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Abstract—Authentication and identification methods based on
human fingerprints are ubiquitous in several systems ranging
from government organizations to consumer products. The per-
formance and reliability of such systems directly rely on the
volume of data on which they have been verified. Unfortunately,
a large volume of fingerprint databases is not publicly available
due to many privacy and security concerns.

In this paper, we introduce a new approach to automatically
generate high-fidelity synthetic fingerprints at scale. Our ap-
proach relies on (i) Generative Adversarial Networks to estimate
the probability distribution of human fingerprints and (ii) Super-
Resolution methods to synthesize fine-grained textures. We rigor-
ously test our system and show that our methodology is the first to
generate fingerprints that are computationally indistinguishable
from real ones, a task that prior art could not accomplish.

I. INTRODUCTION

Human fingerprints are frequently used in several applica-
tions for authentication and identification, ranging from smart
doors to authorizing payments on cell phones. Evaluating the
performance and reliability of identification and verification
fingerprint-based systems requires access to a large fingerprint
database. However, in practice, obtaining a massive corpus
of fingerprint images incurs a high cost. In many cases, the
research groups that are developing fingerprint-based authenti-
cation systems, do not have access to a large publicly-available
database. The performance of these systems is directly depen-
dent on the quality and quantity of the available data.

In addition to the above obstacles, gathering fingerprint im-
pressions of a large population of people raises severe privacy
and security concerns. In case of a breach, the fingerprint of
many users will be directly exposed to attackers and can be
used to fool any other authentication systems that accept fin-
gerprints. To this end, we study the task of generating synthetic
fingerprints which can solve the challenges mentioned above.
Synthetic fingerprints solve the availability concern as they can
be generated for virtually any number of samples. Moreover,
synthetic fingerprints are artificially generated; hence, they do
not leak any information about real identities.

Synthetic fingerprints also play essential roles in other
tasks as well. For example, they can be used to analyze the
robustness of a verification system against Trojan attacks [1].
To perform this analysis, a large number of fingerprints are
needed where their fine-grained features can be varied while
fixing other characteristics such as image orientation.

Fingerprints can be categorized based on their global struc-
ture and curvatures. Some of these categories are drastically
rarer, and their synthetic counterparts can be used to com-
pensate for the imbalance. One can generate a specific type

∗Equal contributions of the first two authors.

of fingerprints that are rarer in the real-world. Moreover, the
security of several biometric storage mechanisms that protect
fingerprints in case of a breach relies on the assumption that
the size of a database is bigger than a specific threshold [2]. In
these scenarios, synthetic fingerprints can be used as a means
to populate small databases.

Prior synthetic fingerprint generation solutions were able
to either create synthetic templates of fingerprint’s micro-
features or synthetic image of actual fingerprints but at a
low resolution. Solutions based on mathematical models of
fingerprints suffer from lack of entropy and generalization to
accurate probability distribution of real fingerprints [3]. Prior
solutions based on Deep Learning (DL) models also cannot
produce high-quality images due to the small volume of the
available real fingerprints to train these models [4].

In this paper, we present SYNFI, a new comprehensive
framework to automatically generate high-quality synthetic
fingerprints at scale. Our solution formulates the process of
generating synthetic fingerprints as two parallel deep learning
tasks based on Generative Adversarial Network (GAN) and
Super-Resolution (SR) paradigm. In particular, SYNFI formal-
izes and satisfies the following design goals to meet real-world
expectations: (i) the generated samples should preserve the
minutiae characteristics of fingerprints used for authentication
systems, e.g., ridge structure, bifurcations, and ridge endings.
(ii) An ideal system should be able to generate full-finger
impressions as opposed to partial fingerprints. (iii) Synthetic
fingerprints should be computationally indistinguishable from
real impressions to be used as a means to extend the security
of biometric storage systems. (iv) The system should be fully
automated, requiring no manual feature engineering to have
high scalability. As we show in the rest of this paper, SYNFI
satisfies all of the above requirements.

