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Abstract. In this work, we provide a compiler that transforms a single-input functional encryption
scheme for the class of polynomially bounded circuits into a multi-client functional encryption (MCFE)
scheme for the class of separable functions. An n-input function f is called separable if it can be described
as a list of polynomially bounded circuits f*,..., f" s.t. f(z1,...,20) = f(x1) + -+ + f"(x,) for all
Z1,...,Zn. Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et
al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption
(MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE
but for the less generic class of separable functions. Prior to our work, a long line of results has been
proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable
function. We also propose a modified version of the notion of decentralized MCFE introduced by Chotard
et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively,
the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at
most n different entities, which will return decryption shares that can be combined (e.g., additively)
thus obtaining the output of the computation. This notion is especially useful in the case of a very
resource consuming decryption procedure, while the combine algorithm is non-time consuming. We
also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same
functionality class.
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1 Introduction

Compared to traditional public-key encryption, functional encryption (FE) [BSW11,0’N10] enables fine-
grained access control of encrypted data. In more detail, a FE scheme is equipped with a key generation
algorithm that allows the owner of a master secret key to generate a functional key sky associated with a
function f. Using such a functional key sk for the decryption of a ciphertext ct = Enc(sk, x) yields only f(z).
Roughly speaking, the security of a functional encryption scheme guarantees that no other information is
leaked except for f(x). In the classical notion of FE, the decryption algorithm takes as input just a single
ciphertext and a functional key for a single-input (one-variable) function. The more general notion of Multi-
Input Punctional Encryption (MIFE) [GGG™14] allows the evaluation of an n-input function on n encrypted
inputs. In more detail, the decryption algorithm take as an input n ciphertexts Enc(sk, 1), ..., Enc(sk, z,)
and a functional key for an n-input function f’ and outputs f/(x1,...,z,).

In this work we consider an even stronger notion than MIFE called multi-client functional encryption
(MCFE) [GGGT14]. In the MCFE setting, each ciphertext Enc(sk;,z;) is encrypted using a different secret
key sk;. Moreover, an arbitrary set of secret keys 7 = {sk;,,...,sk;, } can be leaked to the adversary. The
notion of MCFE, intuitively, says that the adversary cannot learn more on the ciphertexts generated using
the disclosed keys than what it can learn by evaluating f’. Note that the adversary in this case can evaluate
f" using any input that he chooses with respect to the positions i1, ...,%,,. In general, we can distinguish
between two types of MCFE schemes: labeled and unlabeled [ABKW19, ACF*18]. In the labeled case every
ciphertext is encrypted under a label . A valid decryption requries that the input ciphertexts have been
encrypted under the same label (otherwise the decryption procedure generates an invalid output). Our results
are proven secure under the stronger notion of security with labels, which also allows the adversary to
obtain multiple ciphertexts under the same label. This additional security requirement has been considered
since [CDG'18b, ABKW19].

In this work we focus on MCFE for a specific functionality class called separable functions [MS08, MAS06].
A separable function is an efficiently computable function f that can be separated into a list of efficiently

computable functions f1,..., f* s.t. f(x1,...,20) = fH(x1)+- -+ f*(x,) for all x1,...x,, with z; contained
in the domain of f*. This is not restricted to addition but to any group operation, therefore also multiplication,
ie. f(z1,...,2n) = fH(x1) ... f*(zy,) for all z1,...x,, with z; contained in the domain of f?. Separable

functions are used in many real-world applications, and a MCFE scheme, covering such a functionality class,
would enable privacy in these scenarios. For example, consider the problem of counting a specific word w in
n different files, provided by n different parties, that contain sensitive information. In more detail, assume
that we have n parties and each party P; owns its corresponding file and the right to compute the separated
function f¢, over it, which simply counts the number of occurrences of the word w in its file. If a different
party P, possesses all the encrypted files and a functional key sk, , containing all the partial word counting
functions f{, it can compute the number of occurrences of w over all the encrypted files. Even if P, manages
to obtain some of the encryption keys the content of the files remains partially hidden?®.

A second scenario where a MCFE scheme can be useful is the aggregation of SQL-queries. In this
context, the calculation of sums, counting, and computing averages on a certain field contained in multiple (n)
encrypted tables that can be accessed by different users (with different qualifications), are possible applications.
A third motivating example is voting. Here, for simplicity, we consider a YES/NO voting setting. Each voter
encrypts its vote using its own secret key. To count the vote, a functional decryption key for the function fyote
is generated. This function counts the overall votes by outputting a boolean expression depending on the vote.
More precisely, the function fyote is defined as follows: fyote(votes, . .., vote,) = fL..(vote;)+, ..., +f2..(vote,)
where fi . (vote;) outputs 1 if vote; is equal to YES and 0 otherwise®.

Decentralized MCFE. Both, the notions of MIFE and MCFE, subsume the existence of a central trusted
authority that generates and distributes the secret and functional keys. This is undesirable in some scenarios,

3 For example, in the worst case, where the adversary has all but the key sk;, he should be able to compute the
number of times that the word w appears in F;, but nothing more than this.
4 This voting function is rather simple but one can think to adopt more complicated ballots and tally-functions



given that an adversarial trusted authority can compromise the security of the MCFE scheme (note that the
trusted authority can generate any functional key, hence also the functional key for the identity function). A
first step toward removing the trusted authority has been done in [CDG"18a] by introducing the concept of
decentralized multi-client functional encryption (DMCFE). In this setting, the generation of the functional
keys happens in a decentralized way. In this work, we formally consider a notion of DMCFE for the case of
separable functions where both, the secret key and the functional key generation happens in a distributed
manner.

1.1 Ouwur Contribution

In this paper we investigate the feasibility of constructing MCFE for separable functions starting from any
general-purpose FE scheme. In more detail, we provide a compiler that takes as input any private-key FE
scheme and outputs a MCFE scheme for separable functions that is selectively secure® and supports an a
priori bounded (but still polynomial) number of encryption and an unbounded number of n-input functional
key queries (where n is polynomially related to the security parameter).

We show how to extend the above scheme to the case of adaptive security® (where the adversary can
request an a priori bounded number of encryptions and functional keys at any time). We now state our
theorems informally.

Theorem 1 (informal). Assuming the existence of an any selective secure private-key FE scheme that supports
an a priori bounded number of encryption queries and an unbounded number of functional-key queries, then
there exists a fully selective secure MCFE scheme for separable functions that supports a bounded number of
encryption queries and an ubounded number of functional-key queries.

Theorem 2 (informal). Assuming the existence of an any adaptive secure private-key FE scheme that supports
an a priori bounded number of encryption and functional-key queries, then there exists a fully-secure adaptive
MCFE scheme for separable functions that supports a bounded number of encryption queries and functional-key
queries.

We prove our constructions for the so-called post security notion [ABG19,CDG"18b]. In a pos™ security
game an adversary is required to ask a left-or-right query under a specific label in either every or none
position. A second notion called any security [ABG19, CDG'18b] allows the adversary to ask a left-or-right
encryption query on as many positions as he wants without any restrictions. To achieve the notion of any
security, we make use of a slightly modified version of a black box compiler presented in [ABG19] which
amplifies any pos™ secure MCFE scheme to an any secure MCFE scheme.

In the next step, we discuss how to modify our constructions in order to obtain a DMCFE scheme for
separable functions and prove the following theorem.

Theorem 3 (informal). Assuming the existence of any selective (adaptive) secure private-key FE scheme
that supports an a priori bounded number of encryptions queries (and a bounded number of functional-key
queries), then there exists a fully selective (adaptive) secure DMCFE scheme for separable functions that
supports a bounded number of encryption queries (and a bounded number of functional-key queries).

