Examples of these schemes include LowMC [4], MiMC
[3], Jarvis/Friday [6], GMiMC [2], HadesMiMC [31], Vision/Rescue [5], and
Starkad/Poseidon [30].

The structure of these schemes has a significant impact on the attacks that
can be mounted. While statistical attacks (including linear [41] and differential
[12] analysis) are among the most powerful attacks against traditional schemes,
algebraic attacks turned out to be especially effective against these new primitives.
In other words, these constructions are naturally more vulnerable to algebraic
attacks than those which do not exhibit a clear and simple algebraic structure. For
example, this has been shown in [1], which describes algebraic strategies covering
the full-round versions of the attacked primitives. Although the approaches can
be quite different, most of them exploit the low degree of the construction.

In this paper, we focus on MiMC [3]. The MiMC design constructs a crypto-
graphic permutation by iterated cubing, interleaved with additions of random
constants to break any symmetries. A secret key is added after every such round
to obtain a block cipher. The design of MiMC is very flexible and can work with
binary strings as well as integers modulo some prime p. Security analysis by the
designers rules out various statistical attacks, and the final number of rounds
is derived from an analysis of attack vectors that exploit the simple algebraic
structure. We remark that the designers chose the number of rounds with a
minimal security margin for efficiency. For a more detailed specification and a
summary of previous analysis, we refer to Section 2.3.

Since its publication in 2016, MiMC has become the preferred choice for
many use cases that benefit from a low multiplication count or algebraic sim-
plicity [32,44]. It also serves as a baseline for various follow-up designs currently
being evaluated in the context of the ongoing public “STARK-Friendly Hash
Challenge” competition4.

1.1 Our Contribution

As the main results, in this paper we present

(1) a new upper bound for the algebraic degree growth in key-alternating ciphers
with low-degree round functions,

(2) a secret-key zero-sum distinguisher on almost full MiMC over F2n ,

4 https://starkware.co/hash-challenge/
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Table 1: Various attacks on MiMC. In this representation, n denotes the block
size (and key size). The unit for the attack complexity is usually the cost of
a single encryption (number of multiplications over F2n necessary for a single
encyption). The memory complexity is negligible for all approaches listed.

Type n Rounds Time Data Source

KR? 129 38 265.5 260.2 [40]

SK 129 80 2128 XOR 2128 Section 4.1
SK n dlog3(2n−1 − 1)e − 1 2n−1 XOR 2n−1 Section 4.1

KK 129 160 (≈ 2 × full) – 2128 Section 4.3
KK n 2 · dlog3(2n−1 − 1)e − 2 – 2n−1 Section 4.3

KR 129 82 (full) 2122.64 2128 Section 5
KR 255 161 (full) 2246.67 2254 Section 5
KR n dn · log3(2)e (full) ≤ 2n−log2(n)+1 2n−1 Section 5

KR ≡ Key-Recovery, KR? ≡ attack on a variant of MiMC proposed in a low-memory
scenario, SK ≡ Secret-Key Distinguisher, KK ≡ Known-Key Distinguisher

(3) a known-key zero-sum distinguisher on almost double the rounds of MiMC,
(4) the first key-recovery attack on full-round MiMC over F2n .

We also show that the technique we use for MiMC is sufficiently generic to apply
to any permutation fulfilling specific properties, which we will define in detail.
Our attacks and distinguishers on MiMC, as well as other attacks in the literature,
are listed in Table 1.

Secret-Key Zero-Sum Distinguishers. After recalling some preliminary facts
about higher-order differentials, in Section 3, we analyze the growth of the alge-
braic degree for key-alternating ciphers whose round function can be described
as a low-degree polynomial over F2n .

For an SPN cipher over a field F where each round has algebraic degree δ,
the algebraic degree of the cipher is expected to grow essentially exponentially in
δ. Several analyses made in the literature [21,19,18] confirm this growth, except
when the algebraic degree of the function is close to its maximum. As a result, the
number of rounds necessary for security against higher-order differential attacks
grows logarithmically in the size of F.

In Section 3, we show that if the round function can be described as an
invertible low-degree polynomial function in F2n , then the algebraic degree grows
linearly with the number of rounds, and not exponentially as generally expected.
More precisely, let d denote the exponent of the power function x 7→ xd used to
define the S-boxes. Then, we show that in the case of key-alternating ciphers
over F2n , the algebraic degree δ(r) as a function in the number of rounds r is

δ(r) ∈ O(log2(dr)) = O(r).
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As an immediate consequence, our observation implies that roughly n · logd(2)
rounds are necessary to provide security against higher-order differential attacks,
much more than the expected ≈ logδ(n− 1) rounds.

Distinguishers on MiMC over F2n . Our new bounds on the number of rounds
necessary to provide security against higher-order differential cryptanalysis have
a major impact on all key-alternating ciphers with large S-boxes. A concrete
example for this class of ciphers is MiMC [3], a key-alternating cipher defined
over F2n (for odd n ∈ N), where the round function is simply defined as the cube
map x 7→ x3. Since any cubic function over F2n has algebraic degree 2, one may
expect that approximately log2(n) rounds are necessary to prevent higher-order
differential attacks. Our new bound implies that a much larger number of rounds
is required to provide security, namely approximately n · log3(2).

As a concrete example, in Section 4 we show that MiMC-n/n has a security
margin of only 1 or 2 round(s) against (secret-key) zero-sum distinguishers
(depending on n), which is much smaller than the one expected by the designers.
Moreover, we can be set up a known-key distinguisher for approximately double
the number of rounds of MiMC, by showing that the same number of rounds
is necessary to reach the maximum degree in the decryption direction. We also
remark that our findings have been practically verified on toy versions.

We remark that the designers presented other non-random properties (includ-
ing GCD and interpolation attacks) that can cover a similar number of rounds.
The number of rounds proposed by the designers were chosen in order to provide
security against key-recovery attacks based on these properties. As we are going
to show, the number of rounds is not sufficient against our new attack based on
a higher-order differential property.

Results using the Division Property. For completeness, in Section 4.5 we search for
zero-sum distinguishers for MiMC-n/n with the division property [46] proposed
by Todo at Eurocrypt 2015, which is commonly believed to be the most powerful
tool to find the best integral distinguishers for most block ciphers. By modeling
the most recently proposed variant of the bit-based division property, which is
called modified three-subset bit-based division property in [34], we are able to
reproduce exactly the same zero-sum distinguishers for cases with small n-bit
S-boxes, where n ∈ {5, 7, 9}. However, as far as we know, it is an open problem to
model the (modified) three-subset bit-based division property for a larger S-box
of size bigger than 8. Therefore, we conclude that the division property might
not help us for the ciphers we focus on.

Key-Recovery Attack on MiMC-n/n and on Generic Ciphers. A trivial
way to extend an r-round distinguisher to an (r + 1)-round key-recovery attack
is based on guessing the last round key, partially decrypting/encrypting, and
finally exploiting the distinguisher to filter wrong key guesses. Unfortunately,
this strategy does not work for MiMC, since guessing the full last round key is
equivalent to exhaustive key search.
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In Section 5, we show how to solve this problem. Instead of guessing the last
round key, we set up an equation over F2n with the master key as a variable.
To obtain this equation, we symbolically express the zero sum at the input to
the last round as a polynomial function of the key, whose coefficients depend
on the queried ciphertexts. We show how the resulting polynomial equation can
be solved efficiently to recover the key. We outline a more detailed and generic
procedure for our attack in Section 6. There, we also discuss the differences
between our method and other related attacks present in the literature.

2 Preliminaries

In this section, we recall the most important results about polynomial represen-
tations of boolean functions and summarize the currently best known results
regarding the growth of the algebraic degree in the context of SP networks.
We also provide the specification of MiMC and give an overview of previous
cryptanalytic results.

We emphasize that in general it is only possible to give a lower bound
regarding the number of rounds that it is possible to attack using higher-order
differential attacks, in the following denoted as “necessary number of rounds to
provide security”. While upper-bounding the algebraic degree is more important
from an adversary’s point of view, lower bounds on the degree are much more
relevant when arguing about security from a designer’s viewpoint. However, at
the current state of the art and to the best of our knowledge, it seems hard to find
such a lower bound for a given cipher without investigating concrete instances
experimentally – which, of course, limits the scope of any analysis.

2.1 Polynomial Representations over Binary Extension Fields

We denote addition (and subtraction) in binary extension fields by the symbol
⊕. For n ∈ N, every function F : F2n → F2n can be uniquely represented by an
n-tuple (F1, F2, . . . , Fn) of polynomials over F2 in n variables with a maximum
degree of 1 in each variable. In this representation, Fi is of the form

Fi(X1, . . . , Xn) =
⊕

u=(u1,...,un)∈{0,1}n
ϕi(u) ·Xu1

1 · . . . ·X
un
n , (1)

where the coefficients ϕi(u) can be computed by the Moebius transform.
As is common, we denote functions F : Fn2 → F2 as boolean functions and

functions of the form F : Fn2 → Fm2 , for n,m ∈ N, as vectorial boolean functions.

Definition 1. The algebraic normal form (ANF) of a boolean function F : Fn2 →
F2, as given in Eq. (1), is the unique representation as a polynomial over F2 in n
variables and with a maximum univariate degree of 1. The algebraic degree δ(F )
of F – or δ for simplicity – is the degree of the above representation of F as a
multivariate polynomial over F2. If G : Fn2 → Fn2 is a vectorial boolean function
and (G1, . . . , Gn) is its representation as an n-tuple of multivariate polynomials
over F2, then its algebraic degree δ(G) is defined as δ(G) := max1≤i≤n δ(Gi).

5



The link between the algebraic degree and the univariate degree of a vectorial
boolean function is well-known, and is for example established in [23]: the algebraic
degree of F : F2n → F2n can be computed from its univariate polynomial
representation, and is equal to the maximum hamming weight of the 2-ary
expansion of its exponents.

Lemma 1. Let F : F2n → F2n be a function and let F (X) =
∑2n−1
i=0 ϕi · Xi

denote the corresponding univariate polynomial description over F2n . The alge-
braic degree δ(F ) of F as a vectorial boolean function is the maximum hamming
weight5 of its exponents, i.e., it is δ(F ) = max0≤i≤2n−1 {hw(i) |ϕi 6= 0} .