Contributions. Our concrete contributions are as follows.
• We propose a new framework to generate robust full-finger

synthetic fingerprints. We explore several deep learning-
based solutions to generate high-quality samples. We for-
mulate this task based on generative adversarial network
and super-resolution methodologies.

• We perform qualitative as well as quantitative analysis on
distinguishability of synthetic fingerprints from real ones
using six different machine learning models.

• We provide the proof-of-concept implementation of our
proposed methodology in Pytorch. We open-sourced1 our
framework to facilitate progress, improvements, and verifi-
cation process of fingerprint-based systems.

1https://github.com/MohammadChavosh/synthetic-fingerprint-generation



II. PRIOR ART

The prior work on generating synthetic fingerprints can be
categorized into two broad groups. The first group is based
on formulating mathematical models to generate artificial
fingerprints. The second group leverages various classes of
deep learning models. Generally speaking, the first group
involves more feature engineering and manual tuning, whereas
the second group inherits a more automated nature of feature
extraction of the DL models.
Mathematical Models. One of the systems based on math-
ematical models is called SFinGe [3]. In this system, gener-
ating a synthetic fingerprint involves four main phases: (i) a
fingerprint shape is randomly generated via specific geometric
models, (ii) a directional map is produced, (iii) a density map is
created, and (iv) the first three maps are combined to generate
a fingerprint pattern using a ridge-flow model. Finally, noise
is added to make the generated image more realistic.

Unfortunately, solutions based on the mathematical models
suffer from the low level of entropy due to the rigorous struc-
ture of the generation process. In contrast, SYNFI generates
each fingerprint starting from a completely random noise.
Deep Learning Models. Deep learning has demonstrated
a breakthrough in several applications and domains. There
are several categories of DL models. Two of which that are
explored for the task of synthetic fingerprint generation are (i)
Fully Visible Belief Networks (FVBN) such as PixelRNN [5]
that can produce one pixel at a time. Similar to Recurrent
Neural Networks (RNN) that generate text, FVBNs can be
used to create pixels of a fingerprint image. One drawback
of these networks is that the final output can often be noisy.
(ii) The second group is based on Variational Autoencoders
(VAE). Compared to FVBN, VAE usually produces smoother
images. Another line of work focuses on MasterPrints, which
are real or synthetic fingerprint templates at feature-level [6]
that can fool fingerprint-based authentication systems and
authenticate the attacker as a legitimate user. The idea was
later generalized to DeepMasterPrints, which are synthetic
fingerprints at image-level [4].

However, state-of-the-art DL-based methods can only gener-
ate low-quality partial fingerprints. In contrast, as we compare
in Section V, SYNFI generates full-finger fingerprints with
significantly higher resolution due to a novel DL formulation.
Other Related Work. Secure Multi-Party Computation
(SMPC) protocols can be used to enhance the security and
privacy of users’ data during identification and authentication
process [7]–[9]. Given the fingerprint matching algorithm,
SMPC protocols can securely execute the authentication algo-
rithm without exposing user’s fingerprint to the authenticating
server. However, such solutions cannot enhance the reliability
and performance of the matching algorithm itself, and thus,
are complementary to SYNFI.

III. PRELIMINARIES

Fingerprint Features. Each fingerprint has a set of micro-
features that can be used to uniquely identify the finger.

Minutiae points correspond to the particular locations of
fingerprint, e.g., ridge bifurcations or endings. Each Minutia is
represented as a tuple of the location (x, y), orientation θ, and a
quality factor q. Since different impressions of the same finger
can result in drastically different minutiae tuples, fingerprint
matching methodologies rely on a scale- and rotation-invariant
algorithms to detect whether two sets of minutiae points
belong to the same finger or not. An ideal synthetic fingerprint
generator should produce impressions such that the distribution
of minutiae points is not far from real ones.
Generative Adversarial Networks. One family of deep learn-
ing models that has become very popular in recent years is
Generative Adversarial Networks (GAN) [10]. Using GANs,
one can estimate the distribution of a given dataset. The key
idea in GANs is to train two different neural networks in
parallel and make use of each of them to improve the other
one. One of the networks, the generative network, tries to
generate samples from the given data distribution. The other
one, the discriminator network, is in charge of learning to
distinguish the samples generated by the generative network
from the real data samples. During the training phase, the
feedback from the discriminator network is used to enhance
the quality of the samples produced by the generative network.

