
1

SodsBC: A Post-quantum by Design
Asynchronous Blockchain Framework

Shlomi Dolev, Fellow, IEEE, Bingyong Guo, Student Member, IEEE, Jianyu Niu, Student Member, IEEE,
and Ziyu Wang, Student Member, IEEE

Abstract—We present a novel framework for asynchronous permissioned blockchain with high performance and post-quantum
security for the first time. Specifically, our framework contains two asynchronous Byzantine fault tolerance (aBFT) protocols SodsBC
and SodsBC++. We leverage concurrently preprocessing to accelerate the preparation of three cryptographic objects for the repeated
consensus procedure, including common random coins as the needed randomness, secret shares of symmetric encryption keys for
censorship resilience, and nested hash values for external validation predicates. All preprocessed objects utilize proved or commonly
believed to be post-quantum cryptographic tools to resist an adversary equipped with quantum computation capabilities. The
evaluation in AWS shows that SodsBC and SodsBC++ reduce the latency of two state-of-the-art but quantum-sensitive competitors
Honeybadger and Dumbo by 53% and 6%, respectively in the setting that the number of participants is 100 and each block part has
20, 000 transactions.

Index Terms—Post-quantum, Asynchronous BFT, Concurrent preprocessing, Blockchain consensus, Secret sharing, Nested hash

F

1 INTRODUCTION

P ERMISSIONED blockchains employ Byzantine fault-
tolerance (BFT) protocols as their consensus cores to

reach an agreement of ordered transactions without trusting
a centralized authority [2]. The increasing popularity of
blockchains has renewed interest in BFT protocols, espe-
cially in asynchronous BFT (aBFT) protocols that do not
rely on any message transferred time upper bound. Sev-
eral elegant aBFT protocols such as HoneyBadger [3] and
Dumbo [4], which solve an asynchronous common subset
(ACS) [5] of block parts generated from all participants are
proposed. In particular, Honeybadger [3] is the first practical
aBFT for blockchains using n randomized binary Byzantine
agreement (BBA) instances in parallel to make participants
one-by-one agree on whether a block part is accepted,
which is named as the BBA-ACS architecture. On the con-
trary, Dumbo leverages a multi-value Byzantine agreement
(MVBA) protocol instance to replace the n BBA instances
in Honeybadger, which is referred to as the MVBA-ACS
architecture. In particular, MVBA only requires a constant
number of BBA rounds (rather than O(log n) rounds in
Honeybadger) to output a consistent block. Both BBA-ACS
and MVBA-ACS architectures are two main practical paths
to achieve an aBFT protocol.

Unfortunately, the security of these state-of-the-art aBFT
protocols is threatened by quantum computers [6], [7].

• Shlomi Dolev is with Department of Computer Science, Ben-Gurion
University of the Negev, Israel. E-mail: dolev@cs.bgu.ac.il

• Bingyong Guo is with School of Computer Science and Technology,
University of Chinese Academy of Sciences, China. E-mail: guobingy-
ong@tca.iscas.ac.cn

• Jianyu Niu is with School of Engineering, University of British Columbia,
Canada. E-mail: jianyu.niu@ubc.ca

• Ziyu Wang is with School of Cyber Science and Technology, Beihang
University, China. E-mail: wangziyu@buaa.edu.cn

The authors contributed equally and are listed alphabetically. Corresponding
author: Ziyu Wang. An earlier version of this paper was presented at the IEEE
Blockchain 2020 conference and was published in its proceedings [1].

For example, Honeybadger instantiates necessary random-
ness sources via quantum-sensitive threshold signature, and
adopts quantum-sensitive threshold encryption for anti-
censorship. Dumbo also relies on the quantum-sensitive
threshold signature scheme to design the MVBA exter-
nal validity predicate. As these cryptography components
depend on the discrete logarithm (Dlog) math intricate
problem, these protocols will be broken by Shor’s quantum
algorithm in a polynomial time by a quantum computer [7].
Although the current quantum computer is not mature to
apply Shor algorithm 1, many blockchain platforms have
begun the studies of post-quantum secure protocols [8],
[9], which also motivates us to design a post-quantum
secure framework for asynchronous blockchain consensus
protocols, i.e., aBFT protocols. Moreover, as blockchain ap-
plications like global payment usually have requirements
for performance (i.e., low latency and high throughput),
our post-quantum framework should not slow down the
performance of existing blockchain protocols.

1.1 Our Contributions
In this paper, we aim to design a post-quantum secure
framework resulting in two aBFT protocols, SodsBC and
SodsBC++, which outperform the quantum-sensitive com-
petitors Honeybadger and Dumbo in performance, respec-
tively 2. We leverage perfect information-theoretical (I.T.) se-
cure and symmetric schemes to build post-quantum secure
aBFT protocols for two reasons. First, a perfect I.T. secure
algorithm is proved to resist an adversary with unlimited

1. Even though the current quantum computer is claimed to achieve
75 q-bits, far from the thousands of q-bit requirement for the Shor
algorithm, information security leading institutes like NIST already
warn the quantum attacking risks.

2. SodsBC compared to Honeybadger has been presented in the con-
ference before Dumbo was proposed. SodsBC++ compared to Dumbo
is later proposed in this journal version.

2

computation power (naturally including quantum compu-
tation), while symmetric cryptographic tools are believed to
be post-quantum if the security parameter is long enough 3.
Second, the operations in a perfect I.T. secure or a symmetric
scheme are generally faster than the ones in an asymmetric
scheme (e.g., the ellipse curve operations).

However, it is challenging to directly apply I.T. or sym-
metric schemes to aBFT protocols since these schemes are
usually one-time or limited-time used, which cannot sup-
port the repeated consensus service. To address this issue,
we innovate a concurrent preprocessing design to advance
these cryptography objects before usage. Preprocessing is
widely used in secure multi-party computation (MPC) to
offload heavy computational burden from an online stage
to a preprocessing stage [11]. We do a further step from
preprocessing to concurrent preprocessing in a consensus
protocol. Specifically, we utilize the agreement process of
the aBFT architecture to preprocesses objects for I.T. or sym-
metric schemes, and then use these objects in the subsequent
agreement process. Hence, we do not need additional time
to prepare the objects for I.T. or symmetric schemes. In other
words, we design an aBFT based blockchain consensus,
while the consensus itself provides the consensus ability for
the aBFT protocol.

With the concurrent preprocessing technique, we design
three building blocks for aBFT protocols. We propose a post-
quantum common random coin scheme and a censorship
resilience solution, by which we can realize a post-quantum
aBFT protocol, SodsBC, compared to Honeybadger [3]. We
also present a post-quantum external validation predicate
to support MVBA, which renders another post-quantum
aBFT protocol, SodsBC++, compared to Dumbo [4]. Our
contributions are listed as follows:
• We design a post-quantum common random coin scheme

from secret sharing, which supplies necessary random-
ness for aBFT. We also design a novel pool for the gener-
ated secret shares, and the agreement for this pool utilizes
the same aBFT architecture.

• We design a post-quantum censorship resilience solution
that provides the considerable anti-censorship property
for aBFT, utilizing secretly shared symmetric encryption
(AES) keys.

• We design a post-quantum external validation predicate
utilizing concurrent preprocessed nested hash values for
the SodsBC++ MVBA core.

• We implement and evaluate Honeybadger [3], SodsBC,
Dumbo [4] and SodsBC++ in the same AWS environment.
In a typical setting where the number of participants is
100 and each block part has 20, 000 transactions, SodsBC
latency is 53% of Honeybadger [3] latency, reducing from
186 seconds to 87 seconds, and SodsBC++ can have
latency that is 6% less than the latency of Dumbo [4],
reducing from 71 seconds to 67 seconds.

The following sections are organized as follows. Sect. 2
introduces the system model, designing target, and building
blocks. Sect. 3 introduces the novel asynchronous weak

3. The quantum Grover algorithm [10] cannot accelerate the brute-
force breaking of a symmetric scheme too much. The NIST post-
quantum finalist includes two alternate candidate signature schemes
utilizing symmetric cryptography, Picnic and SPHINCS+. (https://csrc.
nist.gov/Projects/post-quantum-cryptography/round-3-submissions)

verifiable secret sharing (awVSS) scheme, post-quantum
awVSS-based censorship resilience solution and common
random coin scheme. Sect. 4 and Sect. 5 describe the
SodsBC/SodsBC++ design, respectively. Sect. 7 discusses
a novel wait-free bootstrap design for aBFT and a post-
quantum transaction structure. Sect 8 and Sect 9 presents
the related works and concludes this paper, respectively.

2 SYSTEM MODEL, TARGETS AND COMPONENTS

2.1 System Model
We consider a system with a set of n = 3f + 1 mutually-
distrusting participants, say P = {p1, · · · , pn}. We assume
that up to f participants are Byzantine and are controlled
by an adversary. We assume that each pair of participants is
connected by reliable and authenticated channels following
previous aBFT protocols [3], [4], [12], [13]. This is, the adver-
sary cannot drop messages among honest participants, as
in the TCP protocol. Most symmetric schemes for message
authentication code (MAC) satisfies the authenticated re-
quirement. We only add an extra post-quantum requirement
for the used symmetric schemes. In particular, our protocols
work in an asynchronous network, i.e., no timing assump-
tions for message delivery [5]. We assume that the adversary
with quantum computers can efficiently break some known
quantum-sensitive mathematical intractable problems, e.g.,
Dlog or integer factorization.

2.2 System Target: Post-quantum Secure Asyn-
chronous BFT Protocol
In a permissioned blockchain, users/clients propose trans-
actions, and participants batch transactions in blocks and
make an agreement of these blocks by utilizing the consen-
sus core, i.e., an aBFT protocol [14], [15], [16]. In addition,
such a system should be post-quantum secure and so satisfy
the following properties:
• Agreement: Every two honest participants deliver the

same block B in one block height.
• Total order: If an honest participant p delivers a sequence

of blocks B1, · · · ,Bj and another honest participant p′ has
delivered B′1, · · · ,B′j′ , then Bi = B′i for 1 ≤ i ≤ min(j, j′).

• Liveness: If a client submits a transaction TX to at least
n−f participants, then there eventually will be a delivered
block having TX 4.

• Post-quantum security: The known quantum-sensitive
cryptographic tools will not be used in the protocol.

An aBFT protocol can be realized by solving a consistent
union of block parts generated from all participants, which
is known as an asynchronous common subset (ACS) proto-
col. An ACS protocol can be further implemented by two
practical paths, BBA-ACS and MVBA-ACS.

Honeybadger [3], and its variants [12], [13] adopt the
BBA-ACS [5] way to achieve aBFT. SodsBC follows this
methodology but introduces novel ways to implement a
post-quantum anti-censorship solution and a post-quantum
common random coin scheme. Dumbo [4] deploys the
MVBA-ACS way. SodsBC++ uses preprocessed nested hash

4. Honeybadger [3] refers to Liveness as Censorship resilience.
Cachin et al. [17] name it as Fairness. We follow Liveness as BEAT [12],
and interchangeably use Censorship resilience in this paper.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

3

to design a post-quantum external validation predicate to
support a post-quantum MVBA in the MVBA-ACS aBFT
architecture.