2.2 Higher-Order Differential Cryptanalysis

Higher-order differential attacks [38] form a prominent class of attacks exploiting
the low algebraic degree of a nonlinear transformation such as a classical block
cipher. If this degree is sufficiently low, an attack using multiple input texts and
their corresponding output texts can be mounted. In more detail, if the algebraic
degree of a Boolean function f is δ, then, when applying f to all elements of an
affine vector space V ⊕ c of dimension greater than δ and taking the sum of these
values, the result is 0, i.e.,

⊕
v∈V⊕c f(v) = 0.

Security Against Higher-Order Differential Attacks – State of the Art.
We focus on the case of iterated block ciphers, that is, ciphers consisting of several
iterations of the same round function parameterized by different round keys.
Let us assume the round function itself is of low algebraic degree. To prevent
higher-order differential attacks, ideally one would like to have that after r rounds,
there is no output bit and no vector subspace of Fn2 with dimension d ≤ n−1 such
that the d-th order derivative of the polynomial representation of this output bit
with respect to this subspace is zero. To achieve this goal, one needs to estimate
the growth of the algebraic degree. In other words, predicting the evolution of
the algebraic degree of the cipher when the number of rounds varies is the main
objective in higher-order differential cryptanalysis.

A trivial bound for the algebraic degree of the composition of two functions
F,G : Fn2 → Fn2 is given by

deg(F ◦G) ≤ deg(F ) · deg(G). (2)

This bound allows to estimate the minimum number of rounds necessary to
reach the full degree. However, in general this upper bound does not reflect the
real growth of the algebraic degree. For this reason, the problem of estimating
this growth has been largely studied in the literature. After the initial work
of Canteaut and Videau [21], a tighter upper bound was presented by Boura,
Canteaut, and De Cannière [19] at FSE’11. In there, the authors show how to
deduce a new bound for the algebraic degree of iterated permutations for a
5 Given x =

∑χ
i=0 xi · 2

i for xi ∈ {0, 1}, the hamming weight of x is hw(x) =
∑χ
i=0 xi.
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Fig. 1: The MiMC encryption function with r rounds.

special category of SP networks over (F2n)
t, which includes functions that have

a number t ≥ 1 of balanced S-boxes as their nonlinear layer. Specifically, the
authors show that the algebraic degree of the considered SP network grows almost
exponentially, except when it is close to its maximum.
Proposition 1 ([19]). Let F be a function from FN2 to FN2 corresponding to
the concatenation of t smaller S-boxes S1, ..., St defined over Fn2 . Then, for any
function G from FN2 to FN2 , we have

deg(G ◦ F (·)) ≤ min

{
deg(F ) · deg(G), N − N − deg(G)

γ

}
, where (3)

γ = max
i=1,...,n−1

n− i
n− δi

≤ n− 1, (4)

and where δi is the maximum degree of the product of any i coordinates of any of
the smaller S-boxes.

Thus, the number of rounds necessary to prevent higher-order differential
attacks is in general bigger than the one obtained using the trivial bound in
Eq. (2). After this result, Boura and Canteaut [18] studied the influence of F−1
on the estimation of the algebraic degree of deg(F ◦G). This estimation turns
out to be particularly useful for all ciphers where the nonlinear building blocks
in the round function are not permutations (e.g., as is the case for DES).

2.3 Specification and Previous Analysis of MiMC

MiMC [3] is a key-alternating n-bit block cipher, where in each round the same
n-bit key is added to the state. The nonlinear component of the construction is
the evaluation of the cube function f(x) = x3 over F2n . Additionally, a different
round constant is added in each round to break symmetries, where the first round
constant is 0. The total number of rounds is then

r = dn · log3(2)e ,

and we refer to Fig. 1 for a graphical representation of the encryption function.
MiMC is defined to work over prime fields and binary fields. In this paper,

we focus on the binary field versions of MiMC6, for which the block size n has to
be odd in order for the S-box to be a permutation.
6 Since the only subspaces of Fp, where p is a prime number, are {0} and Fp itself, our
attack does not affect the security of MiMC over prime fields.
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MiMC: Related Attacks in the Literature. The designers recommend MiMC with
dn·log3(2)e rounds [3]. They derive this number of rounds by considering a variety
of different key-recovery attacks on MiMC. According to their analysis, the most
powerful attacks are interpolation [36] and GCD attacks. About higher-order
differential attacks, the authors claim that “the large number of rounds ensures
that the algebraic degree of MiMC in its native field will be maximum or almost
maximum. This naturally thwarts higher-order differential attacks [...]”.

The first attack on MiMC-n/n [40], presented at SAC 2019, targets a reduced-
round version of MiMC proposed by the designers for a scenario in which the
attacker has only limited memory, but it does not affect the security claims
of full-round MiMC. The Feistel version of MiMC was attacked shortly after
[17], by using generic properties of the used Feistel construction (instead of
exploiting properties of the primitive itself). Finally, a specific attack on MiMC
using Gröbner bases was considered in [1]. The authors state that by introducing
a new intermediate variable in each round, the resulting multivariate system
of equations is already a Gröbner basis and thus the first step of a Gröbner
basis attack is for free. However, recovering univariate polynomials from this
representation and then applying techniques like the GCD attack will result in a
prohibitively large computational complexity, since the recovered polynomials
will be of degree ≈ 3r after r rounds. Hence, the authors conclude that MiMC
cannot be attacked directly by using known Gröbner basis techniques.

3 Higher-Order Differentials of Key-Alternating Ciphers

Let us focus on a key-alternating cipher Erk : F2n → F2n defined as

Erk(x) := kr ⊕R(· · ·R(k1 ⊕R(k0 ⊕ x)) · · · ) (5)

over r ≥ 1 rounds, where k0, k1, . . . , kr ∈ F2n are derived from a master key k ∈
F2n using a certain key schedule, and where each round function R : F2n → F2n

is simply defined as some invertible (low-degree) polynomial function

R(x) := ρ0 ⊕
d⊕
i=1

ρi · xi (6)

of degree d ≥ 3 and with ρi ∈ F2n , ρd 6= 0. In the literature, a block cipher that
falls into this category is, for example, MiMC.

Assumption On the Degree of R−1. Let dinv denote the degree of the inverse
round function R−1. For example, if d = 3 and R(x) = x3, the inverse of the
round function is R−1(x) = x

2n+1−1
3 , and thus dinv = 2n+1−1

3 . In the entire paper
we only consider round functions R which satisfy the condition d ≤ dinv. If this
is not the case, an attacker would target the decryption function instead.
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3.1 Growth of the Degree

In this section, we show that the algebraic degree δ of a key-alternating cipher Erk
grows much slower than commonly presented in the literature (more precisely, in
some cases it can grow linearly in the number of rounds and not exponentially).

Proposition 2. Let R be the round function of a key-alternating cipher Erk
with degree d defined as in Eq. (5). The number of rounds7 RLinear necessary to
prevent a (secret-key) zero-sum distinguisher is given by

RLinear =
⌈
logd

(
2n−1 − 1

)⌉
≈ (n− 1) · logd(2). (7)

Proof. To prevent higher-order differential attacks, we require the algebraic
degree of Erk to reach its maximum value n − 1. Due to the relation between
the word-level degree and the algebraic degree, Erk has an algebraic degree of
n − 1 if at least one monomial with the exponent 2n − 2j − 1 (for 0 ≤ j < n)
appears in the polynomial representation. Indeed, note that all these monomials
have an algebraic degree of n − 1. Since the smallest exponent of this form is
2n − 2n−1 − 1 = 2n−1 − 1, and since the degree of Erk after r rounds is at most
dr, we require that dr ≥ 2n−1 − 1 to make x2

n−1−1 appear, or equivalently

r ≥ dlogd(2n−1 − 1)e.

A “Lower Bound” for the Growth of the Degree. We point out that it is
always possible to set up a (secret-key) zero-sum distinguisher if the number of
rounds is smaller than RLinear. However, a number of rounds greater than or
equal to RLinear does not necessarily provide security.

One of the main problems in order to derive a sufficient condition for the
number of rounds that guarantees security is the difficulty of analyzing the non-
vanishing coefficients in the polynomial representation of Erk. Note, in general it
is not easy to give a condition guaranteeing that a particular monomial appears,
since many factors (including the secret key, the constant addition, and the
details of the S-box) influence this result.

Without going into the details, we consider the influence of the S-box in some
concrete examples. Working with R(x) = xd for a certain 3 ≤ d ≤ 2n − 2 (where
d 6= 2d

′
for d′ ∈ N), we focus for simplicity only on two extreme cases8:

– If d = 2d
′
+ 1 for some d′ ∈ N, then the output of a single round is sparse:

(x⊕ y)2
d′+1 = x2

d′+1 ⊕ x2
d′

· y ⊕ y2
d′

· x⊕ y2
d′+1

(note that it contains only 4 terms instead of d+ 1 = 2d
′
+ 2).

7 We denote our results by RLinear to indicate that the algebraic degree grows almost
linearly.

8 By Lucas’s Theorem,
(
n
m

)
≡
∏k
i=0

(
ni
mi

)
(mod 2), where n =

∑k
i=0 ni · 2

i and m =∑k
i=0mi · 2i is the 2-ary expansion of n and m, respectively.
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– If d = 2d
′ − 1 for some d′ ∈ N, then the output of a single round is full, since

(x⊕ y)2
d′−1 =

2d
′
−1⊕

i=0

xi · y2
d′−1−i.

Even if a single round is not sparse, the output of several combined rounds is
not guaranteed to be full (even if it is in general dense). As a concrete example,
while the output of (x⊕ k0)3 ⊕ k1 is full, the same is not true for

((x⊕ k0)3⊕k1)3 ⊕ k2 = x9 ⊕ x8 · k0 ⊕ x6 · k1 ⊕ x4 · k20 · k1 ⊕ x3 · k21
⊕ x2 · (k0 · k21 ⊕ k20 · k21 ⊕ k40 · k1)⊕ x · k80 ⊕ c(k0, k1, k2),

(8)

where both x5 and x7 are missing, and where c(k0, k1, k2) is a function that
depends only on the keys. This simple example emphasizes the difficulty of
analyzing the sparsity of the polynomial that defines Ek.

3.2 Comparison with Related Work in the Literature

Here we compare our number of rounds RLinear necessary to guarantee security
against secret-key zero-sum distinguishers with the one provided in [19] (and
recalled in Proposition 1), denoted by R[BCD11] in the following. We emphasize
that our result is particularly relevant in the case in which the round function
can be described as a low-degree polynomial function over F2n .