After their introduction, GANs has been used in different
areas and tasks. One of their most important applications
is generating synthetic images. For example, [11] generates
artificial images of human faces and [12] uses GANs to
generate landscape images from doodles.

IV. METHODOLOGY

The main challenge in producing high-quality synthetic
fingerprints is estimating the probability distribution of real
fingerprints. Given the probability distribution, one can sample
from this distribution to generate new fingerprints. However,
obtaining such distribution is a very non-trivial task.

In SYNFI, we rely on GANs to estimate the probability
distribution of real fingerprints. Unfortunately, due to the small
volume of the publicly available datasets, the GAN model
cannot generalize well and produce realistic-looking samples.
The prior art explores this approach. We also validate this idea
and show that the generated samples by this approach are not
acceptable (see Figure 1). As can be seen, these samples have
deficient quality. They can easily be distinguished even without
relying on sophisticated Machine Learning (ML) models.
Therefore, in SYNFI, we capture the problem of generating
synthetic fingerprints as a two-phase process.

In the first phase, we rely on a GAN model to estimate the
probability distribution of real fingerprints and create a low-
quality image out of a randomly generated vector representing
the latent variable. In the second phase, we train and use
a Super-Resolution (SR) model to transform the low-quality
image into a realistic, high-quality sample. In this phase, the
details and texture of ridge endings and bifurcations within
the fingerprints are embedded into the image.

In order to train both GAN and SR models, we need
a dataset of real fingerprints. In practice, however, these



Fig. 1. The result of generating 256×256 pixel images using GAN.

datasets comprise fingerprint images that are not centered and
have unnecessary auxiliary information around the fingerprint
image. Therefore, we need to preprocess the dataset to enhance
the quality of the images produced by both models. Figure 2
illustrates the overall design of SYNFI and the relationship
between different components. In what follows, we describe
each of these components in more detail.

Pre-processing Phase: Fingerprint Segmentation. As can
be seen in Figure 2, images in our dataset of real fingerprints
contain some artifacts such as codes and numbers in the image.
Besides, fingerprints are not centered. NIST biometric image
software (NBIS) provides specific tools for processing finger-
print images. In this phase, we have to detect the boundary
of each fingerprint within each image, crop, and scale them
accordingly. We observe that after this process, which we call
segmentation in this paper, the majority of the fingerprints have
a resolution of 256×256 pixels. However, the GAN training
procedure relies on much lower resolution images. Therefore,
we create a Low-Quality Database (LQD) of 64×64 images,
which can be used to train GAN. The SR model, on the other
hand, needs a High-Quality Database (HQD) of 256×256
images in addition to LQD.

Phase 1: Generating Synthetic Fingerprints using GAN.
After creating LQD, we train a GAN to generate (low-quality)
synthetic fingerprints out of an input noise vector. There are
dozen of different options for structures to use as our GAN
network, in terms of the number and size of the layers and
also the optimization loss and method used. However, due to
the small volume of the real fingerprints that are publicly-
available, there are two main obstacles for the GAN model to
converge: vanishing gradients and mode collapse.

In this paper, we choose Wasserstein GAN (WGAN) [13]
due to the following reasons. WGAN uses Earth-Mover dis-
tance as its loss function for comparing the target and real

distributions. Unlike the traditional Minimax loss function, the
Earth-Mover distance is a true metric to measure distances in
the space of probability distributions. This loss function helps
the stabilization of the training process of GANs and reduces
the possibility of several problems, including vanishing gradi-
ents and mode collapse.