Outsourceable MCFE. As an additional contribution, we introduce a new notion called outsourceable mulit-
client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to outsource the
load of the decryption procedure among n different entities. In more detail, let f be the n-input separable
function that we want to evaluate, then the key-generation algorithm of an OMCFE scheme generates n
partial functional keys sky 1,...,sks,, (one for each input-slot of f), instead of generating one functional key

5 We actually mean static-selective, i.e. the adversary has to submit all its message and corruption queries at the
beginning of the game.

5 We consider adaptive-adaptive security, which means that the adversary is allowed to query all the oracles, i.e.
message and corruption oracles, throughout the whole game.



sky for f.s Each of the functional keys sky; can be applied on a ciphertext ct; ¢ (a ciphertext that contains
the i-th input of the function) to obtain a decryption share ¢; ». An evaluator that has all the n share (one for
each input slot), can compute the final output by running a combine algorithm taking the shares as an input.

This notion becomes important in the case where the combine algorithm is significantly more efficient
than the partial decryption procedure. More formally, we require that the computational complexity of the
combine algorithm is independent from the computational complexity of the function f.

Coming back to the word count example, it is possible to give sk i and an encryption of the i’th part
of a huge file, to an entity P; (for each i € [n]) and let P; generate the decryption share by executing the
decryption procedure. In this way an evaluator P,, would receive the decryption shares from Pi,..., P,,
and executes the (light) combine algorithm to obtain the final output of the computation. The word count
example can be also seen as a special case of a class of problems that can be parallelized using the MapReduce
paradigm [DGO08]. This parallelization paradigm consists of a map phase which divides the problem into
sub-problems and a reduce phase which parallelizes the aggregation of the partial solutions. It is easy to see
that if the reduce phase consists of addition/multiplication operations then our OMCFE scheme could be
particularly useful to implement a layer of privacy on top of these parallelization paradigm.

The security definition of this notion is almost identical to the security definition of MCFE. The main
difference is in the correctness (since the key generation algorithm and the decryption algorithm are different).
We show how to obtain an OMCFE for the class of separable functions. In particular we have the following
informal theorem.

Theorem 4 (informal). Assuming the exzistence of any selective (adaptive) secure private-key FE scheme
that supports an a priori bounded number of encryptions queries (and a bounded number of functional-key
queries), then there exists a fully selective (adaptive) secure OMCFE scheme for separable functions that
supports a bounded number of encryption queries (and a bounded number of functional-key queries).

Instantiations. Our constructions can be instantiated from various assumptions. There exists a general-
purpose private-key FE scheme from indistinguishability obfuscation or multilinear maps [BKS18]. We can
obtain our adaptive secure MCFE scheme (and the decentralized one) from learning with errors [GKP*13],
one-way functions or low-depth pseudorandom generators [GVW12]. In more detail, as already mentioned
in [BKS18], based on the results of Ananth et al. [ABSV15] and Brakerski et al. [BS18], it is possible to
generically obtain a fully-secure scheme by relying on any selectively secure and message-private functional
encryption scheme. This implies that fully secure schemes for any number of encryption and key-generation
queries can be based on indistinguishability obfuscation [GGHT 13, Wat15], differing-input obfuscation [BCP14,
ABG™13], and multilinear maps [GGHZ16]. Besides this, it is possible to construct fully secure schemes
for a bounded number (gq) of encryption and key-generation queries by relying on the Learning with Errors
(LWE) assumption (where the length of ciphertexts grows with ¢ and with a bound on the depth of allowed
functions) [GKP*13,CVW™18], or on pseudorandom generators computable by small-depth circuits (where
the length of ciphertexts grows with T' and with an upper bound on the circuit size of the functions) [GVW12],
and based on one-way functions (for T' = 1) [GVW12].

1.2 Overview of our Techniques

Our Compiler. We present a compiler that transforms any selectively secure single-input FE scheme FE
into a selectively secure MCFE scheme MCFE for the class of n-input separable functions. We provide an
incremental description how our compiler works.

In the setup procedure of MCFE we run n times the setup of FE thus obtaining n master secret keys
msky, ..., msk,. We define the i’th secret key for MCFE as sk; := msk; for i = 1,... n, whereas the master
secret key of MCFE is represented by all the secret keys {ski, ..., sky}. To encrypt a message x; for the position
i we simply run the encryption algorithm of FE using the secret key sk; and the message x; thus obtaining
the ciphertext ct;. To generate a functional key for a separable function f := {f!,..., f"} the key generation
algorithm randomly samples a secret sharing of 0: 71 + - -+ 4+ r,, = 0 (we refer to this values as r-values) and
runs, using the master secret key msk; (which corresponds to sk;) of FE the key generation algorithms for FE



to generate a functional key sky: for fﬁ The function fﬁ takes as an input x; and outputs f*(x;) + ;. The
output of the key generation aléorithm is then represented by {sk Floee ,sk m }. The decryption algorithm
of MCFE, on input the ciphertext ct := {cty,...,ct,} and the functional keys {skal1 - 75kfffn} runs the
decryption algorithm for FE on input sky: and ct; thus obtaining ¢; for ¢ = 1,...,n. The output of the
decryption procedure is then given by ¢ +7,. -+ + ¢, which is equal to f(x1,...,x,) due to the property of f
and the way the values rq,...,r, are sampled. Intuitively, the security of this scheme comes from the fact
that a functional key sk fi, for FE hides the description of the function”, hence it hides the value r;. The fact

that the value 7; is protected allows us to argue that ¢; encrypts the partial output f(z;) (that the adversary
is not supposed see). Indeed, p; can be seen as the one-time pad encryption of f¢(z;) using the key r;.
We show that for the class of separable functions the described one-time pad encryption is sufficient
for several encryption queries. This is possible by exploiting the fact that the security game for functional
0 .1

encryption requires that f(z9,...,20) = f(al,...,2L) for all the challenge queries (23, z}) and all the

functional key queries f. This means, in the case of separable functions, that Zie[n] fi(2?) = Zie[n] fi(xh),
which is equivalent to £ (2%) — f* (z}) = Siemginy 1 (@}) — f1(x). This restriction enforces the security
of the information-theoretic encryption under many queries (we show this using a simple reduction).

To extend our scheme to the labeled setting, we borrow a technique from [KDK11,ABG19] and modify
our scheme as follows: Assuming that we know an upper-bound on the number of labels ¢, during the setup
phase, we generate ¢ random secret sharings of 0: ¢4 ; + -+, ; := 0, with j € [q] (we refer to this values as
the t-values) and the i’th secret key now becomes sk; := (msk;, {t; j});c[q- To encrypt a message z; under
the label j the encryptor runs the encryption algorithm of FE on input sk; and the concatenation of x; with
t;,5, thus obtaining ct; ;.

To generate a functional key for the function f a secret sharing of 0 is generated as before, r1 +---+r, =0,
but this time we generate the functional key skz; of FE for the function fj The function f,f takes as and

i,

input (z;, ¢ ;,7) and outputs f*(x;) +7; +¢; ;. The output of the key generation algorithm is then represented
by {sk 1 ,...,8k fn }. The decryption procedure for this new scheme works exactly as before. Let ¢; ; be
e "

the output of the decryption algorithm of FE on input ct; ; (the ciphertext computed with respect to the
label j) and sky: . Intuitively, our new scheme allows encrypting multiple messages under different labels,
since the partial 1decryption ©i,; is now encrypted using a fresh one-time pad key which corresponds to the
combination of the r-value r; (hidden inside the function) and the ¢-value ¢; ; (hidden inside the ciphertext)
for every label j. It is worth noting that even if new t-values are generated for each encryption we still need
to rely on the r-values hidden inside the function since an adversary could use the same ciphertext ct; ; as
the input of multiple functions, and this creates an issue similar to the one discussed above.