Both BBA-ACS and MVBA-ACS architectures have their
advantages. At first, the BBA-ACS architecture is more sim-
ple for fewer building blocks, which is easier to understand.
Secondly, even though the round complexity of a BBA-ACS
or MVBA-ACS aBFT protocol is O(log n) or O(1), respec-
tively, a BBA-ACS-based aBFT protocol still may spend less
latency in a relatively low quorum size. When the number
of participants, n, increases, the bottleneck of a BBA-ACS
protocol gets worse for the n parallel BBA instances. Thirdly,
throughput rate is another significant metric other than
latency. When every participant is honest and the network
condition is relatively good, a BBA-ACS-based aBFT proto-
col may collect all n block parts while an MVBA-ACS-based
aBFT only can collect n − f block parts in the consensus
output block.

2.3 Components in SodsBC/SodsBC++
We introduce several cryptographic primitives/protocols
and their realization in SodsBC/SodsBC++.
Reliable broadcast (RBC) is a kind of protocols achieving
an all-or-nothing style broadcast, which satisfies:
• Validity: If an honest broadcaster broadcasts msg, then all

honest participants deliver msg.
• Agreement: Honest participants deliver an identical msg.
• Totality: Eventually, honest participants will deliver msg

if msg is delivered for an honest participant.
SodsBC/SodsBC++ employs Cachin and Tessaro’s RBC [3],
[18] that utilize erasure code and Merkle tree cross-
checksum.
Provable reliable broadcast (PRBC) provides a proof of
termination for an RBC instance. Our PRBC (Algorithm 2)
deploys the preprocessed and post-quantum nested hash as
the termination proofs (see Sect. 5.1).
Binary Byzantine agreement (BBA) is a kind of asyn-
chronous BA protocols focusing on binary input/output
values, which satisfies:
• Validity: An output comes from an honest participant.
• Agreement: Honest participants output the same value.
• Termination: All honest participant will eventually have

an output.
SodsBC/SodsBC++ adopts the refined signature-free asyn-
chronous BBA protocol proposed by Mostéfaoui et al. [19],
[20]. The asynchronous BBA protocol relies on a common
randomness source. In this paper, we offer post-quantum
common random coins to the BBA instances as the random-
ness source (see Sect. 3.3).
Multi-value Byzantine Agreement (MVBA) 5 satisfies simi-
lar Agreement and Termination properties defined in BBA.
Moreover, an MVBA protocol satisfies:
• External validity: An output satisfies a pre-defined exter-

nal predicate.
• Integrity: An output comes from an input if all partici-

pants are honest.
With External validity, an MVBA protocol output is valid
even if the output comes from a malicious participant, since

5. We follow the MVBA definition from Dumbo [4].

a malicious input should satisfy a predicate Q. SodsBC++
designs a post-quantum and efficient MVBA (enlightened
by Cachin et al.’s work [17]) by relying on post-quantum
secure threshold signature (see Sect. 5).
Asynchronous Common Subset (ACS) is used to finalize n
parallel computation instances, satisfying:
• Validity: The ACS output has at least n − f true values

for n predicates. At least f + 1 true values correspond to
the instances launched by honest participants.

• Agreement: Honest participants have a consistent result
of n predicates.

• Termination: All honest participant will eventually out-
put a result.

As said previously, ACS can be implemented by two paths:
the BBA-ACS and MVBA-ACS. In BBA-ACS protocol [5],
participants vote 1 to a BBA if the corresponding computa-
tion instance is finished. After waiting for at least n− f ter-
minated instances, honest participants intentionally exclude
the too slow instances by voting 0 to the corresponding
BBAs. In MVBA-ACS protocol [4], honest participants use
an expected constant number of BBA invocations to select a
valid view of a random participant.

3 DESIGNED BUILDING BLOCKS

In this section, we introduce the post-quantum secure build-
ing blocks by design and how we utilize these building
blocks to realize SodsBC/SodsBC++.

3.1 Asynchronous Weak Verifiable Secret Sharing
A secret sharing scheme has two algorithms, sharing and
reconstruction. A participant who shares a secret is called
a dealer. An asynchronous verifiable secret sharing (aVSS)
scheme is to verify whether a dealer shares a secret under
a correct threshold in an asynchronous network. Once cor-
rectly sharing shares, a consistent secret will be recovered
by the reconstruction algorithm. In addition, we adopt the
weak commitment concept for the sake of efficiency [21].
Honest participants will set the shared secret to a default
value (e.g., zero) after reconstruction when they detect a
malicious behavior of a dealer. Concretely, we use Merkle-
tree-based hash cross-checksum [22] to achieve the share
validation. Formally, our awVSS scheme satisfies:
• Secrecy: At most f malicious participant cannot learn any

information about the secret if a dealer is honest, before
an honest participant invocates the reconstruction.

• Share agreement: Honest participants deliver shares cor-
responding to an identical Merkle root.

• Share liveness: At least f + 1 honest participants deliver
consistent shares, and eventually all honest participants
will deliver the identical Merkle root if one honest partic-
ipant delivers a share and a corresponding Merkle root.

• Weak commitment: (Reconstruction correctness) Honest
participants will reconstruct a consistent secret s if the
dealer is honest. Otherwise, they will consistently set s to
a default value (e.g., 0).

A holistic structure. Our awVSS scheme (Algorithm 4 con-
sists three steps: Sharing, Echo, and Ready) shares a similar
structure with the classical RBC protocol (Algorithm 5 has
Broadcast, Echo, and Ready). Therefore, we combine these

4

two protocols into an integrated protocol, i.e., a (batched)
awVSS instance for sharing some secrets from a dealer
can be piggybacked by an RBC instance from the same
broadcaster. To avoid an adversary to eavesdrop the secret
shares transmitted by honest participants, the piggybacked
secret messages should be encrypted by a post-quantum
and symmetric scheme like AES. The holistic combination
is depicted in Fig. 1. We use RBC∗ to denote a combined
protocol instance in this paper. The detailed awVSS scheme
is provided in Appendix A (Algorithm 4) 6.

p1 p1 p1 p1

p2 p2 p2 p2

p3 p3 p3 p3

p4 p4 p4 p4

The RBC∗ protocol

Sharing step for awVSS
O(n|msg| + λn logn)
Broadcast step for RBC
O(kλ′n + kλn logn)

Echo step for awVSS
O(n2|msg| + λn2 logn)
Echo step for RBC
O(kλn2 logn)

Ready step for awVSS
O(λn2 logn)
Ready step for RBC
O(kλn2 logn)

red for piggybacked secret sharing
messages in AES encryption

Fig. 1: The integrated reliable broadcast (RBC∗) protocol in
which k secrets are piggybacked in a holistic style. p1 is
pbroadcaster/pdealer. |msg|: the size of a message to be broad-
cast. λ: the length of a hash function. λ′: the size of a secret.
(Better read in colors.)

3.2 Post-quantum Censorship Resilience Solution

To prevent the adversary from intentionally excluding some
particular block parts (e.g., containing unfavorable transac-
tions), we follow the encryption-consensus-decryption idea [3]
to achieve Censorship resilience. Specifically, each par-
ticipant pi packages some transactions into Bp parti , AES-
encrypts it, and inputs the ciphertext Bc parti into the con-
sensus core. After the consensus, participants interact with
each other, to decrypt the agreed encrypted block parts.

Unlike the previous protocols [3], [4], [12] that use
quantum-sensitive threshold encryption schemes [23], [24]
to encrypt the AES keys, a SodsBC/SodsBC++ participant
shares its AES key by a post-quantum awVSS instance
simultaneously as broadcasting the AES ciphertext block
part. Concretely, an AES key aesKeyi will be also secretly
shared by pi, and the secret sharing messages for aesKeyi
are piggybacked by the RBCi instance for Bc parti . This
integrated instance is denoted by RBC∗i .

After consensus, at least n − f ciphertext block parts
and the shared roots of at least n − f AES key shares are
consistently delivered. That is to say, the AES key sharing
(preprocessing) is concurrent as the aBFT block consensus.
Then, honest participants broadcast the shares to reconstruct
the AES keys, decrypt the agreed block parts and finish
the current round consensus. Each SodsBC/SodsBC++ con-
sensus round is a preprocessing stage to sharing AES keys
(before consensus), and it is also an online stage to recon-
struct the shared keys (after consensus). The fresh AES key
secret sharing (and the post-quantum awVSS scheme) offers

6. A detailed description of the awVSS scheme was previously given
in the conference paper [1].

SodsBC/SodsBC++ the post-quantum anti-censorship. Also
note that only symmetric cryptography and algebra opera-
tions for secret sharing and reconstruction in fact accelerate
the computation process, avoiding the use of the inefficient
quantum-sensitive bilinear map pairings.

Since an encrypting participant is also the key share
dealer and the ciphertext broadcaster, at least f + 1 cipher-
texts are guaranteed to be well-formatted and be success-
fully decrypted. This threshold is the same as in Honeybad-
ger [3] and Dumbo [4], which, however, achieves a similar
anti-censorship property by quantum-sensitive threshold
encryption.

3.3 Post-quantum Common Random Coin Scheme
Besides sharing AES keys, SodsBC/SodsBC++ also concur-
rently preprocesses post-quantum common random coins.
In online stages (i.e., the time epoch for agreeing on blocks),
our BBA will consume post-quantum, fresh, and one-
time used common random coins, reconstructing from the
shared secrets distributed in history preprocessing stages.
This online stage is also a preprocessing stage, simulta-
neously, in which each participant shares secrets for fu-
ture coins by awVSS (Algorithm 4). Unlike the quantum-
sensitive coin-flipping protocols [25], [26] used in previ-
ous aBFTs [3], [4], [12], the continuously produced secrets
in SodsBC/SodsBC++ imply the use of fresh (and post-
quantum) coins.

A common random coin in SodsBC/SodsBC++ encom-
passes f + 1 shared random secrets produced by f + 1
distinct dealers, i.e.,

coin = (secret1 + · · ·+ secretf+1) mod 2.

Our coin scheme have the following properties:
• Random. Honest participants will choose a random value

uniformly, so that at least one random coin component
makes the coin value uniformly random after the f + 1
additions.

• Common. Every participant recovers f+1 consistent coin
components when all the f + 1 components are secretly
shared before, resulting in the consistent recovery of the
common coin value.

• Unbiased. Before the first honest participant invocates the
coin recovery, at most f adversaries learn no information
about the coin value if at least one coin component is well-
shared by an honest participant under the f + 1 threshold
(the awVSS secrecy).

The coin structure goes through at most f failed secret
reconstructions. Honest participants consistently set at most
f coin components to zero when detecting malicious behav-
iors (i.e., at most f failed secret reconstructions), while one
successful reconstruction still keeps a well-defined coin with
random-value, common-value and anti-adversarial-bias.