The vanishing gradients problem arises because at the be-
ginning of the training process, fake samples are easily distin-
guishable from the real samples; thus, the gradients computed
during backpropagation are not helpful to tune the generative
model. In WGAN, however, the discriminator model outputs a
number instead of a probability estimation. The discriminator’s
job is to maximize the difference between the output number
of real and fake samples (and not discriminate), thus, it is
usually referred to as critic. This enables the gradients to be
informative, even at the beginning of the training process.

The mode collapse problem is due to the fact that the
generator can converge to a state that only produces a few
plausible samples that can fool the discriminator. This problem
is particularly important for us because our system has to have
high entropy: generating many samples that are significantly
different. Otherwise, SYNFI cannot scale to generating mil-
lions or billions of unique samples. Relying on WGAN helps
us to avoid the mode collapse problem since the discriminator
can separately be trained to optimality and quickly detect fake
samples, forcing the generator to search for new samples.

Even after incorporating the above optimizations and testing
various configurations and different parameters, we observe
that the trained GAN model is not capable of generating
fingerprints with high quality for image sizes larger than
64×64 pixels. For instance, Figure 1 shows the output of GAN
for 256×256 pixel samples. In order to produce high-quality
images similar to publicly available datasets (256×256 pixel
images), we need a second phase which we describe next.

Phase 2: Generalization to High-Quality Images. In the
second phase of SYNFI, the low-quality image is transformed
into a high-resolution image with a more detailed texture.
Improving the resolution and quality of images is one of
the challenging and interesting problems in the Computer
Vision community. Traditional super-resolution mechanisms
improve the quality of the input image using many but lower-
quality images. However, in our case, the low-quality image
is generated from an initial noise, and we cannot produce
multiple low-quality images of the same concept finger in
Phase 1. Therefore, we have to explore single-image super-
resolution solutions that take as input only a single low-
resolution image and produce a higher-quality image. Single-
image super-resolution is a significantly more challenging task.
Fortunately, GANs help in this regard too. Recent advances in
this area include but are not limited to [14]–[16].

After exploring several solutions in this area, we choose ES-
RGAN architecture with Residual-in-Residual Dense Blocks
(RRDB). Details of our chosen architecture is provided in
Figure 2 and Section V. At a high-level, the architecture
consists of a series of RRDBs surrounded by convolutional
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Fig. 2. Overall design of SYNFI for training (building the system) and execution (generating synthetic samples).

(Conv) layers. There exist upsampling layers after RRDBs
and before the convolution layers. In contrast to Phase 1,
we remove Batch Normalization (BN) layers, which is shown
to enhance the quality of the produced images [17]. Adding
BN layers increases the possibility of artifacts being added
to the image. Relying on RRDB basic block enabled us to
incorporate a higher number of hidden layers. We also leverage
residual scaling [16]: residuals (the output of basic blocks) is
scaled down by a constant (0 < β 6 1) before being added
to the main path. Additionally, we initialize the weights with
small-variance random numbers to improve convergence.

In our SR model, the discriminator differs from Phase 1 in
which it is a Relativistic average Discriminator (RaD) [18].
In Phase 1, the discriminator estimates the probability that
a sample is real. In Phase 2, the discriminator estimates the
probability that a real image is (relatively) more realistic than
a fake one. More precisely, RaD is formulated as:

D(xr, xf ) = σ(C(xr))− Exf
[C(xf )]

where D(, ) is the output of discriminator, xr is the real
sample, xf is the fake sample, C(.) is the non-transformed
discriminator output, σ(.) is the Sigmoid function, and Exf

[.]
represents taking an average over all fake samples in the batch.
The discriminator’s and generator’s loss are:

LD = −Exr
[log(D(xr, xf ))]− Exf

[log(1−D(xf , xr))]

LG = −Exr [log(1−D(xr, xf ))]− Exf
[log(D(xf , xr))]

After training the SR model using the above loss functions,
the model is used to generate the final synthetic fingerprints,
as depicted in Figure 2. The hyperparameters of the training
process are described in Section V.