Even if this scheme is secure under the generation of multiple encryptions and functional keys it has the
drawback that the size of each secret key growths with ¢ (the upper-bound to the number of encryptions). To
tackle this problem we borrow a technique from the work of Abdalla et al. [ABG19]®, that allows multiple
parties to generate a secret sharing of 0 non-interactively by agreeing on a set (of size n) of pseudo-random
function (PRF) keys during the setup. We refer to Section 5 for more details. The adaptive g-message
g-function bounded MCFE scheme works in a similar way, the main differences are regarding the size of the
ciphertext and the size of the functional keys. For the selective scheme only the size of the functional keys
depends on ¢, whereas in the adaptive scheme also the ciphtertexts grow with ¢q. The details for this proof
can be found in Section 6.

Decentralized Multi-Client Functional Encryption. For completeness, we also propose a construction
of a DMCFE scheme. In the notion of DMCFE, as proposed in [CDG'18a], the key-generation phase is
decentralized in the sense that each secret keys owner should be able to output a partial functional key
for a function f, such that the combination of all these partial functional keys allows the generation of a
valid functional key for f. Our MCFE scheme seems to be easy translatable into a decentralized one except

7 We recall that the notion of fully secure FE guarantees also function hiding.
8 This technique has first been used in [KDK11] in the context of privacy-friendly aggregation.



for one detail: the key generation phase of MCFE requires the computation of a new set of r-values such
that r; 4+ --- 4+ 7, = 0 for each function f. To obtain a decentralized scheme, we adopt again the technique
proposed in [ABG19] that allows the generation of a secret sharing of 0 in a distributed manner. The idea
of decentralizing a MCFE scheme in this way has first been proposed in [ABKW19]. In the definition of
DMCFE in this paper, we also consider also distributed setup phase in which the parties interact with each
other to obtain the secret keys. This idea has been informally discussed in , but it has never been formally
defined before.

Outsourceable Multi-Client Functional Encryption. We show that we obtain, with minor modifications
to the presented compiler, an OMCFE scheme. The proof works, as already mentioned in the previous sections,
by relying on the fact that the values ¢; ; do not reveal any information on the encrypted messages.

Remark 1.1. Without loss of generality, in the remainder of this paper, we only refer to the case of additive
separability. However, our compiler also works for the case of multiplicative separability. To achieve multi-
plicative separability all the additive operators need to be replaced by its multiplicative counterparts (i.e.
addition with multiplication and subtraction with division). Also the group we need to operate in needs to be
changed from an additive group to a multiplicative group, e.g. from Z, to Z,

1.3 Related Work

Since the introduction of multi-input and multi-client functional encryption [GGG™14] several contributions
have been made to provide constructions in these areas. The main difference between the former and the
latter is that in a MIFE scheme a single encryption key can be used to generate ciphertexts for every position,
whereas in multi-client functional encryption every position is associated with its own encryption key. The
main techniques that have been proposed to construct MIFE schemes are “liftings” from single-input functional
encryption into the multi-input setting. The first foundational work in this area has been done by Brakerski
et al. [BKS16]. In this work, the authors manage to transform a single-input selectively secure functional
encryption scheme into a fully adaptively secure multi-input functional encryption scheme which supports a
constant number of inputs. In [KS17] the authors, among other results, improve the result of [BKS16] by
obtaining a MIFE scheme that supports functions with 2¢ = (log \)° inputs, where 0 < § < 1. Both of these
transformations require a single-input functional encryption scheme for the class of polynomially bounded
circuits as input.

The schemes that cover the class of polynomially bounded circuits can be divided into two categories. The
first category is only able to handle a bounded number of plaintexts (a so called message-bounded scheme)
and (or) a bounded number of functional keys, whereas the second class is able to handle an unbounded
number of queries and functional keys. A construction that falls into the first category is given by Gorbunov,
Vaikuntanathan and Wee [GVW12]. Their construction relies only on the existence of one-way functions.
Counstructions based on the Learning with Errors (LWE) assumption hav been proposed by Goldwasser et
al. [GKP*13] and by Chen et al. [CVW18]. The second construction is based on traitor tracing (instantiated
using LWE) as presented in [GKW18].

In the case of unbounded message security most of the known constructions are based on less standard
assumptions like [Wat15, GGH'13] that is based on indistinguishable obfuscation, [GGHZ16], based on
multilinear maps and [ABGT13, BCP14], based on differing-input obfuscation. All of the mentioned scheme
are also covering the functionality class of polynomially bounded circuits.

Beside the class of polynomially bounded circuits, it is also possible to construct multi-input functional
encryption schemes for more specific functionality classes, like inner-product. The first multi-input functional
encryption scheme for inner-product functions has been provided by Abdalla et al. [AGRW17]. The construction
they present relies on pairings. A follow up work [ACFT18] proposes a compiler that takes as input a single-
input functional encryption scheme that fulfills some special properties and outputs a MIFE scheme for
inner-product functions. This construction does not require pairings and only relies on standard assumptions.
It turns out that the construction of Abdalla et al. [ACF118] also fulfills the stronger notion of multi-client
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Eurocrypt 2016 Constant Generic MIFE SK Single-input FE

Komargodski et al.  log(\)°
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Table 1: Comparison with the most relevant compilers. A: the security parameter, SK: secret key.

functional encryption (without labels) which has been proven [ABKW19]. In the case of multi-client functional
encryption, it can be distinguished between two cases, the labeled and the unlabeled case. Labels enforce an
additional restriction on the decryption procedure. Namely, it is only possible to decrypt tuples of ciphertexts
that are encrypted under the same label, otherwise the decryption procedure outputs an invalid value. The
first labeled scheme for the inner-product functionality has been proposed in [CDG™18a]. Its security is
proven in the random oracle model an relies on DDH. The authors also present a decentralized version of their
construction, which additionally requires pairings. A follow up work by the same authors [CDG™18b] improves
on these results by presenting a compiler that decentralizes a multi-client functional encryption scheme without
relying on pairings but on standard assumptions. Another compiler, that only uses information-theoretic
arguments, has been presented in [ABKW19]). The most recent work in this area, the work of Abdalla et
al. [ABG19] which presents a construction for multi-client functional encryption in the labeled setting based
only the existence of a secure public key FE scheme for the inner product functionality (that can be based on
standard assumptions) together with another compiler to achieve decentralization. In the Table 1 we provide
a short comparison between the most relevant compilers that turn a single-input FE scheme into a MIFE or
MCFE scheme.

2 Preliminaries

Notation. We denote the security parameter with A € N. A randomized algorithm A is running in probabilistic
polynomial time (PPT) if there exists a polynomial p(-) such that for every input x the running time of A(z)
is bounded by p(]z|). We call a function negl : N — R™ negligible if for every positive polynomial p(A) a
Ao € N exists, such that for all A > Ao : e(A) < 1/p(A). We denote by [n] the set {1,...,n} for n € N. We use
“=" to check equality of two different elements (i.e. a = b then...) and “:=” as the assigning operator (e.g.
to assign to a the value of b we write a := b). A randomized assignment is denoted with a < A, where A
is a randomized algorithm and the randomness used by A is not explicit. If the randomness is explicit we
write a := A(z;7) where z is the input and r is the randomness. We denote the winning probability of an
adversary A in a game or experiment G as Wini()\, n), which is Pr[G(A, n, A) = 1]. The probability is taken
over the random coins of G and 4. We define the distinguishing advantage between games Gy and G; of an
adversary A in the following way: Adv§(\,n) = |WinJG4°(/\7 n) — WinJGL\1 (A, n)|. The notation (—1)7<¢ denotes
—1if j <iand 1 otherwise.