However, only one coin is not enough for the re-
peated consensus service. Fig. 2 further shows how
SodsBC/SodsBC++ supplies unlimited number of coins.
In Fig. 2a, each SodsBC/SodsBC++ dealer runs an awVSS
batch to share secrets, and n BBAs in SodsBC finalize
(or a post-quantum MVBA in SodsBC++ finalizes) these n
awVSS batches. The delivered Merkle tree roots help honest
participants figure out the number of secrets shared from a

5

(a) (b) (c)

p1

p2

p3

p4

SodsBC
an awVSS batch, size: 4

an awVSS batch, size: 5

an awVSS batch, size: 5

an awVSS batch, size: 3

BBA1

BBA2

BBA3

BBA4

0/1

0/1

0/1

0/1

common random coins

The global awVSS pool

p1 p2 p3 p4

s11

s12

s13

s14

s21

s22

s23

s24

s25

s31

s32

s33

s34

s35

s41

s42

s43

The atomic coin assignment
queue1

queue2

queue3

queue4

coin5 : s13 , s23 coin1 : s11 , s21

coin6 : s33 , s43 coin2 : s31 , s41

coin7 : s14 , s24 coin3 : s12 , s22

coin8 : s34 , s25 coin4 : s32 , s42

BBA1

BBA2

BBA3

BBA4

p1

p2

p3

p4

SodsBC++
an awVSS batch, size: 4

an awVSS batch, size: 5

an awVSS batch, size: 5

an awVSS batch, size: 3

Post-quantum

MVBA

common random coins

The global awVSS pool

p1 p2 p3 p4

s11

s12

s13

s14

s21

s22

s23

s24

s25

s31

s32

s33

s34

s35

The atomic coin assignment

queue

coin1 coin2 coin3 coin4 coin5 coin6 coin7

s11 s31 s22 s13 s33 s24 s25

s21 s12 s32 s23 s14 s34 s35

BBA

Fig. 2: n awVSS batches are finalized by n BBA instances or a post-quantum MVBA, and the finished awVSS shares
construct a global pool. The pool can atomically assign finished secrets to n queues or one queue for the future BBA usage,
in SodsBC or SodsBC++, respectively.

specific participant, leading to a global awVSS pool (Fig. 2b).
The reason for applying n BBAs (or a post-quantum MVBA)
is that different participants may have different observations
about the secrets in an asynchronous network. In other
words, a consistent view of the generated secrets is reduced
to an asynchronous consensus problem. Fortunately, we can
employ SodsBC/SodsBC++ itself to solve this secret pool
consensus problem.

From Fig. 2b to 2c, we explain how SodsBC/SodsBC++
deploy the atomic coin assignment. If the finished awVSS
pool is globally decided, honest participants can iterate each
row from the button of the global pool and assign each f+1
secrets (shared from f + 1 distinct dealers) to one coin, and
further assign each coin to n BBA queues in SodsBC or one
BBA queue in SodsBC++ (Fig. 2c).

4 SODSBC
In this section, we present SodsBC protocol, which is a
post-quantum secure aBFT protocol based on the BBA-ACS
architecture. In particular, we leverage an innovated concur-
rent preprocessing idea to improve the performance of the
post-quantum censorship resilience solution and the post-
quantum common random coin scheme, as we described
in Sect. 3.2 and 3.3, respectively. The algorithm of SodsBC
protocol is provided in Algorithm 1, and the architecture is
depicted in Fig. 3. Due to space limitations, here we only
present a summary and refer the reader to [1] for more
details.
SodsBC Overview. We provide an overview to better un-
derstand SodsBC. A SodsBC participant launches three im-
portant sub-instances: a block part Bc parti RBC proposal
in AES encryption, aeskeyi secretly sharing (by an awVSS
invocation) and other random values secretly sharing for
the future BBA coins (by another awVSS batch invoca-
tion). SodsBC participants finalize the three sub-instances
launched by a participant by one BBA instance. Note that
the secret-sharing messages (an awVSS batch for secrets and

another awVSS instance for aeskeyi) can be piggybacked by
the RBC instance for Bc parti , as a holistic structure. So that
we also can view the SodsBC architecture as that each RBC∗

is finalized by one BBA. SodsBC Security Outline. Since
SodsBC does not change the BBA-ACS architecture, after we
have a well-defined common random design and an anti-
censorship solution, Algorithm 1 can satisfy the required
aBFT agreement, total order, and liveness properties. Recall
that the BBA-ACS output involves at least n− f terminated
instances, i.e., n − f true predicates. SodsBC has a more
strict predicate than the original BBA-ACS protocol [5].
A SodsBC predicate is not limited to whether an RBC is
finished (PredRBC). Besides, participants also agree on the
termination of n awVSS batches distributed by a specific
dealer for future coins (PredawVSS coin), and n awVSSs for
AES keys (PredawVSS aeskey). Hence, a SodsBC predicate is
Pred = PredRBC ∧ PredawVSS coin ∧ PredawVSS aeskey, which
decides a complex instance having three sub-instances.
SodsBC Communication Complexity. In our complexity
calculations, we denote |B| as the size of a block which
contains the n block parts (Bpart). After RS encoding, the size
of one block part is expanded to |BRSpart| = n

f+1 |Bpart|
7.

The total expected coin consumption amount for n BBA
instances is cNum = 4n since one BBA is expected to
be finalized in four BBA rounds [19]. Hence, a participant
should generates cNum secrets in expectation since one coin
involves f + 1 secrets and SodsBC only guarantees at least
f + 1 honest (non-empty) awVSS batches.

One RBC communicates n(1
n |BRSpart| + λ log n) +

n2(1
n |BRSpart| + λ log n) + λn2 bits. Moreover, the piggy-

backed awVSS messages in one RBC (for one AES key and
cNum secrets) communicate n × (λ + λ log n + cNum(λ′ +
λ log n))+2×n2× (cNum+1)×λ bits. The communication
overhead for n RBC∗ instances is O(|B|n+ λn4) bits.

7. We pick λ = 256bits as the security parameter for Sods/SodsBC++
symmetric cryptography schemes as the post-quantum security re-
quirement, and choose a field F = GF (251) for awVSS (λ′ = 8bits),
which avoids the secret share conflict for at most 251 participants.

6

Algorithm 1 SodsBC Consensus (for pi) [1].

// Block part generation and encryption
1: For Bp parti , AESEncrypt(aesKeyi,Bp parti)→ Bc parti .

// Consensus core: make a union of block parts
2: In RBC∗i , broadcast Bc parti ; share aesKeyi and secrets by

piggybacked awVSS messages (Algorithm 4).
3: Input 1 to BBAi if RBC∗i finishes.
4: Input 0 to remained BBAs if n− f BBAs output 1.

// BBA coins are reconstructed by awVSS (Algorithm 4).
// Decryption and output

5: If BBAj outputs 1, reconstruct aesKeyj and AES de-
crypts Bc partj . If the decryption fails, or RBCj is aborted
(BBAj outputs 0), set Bpartj =⊥.

6: Make B =
⋃n
j=1 Bpartj , and assign agreed awVSS

batches to n queues.

Clients

transactions

Each participant packages
several transactions into
a block part (in plain-text)

p1

p2

p3

p4

SodsBC consensus for one block

Encrypt(aesKey1,

Bp part1
) → Bc part1

·RBC1 for Bc part1·awVSS batch for the secret stream·awVSS for aesKey1
p1 p1 p1

Encrypt(aesKey2,

Bp part2
) → Bc part2

·RBC2 for Bc part2·awVSS batch for the secret stream·awVSS for aesKey2
p2 p2 p2

Encrypt(aesKey3,

Bp part3
) → Bc part3

·RBC3 for Bc part3·awVSS batch for the secret stream·awVSS for aesKey3
p3 p3 p3

Encrypt(aesKey4,

Bp part4
) → Bc part4

·RBC4 for Bc part4·awVSS batch for the secret stream·awVSS for aesKey4
p4 p4 p4

BBA1

BBA2

BBA3

BBA4

0/1
Reconstructing the shared

AES keys, aesKeyi

Reconstruction for:
aesKey1, · · · , aesKey4

Decryption:
Decrypt(aesKey1,Bc part1

)

→ Bp part1
· · · · · ·
Decrypt(aesKey4,Bc part4

)

→ Bp part4

Reconstructing common random
coins from the secret stream common random coins

black for the online stage
of the current block

blue for the preprocessing stage
for the future block coin usage

red for the current online coin usage
from the previous preprocessing stages

Agreed awVSS batches contribute to the secret
shares to the secret stream in the form of n
queues for the specific n BBA future usageA stream of distributed secrets produced from previous blocks (previous preprocessing stages)

Fig. 3: SodsBC consensus overview [1]. RBC: reliable broadcast. awVSS: asynchronous weak secret sharing. BBA: binary
Byzantine agreement. Bp parti&Bc parti : the i-th block part in plain/cipher-text. Better read in colors.

Calling cNum coins in n BBAs communicates
O(λn4 log n) bits. It takes O(λn3 log n) bits to reconstruct
n AES keys. Therefore, the total communication complexity
of SodsBC is O(|B|n+ λn4 log n) bits.

In HoneyBadger [3], n RBC instances have the O(|B|n+
λn3 log n) communication overhead. n BBA instances con-
sume O(λn3 log n) bits for generating quantum-sensitive
common random coins, since the size of a threshold signa-
ture share is also λ bits. There is another O(λn3) bits com-
munication overhead for the AES key threshold decryption.
So the total communication complexity of HoneyBadger
is O(|B|n + λn3 log n) bits. Even with a slightly higher
communication overhead than HoneyBadger, SodsBC still
has a better performance in latency due to much lower
computation overhead (see Sect. 6).

5 SODSBC++

In this section, we present SodsBC++, which is a post-
quantum secure aBFT protocol based on the BBA-ACS
architecture. Specifically, we replace the quantum-sensitive
threshold signatures in the PRBC and consistent broadcast
(CBC) instances with a post-quantum PRBC (pqPRBC) uti-
lizing preprocessed nested-hash values (see Sect. 5.1). The
nested-hash-based pqPRBC offers the external verification
property in a post-quantum multi-value Byzantine agree-
ment (MVBA) in Sect. 5.2.

5.1 Nested Hash based Post-quantum Provable Reli-
able Broadcast (pqPRBC)

Compared with RBC, PRBC can provide its participants a
proof of termination for an RBC instance. The PRBC pro-
posed in Dumbo [4] adds another Done step in which each
participant broadcasts its threshold signature share when
delivering the RBC output. The message to be signed by pi
for the RBCj instance is the round number r and the RBC
index j, i.e., σi,j ← Sign(tSigKeyi, 〈r, j〉). The broadcaster pj
will aggregate the signature shares as tSigj ←

∑
σi,j from

f + 1 valid shares. So that when pj exhibits tSigj to another
participant p′j , p

′
j will believe that RBCj already finishes

from the view of at least one honest participant (at most
f signing participants may be malicious) after verifying the
validity of tSigj . According to the RBC totality (see Sect. 2.3),
all honest participant will finish RBCj eventually.

Note that a threshold signature in Dumbo’s PRBC only
signs a known message, so that we can use a preprocessed
hash value to achieve a similar verification effect. For an
honest participant, pi first generates a random secret si,j
and preprocesses Hi,j = Hash(si,j , i, j). Then, pi inserts
Hi,j into a transaction and proposes this transaction to
the blockchain. Assume Hi,j will be committed in the
blockchain before the blockchain round r. Finally, after
pi finishes the RBCj instance in round r, pi broadcasts
si,j in the Done step. Other participants can verify si,j
by re-computing H ′i,j = Hash(si,j , i, j) and comparing

Hi,j
?
= H ′i,j . When one participant receives f + 1 correct

hash pre-image values for the round r and RBCj , this

7

Algorithm 2 Post-quantum Provable Reliable Broadcast
(pqPRBC) for pi.