V. EXPERIMENTAL RESULTS

In this section, we first provide the details of our Com-
putational setup, our dataset of real fingerprints, the training
procedure, followed by comparison with the prior art. In the
end, we provide extensive analysis of the indistinguishability
of the SYNFI’s synthetic fingerprints from real ones.

Computational Environment. The experimental setup in
which we train different components of SYNFI as well as
synthetic fingerprint generation phases is a server equipped
with 128 GB of memory, two Intel Xeon E7 CPUs (12 core
each), and four Nvidia Titan Xp GPUs (each with 12 GB of
memory). We develop the DL components in Pytorch2.

Dataset. Our dataset of real fingerprints is the one provided
by National Institute of Standards and Technology (NIST)
in 2009, named Special Dataset (SD09)3. We have used this
dataset to train both major components of SYNFI: genera-
tive adversarial network and our super-resolution model. The
NIST-SD09 dataset consists of 2700 subjects with all 10
fingerprint images. There are two impressions of each finger,
resulting in 54000 fingerprint images overall. The data format
is 8-bit gray-scale png images. There are additional metadata
associated with each fingerprint, including the subject gender
and the NCIC class [19]: arch (A), left-loop (L), right-loop
(R), tented-arch (T), whorl (W), and scar or mutilation (S).
Most of the fingerprints belong to W, L, or R classes.

2Starting from the publicly available implementations at
https://github.com/xinntao/BasicSR and
https://github.com/martinarjovsky/WassersteinGAN

3https://www.nist.gov/srd/nist-special-database-9
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Pre-processing Dataset. We use the nfseq tool provided
by the NIST Biometric Image Software (NBIS) package
to pre-process the real fingerprint dataset. As illustrated in
Figure 2, this tool enables us to detect the precise boundary
of the fingerprint and remove the unnecessary parts around the
fingerprint itself. This step is crucial to enhance the quality of
the images that are produced in both Phase 1 and Phase 2.

Architectures. The generator and critic components of Phase
1 have similar architecture but in a reversed order. The
generator starts with a noise vector of size 100. Then the vector
goes through a series of fractionally-strided convolutions in
which the number of channels is reduced while the image
size is increased, both by a factor of two. In the critic model,
the intermediate layers are regular convolution layers.

The SR model has a more complex architecture. In the
beginning, there is a convolutional layer followed by a series of
23 basic blocks. In the end, there are two upsampling and two
convolution layers. Each basic block consists of three residual
sub-blocks where each sub-block has five convolutional layers.
The convolutional layers have 64 channels with a kernel size
of 3. The activation function in RRDB is a leaky ReLU with a
slope of 0.2 in the negative part. The output of the SR model
is a 256×256 image with one channel (a gray-scale image).

Synthetic Samples and Qualitative Comparison. Figure 3
shows a set of samples of (i) real fingerprints in the NIST
dataset, (ii) synthetic fingerprints generated by DeepMaster-
Prints [4], state-of-the-art DL-based method, and (iii) synthetic
samples generated by our system. As can be seen from this
figure, the output of SYNFI is significantly more realistic
compared to the prior art. Moreover, our methodology can
generate a full impression of fingerprints as opposed to the
partial fingerprints generated by DeepMasterPrints. The right-
most column shows a magnified view of the details of the
impressions, which shows the quality of the produced samples

in SYNFI. Next, we provide extensive experimental results to
quantitatively compare SYNFI samples with real fingerprints.

Indistinguishability and Quantitative Comparison. As we
briefly discussed before, one of the most important character-
istics of synthetic fingerprints is their indistinguishability from
the real samples. Otherwise, not only synthetic samples cannot
improve the quality and performance of authentication systems
during development time, but also they cannot improve the
security of storage systems for fingerprints as they can easily
be distinguished and separated.

Figure 3 shows that the synthetic fingerprints generated by
our system are visually very similar to the baseline NIST
dataset of real fingerprints. However, to quantify how distin-
guishable synthetic fingerprints are from real ones, we perform
the following analysis. We partition the subjects in the NIST
dataset into training and test samples with 2200 and 500
subjects, respectively. Similarly, we create two disjoint sets
of synthetic fingerprints, one for the training phase and one
for the test phase. In order to minimize the classifier’s bias,
we put an equal number of real and synthetic fingerprints in
the test dataset.