2.1 Secret-Key Functional Encryption

In this section, we define the notion of secret-key functional encryption (SK-FE) [BS15]. They are an adaption
of the indistinguihsable notion from [BSW11,0’N10].



Definition 2.1 (Secret-Key Functional Encryption). Let F = {Fj}ren be a collection of function
families (indexed by ), where every f € Fy is a polynomial time function f: Xy — YVx. A secret-key functional
encryption scheme (SK-FE) for the function family Fy is a tuple of four algorithms FE = (Setup, KeyGen,
Enc, Dec):

Setup(l’\): Takes as input a unary representation of the security parameter \ and generates a master secret
key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f € Fy, and outputls a functional
key sky.

Enc(msk, z): Takes as input the master secret key msk, a message x € X to encrypt, and outpuls a ciphertext
ct.

Dec(sky,ct): Takes as input a functional key sky and a ciphertext ct and outputs a value y € Yy.

A scheme FE is correct, if for all X € N, msk < Setup(1?), f € Fx, z € X\, when sky < KeyGen(msk, f), we
have
Pr[Dec(sky, Enc(msk,z)) = f(z)] =1 .

We define the security of a SK-FE scheme using a left-or-right oracle. We distinguish between selective
and adaptive submission of the encryption challenges. We consider a fully secure SK-FE scheme, which,
intuitively, means that the SK-FE scheme guarantees privacy for both, the description of the functions and
the encrypted messages. We will recall now the formal definition.

Definition 2.2 (Full Security of SK-FE). Let FE be an SK-FE scheme, F = {Fx}ren a collection of
function families indexed by \. For xx € {sel,ad} and 8 € {0,1}, we define the experiment XX—FULL;E n
Fig. 1, where the oracles are defined as:

Left-or-Right oracle QLeftRight(z°, z1): Outputs ct + Enc(msk, 2%7) on a query (z°,2'). We denote by
QLefRight the set containing the queries (z°,z').

Key generation oracle QKeyG(f°, f1): Outputs sk; < KeyGen(msk, %) on a query (f°, f1). We denote
by Q the queries of the form QKeyG(-,-).

and where Condition (*) holds if all the following condition holds:
— For every query (f°, f1) to QKeyG, and every query (z°,21) € QLeftright, we require that:
) = fi(=t)
We define the advantage of an adversary A for xx € {sel,ad} in the following way:

AdviE T (V) = | Prfxx-FULLG® (A, A) = 1] — Prlxx-FULL{F (X, A) = 1]| .

A secret-key functional encryption scheme FE is xx-FULL secure, if for any polynomial-time adversary
A, there exists a negligible function negl such that: Adv’F"E"iULL(/\) < negl(\). In addition, we call a scheme
g-message bounded, if |QLerright| < ¢ and g-message-and-key bounded, if |QLefiright] < ¢ and |Qf| < g, with
q = poly(}).

2.2 Multi-Client Functional Encryption

Now, we introduce multi-client functional encryption (MCFE) as in [GGGT14, ABKW19, ABG19]. In a
multi-client functional encryption scheme, every client can encrypt its own input (corresponding to a slot)
and the evaluation of a functional key is executed over the ciphertexts of all the clients.

Definition 2.3 (Multi-Client Functional Encryption). Let F = {F)}xen be a collection of function
families (indexed by \), where every f € Fy is a polynomial time function f: Xx1 X --- X Xy, — V. Let
Labels = {0,1}" or {L} be a set of labels. A multi-client functional encryption scheme (MCFE) for the
function family Fy supporting n users, is a tuple of four algorithms MCFE = (Setup, KeyGen, Enc, Dec):



sel-FULL}" (), A) ad-FULL[ (), A)

Questright — A(17%) msk < Setup (1)

msk «— Setup(lA) o AQLeftRight(»,»),QKeyG(~,~)(1)\)

et/ — QLeftRight(:zcj’O7 mj’1)7 Output: « if Condition (*) is

for all (xj,07 xj’l) € QLestRight satisfied, or a uniform

eyG(-,- j bit otherwise

a = AT (et } e gen)

Output: « if Condition (*) is satisfied,
or a uniform bit otherwise

Fig. 1: Full Security Games for SK-FE

Setup(1*,n): Takes as input a unary representation of the security parameter X, and the number of parties n
and generates n secret keys {sk;}ic[n), and a master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f € Fx, and outputs a functional
key sky.

Enc(sk;,z;,0): Takes as input a secret key sk;, a message x; € Xx; to encrypt, a label £ € Labels, and outputs
a ciphertext ct; g.

Dec(sky,ctig, ..., cty ) Takes as input a functional key sky and n ciphertexts under the same label £ and
outputs a value y € Y.

A scheme MCFE is correct, if for all \,n € N, ({sk; }ic[n], msk) ¢ Setup(1*,n), f € Fa, ; € Xr., when
sky < KeyGen(msk, f), we have

Pr [Dec(sky, Enc(sky, z1,9), ..., Enc(sky, zpn,0)) = f(z1,...,2n)] =1 .

A scheme can either be without labels, in this case Labels = { L} or with labels/labeled, where Labels =
{0,1}". In this work, we only consider schemes that are labeled, i.e. Labels = {0,1}". Where the latter case
implies the former.

The security definition is the initial definition from Goldwasser et al. [GGG14], whereas we also allow
the adversary to determine under which label he wants to query the left-or-right oracle and, in addition,
we give the adversary access to an encryption oracle. Besides this, we also allow the adversary to query a
single label several times. This security definition has initially been considered in [CDG"18b, ABG19]. As
also noted in [ABKW19, ABG19] the security model of multi-client functional encryption is similar to the
security model of standard multi-input functional encryption, whereas in the latter only a single master secret
key msk is used to generate encryptions for every slot ¢. In comparison to the standard multi-input functional
encryption model, we also consider static and adaptive corruption of the different slots and selective and
adaptive left-or-right and encryption oracle queries in the multi-client case. In more detail, in the selective
case the adversary is required to ask all his left-or-right, encryption and corruption queries in the beginning
of the game. In the adaptive case, the adversary is allowed to ask left-or-right, encryption and corruption
queries throughout the whole game.

Definition 2.4 (Security of MCFE). Let MCFE be an MCFE scheme, F = {Fx}ren a collection of
function families indexed by \ and Labels a label set. For xx € {sel,ad}, yy € {pos™,any} and 8 € {0,1}, we
define the experiment sel—yy—IND'g'CFE in Fig. 2 and ad—yy—INDg'CFE in Fig. 3, where the oracles are defined
as:

Corruption oracle QCor(i): Outputs the encryption key sk; of slot i. We denote by CS the set of corrupted
slots at the end of the experiment.

Left-or-Right oracle QLeftRight(i, 2, 2}, ¢): Outputs ct;, <+ Enc(ski,xiﬁ,ﬁ) on a query (i,29,z},¢). We
denote the queries of the form QLeftRight(7,-,,£) by Q¢ and the set of queried labels by QL.