Linear Growth versus Exponential Growth. The round numbers RLinear

and R[BCD11] necessary to provide security are obtained by considerations about
the growth of the algebraic degree. Here we analyze the upper bound of the
degree growth of the cipher, denoted resp. by

(
δLinear

)r and by
(
δ[BCD11]

)r
.

The number of rounds R[BCD11] proposed in [19] is based on the assumption
that the algebraic degree of the encryption/decryption function grows almost
exponentially with the number of rounds, except when it is close to its maximum.
Roughly speaking, an upper bound for the degree growth satisfies

(
δ[BCD11]

)r ∈
O(δr), where δ is the algebraic degree of the round function over Fn2 .9

If the round function can be described by a low-degree polynomial over F2n ,
here we show for the first time that a better upper bound can be derived, i.e.,(

δLinear
)r ≤ blog2(dr + 1)c ≈ r · log2(d) ∈ O(r).

9 For example, based on Eq. (3) where deg(G) = δr and deg(F ) = δ, it follows that
the trivial bound (that is, the exponential growth) holds on the first r rounds where

δr+1 ≤ n− n− δr

γ
→ δr ≤ n · γ − 1

δ · γ − 1
≈ n

δ
.
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As a result, since
(
δLinear

)r ∈ O(r) and since
(
δ[BCD11]

)r ∈ O(δr), the round
numbers RLinear and R[BCD11] necessary to provide security grow respectively
linearly and logarithmically in the size n of the field, namely

RLinear ∈ O(n) and R[BCD11] ∈ O(log2(n)).

A concrete example of this will be given in the comparison in Section 4.2.

Remark. We emphasize that every (invertible) S-box/round function in Fn2 can
be rewritten as a polynomial over F2n . The crucial point here is that given
a “random” S-box/round function over Fn2 , its corresponding polynomial over
F2n has in general a high degree (e.g., d ≈ 2n − ε for some ε). In such a case,
even if our argument still holds, the final result becomes meaningless, since
logd(2

n − 1) ≈ log2n−ε(2
n − 1) ≈ 1 is basically constant (i.e., it does not grow

linearly with n). Hence, our results turn out to be relevant only for S-boxes/round
functions for which the corresponding polynomial over F2n has “small” degree
(namely, small compared to the field size, i.e., d� 2n).

4 Distinguishers for Reduced-Round and Full MiMC

Exploiting the previous result, we now discuss the possibility to set up higher-order
differential distinguishers and attacks on MiMC [3]. We show that

(1) MiMC has a security margin of only 1 or 2 round(s) against (secret-key)
zero-sum distinguishers, depending on n, and that

(2) a zero-sum known-key distinguisher can be set up for approximately double
the number of rounds of MiMC.

4.1 Secret-Key Zero-Sum Distinguisher for MiMC

The results just presented allow to set up a nontrivial (secret-key) zero-sum
distinguisher on dlog3(2n−1−1)e−1 rounds of MiMC, where dlog3(2n−1−1)e−1 <
dn · log3(2)e for all n. Consequently, the security margin is reduced to

1 ≤ dn · log3(2)e −
(
dlog3(2n−1 − 1)e − 1

)
≤ 2

rounds. To give some concrete examples, MiMC has 1 round of security margin
for n ∈ {33, 63, 255}, and 2 rounds of security margin for n ∈ {31, 65, 127, 129}.

4.2 Practical Results

In this section, we investigate how our results from Proposition 2 compares
with R[BCD11] and practical results for MiMC. The practical tests10 have been
performed in the following way: instead of computing the ANF of a keyed
10 The source code for the attacks and the tests is available on https://github.com/

IAIK/mimc-analysis.
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permutation (which is expensive even for small field sizes), we evaluate the
higher-order differential zero-sum property (as given in Section 2.2) for a specific
input vector space. Namely, for random keys, random constants, and an input
subspace of dimension n− 1, we look for the minimum number of rounds r for
which the corresponding sum of the ciphertexts is different from zero. Such a
number corresponds to the number of rounds necessary to prevent zero-sum
distinguishers. In order to avoid the influence of weak keys or round constants, we
repeated the tests multiple times (with new random keys and round constants).
The practical number of rounds we give in each row is the smallest number of
rounds among all tested keys and round constants necessary to prevent zero-sum
distinguishers. This means that a potentially higher number of rounds can be
attacked by choosing the keys and round constants in a particular way.

Key-Alternating Ciphers with δ = 2. In order to compare our theoretical
results (namely, RLinear) with the ones already known in the literature (namely,
R[BCD11]), we first provide a lower bound of R[BCD11] – similar to the one
provided in Eq. (3) – for this specific case (proof given in Appendix B).

Lemma 2. Let n ≥ 3. Under the assumption of Proposition 1, let S be an S-box
on S : Fn2 → Fn2 of algebraic degree 2, and let γ be defined as in Proposition 1.
First of all, γ ≤ n+1

2 . Moreover, in the case in which the function F : FN2 → FN2
for N = n · t is the concatenation of t S-boxes just defined, then for any function
G from FN2 to FN2

deg(G ◦ F ) ≤ min

{
deg(G) · deg(F ), N − 2× N − deg(G)

n+ 1

}
. (9)

By experiments and working on the cube S-box S(x) = x3, we found that
γ = n+1

2 for each odd n ≤ 33. For this reason, we conjecture the following.

Conjecture 1. For the cube S-box S(x) = x3 : F2n → F2n , we conjecture that γ
is always equal to n+1

2 for every (odd) n.

Results on MiMC. In Fig. 2 we compare the new bound RLinear with the
bound R[BCD11] (using Eq. (9)), for MiMC-129/129 with a growing number of
rounds. Where R[BCD11] reaches the maximum algebraic degree after a short
number of rounds, RLinear needs almost the full number of rounds suggested. In
Table 2, we investigate how many rounds we need to reach this maximum degree
for MiMC when n is varied. Here we also include the practical number of rounds
R necessary to prevent zero-sum distinguishers for MiMC-n/n. Referring to this
table, we observe that RLinear starts to be greater than R[BCD11] for n ≥ 7,
and the gap is significant already for n = 15. Moreover, we emphasize that the
practical results match the theoretical ones predicted by RLinear in many cases,
and are off by at most one round.

For completeness, we mention that the number of rounds R[BCD11] given in
Table 2 are based on the fact that a single round of MiMC has algebraic degree 2.
However, we point out that better results can be derived by exploiting the fact
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Fig. 2: Different upper bounds of the growth of the algebraic degree for MiMC-
129/129. The trivial bound in black corresponds to the case δ(r) = 2r. A tighter
bound is obtained by exploiting the result by Boura et al. at FSE’11 [19] in blue:
the only difference regards the point (7, 127) versus (7, 128) of the previous case.
Finally, our bound in red shows the growth of the algebraic degree (defined as
log2(3

r + 1)) being linear. The green line denotes the minimum algebraic degree
necessary to prevent higher-order differential attacks.

that two rounds of MiMC have algebraic degree at most 2, and not 22 = 4 (see
Eq. (8)). Using this observation, the number of rounds R[BCD11] can be basically
doubled w.r.t. the one given in Table 2. In any case, for a large S-box size n, the
gap w.r.t. RLinear predicted by our formula is significant.

4.3 Known-Key Zero-Sum Distinguisher for MiMC

A known-key distinguisher is a scenario introduced in [39] where the attacker
knows the key, and it is important in all settings in which no secret material is
present. To succeed, the attacker has to discover some property of the attacked
cipher that holds with a probability higher than for an ideal cipher, or is believed
to be hard to exhibit generically. The goal of a known-key zero-sum distinguisher
is to find a set of plaintexts and ciphertexts whose sums are equal to zero. To
do this, the idea is to exploit the inside-out approach. By choosing a subspace
of texts V, one simply defines the plaintexts as the rdec-round decryption of V
and the ciphertexts as the renc-round encryption of V: such a distinguisher can
cover renc + rdec rounds. Examples of this approach are given in the literature
for Keccak [19,7,11], Luffa [19,7], or PHOTON [50].

In the case of MiMC, the idea is to choose V as a subspace of F2n of dimension
n− 1. The maximum number of encryption rounds renc for which it is possible to
guarantee a zero-sum has been given in the previous paragraph. Based on Section
4.2, we can set up a known-key distinguisher on (more than) full MiMC-n/n. For
our distinguisher on MiMC, we first recall the following result from [18].
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Table 2: Theoretical and practical round numbers necessary to prevent zero-sum
distinguishers for MiMC (a key-alternating cipher where the round function is
just the cube function) over F2n . We assume γ = (n+ 1)/2 for R[BCD11].

Param. Theoretical Practical
n RLinear R[BCD11] (based on Eq. (9)) Practical R
5 3 3 4
7 4 3 5
9 6 4 6
11 7 4 7
13 8 4 9
15 9 4 10
17 11 5 11
33 21 6 21
65 41 7 -
129 81 8 -
257 162 9 -

Proposition 3 (Corollary 3 of [18]). Let F be a permutation of Fn2 . Then,
deg(F−1) = n− 1 if and only if deg(F ) = n− 1.

Corollary 1. Let renc be the number of rounds necessary for MiMC over F2n

to reach its maximum algebraic degree in the encryption direction. The same
number of rounds is necessary for reaching the maximum algebraic degree in the
decryption direction, i.e., rdec = renc = dlog3(2n−1 − 1)e.

It follows that, given a subspace V ⊆ F2n of dimension n− 1, the sums of the
corresponding texts after rdec decryption rounds and renc encryption rounds are
always equal to zero, i.e.,∑

w∈V⊕v
R−(rdec−1)(w) = 0︸ ︷︷ ︸

Zero sum

R−(rdec−1)

←−−−−−−− V ⊕ v Rrenc−1

−−−−−→ 0 =
∑

w∈V⊕v
Rrenc−1(w)︸ ︷︷ ︸

Zero sum

for each v ∈ F2n . Hence, a known-key zero-sum distinguisher can be set up for

2 · (dlog3(2n−1 − 1)e − 1) ≈ 2(n− 1) · log3(2)− 2 =

= n · log3(2)︸ ︷︷ ︸
= full MiMC

+ [(n− 2) · log3(2)− 2]

rounds of MiMC-n/n, which is much more than full MiMC-n/n.