// (A preprocessing stage)
1: Generate si,j , and commit Hrk

i,j in blockchain for j ∈
[1, · · · , n].
// (An online stage in the k-th blockchain round after pi first
consumes Hrk

i,j .)
RBC:// (for a broadcaster, pj)

2: pj′ inputs msg to RBCj′ .
RBC-Done-step-send:

3: Upon finishing RBCj′ , broadcast
〈
Done, Hr

i,j′

〉
.

RBC-Done-step-receive:
4: Upon receiving

〈
Done, Hr

j,j′

〉
from pj , store Hr

i,j , if
Hrk
i,j = Hash(· · ·Hash(Hr

i,j , i, j) · · · , i, j) after rk−r = k
times of hash computation.

participant can believe that at least one honest participant
finishes RBCj and all honest participants will eventually
finish RBCj , which achieves a similar effect as the one
for Dumbo’s PRBC. In addition, for providing the future
proving RBC ability, pi in our PRBC should also preprocess
another new Hi,j before the consensus round r + 1.

Furthermore, we can use a nested hash to increase the
usage times for one preprocessed value. We use Hrk

i,j to
denote the k times hash for a random secret si,j , i.e.,

Hrk
i,j = Hash(· · ·Hash(Hash(si,j , i, j), i, j) · · · , i, j).

If Hrk
i,j is preprocessed and committed in blockchain, pi can

consume Hrk−1
i,j in the first block after the committed block,

and can consume Hrk−2
i,j in the second block, so on and so

forth. Until si,j is revealed, pi has the ability to support
the PRBC verification for k blocks. When Hrk

i,j is almost
exhausted, pi generates a new Hrk

i,j and repeats the process
above. The usage of a preprocessed nested hash value (from
a previous committed block) and generating a new nested
hash value for the future PRBC usage reflects the third
concurrent preprocessing case in this paper. The nested hash
based pqPRBC details are described in Algorithm 2.

5.2 SodsBC++ Protocol
Algorithm 3 and Fig. 4 illustrate the procedure of SodsBC++.
The preparing works before the consensus (line 1 to line 2)
are similar to the ones of SodsBC. Each SodsBC++ partic-
ipant pi AES encrypts its Bp parti , and broadcasts Bc parti ,
shares aesKeyi and several secrets in RBC∗i . During each
PRBC instance (line 3), pi broadcasts a hash valueHr

i,j in the
last Done step after finishing each RBC instance RBC∗j . Hr

i,j

can access a preprocessed nested hash value Hrk
i,j committed

in the blockchain after rk−r = k times of hash computation.
Then, pi waits for receiving at least f + 1 valid hash values
leading to a valid column vector for RBC∗j (line 4).

For n parallel RBC instances, pi receives a matrix M
having at least n − f valid column vector (line 5). We
denote a predicate Q(·) so that Q(M) = TRUE when M
has n − f valid column vectors and each valid column in
M has at least f + 1 valid hash values. A valid M reflects
the termination of n−f RBC∗ instances. We use r to denote
the k-th blockchain round after pi consumes Hrk

i,j for the

first time. The predicate Q(·) acts as the external validation
predicate for the following MVBA protocol.

We modify Cachin et al.’s MVBA [17] to avoid quantum-
sensitive cryptographic tools, e.g., a threshold signature
based consistent broadcast (CBC), to a post-quantum MVBA
(pqMVBA) protocol (line 5 to line 13). If pi’s view is valid,
pi inputs M into an RBC instance RBCα,i. After n − f
RBCα instances output valid views satisfying the predicate
Q(·), pi constructs a 0/1 vector columnC = [c1, · · · , cn]
to describe the results of RBCα instances. If the output of
RBCα,j is valid, pi sets cj = 1; otherwise 0. If columnC
has 2f + 1 1-items, pi inputs this commitment columnC to
RBCβ,i. pi regards a received columnCj from pj as valid
when columnCj has 2f + 1 1-items. The received columnC
vectors construct a matrix C.

After n−f RBCβ instances finish, pi uses a random secret
Γ to generate a random permutation Π (line 8). Specifically,
the first index is Π(1) = Hash(Γ), and the second index is
Π(2) = Hash(Π(1)), so on and so forth. This permutation
defines a loop as Cachin et al.’s MVBA [17].

The BBA input for a selected view should be carefully
treated (line 11 to line 12). For each selected index a = Π(l)
in the loop round l, participants require another round of
normal broadcast (nBC) to coordinate their opinions, in
order to make sure that a subsequent BBA decision has 1-
output bias. For the selected RBCα,a, if it is finished from
pi’s observation and the output of RBCα,a satisfies the
predicate Q(·), pi inputs 1 to the BBA instance and normal
broadcast 1. If RBCα,a is finished but Q(·) does not hold,
pi normal broadcasts 0 and inputs 0 to BBA. If RBCα,a is
not finished from pi’s observation, pi normal broadcasts 0
and waits for other opinions. If pi receives at least f + 1
〈MVBAvote, 1〉messages, pi will input 1 to BBA. If pi receives
at least n − f valid 〈MVBAvote, 0〉 messages, pi will input
0. Note that a 〈MVBAvote, 0〉 is valid from pj , if and only
if pi has received columnCj from the finished RBCβ,j and
columnCj [a] = 0.

If the BBA instance outputs 1, the pqMVBA loop termi-
nates and the consensus is achieved (line 13). Otherwise,
the loop repeats to the next selected view a ← Π(l + 1) in
line 10. After the pqMVBA finishes, participants continue
to reconstruct the AES keys, decrypt the valid block parts in
ciphertext, and assign the agreed secrets to the global awVSS
pool for future usage (line 14, as the workflow in Fig. 2).

Our pqMVBA shares the same structure with Cachin et
al.’s MVBA [17] leading to similar properties. There are at
least 2f + 1 honest views among all n = 3f + 1 views. But
an asynchronous adversary can maliciously vote 0 to the
selected honest view. So that the pqMVBA only guarantees
the BBA 1-output for at least f + 1 selected views, and
at most f views of these f + 1 selected views may come
from malicious participants. Fortunately, with the assistance
of the external validity predicate Q(·), an output view is
also valid even this view is from Byzantine. Therefore, the
pqMVBA has a 1

3 probability to terminate, and the pqMVBA
loop will repeat three times in expectation.
SodsBC++ Security. Algorithm 2 is a PRBC protocol
where we replace the threshold signature-based-proof with
the post-quantum and preprocessed nested- hash-based
proof, compared with the quantum-sensitive PRBC used in
Dumbo [4].

8

Algorithm 3 SodsBC++: pqPRBC + pqMVBA (for participant pi in the consensus round r)

Let the predicate Q(M) = TRUE when the matrix M
has n− f valid columns. Let a column be valid when it
has at least f + 1 valid hash values. Let Hr

j,j′ be valid
when H

rk
j,j′ = Hash(· · ·Hash(Hr

j,j′ , j, j
′) · · ·), j, j′) after k

times of hash computation.
// Prepare and Encryption

1: For Bp parti , AESEncrypt(aesKeyi,Bp parti)→ Bc parti .
2: Input Bc parti , aesKeyi and secrets to RBC∗i .

// Consensus core
3: Upon finishing RBC∗j , broadcast Hr

i,j .
4: Upon receiving a valid Hr

j,j′ from pj , insert Hr
j,j′ to M.

// post-quantum MVBA
5: Upon a True Q(M), input 〈MVBAecho,M〉 to RBCα,i.
6: Upon receiving n − f valid (Q holds) RBCα outputs,

make rowC← [c1, · · · , cn] (cj = 1 if Mj 6= ⊥; otherwise
0), and input 〈MVBAcommit, rowC〉 to RBCβ,i.

7: Upon receiving n− f valid (at least n− f entires are 1)
RBCβ outputs, broadcast a share 〈MVBAπ, γi〉 from the

awVSS pool.
8: Upon receiving f + 1 valid 〈MVBAπ, γ〉 messages, re-

construct the secret Γ and generate Π from Γ.
9: l← 0

10: repeat
11: l ← l + 1; a ← Π(l). Broadcast 〈MVBAvote, 1〉 if

Vr(columnCa); otherwise 〈MVBAvote, 0〉.
12: Set bbaVote ← 1 if receive at least f + 1
〈MVBAvote, 1〉. Set bbaVote ← 0 if RBCα,a finishes but
Q(Ma) does not hold, or receive 2f + 1 〈MVBAvote, 0〉.
Accept a 〈MVBAvote, 0〉 from pj unless rowCj [a] = 0.
Input bbaVote to BBA.

13: until BBA outputs 1
// Decryption and output

14: Reconstruct aesKeyj , AES decrypt Bc partj (set it as ⊥
if fails), assign the agreed awVSS secrets from pj , and
make B =

⋃
Bpartj , if the j-th column of the RBCα,a

output is valid.

SodsBC++ consensus for one block

C
om

m
it

ti
ng

ne
st

ed
ha

sh
va

lu
es

H
r
k
i
,j

in
pr

ev
io

us
bl

oc
ks

p1 RBC∗1 p1 RBCα,1 p1 RBCβ,1 p1

Π

p1 p1nBC1

BBAa

p1

p2 RBC∗2 p2 RBCα,2 p2 RBCβ,2 p2

Π

p2 p2nBC2

BBAa

p2

p3 RBC∗3 p3 RBCα,3 p3 RBCβ,3 p3

Π

p3 p3nBC3

BBAa

p3

p4 RBC∗4 p4 RBCα,4 p4 RBCβ,4 p4

Π

p4 p4nBC4

BBAa

p4

Reconstruct for:
aesKey1, · · · , aesKey4

Decryption:
Decrypt(aesKey1,Bc part1

)

→ Bp part1
· · · · · ·

Decrypt(aesKey4,Bc part4
)

→ Bp part4

n PRBC instances

Assume the l-th participant in the random Π is pa ; repeat until BBA outputs 1.

Reconstructing common random
coins from the secret stream

common random coins

Agreed awVSS batches contribute to the secret shares to the secret stream

A stream of distributed secrets produced from previous blocks (previous preprocessing stages)

RBCi for Bc parti
;

awVSSi for aesKeyi
and secrets

The Done
step for

H
rk
i,j

for PRBCs’
M

for RBCαs’
{0/1, · · · , 0/1}

Similar to SodsBC

Fig. 4: SodsBC++ overview. RBC/nBC: reliable/normal broadcast. BBA: binary Byzantine agreement. awVSS: asynchronous
weak verifiable secret sharing. Bp parti&Bc parti : the i-th block part in plain/cipher-text.

Theorem 1. Algorithm 2 satisfies the PRBC validity, total-
ity, and agreement properties, given the well-committed
preprocessed nested hash values in the blockchain.

Proof: Agreement: The pqPRBC invocates an RBC as
a black-box so that agreement is directly obtained.