Encryption oracle QEnc(i, x;,¢) Outputs ct; ¢ < Enc(sk;, z;,£) on a query (i,x;,¢). We denote the queries
of the form QEnc(i,-,£) by Q; , and the set of queried labels by QL'.

Key generation oracle QKeyG(f): Outputs sky <— KeyGen(msk, f) on a query f. We denote by Qy the
queries of the form QKeyG(-).

and where Condition (*) holds if all the following conditions hold:

— Ifi € CS (i.e., slot i is corrupted): for any query QLeftRight(i, z?, x} é) ¥ =l

— For any label ¢ € Labels, for any family of quemes {QLeftRight(i, 29,1, £) or QEnc(i,x;, ) }icmp\cs for

any family of inputs {x; € X\, }iccs, we define 20 =z} = x; for any slot 1 € CS and any slot queried to

QEnc(i, x4, ¢), and we require that for any query QKeyG(f):
() = f(z') where x® = («8,...,22) for b€ {0,1} .

— When yy = post: If there exists a slot i € [n] and a { € Labels, such that |Q;¢| > 0, then for any
slot k € [n]\ CS,|Qk.e| > 0. In other words, for any label, either the adversary makes no left-or-right
encryption query or makes at least one left-or-right encryption query for each slot i € [n] \ CS.

— When yy = any: there is no restriction in the left-or-right queries of the adversary.

We define the advantage of an adversary A for xx € {sel,ad}, yy € {pos™,any} in the following way:

AdvyaE AP (A n) = | Prfxocyy-INDY' (A, n, A) = 1] — Prlxec-yy-INDY'FE(A, n, A) = 1]] .

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for any polynomial-time
adversary A, there exists a negligible function negl such that: Adv’,\(ﬂxc'}F’E'TD()\ n) < negl(\).

In addition, we call a scheme g-message bounded, if 371 (X reqr [Qiel + Xieqr 1Qi ) < g and
g-message-and-key bounded, if 3¢, (X reqr |Qiel + Xreqr Qi fl) < a and |Qy| < ¢, with ¢ = poly(A).

sel-yy-IND}Y (X, n, A)

(€S {Qicyicinyecars {Q) i Yicmyeqr) + AN, n)
({sk-}ie[n], msk) Setup(lA,n)
ct] , « QLeftRight(i, z; D0 g1 ), for all (220, 27") € Qi
for all i € [n] and £ € QL.
ct;{e < QEnc(i, !, 0), for all 2 € Q;,, for all i € [n]
and £ € QL.

a — A ({skitices, {ct] Ve car e, . s

{ct? e ecar sele) ,n)
Output: « if Condition (*) is satisfied, or a uniform bit

otherwise

Fig. 2: Selective Security Games for MCFE



ad-yy-INDY"5(), n, A)

({ski}ic[n), msk) < Setup(1*,n)
a<_AQCor(~),QKeyG(~),QEnc(~,~,~),QLeftRight(~,~,~,-)(1)\)

Output: « if Condition (*) is satisfied, or

a uniform bit otherwise

Fig. 3: Adaptive Security Games for MCFE

We omit n when it is clear from the context. We also often omit A from the parameter of experiments or
games when it is clear from the context.

Multi-input functional encryption (MIFE) and functional encryption (FE) are special cases of MCFE.
MIFE is the same as MCFE without corruption, and FE is the special case of n = 1 (in which case, MIFE and
MCFE coincide as there is no non-trivial corruption). In the case of single-input functional encryption, we
only consider the two security definitions of sel-FULL and ad-FULL. For simplicity, in the notion of MCFE
security, we denote by sel the case of static corruption, and selective left-or-right and encryption queries are
required. By ad we denote the case in which all three, corruption, left-or-right and encryption queries, are
adaptive.

2.3 Security Compiler

As already mentioned in previous works [ABG19, ABKW19, AGRW17, ACF*18,CDG™"18b] there exist two
different types of security, namely pos™ and any security. In the case of pos™, the adversary is forced to ask a
left-or-right query for every slot ¢ € [n]. The any security definition does not enforce any requirements on
the slots that are asked to the left-or-right oracle by the adversary. For the case of the inner-product and
the separable function functionalities schemes do not usually directly fulfill the notion of any security, since
it is possible to ask left-or-right oracle queries in a few slots, such that Condition (*) cannot be evaluated,
but the adversary is able to use its queries and its (partial) functional keys to distinguish if the left or
right challenge message has been encrypted. Since these types of attacks are not possible in the setting
of post security, a common approach is to construct a MCFE schemes that is pos™ secure and then a
compiler [ABKW19, ABG19, CDG™18b] is applied to achieve the desired notion of any security. In this paper
we follow the same approach.

In recent works [ABG19], an additional encryption oracle, besides the left-or-right oracle, has been
considered. As already mentioned in [ABG19, Remark 2.3], the security definition without the encryption
oracle QEnc, as defined in [ABKW19,CDG™18a], is only equivalent to the security notion with the encryption
oracle in the case of any security but not in the case of pos™ security. If we want to simulate the encryption
oracle in the case of pos™ security, we would simulate it by asking the message the adversary queries in
both positions to the left or right oracle, but since post enforces the reduction to ask a message in all
the remaining positions it might not be possible to find such a message. Therefore the definition with the
additional encryption oracle is slightly stronger.

Now, we recap the recent “pos™” to “any” security compiler as introduced in [ABG19] w.r.t. a decentralize
MCFE scheme that follows the definition in [ABG19] (in Section 7 we will provide a slightly different notion
of decentralize MCFE scheme). We now provide a proof sketch that shows that the result also holds in the
case of a selectively secure (key and) message bounded multi-client functional encryption scheme.

Theorem 2.5. Let DMCFE = (Setup, KeyGenShare, KeyGenComb, Enc, Dec) be an xx-pos™-IND-secure (key
and) message bounded DMCFE scheme for a family of functions F. Let SE = (Gen®%, Enc>E, DecF) be an
IND-CPA secure symmetric key encryption scheme and let PRF be a IND secure pseudorandom function.
Then the DMCFE scheme DMCFE’ = (Setup’, KeyGenShare’, KeyGenComb', Enc’, Dec’) described in Fig. j is
(key and) message bounded xx-pos™-IND secure.

10



Setup’ (1%, n) : KeyGenShare’ (skj, f) :

{ski}icin) < Setup(1*,n) Parse sk; := (ski, {kij, kji}jem))
For i,j € [n] : ki < Gen®5(1%) Return sk; s < KeyGenShare'(sk;, f)
ski = (ski, {kij, kji}iem) o

Return {skg}ie[n] KeyGenComb' ({sk; s }ic(n)) :

sky := KeyGenComb({sk; s }icqn))
Enc(sk}, z;, £) :
"

Parse Sk; = (Ski, {k@j, kjvi}jG[n]) Decl(Skf, Ctlll7 S ,Ctn)

ct; < Enc(ski, 4, 0) Parse {ct; := (ct;, {kj,i(0)}jem) bicpn)
For all j € [n] : ki ;(£) := PRFy, ;(£) | For i € [n]

Ki(€) := e kini (6) Ki = Djepm kii (0

ct} + Enc®5(K;(f), cty) ct; := Dec® (K, (£), ct})

cti := (cti, {k;,i(0)}jerm) Return Dec(sky, cty, ..., cty)

Return ct;

Fig. 4: Compiler from an xx-pos™-IND-secure DMCFE scheme, DMCFE, into an xx-any-IND-secure DMCFE
scheme, DMCFE’

Proof (Sketch). The proof uses the xx-pos™-IND security of the scheme DMCFE for the case where all honest
slots are queried to QLeftRight(, -, -, £*), for a single label ¢*, and the security of the PRF together with the
IND-CPA security of SE for the case where all honest slots are queried to QLeftRight(-, -, -, £*).