4.4 Impact of the Known-Key Distinguisher on Full MiMC

Sponge Function. In [3], the authors propose a hash function by instantiating
a sponge construction with MiMCπ, a fixed-key version of MiMC. The sponge
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hash function is indifferentiable from a random oracle up to 2c/2 calls to the
internal permutation P (where c is the capacity) if P is modeled as a randomly
chosen permutation [10]. Thus, even if it is not strictly necessary, it is desirable
that MiMC is resistant against known-key distinguishers.

For completeness, we mention that even if there is a way to distinguish
a permutation from a random one, it seems difficult to exploit a zero-sum
distinguisher of the internal permutation of a sponge construction in order to
attack the hash function. To give a concrete example, consider the case of
Keccak: As a consequence of the zero-sum distinguisher found on 18-round
Keccak-f [1600], the number of rounds has been increased from 18 to 24 in the
second round of the SHA-3 competition in order to avoid “non-ideal” properties
(see [19,11] for more details). However, the best known attack on the Keccak
hash function can only be set up when using 6-round Keccak-f [33].

In any case, we remark that such distinguishers based on zero sums cannot be
set up for an arbitrary number of rounds, and they do indeed exploit the internal
properties of a primitive using the inside-out approach found in this paper and
in other literature. Hence, they cannot be considered meaningless.

Other Use Cases. Even though the original MiMC paper only specifies a
sponge-based hash function using MiMC, there are various application-specific
considerations that would make a block-cipher-based approach more advantageous
(like, for example, being forced to use a block size which is too small for a sponge-
based approach). Another way to turn a block cipher into a hash function is to use
a compression function like the Davies–Meyer one together with something like
the Merkle–Damgård construction. Similar to the case of sponge constructions,
the security of such an algorithm is proven in the ideal cipher model [13]. This
choice is, however, not supported by the MiMC designers, who use our results to
support their advice against using a block-cipher-based approach (even though
such implementations can still be found11).

In conclusion, since the attacker has control of the key in such scenarios, it is
desirable for MiMC to be resistant against known- and chosen-key distinguishers,
even if it does not seem to be strictly necessary.

4.5 Results Using the Division Property

Finally, in Appendix C we also present our practical results obtained using
“Mixed Integer Linear Programming (MILP)”, which models the propagation of
the (conventional) bit-based division property.

The bit-based division property [48] was proposed to investigate integral
characteristics of block ciphers at a bit level. With this approach [48], the integral
property of each bit is studied independently. Naturally, this strategy allows to
capture more information of the propagation than the word-level one, and thus
integral characteristics for more rounds can be found with this new technique.

11 https://github.com/HarryR/ethsnarks/blob/master/src/gadgets/mimc.hpp
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For example, the integral distinguishers of SIMON32 have been improved from
10 rounds [46] (the current best result at word level) to 14 rounds [52] (obtained
by the experimental method cited before).

Instead of separating the parity into the two cases “0” and “unknown” as for
the (conventional) bit-based division property, three-subset bit-based division
property [48] was introduced to enhance the accuracy of the conventional one,
where the parity is separated into three sets, i.e., “0”, “1”, and “unknown”. It
shows that the three-subset bit-based division property can indeed be more
accurate than the two-subset bit-based division property for some ciphers [35,53].
However, it becomes harder to efficiently model the three-subset division property
propagation even for ciphers with simple structures. Recently, [34] pointed out
that the three-subset division property has a couple of known problems when
applied to cube attacks, and proposed a modified three-subset bit-based division
without the “unknown” set to overcome these problems. By modeling this modified
version of the bit-based property for our cases with small n-bit S-boxes, where
n ∈ {5, 7, 8}, we can confirm the practical results given in Table 2.

However, as far as we know, it is still an open problem to model the (modified)
three-subset bit-based division property for a larger S-box of size bigger than
8. The S-boxes we focus on in this paper can be described as a (low-degree)
polynomial function in F2n , where n is much larger than 8. Therefore, the division
property, which is commonly believed as the most efficient tool to find the best
integral distinguishers, might not help us as much for the ciphers we focus on.

5 Key-Recovery Attack on MiMC

Since the security margin of MiMC with respect to a (secret-key) zero-sum
distinguisher is of only 1 or 2 round(s) depending on n, it is potentially possible
to extend a distinguisher to a key-recovery attack. Given a subspace V of plaintexts
whose sum is equal to zero after r rounds, we can consider r+1 rounds, partially
guess the last subkey and decrypt, and filter wrong key guesses that do not satisfy
the zero sum:

V ⊕ v Rr(·)−−−→
∑

w∈V⊕v

Rr(w) = 0︸ ︷︷ ︸
Zero sum

R−1(·)←−−−−−−−−
Key guessing

{Rr+1(w) | w ∈ V ⊕ v}︸ ︷︷ ︸
Ciphertexts

.

However, since the subkeys of MiMC are equal to the master key plus constants
and due to the single full-state S-box, even a (partial) decryption of a single
round requires guessing the full key. As a result, a key-recovery attack on full
MiMC based on this strategy seems infeasible.

In this section, we present an alternative strategy that allows to break full-
round MiMC. Since a trivial key-guessing approach is inefficient, our idea is to
construct a polynomial of low degree, which we can then try to solve.

5.1 Strategy of the Attack

From Proposition 2 and Proposition 3, a zero sum can be set up for at least
d(n− 1) log3(2)e − 1 = dn log3(2)e − ε rounds in the encryption and decryption
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direction with a vector space V⊕v of dimension n−1, where ε ∈ {1, 2}. Recalling
that dn · log3(2)e is the number of rounds of full MiMC, we define rKR, rZS as

rZS = d(n− 1) log3(2)e − 1 and rKR = 1 + (dn log3(2)e − d(n− 1) log3(2)e) ,

where rZS is the number of rounds that we can cover with a zero sum, rKR =
dn · log3(2)e − rZS ∈ {1, 2}.

Let fr(x,K) be the function corresponding to r rounds of MiMCk(·) (and
f−r(x,K) be r rounds of decryption, MiMC−1k (·)), where x is the input text and
K is a symbolic variable that represents the secret key k. We intend to use these
functions to create a polynomial from which we can deduce k. More precisely, for
a fixed vector space V ⊕ v, we consider the equations:⊕
x∈MiMC−1

k (V⊕v)

frKR(x,K)

︸ ︷︷ ︸
=F (K)

= 0 and
⊕

x∈MiMCk(V⊕v)

f−rKR(x,K)

︸ ︷︷ ︸
=G(K)

= 0. (10)

After having received all x values from an oracle, the attacker can construct
one of the polynomials F (K) = 0 or G(K) = 0. The secret key k can now be
determined by finding the roots of either of these polynomials.

In the case of MiMC, the degree of a single encryption round is 3, while the
degree of a single decryption round is (2n+1 − 1)/3 (which is significantly larger
than 3 for large n). Due to the low degree growth in the encryption direction of
MiMC, we will focus on finding the roots of F (K) given in Eq. (10).

Finding the Roots of Univariate Polynomials. Let F (X) ∈ F2n [X]/〈X2n +X〉 be
a univariate polynomial of degree D. Furthermore, let M(D) denote a number
such that multiplying two polynomials of degree ≤ D over F2n requires O(M(D))
operations in F2n . For instance, a straightforward method would yield M(D) =
D2, whereas M(D) = D · log(D) · log log(D) holds for methods based on Fast
Fourier Transforms [22]. The Berlekamp algorithm for determining the roots of
F is then expected to require C ∈ O (M(D) log(D) log (2nD)) operations in F2n

(see [29, Chapter 14.5]).

5.2 Details of the Attack

Assume V ⊕ v is a coset of a subspace V of dimension n− 1. We define

W = MiMC−1k (V ⊕ v) ≡ {MiMC−1k (x) ∈ F2n | ∀x ∈ V ⊕ v}

under a fixed secret key k. Here, we present the details of the attack for the cases
rKR = 1 and rKR = 2, and we analyze the computational cost. We introduce the
following notation:

∀d ∈ N : Pd :=
⊕
x∈W

xd, (11)

17



Algorithm 1: Attack on MiMC – Case: rKR = 1.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q ← p2.
6 P3 ←P3 ⊕ q · p.
7 P2 ← (P1)

2.
8 F (K) = P1 ·K2 ⊕P2 ·K ⊕P3.
9 Find a solution k of F (K) = 0 – see Section 5.1 (filter multiple solutions by

brute force).
10 return k.

and whenever possible we will make use of the fact that squaring is a linear
operation over F2n . More specifically, computing P2d only requires a single
squaring operation once Pd is calculated:

P2d :=
⊕
x∈W

x2d =

(⊕
x∈W

xd

)2

= P2
d . (12)

This allows to reduce the total number of XOR operations.

Case: rKR = 1. Since a single round of MiMC is described by (x ⊕ k)3 =
k3 ⊕ k2 · x⊕ k · x2 ⊕ x3, the function F (K) is given by

F (K) = K2 ·P1 ⊕K ·P2 ⊕P3.

A complete pseudo code of the attack can be found in Algorithm 1, which
makes it easy to see that the cost of the attack is well approximated by

– |V| = 2n−1 multiplications,
– |V| = 2n−1 + 1 squarings,
– 2 · |V|+ 1 = 2n + 1 n-bit XOR operations,
– cost of finding a solution of an univariate polynomial equation of degree 2.

Case: rKR = 2. The attack for the case rKR = 2 is similar. From Eq. (8) (using
k0 = k, k1 = k ⊕ c1 and k2 = 0), the function F (K) is described by

F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)

⊕K2 · (P4 · c1 ⊕P3 ⊕P1 · c21)⊕K · (P8 ⊕P6 ⊕P2 · c21)⊕ (P9 ⊕P6 · c1 ⊕P3 · c21),

where c1 is the round constant of the first round. As also noted in Section 3.1;
while P9 is the largest Pd in this expression, both P5 and P7 are missing, and
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Algorithm 2: Attack on MiMC – Case: rKR = 2.
Input: Vector subspace V of ciphertexts of dimension dim(V) = n− 1.
Output: Secret key k.

1 P1,P2,P3, ...,P9 ← 0.
2 for x ∈ V ⊕ v do
3 p← MiMC−1

k (x) from the decryption oracle.
4 P1 ←P1 ⊕ p.
5 q2 ← p2.
6 q3 ← q2 · p.
7 P3 ←P3 ⊕ q3.
8 q6 ← q23 .
9 P9 ←P9 ⊕ q6 · q3.