Validity: When a broadcaster pj is honest, every honest
participant pi broadcasts Hr

i,j in the Done step, correspond-
ing to the finished RBCj instance in the blockchain round
r. Each Hr

∗,j value can be validated after computing k times
of hash and accessing a committed and preprocessed Hrk

∗,j .
So that each participant will receive f + 1 valid Hr

∗,j values
constructing a valid column vector.

Totality: If any participant has a valid column vector
having f+1 valid items, then at least one honest participant
finishes RBCj and broadcasts its Hr

∗,j value. From the RBC
totality, all honest participants will eventually finish RBCj
and broadcast the Hr

∗,j values. Then, all honest participants
will eventually obtain a valid vector.

The core of Algorithm 3 is a post-quantum MVBA since
our pqMVBA enhances Cachin et al.’s MVBA [17] uses
a stronger broadcast primitive (RBC relative to CBC) and
modify the corresponding RBC validation method (the nor-
mal broadcast round).

Theorem 2. Algorithm 3 satisfies the asynchronous
blockchain validity, agreement and totality properties.

Proof: We first prove the pqMVBA core of Algorithm 3
(Line 5 to 13) satisfy the MVBA external validity, agreement,
and termination properties. The pqMVBA-Integrity is satis-
fied by the protocol inspection. These MVBA properties are
the basis of the aBFT properties.

pqMVBA-External-validity: Assume honest partici-
pants output an invalid result, having a 1-value output
from the BBA instance. This corresponds to at least one 1-
value input from an honest participant, which means that
at least one honest participant believes that the view of the
selected index a, i.e., the input of RBCα,a is valid. This is a

9

contradiction that no honest participant will convince that
an invalid view is valid in RBCα,a.

pqMVBA-Agreement: The BBA properties guarantee
that the pqMVBA loop outputs a consistent index, e.g., pa, to
honest participants. Due to the RBC agreement, honest par-
ticipants will eventually deliver the same Ma from RBCα,a
and output the same Ma in pqMVBA.

pqMVBA-Termination: If an honest participant pi has
a 1-output from BBA, then every honest participant will
receive the BBA 1-output, which corresponds to a selected
view as the output of RBCα,a. As we analyzed for pqPRBC-
External-validity, all honest participants will eventually de-
liver the outputs of the n− f RBC∗ instances in Ma.

BFT properties: Since the pqMVBA outputs a consistent
view Ma, eventually all honest participants output the
consistent n− f block parts in the n− f RBC∗ instances in
Ma, leading to a consistent block part union, which ensures
the BFT agreement. Since the consistent block part union
corresponds to a specific block round, the BFT total order
is also obtained as the BFT agreement is achieved for every
block round. Moreover, SodsBC++ does not modify the basic
MVBA-ACS approach to achieve aBFT, naturally following
the BFT liveness property.
SodsBC++ Communication Complexity. Since a prepro-
cessed nest hash value can be used many times, we omit
the communication overhead for committing the hash value
Hrk
i,j in a special transaction. In the Done step of an RBC

instance, each participant broadcasts its hash value Hrk
i,j

leading to the O(λn2) bits communication complexity, for
which λ is the length of a post-quantum hash function.
Notice that the pqMVBA loop in Algorithm 3 terminates
at an expectation of three rounds to select an honest view.
Thus, the number of common random coins the pqMVBA
requires is 1+3×4 = 13 in expectation, and the size of each
awVSS batch is 13. Hence, n pqPRBCs with piggybacked
messages communicate O(|B|n+ λn3 log n+ 14λn3) bits.

Next, n RBCα instances require the O(n2|M| +
λn3 log n) = O(λn4) since |M| = O(λn2) communication.
n RBCβ instances communicate O(n2|rowC| + λn3 log n) =
O(λn3 log n) since |rowC| = O(n) bits. The communication
complexity of n normal broadcast instances is O(n2). The
constant number of BBAs spend the communication over-
head of O(λn3 log n). The secret reconstructions for O(n)
shared AES keys require the O(λn3 log n) bits communi-
cation. In total, the communication overhead of SodsBC++
is O(|B|n + λn4) bits, slightly larger than the quantum-
sensitive Dumbo, O(|B|n+λn3 log n). However, SodsBC++
can be faster than Dumbo because of using significantly less
computation overhead (see Sect. 6).

6 EVALUATION

6.1 Implementation Setting, Workflow and Benchmark
We implemented Honeybadger [3], SodsBC, Dumbo [4]
and SodsBC++ in a unified program architecture based on
Python 3.6 8. We use the same libraries of Honeybadger
and Dumbo (e.g., zfec for RS coding). The four prototypes

8. We do not follow the open-source Honeybadger version
which heavily utilizing GreenLet coroutine, which may lead
to a bottleneck when n is large (https://github.com/initc3/
HoneyBadgerBFT-Python).

are evaluated in the same AWS cloud region (Tokyo, ap-
northwest-1) 9, using n = 4 to n = 100 t2.medium virtual
machines (2vCPUs, 4GB memory).

Our evaluation follows the same workflow and bench-
mark as the quantum-sensitive aBFTs [3], [4], [12]. There is a
trust setup offering threshold encryption keys and threshold
signature keys for both Honeybadger and Dumbo, and
offering distributed coins for SodsBC and SodsBC++. Then,
SodsBC/SodsBC++ consumes existing coins and generates
fresh coins for the future simultaneously as our concur-
rent preprocessing design. Besides, the trust setup also
provides n2 preprocessed and committed nest hash values
for SodsBC++. In SodsBC and SodsBC++, the piggybacked
secret messages in the first step of RBC instances are AES
encrypted using a common key.

The evaluation selects a dummy transaction sizing 250B
as the previous testings [3], [4], [12], which is the size of
a typical Bitcoin transaction (quantum-sensitive). We also
introduce a post-quantum transaction structure in Sect. 7.2
keeping around 250B for a blockchain payment. Besides,
every participant proposes an identical size of block parts
in our implementations, and each block part has 5, 000 to
40, 000 transactions (to 20, 000 when n = 100).

The latency of these four protocols is recorded from the
local view of every participant. Fig. 5, 6, 7 and 8 specially
show the view from a participant (e.g., p40) to compare the
latency of different protocol components, in a typical setting
where n = 100 and Bpart has 20, 000 transactions. The (n −
f)-th fastest local latency is regarded as the system latency,
among all n participants.

6.2 Latency
SodsBC v.s. Honeybadger. Although the communication
complexity of SodsBC (i.e,. O(|B|n + λn4 log n)) has a fac-
tor of O(λn) worse than Honeybadger [3] (i.e., O(|B|n +
λn3 log n)), the results show that SodsBC is outstandingly
faster than Honeybadger. In the typical setting, SodsBC
spends (87 seconds) around 100 seconds less latency than
Honeybadger (186 seconds) for one consensus, an improve-
ment of 186−87

186 ≈ 53%. Fig. 5 and 6 reflects the SodsBC
efficiency improvements in two aspects.
• The faster common random coin invocations. In Honey-

badger, n BBAs spend around 118 seconds while n BBAs
only spend 34 seconds in SodsBC. SodsBC participants
spend much less time consuming post-quantum coins via
symmetric cryptography and algebra operations for coin
component reconstructions, the latency of which is much
shorter than the one of quantum-sensitive and heavy
bilinear map pairings in Honeybadger. Even though a
SodsBC coin is one-time used, the coin production over-
head is negligible. Participants spend almost the same
time for all n RBCs (SodsBC spends 51 seconds and
Honeybadger spends 46 seconds). There is not an obvi-
ous difference for communicating the extra piggybacked
secret sharing messages in SodsBC.

• The faster anti-censorship solution. In Honeybadger, one
bilinear map pairing spends several milliseconds, and
threshold-decrypting n AES keys require (f + 1) × n

9. Since our experiments have a large burden of communication,
AWS LAN network via private IP can charge no traffic fee.

https://github.com/initc3/HoneyBadgerBFT-Python
https://github.com/initc3/HoneyBadgerBFT-Python

10

Fig. 5: Quantum-sensitive Honeybadger BFT implementation evaluation (Better read in colors).

Fig. 6: Post-quantum SodsBC BFT implementation evaluation (Better read in colors).

pairing operations leading to around 19 seconds when
n = 100 and f = 33 in the typical setting. Instead,
reconstructing n AES keys spend a negligible time in
SodsBC.

SodsBC++ v.s. Dumbo. SodsBC++ and Dumbo are gener-
ally better than SodsBC and Honeybadger when the number
of participants is increasing, since the bottleneck of SodsBC
and Honeybadger lies in the expected log n rounds for n
parallel BBA instances.

Comparing SodsBC++ with Dumbo, SodsBC++ is re-
markable faster than Dumbo when n is not so large (n = 4,
n = 16 and n = 31) in our testings. When n = 61 and
n = 100, the latency of SodsBC++ is still faster than the
one of Dumbo. In the typical setting, the consensus latency
of SodsBC++ (i.e., 67 seconds) is 5 seconds less than the
latency of Dumbo (i.e., 71 seconds); the improvement is
around 6%. Compared with Dumbo, SodsBC++ achieves a
shorter latency due to three improvements.
• The faster common random coin invocations. Even

though the invocation of our post-quantum coins is faster

than the one of the quantum-sensitive competitors, this ef-
fect is not obvious as the MVBA-ACS architecture requires
a small number of coins in SodsBC++ and Dumbo.

• The faster anti-censorship solution. This improvement is
still remarkable between SodsBC++ and Dumbo 10.

• The faster MVBA predicates. For the last Done step in n
PRBCs, Dumbo participants construct O(n) threshold sig-
natures spending around 3.66 seconds, while SodsBC++
participants verifies O(n2) nested hash values only con-
sume 0.69 seconds.

We also note that the two rounds of n RBCs in SodsBC++
spend more time than the two rounds of n CBCs in Dumbo
since one RBC has a factor of O(λn log n) larger communi-
cation complexity than the CBC complexity. However, the
RBC-CBC time difference is not significant when n is not so
large. When n is large, the faster and post-quantum anti-

10. SodsBC and Honeybadger prototypes finish an agreement of n
block parts, while the union size in SodsBC++ and Dumbo is n − f .
So that the AES key threshold decryption overhead for Dumbo in the
n = 100 typical setting is around 12 seconds.

11

Fig. 7: Quantum-sensitive Dumbo BFT implementation evaluation (Better read in colors).

Fig. 8: Post-quantum SodsBC++ BFT implementation evaluation (Better read in colors).

censorship solution and MVBA predicates still make up
the worse efficiency of 2n RBC instances, which still helps
SodsBC++ run faster than Dumbo.

6.3 Throughput

We calculate the largest throughput in theory by n|Bpart|
Latency for

Honeybadger and SodsBC 11, and by (n−f)|Bpart|
Latency for Dumbo

and SodsBC++, respectively. Fig. 5, 6, 7 and 8 illustrate the
throughput variation trend for different sizes of transactions
in one block part or different network scale. We also explic-
itly compare the throughput for all four protocols in Tab. 1
when n = 4 or n = 100 and Bpart has 20, 000 transactions.