We define the game Gj as the ad—pos*—INDBMCFE/()\7 n, A) game, except that the game guesses uniformly
random an honest slot i* < {0,...,n}, where i* = 0 means that all honest slots are queried, that is not
going to be queried to QLeftRight(:,-, -, £*). In the case that the guess i* is unsuccessful, Gj outputs 0. This
guessing is not necessary in the case of selective security. In the case of selective security, we can just pick an
honest slot, since the honest slots are directly disclosed by the adversary in the beginning of the game.

If i* = 0, we are in the case of pos™ and therefore, we can directly reduce the security to the security of
DMCFE.

To prove the security for all i* € [n], we use the fact that if there is a left-or-right oracle query
QLeftRight(i, 27, z2"') with 27° # 27", then the slot cannot be corrupted anymore after Condition (*)
of Definition 7.1. Such a slot and the corresponding query is called explicitly honest.

We define hybrid games Gf , for all p € {0,...,n} as G} except that every explicitly honest query
QLeftRight(i, 27, 27" £*) is answered by Enc’(sk}, 27", £*) for i < p and by Enc'(sk;,z?°, ¢*) for i > p. It
follows that G, = Gj and Gg,, = Gj. We note that, again, in the case of selective security all the honest
slots are known from the beginning and therefore we directly know how to answer which slots.

To go from hybrid G ,_; to Gg ,, we distinguish between two different cases. First, slot p is never queried
on an explicitly honest slot, in this case the two games are the same by definition. Otherwise, we rely on the
security of the PRF to make the key k, ;«(¢*) uniformly random. This switch is possible, since we know the
slots ¢* and p. If the guess ¢* is correct, the key k, ;« (£*) only appears in the output of QLeftRight(p, -, -, £*).
This results in the fact that we have a uniformly random key K,(¢*), which allows us to rely on the IND-
CPA security of the the symmetric encryption scheme, since Gen®E just generates a random element as the
encryption key, and change the encryptions of xf’o in Gf ,_; to encryptions of xfl in G ,. Afterwards, we
switch back the key k, ;+ from uniformly random to pseudorandom by relying on the security of the PRF an
additional time.

Applying this reduction for all the n different slots and all the queried labels yields the theorem. a

For more details on this proof, we refer to [ABG19].
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2.4 Separable Functionalities

In this work, we focus on the class of additive separable functions. We recap the definition of a separable
function and the corresponding functionality:

Definition 2.6 (Separable Functions [MASO06]). A function f : Xy1 X --- X Xy, — Vi, s called
separable, if there exists a function f*: X; — Y for all i € [n], such that

flz, ... zn) = Z fi(xi), with x; € Xy for alli € [n] .

1€[n]

Separable Functionality. We define the functionality class for separable functions as F:P := {f(z1,...,2,) =
FH@1) + oo+ (@), with fi5 Xy, — Wi}

In this work, we consider the class of separable functions over the group Z,. Since the separability of a
function f is not necessarily unique, we require the adversary to submit its functional key generation query
as a set of the separated functions { fi}ie[n].

2.5 Pseudorandom Functions (PRF)
In this section, we recap the definition of a pseudorandom function (PRF) as in [GGMS6].

Definition 2.7 (Pseudorandom Function). Let PRF : K x V — W be a deterministic polynomial-time
algorithm, with key space K = {0,1}", domain V and range W. For (3 € {0,1}, we define the experiment
INDERF in Fig. 5, where the oracle Opgrg is defined as:

PRFk(¢)  ifB=0
RF(¢) ifB=1

with RF(¢) denoting a random function. We define the advantage of an adversary A in the following way:

Oprr(£) = {

Advpge 4(A) = | PrINDG™" (A, A)] = Pr[INDY™ (X, A)]|

A pseudorandom function PRF is secure, if for any polynomial-time adversary A, there exists a negligible
function negl such that: Advg\éEA()\) < negl(}\).

INDE (A, A)
K+ K

o AOPRF(')(l)‘)

Output: «

Fig. 5: Security Games for PRF

3 Symmetric Encryption and One-Time Pad Extension

In this section, we recap some definitions regarding symmetric encryption. This consists of the security
definition and the one-time pad. We start by formally defining symmetric encryption.

Definition 3.1 (Symmetric Encryption). A symmetric encryption scheme (SE) for the key space K
and the message space M is a couple of algorithms SE = (Enc, Dec):
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Enc(K,m): Takes as input the symmetric key K, a message m € M to encrypt, and outputs a ciphertext ct.

Dec(K,ct): Takes as input the symmetric key K and a ciphertext ct and outputs a message or L if decryption
fails.

A scheme SE is correct, if for all A € N, K<+ K, m € M, we have
Pr[Dec(K, Enc(K,m)) =m|=1 .

Before formally introducing the one-time pad, we recap the security definition for a symmetric encryption
scheme.

Definition 3.2 (IND-CPA Security of SE). Let SE = (Enc,Dec) be an SE scheme, for the message
space M. We define the experiment IND—CPA%E in Fig. 6, where the oracle is defined as:

Left-or-Right oracle QLeftRight(m?°, m71): Outputs ct’ = Enc(K,m?#) on a query (m’°,m?'). We de-
note by QLefright the set containing the queries (mo,ml).

We define the advantage of an adversary A in the following way:

Advs P4 (\) = | Pr[IND-CPAZF (), A) = 1] — Pr[IND-CPAF(\) = 1]| .

A symmetric encryption scheme SE is called IND-CPA secure, if for any PPT adversary A it holds that
Advlslé}i{CPA()\) < negl(A).

IND-CPAZ" (), A)

K+ K

a(_AQLeftRight(~,~)(1/\)

Output: o

Fig. 6: IND-CPA Security Game for a symmetric encryption scheme

One-Time Pad. Now, we recap a specific symmetric encryption scheme, the one-time pad, and the definition
of perfect security, a restricted version of the IND-CPA security defined above.

Enc(K,m € M) : PERF-IND?"()\, A)

ct:=m+K K« IC

Return ct e AQLeftRight(~,~)(1/\)

Dec(K,ct) : Output: « if Condition (*) is satisfied,

m:=ct—K or a uniform bit otherwise

Return m

Fig. 8: Perfect Security Game for a symmetric encryp-

Fig. 7: The One-Time Pad tion scheme

Definition 3.3 (Perfect Security of SE). Let SE be an SE scheme, for the message space M. We define
the experiment PERF—IND%E in Fig. 8, where the oracle is defined as:
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Left-or-Right oracle QLeftRight(m® m!): Outputs ct = Enc(K,m”) on a query (m°,m'). We denote by
QLefRight the set containing the queries (m®,m?).

and where Condition (*) holds if the left-or-right oracle QLeftRight has been only queried once.
We define the advantage of an adversary A in the following way:
Adveg NP (X) = | Pr[PERF-IND;® (A, A) = 1] — Pr[PERF-IND®(\) = 1]| .

A symmetric encryption scheme SE is called perfectly secure, if for any adversary A it holds that
PERF-IND [\ __
AdVSE,A ()\) =0.

It has been proven in [Sha0l] that the one-time pad is perfectly secure under the XOR operation. An
adaption of this proof to finite group is straightforward and can be found for example in [Wic15].