10 P2 ← (P1)
2.

11 P4 ← (P2)
2.

12 P6 ← (P3)
2.

13 P8 ← (P4)
2.

14 F (K) = K8 ·P1 ⊕K5 ·P2 ⊕K4 · (P2 · c1 ⊕P1)⊕K3 · (P4 ⊕P2)⊕K2 ·
(P4 · c1 ⊕P3 ⊕P1 · c21)⊕K · (P8 ⊕P6 ⊕P2 · c21)⊕ (P9 ⊕P6 · c1 ⊕P3 · c21).

15 Find a solution k of F (K) = 0 (filter multiple solutions by brute force).
16 return k.

hence do not need to be computed. A complete pseudo code of the attack can be
found in Algorithm 2. Again, it is easy to see that the cost of the attack is well
approximated by

– 2 · |V|+ 6 = 2n + 6 multiplications,
– 2 · |V|+ 4 = 2n + 4 squarings,
– 3 · |V|+ 8 = 3 · 2n−1 + 8 n-bit XOR operations,
– cost of finding a solution to an univariate polynomial equation of degree 8.

5.3 Complexity Estimation

As we have just seen, our attack requires half of the codebook (namely, 2n−1
chosen ciphertexts). Here we show that our attacks are better than brute force
(from the computational point of view). In order to do this, we measure the time
complexities in equivalent encryption operations.

A single encryption round in MiMC requires one addition, one squaring
operation, and one multiplication in the extension field. Since the cost of a single
n-bit XOR operation is much smaller than the cost of a multiplication over F2n ,
and since the number of XOR operations is similar to the number of multiplications,
in the following we do not consider XOR operations. After this simplification, we
find that the time complexity of rKR = 1 is dominated by 2n−1 squaring and
multiplication operations or, equivalently, 2n−1 encryption rounds. A similar line
of reasoning reveals that rKR = 2 is comparable to 2n encryption rounds.

Since the cost of solving a single low-degree equation is negligible, and one
unit of encryption contains dn · log3(2)e rounds, it follows that the cost of our
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attacks is about
rKR · 2n−1

dn · log3(2)e
encryptions

for rKR ∈ {1, 2}. That is, the computational cost of our attacks is upper-bounded
by 2n−log2(n)+1, and so smaller than the cost of a brute-force attack (namely, 2n
encryptions) for each n ≥ 3.

5.4 Practical Verification

We implemented Algorithm 1 and Algorithm 2 in the computer algebra system
Magma, and verified both algorithms for all odd integers n ∈ [5, 33]. We note that
Algorithm 1 (rKR = 1) yields the correct answer for all the tested 5 ≤ n ≤ 33,
even if dn log3(2)e 6= d(n− 1) log3(2)e. Namely, in practice it is possible to cover
one more round with a zero sum than what we theoretically expect. In other
words, d(n− 1) log3(2)e rounds of the decryption function of MiMC fail to obtain
the maximum algebraic degree for these parameters, which is reached after
d(n− 1) log3(2)e + 1 rounds (c.f. Appendix A for more details on the degree
growth of MiMC−1). Since we are not able to prove this behavior for larger values
of n, we leave it as an open question whether Algorithm 1 can be applied to
MiMC for odd integers n > 33.

Considerations on Data and Computational Costs of this Attack. A
possible drawback of our attack is obviously the cost. Since we are not able to
provide an estimation of the growth of the degree in the decryption direction, we
can only exploit the fact that a certain number of rounds are necessary in order
to achieve maximum degree. It follows that the attacker is forced to use half of
the code book in order to set up the attack, which has also an impact on the
computational cost.

Even if our attack is not practical, we believe it provides valuable theoretical
insight. It is also in line with several other attacks found in the literature, that
are set up under a similar assumption on the data and/or computational cost. To
give some concrete examples, consider the case of zero-correlation attacks [15],
which exploit linear approximations that hold with probability 1

2 . The crucial
limitation for basic zero-correlation linear cryptanalysis is that it requires half
of the code book. Only follow-up works have been able to reduce this data
requirement, including the more powerful distinguisher called multiple zero-
correlation (MPZC) linear distinguisher proposed in [16], which exploits the fact
that there are numerous zero-correlation linear approximations in susceptible
ciphers.

Splice-and-cut meet-in-the-middle attacks and biclique attacks are other
examples of attacks that often come with time complexities relatively close to
exhaustive search. Indeed, an extension of the biclique approach first described
in [14] has a brute-force phase for a number of rounds as part of the attack. It
can in principle work for any number of rounds and is hence best described as a
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particular optimization of brute-force key guessing. However, later variants then
showed examples where the gain over brute force was in the order of millions [37].

Finally, we point out that any attack that is better than brute force is relevant,
even if it requires unrealistic amounts of data or storage. Indeed, the main goal
of cryptanalysis is finding a “certificated weakness”, that is, an evidence that the
cipher does not perform as advertised. In other words, in academic cryptography,
a weakness or a break in a scheme is usually defined quite conservatively: it may
require impractical amounts of time, memory, or plaintexts.

The Number of Rounds Needed for Security. It may be of interest to
estimate the number of rounds needed for MiMC to be resistant against this
attack. To this end, we bound the operations needed to compute all monomials
of odd degree, up to a maximum degree D (see Appendix B for a proof):

Lemma 3. Let 1 ≤ D ≤ 2n − 1 and x ∈ F2n . The overall number of operations
needed to compute all odd powers xi for i ∈ [3, D] is given by 1 squaring and⌊
D−1
2

⌋
multiplications.

Assume for simplicity that dn · log3(2)e − 1 rounds can be covered by a zero
sum, and that the cost of solving the final polynomial equation is negligible.
As before, we expect the time complexity to be dominated by the number of
operations needed to construct the polynomial F (K). Since the degree of this
polynomial is upper-bounded by 3rKR , by Lemma 3 at most (3rRK − 1)/2× 2n−2

multiplications are required to compute all monomials with odd exponents in
F (K) (where all monomials with even exponents are computed via Eq. (12)).

Since one encryption of MiMC costs dn · log3(2)e multiplications, the number
of extra rounds ρ for MiMC must satisfy

(3ρ+1 − 1) · 2n−2 ≥ 2n · (dn · log3(2)e+ ρ)

in order to provide security against our attack just presented. This would, for
example, require at least ρ = 5 extra rounds for n = 129. We remark that this
rough estimation is not intended to replace the number of rounds proposed by the
designers.

6 An Algebraic Attack on Ciphers with Low-Degree
Round Functions

In this section, we generalize the key-recovery attack on MiMC described in
Section 5 and discuss a generic attack strategy for any block cipher working over
(F2n)

t, where n, t ∈ N, n, t ≥ 1.

6.1 Setting

We consider an r-round block cipher Erk : (F2n)
t → (F2n)

t with

Erk(x) = (Rr ◦Rr−1 ◦ · · · ◦R1)(x⊕ k),
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and where R,Ri : (F2n)
t → (F2n)

t are defined by Ri(x) = R(x)⊕ k(i). Then we
can write

Erk(x) = (Erk,1(x), . . . , E
r
k,t(x)),

where Erk,i : (F2n)
t → F2n . The compositional inverse of Erk is denoted by E−rk .

We assume that

(1) the i-th round key k(i) ∈ (F2n)
t is derived from the master key k =

(k1, . . . , kt) ∈ (F2n)
t by some low-degree key schedule, and that

(2) the round function R can be described by a low-degree polynomial

R(x = (x1, . . . , xt)) =
⊕

j=(j1,...,jt)∈{0,1,...,2n−1}t
j1+...+jt≤d

αj · xj11 · ... · x
jt
t

of degree d with coefficients αj ∈ (F2n)
t.

We highlight that several primitives satisfy above assumptions and do indeed use
low-degree round functions (e.g., LowMC [4] and HadesMiMC [31]).

Our attack requires the symbolic evaluation of the encryption function Er
′

k for
a small number of rounds r′ to be relatively easy, which motivates the requirements
of a low-degree round function R and a low degree key-schedule. This ensures
that the polynomial representation of Er

′

k can be computed efficiently.

6.2 Strategy of the Attack

The idea of our generic attack is to recover the secret master key k of a cipher
Erk by exploiting a given zero-sum distinguisher over the subset X ⊆ (F2n)

t

covering 1 ≤ rZS < r rounds in encryption or decryption direction12. For the sake
of simplicity, we follow the approach of the attack on MiMC in Section 5 and
assume the zero-sum distinguisher covers the decryption direction.

Roughly speaking, in our attack we symbolically evaluate ErKR
k with respect

to the remaining rKR := r − rZS rounds in encryption direction and obtain
polynomials F1(K1, . . . ,Kt), . . . , Ft(K1, . . . ,Kt) over F2n with the master key
words Ki as indeterminates. Eventually we solve the polynomial equation system
F1(k1, . . . , kt) = · · · = Ft(k1, . . . , kt) = 0 for k1, . . . , kt ∈ F2n .

Assuming the attacker can set up a zero-sum distinguisher in the decryption
direction (note that Erk = ErZS

k ◦ErKR
k and E−rZS

k = ErKR
k ◦E−rk ), we now describe

the main idea behind our attack: having a zero sum after rZS rounds of decryption
means there is a proper subset X ⊆ (F2n)

t such that⊕
x∈X

E−rZS
k (x) = 0.

12 As done before, we assume that the degree of the round function R is smaller than
the degree of the inverse round function R−1. If this is not the case, it is sufficient to
work on the decryption direction instead of the encryption one.
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Algorithm 3: Attack on a generic cipher Erk over (F2n)
t.

Input: Number of rounds r of the cipher Erk, number of rounds rZS in
decryption direction for which the zero sum holds, a subset X ⊆ (F2n)

t

satisfying the zero sum
⊕

x∈X E
−rZS
k (x) = 0.

Output: Secret key k = (k1, . . . , kt).
1 for each (i1, . . . , it) ∈ {0, 1, . . . , D}t with i1 + ...+ it ≤ D do
2 Pi1,...,it ← 0.
3 rKR ← r − rZS.
4 Let D = D(rKR) be the degree of ErKR

k .
5 for x ∈ X do
6 y = (y1, ..., yt)← E−rk (x) from the decryption oracle.
7 for each (i1, . . . , it) ∈ {0, 1, . . . , D}t with i1 + ...+ it ≤ D do
8 Pi1,...,it ←Pi1,...,it

⊕
yi11 · ... · y

it
t .

9 for each 1 ≤ i ≤ t do
10 Compute the symbolic evaluation

fi = fi(Y1, . . . , Yt,K1, . . . ,Kt) = ErKR
(K1,...,Kt),i

(X1, . . . , Xt) of word i in
encryption direction for rKR rounds.