Tab. 1 shows when n = 4, SodsBC can achieve around
101, 000 TPS compared with 90, 000 TPS for Honeybadger.
When n = 100, the throughput for SodsBC is 23, 000 TPS,
while the corresponding for Honeybadger is 11, 000 TPS.
In both settings, SodsBC achieves a higher throughput rate

11. We select the testings which finish all n RBCs in this paper.

TABLE 1: The performance when n = 4 or n = 100,
|Bpart| = 20, 000 transactions (TP: throughput. TPS: transac-
tions per second. The latency is from the (n− f)-th slowest
participant.).

Protocol
n = 4 n = 100

latency TP latency TP
(second) (TPS) (second) (TPS)

Honeybadger 0.89 89,888 185.86 10,760
SodsBC 0.79 101,266 87.17 22,944
Dumbo 1.05 57,143 70.64 18,969

SodsBC++ 0.64 93,750 67.16 19,952

than Dumbo. It is obvious that SodsBC can significantly
outperform Honeybadger for different network scales.

SodsBC++ can achieve around 94, 000 TPS and 20, 000
TPS when n = 4 and n = 100, respectively. Correspond-
ingly, the throughput for Dumbo in n = 4 or n = 100
is 57, 000 TPS and 19, 000 TPS, respectively. This result
shows that SodsBC++ has a better performance than Dumbo

12

with post-quantum security by design. When n is small, the
performance advantage is obvious.

Note that even though SodsBC++ can be the fastest
protocol, SodsBC has the best “largest throughput rate in
theory“ since SodsBC may collect all n block parts in one
block part union.

The practical throughput should consider the random
selection in each un-verified transaction pool when each
participant packages a block part, to avoid selecting over-
lapping transactions. SodsBC/SodsBC++ also supports the
random bucket technique [27] for the unverified transaction
pool, in order to mitigate the duplicated-transaction attack.

7 DISCUSSION

7.1 The Global Wait-free Bootstrap

The SodsBC/SodsBC++ common random coin scheme of-
fers randomness for an aBFT. However, since each block
round only constructs fresh coins for future usage, there is
no coin to be used in the very beginning. Usually a setup
phase assigns the keys/coins as a bootstrap process, here we
also present a practically wait- free alternative. Therefore,
we strengthen the timing limitation in the bootstrap, i.e.,
allowing timeouts, and design the bootstrap in a similar way
as a BBA-ACS-based aBFT, which is depicted in Fig. 9.

p1

p2

p3

p4

BBA-ACS based Bootstrap
awVSS batch

size: 3

awVSS batch
size: 3

awVSS batch
size: 3

awVSS batch
size: 3

PBFT1

PBFT2

PBFT3

PBFT4

1

1

1

0

The global
awVSS pool

p1 p2 p3 p4

s11

s12

s13

s21

s22

s23

s31

s32

s33

s14

s15

s16

s24

s25

s26

s34

s35

s36

si,j
shared but

not agreed
si,j

shared

and agreed

Fig. 9: A “wait-free” bootstrap using the BBA-ACS architec-
ture. Each PBFT finalizes an awVSS batch. In this example,
during the waiting time to 0-finalize awVSS4, p1, p2, and p3
launch extra awVSS batches contributing to the pool.

In our bootstrap, all participants keep running awVSS in
batches. These participants also join n PBFT [28] instances to
agree on the n awVSS batches, rather than n BBA instances
in the regular stage as in Honeybadger [3] and SodsBC
(Algorithm 1). Since a PBFT is a concrete protocol of the BA
primitive, it is reasonable to replace n BBAs with n PBFTs.

These concurrent PBFTs allow honest dealers to con-
tribute to the global finished awVSS pool, later used as
coins, without significant influences from the waiting time
delayed by malicious dealers. Even malicious participants
can block some PBFT processes, we can require other hon-
est participants to continue to launch extra awVSS batch
instances, before all PBFT instances finish. From a global
view, the increasing of the coin pool is still Byzantine wait-
free. The generated but not agreed on secrets (extra shared
during the local waiting time) can be agreed in the first
block with newly generated secrets. In the example of Fig. 9,
PBFT4 may spend a lot of time to wait for 0-finalizing

awVSS4. During this time, p1, p2, and p3 launch extra awVSS
batches.

Adding one partial-synchronous round in the very be-
ginning before the full asynchronous protocol is introduced
in asynchronous MPC [29], which is referred to as a hy-
brid network model. This model does not change the fact
that SodsBC/SodsBC++ is a fully asynchronous protocol
in regular stages when a one-time setup provides the first
coins or alternatively when these coins are provided by a
partial-synchronous bootstrap. When the partial-synchrony
concerning overcomes the distrusted worry for a trusted
third party, SodsBC/SodsBC++ can also be launched from
the distributed coins generated in a trusted setup, and start
the first/genesis block in a fully asynchronous way, as we
did in our implementation (see Sect. 6).

7.2 An Efficient Post-quantum Transaction Structure
When a user wants to spend money in blockchain, the user
should prove hers/his balance ownership. A Bitcoin user
offers hers/his signature related to the public key input of
a transaction. If we directly replace the ECDSA signature
scheme with a hash-based and post-quantum signature
scheme, the size of a transaction will be very large.

If a transaction ownership proof is only one-time used,
the user can expose some secrets in a spent transaction
related to the previous public information in the previ-
ous deposit transaction. For unforgeability, the user should
not directly transfer hers/his secret to a participant who
may be malicious. Therefore, we propose a first-commit-
then-unlock idea to divide an original transaction into two
successive transactions. A committed transaction will commit
a payment to a payee with an encrypted pad. An unlock
transaction will open a committed transaction (decrypt the
pad) and prove the ownership of a user by revealing the
secret of the money source. We use an example to describe
our design.

TX0 : ∗ $100→ Hash(Hash(secretAlice))

TXcomm : Hash(TX0)
$100→ Hash(Hash(secretBob)),

AESEncrypt(secretAlice)Key=Hash(secretAlice)

TXunlock : Hash(TXcomm),Hash(secretAlice)

Assume a coin-base and agreed transaction minting $100
for Alice in TX0. TX0 includes the twice hash of the secret
of Alice. When Alice is to transfer the money to Bob, Alice
constructs a committed transaction TXcomm including the
point to TX0 to refer the money resource, also including the
twice hash of the secret of Bob. secretAlice is AES-encrypted
under the AES key Hash(secretAlice). Alice proposes TXcomm

and waits for that TXcomm is committed in the blockchain.
After confirming TXcomm, Alice generates an unlock

transaction TXunlock, which points to TXcomm and decrypts
the ciphertext of secretAlice in TXcomm by the AES key
Hash(secretAlice). If secretAlice corresponds to the twice hash
in TX0, then TXunlock is enabled and Alice’s money is indeed
transferred to Bob. For the next payment, TXcomm acts as the
next TX0 (money source) for Bob.

If TXcomm or TXunlock is refused by a malicious partic-
ipant, Alice can sent TXcomm or TXunlock to another par-
ticipant. A malicious participant cannot modify TXcomm

13

without knowing secretAlice. Also, if a malicious participant
steals secretAlice from TXunlock, it cannot steal Alice’s money.
The modified TX′comm and TX′unlock will not be accepted
since TXcomm is previously agreed. Honest participants will
scan all pending committed transactions when enabling an
unlock transaction.

In total, TXcomm and TXunlock spend five 32B values
when deploying AES-256 and SHA-256. When considering
other relevant information and two payees, we still can
make the total size of the two successive transactions around
250B as similar as the size of a typical Bitcoin transaction
used as our benchmark (Sect. 6).

Note that our post-quantum transaction is to prove the
ownership of a crypto-coin (i.e., a payment). If the Bitcoin-
liked wallet is needed, a lattice-based signature may be
better to support post-quantum and multi-use signatures.

8 RELATED WORKS

In this section, we introduce prior blockchain consensus
from two aspects, i.e., asynchronous blockchain and post-
quantum blockchain protocols.
Asynchronous blockchain consensus (aBFT) protocols try
to achieve a consistent block part union, i.e., a consistent
block, via agreeing on the block parts proposed by different
participants, which can be distinguished to BBA-ACS and
MVBA-ACS architectures.

Under the BBA-ACS paradigm [5], Honeybadger
BFT [3], BEAT [12] and EPIC [13] rely on n parallel BBA
instances [19] to finalize each RBC-based block part proposal
one-by-one, utilizing threshold signature or pseudorandom
function (PRF) based common random coins as the random-
ness source. However, when n increases, the slowest BBA
instance may become the system bottleneck especially when
the consuming time for a BBA used common random coin
is not negligible. HoneyBadger authors [3] already report
around six minutes for one block when n = 104 in a
WAN network, and recognize that the heavy use of bilin-
ear map pairings for threshold signature [25] may account
for the bottleneck. BEAT [12] focuses on several different
performance metrics and application scenarios for aBFTs,
replaces the bilinear map pairing-based threshold signature
with a Dlog-based PRF [26], and proposes a homomorphic
fingerprint [22] based partial blockchain structure. EPIC [13]
considers an adaptive adversary and deploys an adaptive
security PRF-based common random coin scheme [30], [31].

Dumbo [4] firstly adopts the MVBA-ACS architectures to
achieve an aBFT protocol, which decreases n BBA instances
to only a constant number. Aleph [32] combines an MVBA
with the direct acyclic graph block structure resulting in an
asynchronous permissionless blockchain.

Besides the usage of MVBA in the blockchain consensus
area, the design of MVBA is also developing. Cachin et
al. [17] first introduce external validity to MVBA, which
enforces an output from a malicious participant to also
satisfy a pre-defined predicate, in order to dramatically
increase the probability of a valid output. Ittai et al. [33]
employ the idea of Hotstuff [34] and four-stage lock each
participant input, which removes the O(n3) communication
complexity item of Cachin et al.’s MVBA [17]. Dumbo-
MVBA [35] further adopts erasure code and vector commit-
ment to decrease the communication overhead of an MVBA

protocol to O(`n+λn2), which is optimal. Still, these MVBA
designs [17], [33], [35] heavily rely on quantum-sensitive
threshold signature.
Post-quantum blockchain consensus protocols can be dis-
tinguished into two types, i.e., for a permissioned or permis-
sionless setting. In the scope of permissioned blockchain,
although recent researches make a leap in the efficiency
of a partial-synchronous or asynchronous BFT, there is less
concern about the potential quantum risk when designing a
long-term used permissioned blockchain. More importantly,
designing a post-quantum blockchain should not directly
replace quantum-sensitive cryptographic tools like thresh-
old signature. For one thing, to the best of our knowledge,
there is no post-quantum non-interactive threshold signa-
ture. The state-of-the-art post-quantum signatures can not
be converted to a non-interactive threshold scheme [36]. For
another thing, most post-quantum signature schemes like
lattice-based or hash-based are not efficient in length and
computation. It may amplify the current BFT bottleneck
if naively replacing the quantum-sensitive cryptographic
tools. Praxxis [37] follows the Thunderella optimal respon-
siveness idea [38] to construct an efficient and quantum-
safe blockchain based on WOTH+ [39] signatures 12. Even
though WOTH+ is the state-of-the-art one-time signature
scheme achieving quantum-safety, Praxxis [37] still requires
the network to be partial synchronous.