Theorem 3.4 (One-Time Pad). The scheme SE = (Gen, Enc,Dec) defined in Fig. 7 is perfectly secure.
Namely, for any A it holds that AdePgiF'IND =0.

After introducing the one time pad and recapping that it fulfills perfect security, we introduce a new
notion called conditional perfect security.

CON-PERF-IND?" (), A)

K+ K
P AQLeftRight(~,~)(1)\)
Output: « if Condition (*) is satisfied,

or a uniform bit otherwise

Fig.9: Conditional Perfect Security Game

Definition 3.5 (Conditional Perfect Security of SE). Let SE = (Enc,Dec) be an SE scheme, for the
message space M. We define the experiment CON—PERF—IND%E in Fig. 9, where the oracle is defined as:

Left-or-Right oracle QLeftRight(m?°,m7}): Outputs ct’ = Enc(K,m?#) on a query (m?°,m?'). We de-
note by QLeftright the set containing the queries (m°,m?b).

k,0

and where Condition (*) holds if for all couple of queries (m?°, m¥1), (m*%, m*1) € QLefiright we have that

j,0

m 1 k,0 k1o

ol — k0 _ ks

We define the advantage of an adversary A in the following way:

AdvsON PERFIND (\) = | Pr[CON-PERF-INDZF (), A) = 1] — Pr[CON-PERF-IND*(\) = 1]| .

A symmetric encryption scheme SE is called conditional perfectly secure, if for any adversary A it holds
CON-PERF-IND /y\ __
that AdVSE,A ()\) =0.

Now, we show that the one-time pad also fulfills conditional perfect security.

Lemma 3.6. Let SE = (Enc, Dec) be the perfectly secure one-time pad, then SE = (Enc, Dec) is also condi-
tional perfectly secure. Namely, for any adversay A, there exists an adversary B such that

Advgé’)-l;ll—PERF-IND ()\) — AdVSPgPéF—IND ()\)
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Proof. We build an adversary B that simulates the CON—PERF—IND%E game to A, when interacting with
the PERF-IND3" experiment.

When A submits its first encryption query (m'°, mb1) to B, B forwards it to its experiment, receives ct! as
an answer and sends ct! to A. For every further query (m?° m?!) that A asks, B computes cj = mit —mbl

and sends ct’ := ct' 4 ¢; as a reply to A.

To complete the proof, we show that ct/ corresponds to an encryption of m’*#. This results in a perfect
simulation and therefore the theorem follows.

In the first step, B receives ct' = m? + K from its experiment. For all the following queries made by A,
it holds that m?! — m7% = mb! —m10, Therefore we can write the two different queries m?° and m?! as
follows:

S KU SR S .

m],l _ ml,l + m],O _ ml,O

For the message m?!, we can also write m?! = mb! + m?! — mb! through zero addition. By setting

cj = m?! —mb1 and calculation ct! + ¢, we get an encryption of ct/ and therefore the theorem follows. 0O

4  Multi-Client Functional Encryption for Separable Functions

In this section, we present our compiler, described in Fig. 10, that turns a single-input functional encryption
scheme for class F;°" into a multi-client functional encryption scheme MCFE with labels Labels for the class

of separable functions F:%P, by relying on a PRF instantiated with the keyspace K := {0, 1}’\, the domain
V := Labels and the range W := Y\, where ), is the range of the functions f € F;.
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Setup™(1*,n) :

Generate n different single input functional encryption instances
msk; < Setup™(1*), for all i € [n].

And PRF keys for i € [n],j > i

Kij = Kji ¢ {0,1}}

msk := ({mski}ie[n), {Kij}ijemlizi)

ski := (mskq, {Ki j}icm))

Return ({ski};cqn], msk)

KeyGen™ (msk, {fi}ie[n]) :

Parse msk := ({msk; }ic[n)], {Kij}iem,izi)

Sample n — 1 random values r; < Y and set r, := — Zie[n_” 7.

Generate a functional key for f!, (defined in Fig. 11a Fig. 11b) for all i € [n]:
Skf'j'i + KeyGen® (msk;, f1.), for all i € [n], where the size of skﬁi is bounded by gq.
Return sky := {skﬁ-i Yieln)

Enc™ (sk;, xi,£) :

Parse sk; := (msk;, {Ki ;} cm))

tie =, ,,(~1)”<'PRF, ;(¢)

cti ¢ « Enc®(msks, (i, L], ti ¢, ¢)), where the size of ct; ¢ is bounded by ¢
Return ct; ¢

Dec™ (sky, {ctieticpn) :

Compute Dec” (skﬁ-i JCtie) = fi(ai) +tie + 1

Return f(z1,...,2n) = Zie[n] i) +tie+ri

Fig.10: The generic construction of g-message bounded sel-posT-IND-secure MCFE and g-message-and-

key bounded [ad-posT™-IND-secure MCFE| multi-client functional encryption from single-input functional
encryption.

Frilwtie, ) : fry (@, Lot ) :
Output: f*(z) +tie + 7 Output: f'(z) + tie + 7
(a) Selective Security (b) Adaptive Security

Fig. 11: Description of the function that is used for the key generation under the different security definitions

The construction works in the following way: In the setup procedure, n different instances of the single-
input functional encryption scheme {msk;};c[,) and shared keys K; ; (shared between slot i and j) for all
i,j € [n],i # j, with K; ; = K, ; are generated. These keys are used as PRF keys in the encryption procedure.
The setup procedure outputs a master secret key msk containing all the different master secret keys from the
different single-input instances and a secret key sk; := (msk;, {K; ;}jc[n)) for every slot i € [n]. We continue
by describing the behavior of the remaining algorithms.
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To encrypt a message for position 4, the encryption algorithm takes as input the secret key sk;, a message
x; and a label £. In the first step, a padding ¢; , will be generated using the PRF keys {K; ;} e[n contained
in the secret key sk;. This padding is different for every label ¢ and ensures that ciphertexts created under
different labels cannot be combined. In more detail, for every padding. it holds that Zie[n] t;¢ = 0 for each
label, but if paddings for different labels are combined they do not add up to 0. To generate the ciphertext
ct; ¢, the message z; concatenated with the padding ¢; , and the label ¢ is encrypted using msk;.

The key generation procedure, takes as input the master secret key msk and a function f € F;* separated
into the functions f1,..., f* with f¢ € F;% for all i € [n]. In the first step of the key generation, n different
random values r; are sampled in such a way that Zie[n] r; = 0, these values are used to ensure that different
functional keys cannot be combined. In the next step, a functional key sk £, for the function fﬁ is generated

for every single-input instance ¢ € [n]. The function fﬁ takes as input the message x; and the padding ¢; ¢ and
outputs the addition of these values together with the hardcoded value 7, i.e. f,f (wistin, €) = fi(zs) +tig+mi
The functional key sk is defined as the set of all the functional keys generated by the single-input instances
{sky;, Yiem-

To decrypt a set of ciphertexts {ct; }ic|n) using a decryption key sky = {sks: }ic(n], the decryptions of
all the instances are generated and the final output is computed by adding up all of the decryptions. In more
detail, Dec(skﬁi ,Ctie) = f(z;) + tip + 7 is computed for all ¢ € [n] and the final output f(x1,...,z,) is

equal t0 37, /1 (@) + tie + 7

The output of the decryption of a single-input instance, i.e. f(x;)+t;,+ r; ensures that it is not possible
to combine ciphertexts encrypted under different labels or functional keys generated in different key generation
procedures. If one of the ciphertexts in the decryption procedure is generated under a different label such
that the sum of all the paddings is unequal to 0 or a different partial functional key has been used such that
the sum of the values added by the functional key is unequal to 0, the decryption procedure will not output
the correct f(z1,...,2n).