11 for each Y i11 . . . Y itt ·K
j1
1 . . .Kjt

t in fi do
12 Replace Y i11 . . . Y itt ·K

j1
1 . . .Kjt

t with “Pi1,...,it ·K
j1
1 · ... ·K

jt
t ”.

13 Fi(K1, . . . ,Kt)← fi(K1, . . . ,Kt).
14 Find a solution k = (k1, . . . , kt) of F1(k1, . . . , kt) = · · · = Ft(k1, . . . , kt) = 0.
15 return k = (k1, . . . , kt).

We then exploit the relation

0 =
⊕
x∈X

E−rZS
k (x) =

⊕
x∈X

(
ErKR
k ◦ E−rk

)
(x) =

⊕
y∈E−r

k (X )

ErKR
k (y)

to set up the following equations (1 ≤ i ≤ t) over F2n in the variables k1, . . . , kt:

Fi(k1, . . . , kt) :=
⊕

y∈E−r
k (X )

ErKR
(k1,...,kt),i

(y) = 0. (13)

Here ErKR
(k1,...,kt),i

(y) denotes the symbolic evaluation of word i after rKR rounds
in encryption direction with the master key words as variables k1, . . . , kt and
evaluated at y ∈ F2n . Once we have set up the equation system arising from
Eq. (13), we apply Gröbner basis techniques to solve this system over F2n for the
key variables k1, . . . , kt. In Algorithm 3 we summarize our approach and present
a pseudo code of the generic attack strategy.

6.3 Complexity Estimations

For our complexity estimations we count finite field operations over F2n . We
consider multiplications and squarings separately, since the squaring operation is
an F2-linear operation in fields of characteristic 2.
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As is the case for the attack on MiMC in Section 5, the generic attack
strategy is composed of two steps. First, we construct the system of equations
Fi(k1, . . . , kt) = 0 for 1 ≤ i ≤ t, and then we solve this system over F2n for
k1, k2, . . . , kt. We recall that the cost of the first step grows with the size of X ,
the subset needed for a zero sum. Since estimating the complexity for these steps
more precisely would require a thorough analysis of the particular polynomial
system in question, in the following we briefly describe these two steps without
going into all the details an attacker could potentially exploit.

Setting Up the Equation System. For the equation system, we first need to
symbolically evaluate rKR encryption rounds, which results in t polynomials

ErKR
(K1,...,Kt),i

(Y1, . . . , Yt), 1 ≤ i ≤ t,

of degree D = D(rKR) over F2n in variables K1, . . . ,Kt and Y1, . . . , Yt. Every
monomial Y i11 · · ·Y

it
t in any polynomial ErKR

(K1,...,Kt),i
(Y1, . . . , Yt) needs to be

replaced by
Pi1,...,it :=

⊕
y=(y1,...,yt)∈E−r

k (X )

yi11 · ... · y
it
t ,

leaving us with t polynomials in the key variables K1, . . . ,Kt as indeterminates.
Here we need an estimation for computing all Pi1,...,it , or equivalently to write
down a system of equations of the form as in Eq. (13).

For t = 1, the number of multiplications and squarings needed was stated in
Lemma 3. The situation is more complicated for t ≥ 2, since several strategies can
be used to compute the monomials and minimize the number of multiplications,
the number of squarings, or the memory cost. Since this depends on the details
of the considered primitives, we limit ourselves to present a high-level analysis
of two extreme cases in Appendix B, namely n = 1 (which corresponds e.g. to
LowMC) and n ≥ 3 and D ≤ 2n − 1 (which corresponds e.g. to HadesMiMC).

Complexity Estimation for Solving the Equation System. For t > 1, the
resulting equation system is a multivariate polynomial system. If we additionally
have n > 1, the standard strategy for finding the solutions of such systems13 is
through a Gröbner basis [24]. Such an attack essentially consists of first computing
a Gröbner basis in degrevlex order, then converting it to the lex order, and finally
factorizing a univariate polynomial in this basis and back-substituting its roots.
It is in general a hard problem to estimate the complexity needed for these steps.
As largely done in the literature, we assume that the most expensive step is
the first one (i.e., computing a Gröbner basis in degrevlex order). For generic
systems, the complexity of this step for a system of N polynomials fi in V

variables is O
((

V+Dreg
Dreg

)ω)
operations over the base field F, where Dreg is the

degree of regularity [8] and 2 ≤ ω < 3 is the linear algebra constant. The degree

13 Strategies that involve guessing (parts of) the variables may be more viable over F2.
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of regularity depends on the number of polynomials N, their degrees di, as well
as the algebraic structure of the system. Closed-form formulas for Dreg are only
known for some special cases: e.g. if V = N (namely, the case considered in this
attack), a simple closed form is given by Dreg = 1 +

∑N−1
i=0 (di − 1).

As discussed later in details, we remark that this may be a pessimistic upper
bound: the algebraically simple ciphers we are considering can end up exhibiting
more algebraic structure than what is the case for generic systems.

6.4 Comparison with Related Work

Cube Attacks. Our attack relies on similar properties as cube attacks [49,26],
which exploit low-degree relations between components of a cryptosystem. Given
a cipher with secret variables x ∈ Fn2 and public variables v ∈ Fm2 , the idea is to
regard it as a polynomial of x and v, and denote it as f(x,v). For a randomly
chosen set I = {i1, i2, ..., i|I|} ⊂ {1, . . . ,m}, f(x,v) can be represented uniquely
as

f(x,v) = tI · p(x,v) + q(x,v),

where tI = vi1 · · · vi|I| , the polynomial p(x,v) only relates to vs’s (s /∈ I) and the
secret key bits x, and q(x,v) misses at least one variable in tI . A specific structure
where all variables in the set {vi1 , vi2 , · · · , vi|I|} (with indices determined by the
set I) take all possible values and where the remaining variables are static is
called a cube of f and is denoted by CI . The sum of f over the cube CI⊕

CI
f(x,v) =

⊕
CI

(tI · p(x,v) + q(x,v)) = p(x,v)

is called the superpoly of the cube CI , and it is found by the attacker during
an offline phase. Then, in the online phase, they query the encryption oracle
with the cube, and finally get the value of the superpoly. The secret key can be
recovered easily when the polynomial p(x,v) is simple.

Compared to our attack, cube attacks involve the additional (offline) step
of identifying suitable superpolys. Note that this attack does not exploit the
algebraic structure of the cipher. Instead, the goal of the sum over the cube is to
“eliminate” all the details of the attacked scheme (apart from linear relations in the
key). In this sense, our attack is different, since it makes heavy use of the algebraic
structure of the cipher which is evaluated symbolically. The disadvantage regards
the strong assumption that some rounds of the cipher can be described by simple
algebraic equations. On the other hand, this allows to work at word level in the
case of ciphers natively defined in (F2n)

t, and no (potentially expensive) offline
phase is needed. Our method is thus particularly relevant for primitives designed
for new applications such as STARKs and MPC, which work over larger fields.

Optimized Interpolation Attacks [25]. One type of optimized interpolation
attacks was described in [25], where the authors use it to find attacks on reduced-
round versions of LowMC. A similar attack has been proposed in [27], and later
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on it was also used to break the full-round version of the Frit permutation in
an Even–Mansour setting [28].

The overall strategy of this interpolation attack is to first find a distinguisher
(for example a constant sum in the encryption direction in the case of LowMC)
and to then attack the construction by finding the unknown monomials of the
sums of the symbolic representations in the inverse direction. By determining
these (key-dependent) monomials, the full key can eventually be found. Since this
approach has some similarities with our proposal, here we describe the differences
between these two strategies in detail.

The main difference regarding the two strategies concerns the way in which
the system of equations Fi(K) = 0 is constructed and consequently solved:

– In [25], the idea is to construct the function using a “standard” interpolation
technique. Specifically, the attacker does not care about the specification of
the monomials of F , which are simply considered as unknowns. Hence, the
idea is to recover (interpolate) the unknown coefficients of FK(C), and then
use various ad-hoc techniques (which are not part of the framework described
in this section) in order to recover the actual secret key.

– In our case, we heavily exploit the simple algebraic structure of the round
function in order to construct the system of equations F (K) = 0. In other
words, the system of equations is constructed by using a symbolic evaluation
and not by interpolation techniques.

Each one of the two strategies has advantages and disadvantages. Therefore, the
choice of which variant to use in order to optimize the attack depends on the
details of the underlying cryptosystem:

Data Cost. In the first case, more data is necessary in order to set up the
interpolation step. Indeed, besides the data necessary for the distinguisher,
the attacker requires more data in order to recover the coefficients of F . In
the second case, however, the data for the distinguisher is sufficient.

Assumption on the Round Function. For the symbolic evaluation, our at-
tack assumes the round function to exhibit a simple and low-degree algebraic
structure. This is not necessary in the other case, in which the attacker can
(mostly) ignore the algebraic structure, which is then found by interpolation.

We emphasize that the possibility to set up one of the two attacks does not
imply the possibility to set up the other one. For example, it seems hard to use
the attack presented in [25] against full-round MiMC, while we show that our
strategy can indeed break it. Indeed, since we already need 2n−1 data for the
distinguishing property (i.e., half of the code book), we do not see how to apply
the approach from [25] to MiMC without further increasing the data complexity
due to data needed for the interpolation step.

Higher-Order Diff. Attack on CAST [42]. In an attack on the CAST cipher
from 1998 [42], the authors use a higher-order differential distinguisher to set
up an equation system and finally solve this systems for the key variables. The

26



difference to our approach is that the authors work with (linearized) equation
systems over F2 and thus only with linear equations. While this is sufficient for
CAST, working at bit level is in general much more expensive than working on
word level when focusing on ciphers that are natively defined at word level.

6.5 Concluding Remarks

Better Cost Estimations. The previous estimations of the complexity of the
attacks can be improved by exploiting the details of the cipher. To give a concrete
example, consider the case of MiMC given in Algorithm 2: The attack and its
computational complexity benefit from the fact that F (K) does not depend on
P5 or P7. As another example, consider the case of an SPN cipher where the
round function is defined as

R(x = (x1, . . . , xt)) =M · (S(x1), S(x2), ..., S(xt)),

where M ∈ (F2n)
t×t and S : F2n → F2n . The cost of the attack can potentially

be reduced by taking into account the fact that all monomials in the polynomial
representation R depend only on a single variable xi.