In the scope of permissionless blockchain, several works
try to enhance post-quantum security also without consider-
ing the efficiency. BitcoinPQ [40] adopts post-quantum hash
function Equihash96x3 and hash-based signature scheme
XMSS [41] to resist quantum adversaries. Abelian [42]
adopts lattice-based cryptographic schemes and especially
uses ring signature and zero-knowledge proof in lattice to
improve privacy. Shen et al. [43] suggest the multivariate
signature scheme, Rainbow [44], in Ethereum. However,
these post-quantum improvements do not cope with or
even further deteriorate the low-efficiency problem of the
proof-of-work consensus. No matter in a permissioned or a
permissionless setting, a post-quantum blockchain consen-
sus protocol with practical efficiency was an open question
before our paper.

9 CONCLUSION

We present a post-quantum framework for aBFTs, and
instantiate this framework to two protocols, SodsBC and
SodsBC++. We leverage concurrent preprocessing to gen-
erate three cryptographic objects: symmetric keys, common
random coins, and nested hashes. These preprocessed ob-
jects help SodsBC or SodsBC++ achieve aBFT under the
BBA-ACS or MVBA-ACS architecture, respectively. Our
evaluation results show that both SodsBC and SodsBC++
are faster than the quantum-sensitive competitors Honey-
badger and Dumbo by 53% and 6%, respectively.

ACKNOWLEDGMENT

We would like to thank Dr. Alexander Binun for his great
help and support in the Honeybadger, Dumbo, SodsBC, and
SodsBC++ implementations.

12. The Praxxis research team is led by David Chaum (https://
praxxis.io/press-release/praxxis-emerges-from-stealth).

https://praxxis.io/press-release/praxxis-emerges-from-stealth
https://praxxis.io/press-release/praxxis-emerges-from-stealth

14

REFERENCES

[1] S. Dolev and Z. Wang, “Sodsbc: Stream of distributed secrets for
quantum-safe blockchain,” in IEEE Blockchain 2020, pp. 247–256.

[2] Y. Liu, J. Liu, Q. Wu, H. Yu, Y. Hei, and Z. Zhou, “SSHC: A secure
and scalable hybrid consensus protocol for sharding blockchains
with a formal security framework,” IEEE Trans. Dependable Secur.
Comput, 2020.

[3] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in CCS 2016, pp. 31–42.

[4] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in CCS 2020, pp. 803–818.

[5] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure com-
putations with optimal resilience,” in PODC 1994, pp. 183–192.

[6] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in FOCS 1994, 1994, pp. 124–134.

[7] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algo-
rithm for elliptic curves,” Quantum Inf. Comput., vol. 3, no. 4, pp.
317–344, 2003.

[8] V. Gheorghiu, S. Gorbunov, M. Mosca, and B. Munson, “Quantum
proofing the blockchain,” Tech. Rep., 2017.

[9] T. M. Fernández-Caramés and P. Fraga-Lamas, “Towards post-
quantum blockchain: A review on blockchain cryptography re-
sistant to quantum computing attacks,” IEEE Access, vol. 8, pp.
21 091–21 116, 2020.

[10] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in STOC 1996, pp. 212–219.

[11] D. Beaver, “Efficient multiparty protocols using circuit randomiza-
tion,” in CRYPTO 1991, pp. 420–432.

[12] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: asynchronous BFT
made practical,” in CCS 2018, pp. 2028–2041.

[13] C. Liu, S. Duan, and H. Zhang, “EPIC: efficient asynchronous BFT
with adaptive security,” in DSN 2020, pp. 437–451.

[14] R. Friedman, A. Mostéfaoui, and M. Raynal, “Simple and efficient
oracle-based consensus protocols for asynchronous byzantine sys-
tems,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 1, pp. 46–
56, 2005.

[15] J. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Trans.
Dependable Secur. Comput., vol. 3, no. 3, pp. 202–215, 2006.

[16] R. Cortiñas, F. C. Freiling, M. Ghajar-Azadanlou, A. Lafuente,
M. Larrea, L. D. Penso, and I. S. Arriola, “Secure failure detec-
tion and consensus in trustedpals,” IEEE Trans. Dependable Secur.
Comput., vol. 9, no. 4, pp. 610–625, 2012.

[17] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in CRYPTO 2001, pp.
524–541.

[18] C. Cachin and S. Tessaro, “Asynchronous veriable information
dispersal,” in SRDS 2005, pp. 191–202.

[19] A. Mostéfaoui, M. Hamouma, and M. Raynal, “Signature-free
asynchronous byzantine consensus with t 2<n/3 and o(n2) mes-
sages,” in PODC 2014, pp. 2–9.

[20] A. Miller, “Bug in aba protocol’s use of common coin 59,” Online
Forum, 2018, https://github.com/amiller/HoneyBadgerBFT/
issues/59.

[21] M. Backes, A. Kate, and A. Patra, “Computational verifiable secret
sharing revisited,” in ASIACRYPT 2011, pp. 590–609.

[22] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Verifying distributed
erasure-coded data,” in PODC 2007, pp. 139–146.

[23] J. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM 2003, pp.
1491–1495.

[24] V. Shoup and R. Gennaro, “Securing threshold cryptosystems
against chosen ciphertext attack,” in EUROCRYPT 1998, pp. 1–16.

[25] A. Boldyreva, “Threshold signatures, multisignatures and blind
signatures based on the gap-diffie-hellman-group signature
scheme,” in PKC 2003, pp. 31–46.

[26] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using
cryptography,” J. Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[27] C. Stathakopoulou, T. David, and M. Vukolic, “Mir-BFT: High-
throughput BFT for blockchains,” ARXIV 1906.05552, 2019.

[28] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
OSDI 1999, pp. 173–186.

[29] Z. Beerliová-Trubı́niová and M. Hirt, “Simple and efficient
perfectly-secure asynchronous MPC,” in ASIACRYPT 2007, pp.
376–392.

[30] J. Loss and T. Moran, “Combining asynchronous and synchronous
byzantine agreement: The best of both worlds,” Cryptology ePrint
Archive, Report 2018/235.

[31] B. Libert, M. Joye, and M. Yung, “Born and raised distributively:
Fully distributed non-interactive adaptively-secure threshold sig-
natures with short shares,” Theor. Comput. Sci., vol. 645, pp. 1–24,
2016.

[32] A. Gagol, D. Lesniak, D. Straszak, and M. Swietek, “Aleph: Effi-
cient atomic broadcast in asynchronous networks with byzantine
nodes,” in AFT 2019, pp. 214–228.

[33] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically opti-
mal validated asynchronous byzantine agreement,” in PODC 2019,
pp. 337–346.

[34] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in
PODC 2019, pp. 347–356.

[35] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal
multi-valued validated asynchronous byzantine agreement, revis-
ited,” in PODC 2020, pp. 129–138.

[36] D. Cozzo and N. P. Smart, “Sharing the LUOV: threshold post-
quantum signatures,” in IMACC 2019, pp. 128–153.

[37] T. P. Team, “Praxxis techical report,” Tech. Rep., 2019, https://
praxxis.io/technical-paper.

[38] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic
instant confirmation,” in EUROCRYPT 2018, pp. 3–33.

[39] A. Hülsing, “WOTS+ - shorter signatures for hash-based signature
schemes,” Cryptology ePrint Archive, Report 2017/965.

[40] N. Anhao, “Bitcoin post-quantum,” Tech. Rep., 2018, https://
bitcoinpq.org/download/bitcoinpq-whitepaper-english.pdf.

[41] J. A. Buchmann, E. Dahmen, and A. Hülsing, “XMSS - A practi-
cal forward secure signature scheme based on minimal security
assumptions,” in PQCrypto 2011, pp. 117–129.

[42] A. Foundation, “Abelian coin (abe) a quantum-resistant cryp-
tocurrency balancing privacy and accountability,” Tech. Rep.,
2018, https://www.abelianfoundation.org/wp-content/uploads/
2018/08/Abelian-Whitepaper-CB20180615.pdf.

[43] R. Shen, H. Xiang, X. Zhang, B. Cai, and T. Xiang, “Application
and implementation of multivariate public key cryptosystem in
blockchain (short paper),” in CollaborateCom 2019, pp. 419–428.

[44] J. Ding and D. Schmidt, “Rainbow, a new multivariable polyno-
mial signature scheme,” in ACNS 2005, pp. 164–175.

[45] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient
byzantine-tolerant erasure-coded storage,” in DSN 2004, pp. 135–
144.

[46] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf.
Comput., vol. 75, no. 2, pp. 130–143, 1987.

https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/amiller/HoneyBadgerBFT/issues/59
https://praxxis.io/technical-paper
https://praxxis.io/technical-paper
https://bitcoinpq.org/download/bitcoinpq-whitepaper-english.pdf
https://bitcoinpq.org/download/bitcoinpq-whitepaper-english.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf

15

Shlomi Dolev Rita Altura Professor, IEEE Fel-
low, and EAI Fellow. Founding Chair of the Com-
puter Science Department, Ben-Gurion Univer-
sity of the Negev. Served as the Dean of the
Faculty of Natural Sciences, Chair of the Inter-
University Computation Center, and of the com-
puter science committee in the ministry of edu-
cation of Israel. Co-founder of Secret Double Oc-
topus and SecretSkyDB. Published more than
300 publications, including the Self-Stabilization
book (MIT Press). Chaired the two leading con-

ferences in distributed computing DISC and PODC. Recently, initiated
the Cyber Security Cryptology and Machine Learning Symposium.

Bingyong Guo is a Ph.D student of Institute
of Software Chinese Academy of Sciences and
UCAS. His research interests focus on the anal-
ysis of cryptographic protocols, blockchain, BFT
protocols.

Jianyu Niu received the B.Eng. and the M.A.Sc.
degrees from the Department of Electronics and
Information, Northwestern Polytechnical Univer-
sity, China, in 2014 and 2017, respectively. He
is currently pursuing a Ph.D. degree from the
School of Engineering, The University of British
Columbia, Kelowna, Canada. His research in-
terests focus on distributed system, blockchain
systems, wireless communication, and Internet-
of-Things (IoT). He is a student member of the
IEEE.

Ziyu Wang received the B.S. degree, and the
Ph.D. degree in Department of Electronic and
Information Engineering from Beihang Univer-
sity, China, 2016, and 2021, respectively. His
major research interests include cryptography
and blockchain. He is a student member of the
IEEE.

16

APPENDIX A
ASYNCHRONOUS WEAK VERIFIABLE SECRET
SHARING (AWVSS)
The motivation of a VSS scheme is to detect the malicious
behavior of a dealer if it shares a secret under a higher
reconstruction threshold than the one it claims. Some clas-
sical schemes achieve this motivation in a sharing stage,
as the strong commitment property of a VSS scheme. A
weak commitment VSS scheme delays the detection to a
reconstruction stage [21], and consistently sets a shared
secret to a default value when the dealer is dishonest.