We train six different machine learning models: a Logistic
Regression (LR) model, a Support Vector Machine (SVM)
with linear kernel, a Random Forest with 10 estimators, and
three different Deep Neural Network (DNN) models with four,
five, and eight layers. The training process is formalized as
a binary classification problem in which real fingerprints are
labeled as zero, and synthetic samples are labeled as one. After
training the six ML models, we evaluate them on an unseen
test set consisting of real and synthetic samples.

The performance of these binary classifiers are reported in
Table I using three standard metrics: Accuracy (ACC) which
reflects the percentage of correct answers by the classifier,
False Positive Rate (FPR) which is defined as the ratio



of wrongly classified samples as positive over all negative
samples (both truly negative and incorrectly classified samples
as positive). The third metric False Negative Rate (FNR)
is the ratio of the number of samples falsely labeled as
negative over all positive samples (both true positives and
misclassified samples as negative). During the training process,
these ML models were trained to learn the underlying pattern
of fingerprints and reached the training accuracy of up to
99.76%. However, when evaluating these models on a set of
unseen samples, the best performing classifier was the four-
layer DNN with 100 and 20 neurons in the hidden layers and
classification accuracy of 50.43%. In other words, the best
classifier could distinguish synthetic fingerprints from real
ones only 0.43% better than a random guess.

TABLE I
ANALYZING INDISTINGUISHABILITY OF SYNTHETIC FINGERPRINTS

AGAINST THE REAL ONES USING VARIOUS MACHINE LEARNING MODELS.

Model Type Model Description ACC(%) FPR(%) FNR(%)

Logistic Regression L2 regularization 49.99 0.01 99.99
Linear SVM L2 regularization, C=1 50.01 0.06 99.91

Random Forest Using 10 estimators 49.47 13.08 87.96
4-Layer DNN Hidden Layers: 100, 20 50.43 19.78 79.35
5-Layer DNN Hidden Layers: 100, 50, 10 50.35 11.36 87.93

8-Layer DNN Hidden Layers:
800, 400, 200, 100, 50, 20 49.85 23.25 77.03

One can also analyze the effectiveness of the classifiers
using a Receiver Operating Characteristic (ROC) curve. The
ROC diagaram depicts True Positive Rate (TPR) against FPR.
TPR is defined as TPR = 1 − FNR. Figure 4 shows the
ROC curve of five ML models (ROC curve is not well-
defined for SVMs). Relying on a purely random guess results
in the black diagonal dashed line, which is the baseline for
indistinguishability. Conceptually, ROC visualizes the fact that
the classifiers’ threshold for classifying an image as real or
fake results in a trade-off between FPR and FNR (or TPR).
Choosing a very low threshold leads to marking many real
images as fake, hence, high FPR. Choosing a very high
threshold results in outputting many fake images as real, thus,
high FNR. However, as can be seen, regardless of the chosen
value for the threshold, none of the classifiers can perform
reasonably better than a purely random guess.

VI. CONCLUSION

We present SYNFI, an automated framework to generate
large volume of high-quality synthetic fingerprints. We for-
mulate this task as two disjoint and parallel learning problems
to cope with the limited availability of real fingerprint samples.
Our fingerprint generation data flow involves two phases: one
based on generative adversarial network and one based on
super-resolution methodologies. We perform extensive exper-
iments and empirically show that our synthetic fingerprints
inherit fine-grained texture of real samples such as ridge
endings and bifurcations. Finally, we verify that the best
performing machine learning model that we identified could
distinguish synthetic fingerprints from real ones only 0.43%
better than a random guess, illustrating the effectiveness of
SYNFI to enhance the security of fingerprint storage systems.

Fig. 4. The ROC curve of five different machine learning models in
distinguishing real fingerprints from synthetic ones generated by SYNFI.
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