Using Dedicated Tools. While for MiMC it is possible to handle the symbolic
evaluation of F (K), this may not be the case for more complicated ciphers like
LowMC or HadesMiMC. In these cases, we suggest to set up a tool or script
which allows to deal with the symbolic evaluation of F (K) in an easier way.

Minimizing the Cost of the Attack. As already pointed out, two steps mainly
contribute to the cost of the attack. In general, it could make sense to balance
the costs of the two steps in order to either minimize the total cost of the attack
or maximize the number of rounds that can be broken.

In more detail, consider the case in which the cost of the attack is well
approximated by the cost of constructing the system of equations Fi(K) = 0.
Since this cost grows with the size of the subspace V, one strategy could be to
consider a smaller subset14 X . Obviously, this implies in general the possibility
to cover less rounds rZS using a zero-sum distinguisher, which means that more
rounds rKR must be covered in general. However, the overall cost of the attack
may benefit from this strategy.

On the other hand, the case that the attack cost is well approximated by the
cost of solving the system of equations Fi(K) = 0 requires the opposite strategy.

Further Generalization: Ciphers over Fp. Finally, the attack strategy can be
generalized to include ciphers over (Fp)t for a prime p. This is of particular
importance since many of the new applications named in the introduction (e.g.,
STARKs and MPC) natively work over Fp, which means that many of the recently
14 We note that we cannot adopt this strategy for MiMC since we are not able to

predict the growth of the degree of MiMC−1. With such an estimation, the strategy
proposed here can potentially reduce the cost of the attack.
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proposed primitives are natively constructed over Fp. We remark that the strategy
of the attack does not depend on the details of the field F. Hence, the only thing
that seems to preclude this possibility seems to be a lack of knowledge regarding
efficient distinguishers over (Fp)t. Indeed, while it is well-known how to find a
zero-sum distinguisher over boolean fields (e.g., by exploiting division property
tools present in the literature [47,51,53]), the same is not yet true for prime fields.
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Scripts and Implementations

The MAGMA script Magma_Script_MiMC_Univariate_Attack has two input
parameters: N and version. N is an odd integer that decides the block size of
MiMC, i.e., MiMC-N/N . The second parameter version ∈ {1, 2} determines
whether to use Algorithm 1 or Algorithm 2. The script creates an instance
of MiMC-N/N , and runs a key-recovery attack using the chosen algorithm. It
outputs the roots of F (K), as well as the secret key k for comparison.

We also provide the file zero_sum_tester.cpp, which contains the code we
used to find the zero sums for MiMC. It accepts three parameters: the field size,
the number of rounds, and the dimension of the vector space.

A Algebraic Degree Growth of MiMC−1

While not needed for our attack, we also analyzed the degree growth of MiMC
in the decryption direction. The results of the tests we applied and the size of
the vector space dimensions necessary for zero-sum distinguishers are shown in
Table 3.

As we can see, the algebraic degree does not increase in the second round
for the instances we tested, and after that it starts growing slowly. Moreover,
it seems to remain consistent after roughly half the number of rounds, until it
finally reaches its maximum in the final round.

n
r′

2 3 4 5 6 7 8 9 10 11 12

7 5 6 6 – – – – – – – –
9 6 7 8 8 – – – – – – –
11 7 9 9 10 10 – – – – – –
13 8 10 11 11 12 12 12 – – – –
15 9 11 12 13 14 14 14 14 – – –
17 10 13 14 15 16 16 16 16 16 – –
19 11 14 15 16 17 18 18 18 18 18 –

Table 3: Data complexities necessary for zero sums when evaluating MiMC in
decryption direction for various block sizes and round numbers.

B Proofs

Proof of Lemma 2. By definition, note that δi ≤ 2i and that δi ≤ n− 1 for each
i. Since 2i ≤ n− 1 if i ≤ (n− 1)/2, it follows that

γ = max
1≤i≤n−1

(
n− i
n− δi

)
≤ max

{
max

1≤i≤n−1
2

(
n− i
n− 2i

)
;n− n− 1

2
− 1

}
=
n+ 1

2
,

II



where maxn−1
2 +1≤i≤n−1

(
n−i
n−δi

)
= maxn−1

2 +1≤i≤n−1

(
n−i

n−(n−1)

)
= n − n−1

2 −
1. The bound given in Eq. (9) is obtained by replacing γ with (n+ 1)/2 in
Eq. (3).

Proof of Lemma 3. From x, calculate and store q := x2. The odd powers of x
can now be successively computed as xi+2 = xi · q for all odd integers i in the
interval [1, D−2]. This yield a total of 1 squaring and

⌊
D−1
2

⌋
multiplications.

The Number of Multiplications Needed in Section 6.3

Here we limit ourselves to analyze two extreme cases, namely

(1) n = 1, and
(2) n ≥ 3 and D ≤ 2n − 1.

In the first case, the number of multiplications can be upper-bounded by the
number of different monomials, namely

D∑
i=1

(
t

i

)
where D < t. This is done through successive multiplications by degree, i.e. every
monomial of degree d can be computed by combining a monomial of degree d− 1
with a single multiplication.

In the second case, we propose the following Lemma.

Lemma 4. Let D be an integer with 1 ≤ D ≤ 2n − 1. The number of non-
squaring based multiplications needed to compute all monomials of total degree at
most D in t variables over F2n is upper-bounded by(

D∑
i=2

(
i+ t− 1

t− 1

))
− t · D − 1

2

Proof. It is a well-known fact that the number of different monomials of degree
d in t variables is

Md =

(
d+ t− 1

t− 1

)
.

As above we use a successive multiplication, where every monomial of degree
d can be computed by combining a monomial of degree d − 1 with a single
multiplication. It follows that the number of multiplications needed to compute
all monomials in at least two variables up to degree D is upper-bounded by

M =

D∑
i=2

(Mi − t) =

(
D∑
i=2

(
i+ t− 1

t− 1

))
− (D − 1)t.

Lastly, we add the t univariate monomials to M , which by Lemma 3 amounts to
at most t · D−12 multiplications.
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We note that a monomial with all univariate degrees being even can be
generated by squaring a lower-degree monomial. This fact is not considered in
Lemma 4 since such a squaring is counted as a non-squaring based multiplication.
Hence, there might be a different trade-off between squarings and non-squaring
based multiplications when counting the number of multiplications for computing
all monomials of total degree at most D in t variables. Potentially, the trade-off
might be improved in favour of squarings when dealing with a concrete cipher.

C Division Property and Automatic Tools

In this section, we evaluate some of our practical cases by mixed integer linear
programming (MILP) based on the division property. By using this tool, we
show that we can get exactly the same zero-sum distinguisher as the practical
implementation. However, the biggest limitation for the new tool is that it can
only handle S-boxes of small size (e.g., 9 bits), while our new bound RLinear has
no limitation on the S-box size.

C.1 Brief Recall: (Word-Based) Division Property

The division property [46] – proposed by Todo at Eurocrypt 2015 – can be seen
as a generalization of integral and higher-order differential distinguishers, and
was used to present new generic distinguishers against both SPN and Feistel
constructions.

We first introduce some notations for bit vectors. For any n-bit vector x and
0 ≤ i ≤ n− 1, we denote xi as its i-th bit. Given two n-bit vectors u and x, we
define πu(x) = Πn−1

i=0 x
ui
i . Moreover, u � k denotes ui > ki for all i.

Definition 2 (Word-Based Division Property[46]). Let X be a multiset of
n-bit vectors, and let k, 0 ≤ k ≤ n, be an integer. When the multiset X has the
division property Dnk , it fulfills ∀u ∈ Fn2 s.t. hw(u) < k:⊕

x∈X
πu(x) = 0.

The novelty of the division property is that it introduces intermediate prop-
erties Dnk for 3 ≤ k ≤ n − 1, which do not appear in classical integral attacks.
These intermediate properties allow to easily propagate the property through
the successive rounds of a cipher by capturing some information resulting from
the algebraic degree of the round function. As it is already known, the original
division property improved many previous integral distinguishers for ciphers.
However, since it treated the round function at word level, by its nature some
propagation information through it cannot be captured.

C.2 Two-Subset Bit-Based Division Property

Todo and Morii [48] introduced the bit-based division property where the propaga-
tion of the integral property of the concrete structures of the target primitives can
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be treated at bit level. As a consequence, more rounds of integral characteristics
have been found with this new technique [60,57,50,58].

In the bit-based division property, two cases are considered where u can be
classified into two sets, which is therefore called conventional bit-based division
property or two-subset bit-based division property (2-Set-BDP), according to
which the parity of πu(x) is even or unknown. The definition of the two-subset
bit-based division property is as follows.

Definition 3 (Two-Subset Bit-Based Division Property [48]). Let X be
a multiset of n-bit vectors, and K be a set of n-bit vectors. When the multiset X
has the division property D1n

K , it fulfills the following conditions:

⊕
x∈X

πu(x) =

{
unknown, if ∃ k ∈ K s.t. u � k,
0, otherwise.

Our Practical Results with the Two-Subset Bit-Based Division Prop-
erty. We model the propagation of 2-Set-BDP using a MILP-aided tool [60].

“Small” S-Box. We model the S-boxes of size 5 and 7 by a set of linear equations
as in [60]. Given an S-box, we first compute a set of vectors A (often called
division trail table) which is composed of all division property propagation pairs,
and then calculate the H-Representation of the convex hull of A by using the
inequality_generator() function in SageMath,15 and this will return a set of
linear inequalities L that are the H-Representation of Conv(A). Since L is an
accurate description of A, adding all the linear inequalities in L to the MILP
model of searching for the division trails of a block cipher, will always return a
valid division trail. A greedy algorithm is usually applied to reduce the number
of inequalities in order to make the MILP problem computationally feasible.

By the above method, we can add 21 and 1216 inequalities respectively for
the 5-bit and 7-bit cube S-boxes in Table 2 to the MILP model. After calling the
MILP solvers, we find a 2-round zero-sum property for them, i.e., this MILP-aided
evaluation only provides us a lower bound of 3 rounds that are necessary to
prevent zero-sum distinguisher attacks. As one can see, for n = 5, the result
obtained by this automatic tool is 1 round less than the practical result obtained
by the implementation experiments (4 rounds); and for n = 7, it is 2 rounds less
than the practical result. It seems that the accuracy of the MILP automatic tool
based on the 2-Set-BDP is much reduced, which refutes the commonly believed
fact that one can always find the best integral distinguisher using 2-Set-BDP for
block ciphers, even when not taking the secret keys into consideration.