Our asynchronous weak VSS (awVSS) scheme follows
this weak commitment property and works in an asyn-
chronous network. Secret sharing is not so easy in an
asynchronous n = 3f + 1 environment. Due to the fact
that an asynchronous adversary may delay the message
delivery for an unlimited time, in a sharing stage, only 2f+1
confirmation messages can be relied on, since f of 2f + 1
may be malicious. At most f honest participants may not
express their opinions about the dealer. In the reconstruction
stage, we only rely on 2f + 1 received shares, and also at
most f may be incorrect.

Therefore, we accompany a Merkle branch proof to each
share, i.e., a hash-based cross checksum [45], and distribute
the Merkle root as a reliable-broadcast style (all-or-nothing)
simultaneously as a secret-sharing stage. Eventually, all hon-
est participants will deliver the same Merkle root, which en-
sures that the following reconstruction stage only recovers
one consistent secret or consistently sets the secret to default.
Our awVSS scheme satisfies the secrecy, share agreement,
share liveness, and weak commitment (reconstruction cor-
rectness) properties as we introduced in Sect. 3.1.

Note that the reconstruction correctness property of our
awVSS scheme relies on the previous sharing stage ter-
mination, i.e., an honest participant should hold a well-
distributed Merkle root and continue to execute the secret
reconstruction. Hence, we always arrange the awVSS shar-
ing before a consensus and reconstruct the shared secret
after the consensus, which consistently finalizes the secret
sharing and ensures the eventual Merkle tree root delivery.
If a participant finishes a consensus without delivering the
root temporarily, this participant should temporarily store
a received share, and return to the reconstruction until
waiting for the root delivery.

Our awVSS is the SodsBC/SodsBC++ basis, which
shares AES keys for the censorship-resilient consensus
(sharing symmetric keys before a consensus and recovering
the keys after this round consensus) and shares distributed
secrets for common random coins (sharing secrets before a
consensus and the secrets for coins are recoverable after the
next round consensus).

In Algorithm 4, the first Sharing step asks a dealer
pdealer to insert a secret s in the free item of a random f -
degree polynomial F (x), i.e., F (0) = s. pdealer regards all n
shares as Merkle tree leaves rendering Root. pdealer sends a
share [s]i = F (i), Root, and the corresponding Merkle tree
proofs, branchi to pi. In Echo and Ready, participants verify
if receiving the same Merkle root as in an RBC protocol.
Hence, if the dealer is honest, every participant delivers
a share and a consistent Merkle tree root. If the dealer is

malicious and a condition (such as the same 2f + 1 Echo
messages) is not satisfied, then an awVSS for sharing a secret
will not be finished. Moreover, Algorithm 4 only ensures the
share deliver from at least f + 1 honest participants. While
all 2f + 1 honest participants deliver an identical Merkle
root eventually.

In our design, there are two Merkle tree checks during
a reconstruction stage. Before interpolation, i.e., when re-
ceiving each share from another participant, a participant
will use the previous delivered Merkle root to verify this
received share, so that this participant can locate f + 1
correct shares. Since a malicious dealer may distribute the
shares under a t′ > f + 1 reconstructed threshold, honest
participants may reconstruct inconsistent secrets without
the second Merkle tree check. Hence, we require each partic-
ipant to re-construct a Merkle tree from the n reconstructed
shares, and compare the consistency of the re-construct
Merkle root with the delivered root. Honest participants
will not deliver a reconstructed secret and set the secret to
default unless the second check passes.

Algorithm 4 Asynchronous Weak Verifiable Secret Sharing
(awVSS) [1] for pi ∈ P .

// Sharing stage. (A finite field encompasses some elements
covering pi, s and the F (x) coefficients. A share [s]i = F (pi)
satisfies branchi having Root.)
Sharing: // (For pdealer and its secret s)

1: Generate an f -degree random polynomial F (x) with
F (0) = s, make a Merkle tree from F (p1), · · · , F (pn),
and send 〈sharing, [s]i, branchi〉 to ∀pi ∈ P .
Echo:

2: Upon receiving a 〈sharing, [s]i, branchi〉 message, ex-
tract Root from branchi and echo 〈echo, Root〉, if
branchi satisfies [s]i.

3: Upon receiving n − f echo messages having Root,
broadcast 〈ready,Root〉.
Ready:

4: Upon receiving f + 1 ready messages having Root,
broadcast 〈ready,Root〉 if not yet broadcast a ready.

5: Upon receiving n − f ready messages having Root,
deliver Root; also deliver [s]i and branchi received in
sharing, if [s]i and branchi satisfy Root.
// Reconstruction stage
Reconstruction-send:

6: Broadcast 〈reconstruct, [s]i, branchi〉, if have deliv-
ered [s]i and branchi.
Reconstruction-receive:

7: Upon receiving a 〈reconstruct, [s]j , branchj〉, disre-
gard this message if branchj does not have Root, or
branchj does not satisfy [s]j .

8: Upon receiving f + 1 reconstruct having Root
and correct shares, reconstruct s′ and all shares
F ′(p1), · · · , F ′(pn). If F ′(p1), · · · , F ′(pn) lead to
Root′ = Root, set s← s′; otherwise, s← 0.

Theorem 3. Algorithm 4 is an awVSS scheme.

Proof: The distribution of Root is in an identical way
as the algorithm in Bracha’s RBC [46], which ensures the
root agreement and totality.

17

Share agreement: Assume an honest participant p deliv-
ers a share [s] corresponding to Root while another honest
p′ delivers [s′] corresponding to Root′. This assumption
renders a contradiction which violets the root agreement.

Share liveness: If an honest participant pi delivers a
share [s]i with a corresponding Merkle root, Root, then pi
must already receive 2f + 1 ready messages having Root.
Among these messages, at least f + 1 honest participants
sent ready messages. For these f + 1 honest participants,
they must already receive 2f + 1 echo messages having
Root. Similarly, there are at least f+1 echo messages among
them being sent by honest participants. These f + 1 honest
participants receive a correct share and a Merkle branch
accessing to Root, from the dealer, which renders the share
liveness. Note that if the dealer is malicious, it is possible
that at most f honest participants may not receive their
corresponding shares. But these f honest participants still
deliver Root eventually.

Weak commitment: Assume two honest participants p
and p′ reconstruct two different secrets, i.e., s 6= s′, respec-
tively. If p obtains s, then p must deliver a Merkle root, Root
previously, which satisfies the n shares of the secret s. In
a similar way, p′ reconstructs s′, which means p′ delivers
another Root′ corresponding to the n shares of the secret
s′. This is a contradiction to the root agreement argument.
Hence, s = s′ must be satisfied.

Moreover, assume an honest participant p reconstruct a
secret s but another honest participant p′ sets the secret to
a default value, e.g., s′ ← 0. p reconstructs s, which means
that p re-builds a new Merkle tree root after reconstruction
and this new root equals to the previous delivered one, i.e.,
Root = Rootprevious. If p′ sets s′ ← 0, then p′ must re-built
another Merkle tree root unequal to the previous delivered
one, i.e., Root′ 6= Rootprevious. These two arguments lead to
Root 6= Root′, which is also a contradiction violating the
root agreement.

APPENDIX B
EXISTING ALGORITHM DETAILS

Bracha’s broadcast protocol [46] is the first RBC protocol
which makes sure the all-or-nothing style. The state-of-the-
art RBC protocol originates from Cachin and Tessaro [18]
utilizing the Reed-Solomon erasure coding, in order to de-
crease theO(n2) overhead for the all-to-all echoing. Miller et
al. [3] additionally assign hash Merkle tree cross checksum
(Algorithm 5) to achieve the O(|msg|n+λn2 log n) commu-
nication overhead.

The widely used asynchronous BBA protocol is instan-
tiated by Mostéfaoui et al. [19], which is signature-free and
can terminate in constant (specifically, four) rounds (Algo-
rithm 6). Note that the original BBA protocol design [19]
requires a refinement [20] considering an imperfect common
random coin scheme (a perfect coin source does not involve
interaction).

Algorithm 5 Reliable Broadcast (RBC) [3], [18] for pi ∈ P

(Branchi corresponds to Di having Root.)
Broadcast: // (for pbroadcaster and a message msg)

1: (t = f + 1, n)-RS encode msg to {D1, · · · ,Dn}
constructing a Merkle tree having Root and send
〈broadcast,Di,Branchi〉 to ∀pi ∈ P .
Echo:

2: Upon receiving 〈broadcast,Di,Branchi〉, broadcast
〈echo,Di,Branchi〉 if Branchi corresponds to Di.

3: Upon receiving 〈echo,Di,Branchi〉, disregard it if
Branchi does not correspond to Di.

4: Upon receiving n − f echo messages having Root, de-
code msg from f + 1 echo messages and get all n code-
words leading to Root′, and broadcast 〈ready,Root〉 if
Root′ = Root; otherwise abort.
Ready:

5: Upon receiving f + 1 ready messages having Root,
broadcast 〈ready,Root〉 if do not broadcast ready yet.

6: Upon receiving n − f ready messages having Root,
deliver msg if finish decoding in Echo; use Root to wait
for f + 1 correct echo messages, and obtain msg.

Algorithm 6 Binary Byzantine Agreement (BBA) [19] with
the revision from [20] for pi ∈ P

round ← 0. Set estValueround = estValue0 = resRBC (0:
unfinished, 1: finished).

1: repeat
2: Broadcast estValueround; sets {estValueround} ← [].
3: Upon receiving f + 1 estValueround, broadcast

estValueround if estValueround is not broadcast.
4: Upon receiving 2f + 1 estValueround, set
{estValueround} ← {estValueround} ∪ estValueround.

5: Upon {estValueround} 6= ∅, broadcast auxValueround
where auxValueround ∈ {estValueround}.

6: Upon receiving at least n − f auxValueround
values constructing {auxValueround} which satisfies
{auxValueround} ⊆ {estValueround}, broadcast
{estValueround}.

7: Upon receiving at least n − f {estValueround}j
sets, pi computes a union of the receive sets as
{confValueround} =

⋃
j {estValueround}j .

8: pi calls a coin, rc = CommonRandomCoin().
9: if |{confValueround}| = 1 then

10: if confValueround = rc then
11: return rc.
12: else
13: estValueround+1 ← confValueround.
14: else
15: estround+1 ← rc.
16: round← round + 1.
17: until return

	Introduction
	Our Contributions

	System Model, Targets and Components
	System Model
	System Target: Post-quantum Secure Asynchronous BFT Protocol
	Components in SodsBC/SodsBC++

	Designed Building Blocks
	Asynchronous Weak Verifiable Secret Sharing
	Post-quantum Censorship Resilience Solution
	Post-quantum Common Random Coin Scheme

	SodsBC
	SodsBC++
	Nested Hash based Post-quantum Provable Reliable Broadcast (pqPRBC)
	SodsBC++ Protocol

	Evaluation
	Implementation Setting, Workflow and Benchmark
	Latency
	Throughput

	Discussion
	The Global Wait-free Bootstrap
	An Efficient Post-quantum Transaction Structure

	Related works
	Conclusion
	References
	Biographies
	Shlomi Dolev
	Bingyong Guo
	Jianyu Niu
	Ziyu Wang

	Appendix A: Asynchronous Weak Verifiable Secret Sharing (awVSS)
	Appendix B: Existing Algorithm Details