“Big” S-box. As far as we know, there is no efficient method that can describe the
division trail table of an S-box larger than 8 bits. In fact, generating the linear
inequalities for the H-representation of the convex hull, often by using SageMath,
requires an exponential complexity in the number of input and output bits. For
15 https://www.sagemath.org
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example, for our 9-bit cube S-box, we obtain 15612 equations with the help
of SageMath and a greedy algorithm. Such a large number of linear equations
make the whole MILP system quite heavy for the off-shell optimization solvers,
which might eventually result in out-of-memory errors. Sasaki and Todo [45]
demonstrated an exhaustive list of compact representations in logical condition
modeling against 4-bit S-boxes, but it is not applicable to larger S-boxes. In
[54], Quine-McCluskey and the Espresso algorithm is proposed as a tool to
generate constraint inequalities for 8-bit S-boxes, unfortunately this is not helpful
especially for our applications with S-boxes much larger than 8 bits (e.g., 129
bits).

Therefore, we choose to model larger S-boxes by their ANF. Assume the n-bit
S-box y = f(x), where we describe each coordinate yi = fi(x0, x1, . . . , xn−1) by
operation rules for COPY, AND, and XOR. More details can be found in [60]. The
bounds obtained by this automatic tool are far worse than the practical results,
actually they are even worse than the bounds given by 2-Set-BDP. Besides the
hereditary inaccuracy of 2-Set-BDP, another reason for this gap is that the way
we model the S-box easily inserts a large amount of invalid division trails to the
solution pool, which results in a quicker loss of the balanced property than the
cipher itself would.

C.3 Three-Subset Bit-Based Division Property

Three-subset bit-based division property (3-Set-BDP) [48], where u is classified
into three sets, i.e., “0”, “1” and “unknown”, seems to be more accurate than
2-Set-BDP[35,53]. A formal definition is given as follows:

Definition 4. (Three-Subset Bit-Based Division Property [48]). Let X be a mul-
tiset of n-bit vectors. Let K and L be two sets of n-bit vectors. When the multiset
X has the division property D1n

K,L, it fulfills the following conditions:

⊕
x∈X

πu(x) =

unknown, if ∃k ∈ K s.t. u � k,
1, else if ∃ ` ∈ L s.t. u = `,
0, otherwise.

So, compared to the 2-Set-BDP where only K is used to trace the propagation,
more accurate features will be revealed if we can model this propagation in an
efficient way.

Influence of Secret Keys. For a public function, there is no effect that the
propagation of K and L are evaluated independently. Moreover, in order to speed
up the searching process, removing the redundant vectors in K and L will of
course not result in any problem. However, when a secret round key is added to
the intermediates, which is a common case in many block ciphers, the vectors in
L will affect the vectors in K.

The problem involving the secret key described above is handled by following
the propagation rules in [48]: Assuming a round key is xored with the i-th
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bit, then for all ` ∈ L satisfying `i = 0, a new vector (`1, `2, . . . , `i ∨ 1, . . . , `n)
is appended to K′. This propagation rule evokes the problem which is called
unknown-producing problem in [34].

Influence of Focusing on Single Trail. Another important propagation rule
is XOR rules for calculating vectors in L′ from L. If ` is not included in L before,
then it is inserted to L′. If ` has already been included in L, then it is removed
from L′. This XOR rule results in the problem which is called cancellation problem
in [34].

C.4 New Model for the Three-Subset Bit-Based Division Property
without the Unknown Set

According to the propagation rules for the 3-Set-BDP, the unknown-producing
problem implies that we need to know all the vectors in Li when the secret key is
xored, and the cancellation problem implies that focusing only on one single trail
is not enough. Furthermore, after iterating i rounds, the amount of bit vectors in
set Ki and Li explodes, and this makes it even harder to trace the propagation
of 3-Set-BDP directly.

Motivated to model 3-Set-BDP efficiently, Hu and Wang [35] proposed the
variant three-subset division property to handle the unknown-producing problem.
However, the cancellation problem is not considered in their model. As a result,
the accuracy of this model is worse than the original 3-Set-BDP, though it
is better than the 2-Set-BDP. In [53], the breadth-first search algorithm and
the pruning technique were combined to model the 3-Set-BDP. As a result, it
guarantees that the sizes of Ki and Li decrease dramatically, and it seems that
the evaluations based on the 3-Set-BDP becomes possible. However, the pruning
technique is useful only when the size of Li is reasonably small, which limits its
applications.

In order to overcome these problems and trace the 3-Set-BDP efficiently, very
recently, [34] proposed a new model formulating the 3-Set-BDP without the
unknown set16.

Definition 5. (Modified Three-Subset Bit-Based Division Property [34]). Let X
and L be multisets of n-bit vectors. When X has the division property D1n

L , it
fulfills the following conditions:⊕

x∈X
πu(x) =

{
1, if there are odd-number of u in L,
0, otherwise.

In this new model L is a multiset, which means it allows multiple bit vectors
to exist. When undertaking the propagation of bit vectors, we count the number
of bit vectors in L. Accordingly, the propagation rules are slightly modified to
guarantee the propagation of vectors in the multiset. More details can be found
in [34].
16 The idea of handling the cancellation problem is mentioned in [53], but it is not

utilized in their MILP models.
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Our Practical Results for Three-Subset Bit-Based Division Property.
We build MILP models for the modified 3-Set-BDP for our practical experiments
for cases of MiMC with an n-bit S-box, where n ∈ {5, 7, 9}. We obtain exactly
the same results as for the practical ones in Table 2. Therefore, we conclude that
by modeling the modified 3-Set-BDP with help of the MILP automatic tool, we
can evaluate an accurate bound resistant to zero-sum distinguishing attacks for
MiMC with “small” S-boxes.

However, as far as we know, there are no efficient methods to model a larger
S-box with the (modified) 3-Set-BDP. Thus, our RLinear bound derived in this
paper can evaluate S-boxes of any size, and give a bound very close to the
practical result by implementation experiments (as can be seen in Table 2 for
the case of the cube round function).

D Multivariate Attack Approach for MiMC

In this section, we consider attacking MiMC by solving a system of equations
over F2. We will thus have n key variables. While this approach leads to a less
efficient attack on MiMC when compared to our main approach described in
Section 5, it may be useful for other cryptographic constructions which work
only over F2.

D.1 Generating Low-Degree Equations in the Key Bits

Our goal is to find the key bits by solving a system of n key variables in n
polynomials over F2. Only for simplicity, we focus on the instances where we can
choose rKR = 1 rounds of encryption. In order to build this system, we evaluate
MiMC in encryption direction over one single round symbolically, where we keep
the key bits as variables and where we use the concrete values obtained by the
oracle for the input bits.

This step results in n sums of 2n−1 values, where each sum is a degree-1
polynomial over F2 in the variables k1, k2, . . . , kn. This is the case because all
monomials pi, pi · pj for i 6= j, and ki · kj for i 6= j, where i ∈ [1, n], j ∈ [1, n],
are removed after substitution and summation. The remaining monomials pi · kj ,
where i ∈ [1, n], j ∈ [1, n], are linear in the key bits after substitution.

D.2 Solving a System of n Linear Equations in n Variables

Since we know that the sum in each bit after one single round is 0 due to the
number of chosen ciphertexts, our equation system has the following structure:

f1(k1, k2, . . . , kn) = 0

f2(k1, k2, . . . , kn) = 0
...
fn(k1, k2, . . . , kn) = 0
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n Time Data

33 228.61 2n−1

63 257.68 2n−1

193 2186.07 2n−1

255 2247.67 2n−1

513 2504.66 2n−1

Table 4: Attack complexities when using the multivariate approach.

where each fi : (F2)
n → F2 is a degree-1 polynomial. As shown in the following,

the complexity of solving such a system of n linear equations in n variables can
be given as the complexity of Gaussian elimination, which is

T3 ∈ O(n3)

bit operations, and thus well within the allowed time frame for the attack.

Low-Degree Polynomial. Here we briefly analyze the cost of solving a polynomial
system over Fn2 of algebraic degree d. For d = 1, this system is linear and can
be solved in a number of bit operations in O(n3) with Gaussian elimination. If
d > 2, the best strategy may be to solve the system using a dedicated brute-force
algorithm, as presented in [56]. For optimal choices of algorithm parameters17,
this is expected to require 4d · log(n) · 2n bit operations. In many instances, it
may therefore be less costly to brute-force the polynomial system in this way
than brute-forcing the encryption system directly. Lastly, techniques of solving
quadratic polynomial systems (i.e., d = 2) have received extensive study from the
cryptographic community. Under some assumptions on the polynomial system,
[55] estimates the asymptotic time complexity of this problem to be in O

(
20.841n

)
.

D.3 Summary of the Attack

In total, following steps are necessary.

1. (Online) Request the decryptions of 2n−1 chosen ciphertexts.
2. (Offline) For each of the obtained plaintexts, evaluate a single round of

MiMC in the encryption direction and keep the key bits as variables.
3. (Offline) Solve the resulting system of n linear equations in n unknown key

variables.

17 Here, we mean optimality with respect to the time complexity. In practice, the
authors note that the optimal choice depends on the available hardware (see [56,
Sect. 5]).
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D.4 Attack Complexity

Note that since the algebraic degree of one round is only 2, we can obtain at
most n different monomials for each bit position (namely, degree-1 monomials
in the key bits) if we directly substitute the plaintext bits with the concrete
values obtained from our oracle. Since we can therefore omit the computation
of all monomials of the form ki · kj , where i 6= j and i ∈ [1, n], j ∈ [1, n], the
symbolic evaluation of a single round of MiMC is similarly expensive as the direct
evaluation, and we approximate this complexity by n2. Building the sums adds
an additional ≤ n2 bit operations, and due to the number of input vectors we
thus arrive at a total complexity of

CA ≤ 2n−1
(
2n2
)

bit operations. Optimistically assuming18 that we need only n2 bit operations
for a direct evaluation of f(x) = x3, the cost of exhaustively searching for the
correct key is around

CE = 2n ·
(
n2 ·

⌈
n

log2(3)

⌉)
bit operations, and CA < CE .

Finally, the number of chosen ciphertexts required for the zero sum results in
a data complexity of 2n−1, and the memory complexity is negligible at n2, both
for the symbolic evaluations and for the final solving step involving an n × n
matrix over F2. The final complexities are shown in Table 4.
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