Correctness. The correctness of the multi-client scheme follows from the correctness of the single input
scheme, the fact that Zie[n] t;¢ =0 and Zie[n] r; = 0. Let us consider in more detail the decryption of the
correctly generated ciphertexts cty s, .. .,Ct, ¢ under a correctly generated functional key sk; = {sk i Yiem)-

Due to the correctness of the single-input scheme it holds that f*(x;)+t; ¢ +7; = DECSi(Skfl"_ ,ct; ¢) and together
with the properties of the t; ; values and the r; values it follows that Zie[n] Fim) +tio+m = Zie[n] fi(xs).
Together with the separability property of the function Zie[n] fi(x;) = f(x1,...,2,) correctness follows.

5 Selective Security

To prove the selective security of the proposed construction, we proceed via a hybrid argument. In the first
hybrid, we replace the PRF’s with random functions between a selected honest party ¢* and all the remaining
honest parties i € HS \ i* such that the padding values t; ; are randomly generated. Our goal is to encode
all the function evaluations of the left submitted challenges, i.e. f(z9) + t; o + r; inside the functional keys
and switch from encryptions of (x9,; ¢,¢) to encryptions of (x},0%, ). Since, after this step, all the random
values are part of the functional key, we can rely on an information theoretic argument and change the values
encoded in the functional key from f*(z) +t; ¢ +r; to fi(z}) + t; ¢ + 7;. In the next hybrid, we generate
the functional key in the same way as before and change from encryptions of (z},0*,¢) to encryptions of
(x},t;0,0). In the last hybrid, we replace the random functions again with pseudorandom functions and
therefore security follows. We present the formal security proof:

Theorem 5.1 (¢-message sel-post-IND-security of MCFE). Let FE = (Setup®, KeyGen®, Enc®, Dec™)
be a g-message bounded sel-FULL-secure single-input functional encryption scheme for the functionality
class F7°, and PRF an IND secure pseudorandom function, then the MCFE scheme MCFE = (Setup™,
KeyGen™c, Enc™, Dec™) described in Fig. 10 is a q-message bounded sel-posT-IND-secure for the functionality
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class FP. Namely, for any PPT adversary A, there exists PPT adversaries B and B' such that:
Advieee NP () < 2(n — 1) - AdVRR (V) + 20 - AdEETIE())

Proof. The arguments used for the generation of the values ¢; ¢ are based on the proof in [ABG19] and we recap
those parts here adapted to our construction. For the case with only one honest (non-corrupted) position, we can
rely directly on the sel-FULL security of the underlying single-input functional encryption scheme FE. Namely,
we build a PPT adversary B such that Advs,\jlc"F)Ei‘IND()\,n) < AdeFeEl:gOStFULL()\). After B has received

{Qic}icm) eeqr, {Q; o tiein) ccqrr and CS from A, it generates msk; «— Setup® (1*) for all i € [n]\ i*, where *
denotes the honest slot, and samples K; ; for all 4, j € [n]. Finally B sets sk; := (msk;, {K; ;};c[)) and sends
{ski}icn)\{i+y to A. It must hold for the queries {Q; ¢}icin) ceqr, i-e- {(i,xg’o,x{’l,€)}i€[n]7£EQL7je[|QMH, of A
that 7° = 27" foralli € [n]\{i*} and j € [|Q;.¢|]. This results in the fact that I (27°) = I (27" in every slot
i € [n]\ {#*} and for all queries j € [|Q;¢|], which implies that f;, (220) = ﬁ; (z2."). The left-or-right queries
{Qi,e}ie[n]\i*,geQL can directly be answered by B, it submits {((x{;o, tix.0,0), (x{;l, i 0, g))}feQL,je[lQi,zl]a with
;= ¢ := Gen(sk;,i*,¢) for all £ € QL computed by B, as its own left-or-right queries to the experiment. It
receives {Cti,é}eeQijEHQi,ZH as an answer and sends {Ctiz}ie[n],ZeQL,je[lQi,e|] as a reply to A. For the submitted
queries {Q;e}ie[n]’geQL/ (1, mg, ?) to the encryption oracle QEnc, we distinguish between two different cases.
In the case that A asks for an encryption for all positions i # k, B computes ¢; , := Gen(sk;,,¢) for all
¢ € QL' and ctzyg — Enc(mskg, (27,54, 0)) for all j € ['Qi]] and £ € QL'. If A queries QEnc for the
position k, i.e. it queries (k,z7,¢) ,B computes t; , := Z#i(—l)jQPRFKm (¢) for all £ € QL', queries its
own left-or-right encryption oracle on ((k,z7,¢), (k,27,¢)) for all j € [|Qi ] and £ € QL. Finally, B sends
the answer {Ctg,e}ie[n],ZGQL’JG[IQQ,ZI] to A. Whenever A asks a key generation query QKeyG({fi}ie[n]), B
samples r; <= Yy for all i € [n — 1], sets 1y, 1= — 37, (,_ 77 and generates skpi KeyGen(msk;, f;.) for all

i € [n]\ {i"}. For the functional key ski- , B queries its own key generation oracle on ( 2 731* ). Finally it

Ti* )
+ S
sends sk := {Skfii }ien) as a reply to A and we receive Advs,\jlc‘gé’?A‘IND(A, n) < AdvE‘E:gULL(A).
For the cases with more than one honest position, we use a hybrid argument with the games defined in

Fig. 12. Note that Gy corresponds to the game sel—pos*—INDE\f'CFE()\7 n, A), and Gj corresponds to the game
sel-posT-INDYFE(\ 1, A). This results in:

AdviseRe® NP (0, ) = [Win§ (A, n) — Win§ (A, )] .
We describe the different intermediate games in more detail:

Game G;: We replace the PRF evaluation for the computation of the masking values ¢; ; for the left-or-right
oracle QLeftRight and the encryption oracle QEnc in the non-corrupted positions ¢ € [n]\ CS with random
function evaluations. In more detail, we switch from the PRF generated values PRFk, , to RF,(£), for all
s € {2,...,h}, where the set of honest users is denoted as HS := {i1,...,in}, h<n denotes the number
of honest users, and RF denotes a random function (see Fig. 13 for more details). The transition from Gg
to G is justified by the security of the PRF. Namely, in Lemma 5.2, we exhibit a PPT adversary By such
that:

IWin% (A, n) = WinG (A, n)| < (h — 1) - AdvpRp i, (A) -

Game G,: We replace the encryptions of (asg’o, t;.0,¢) with the encryptions of (xf’l, 0*, /) for all (giO, xfl) €
Qie, all £ € QL and all ¢ € [n] in the left-or-right oracle and we replace the encryptions of (a:f, ti0,¢) with
the encryptions of (:cf ,0*,¢) for all xz € Q) alll € QL and all i € [n] in the encryption oracle. The values
t;,¢ in the left-or-right queries and the encryption queries are replaced with 0 to make the ciphertexts
independent from the masking values t; ;. We also replace the functional key sk := {sk fﬁi}ie["] (see
Fig. 11a for the function description) with sk := {Skfigiyy }iemn) (see Fig. 14 for the function description).

i

18



The hardcoded values yj{ = Y; are generated using the random value r;, the queries (x{’o, xfl) € Qi

and by computing the masking values ¢; ¢, i.e. yff = fi(:z:f’o) +1;.¢+7;. The same holds for the hardcoded
values y;jéf ‘e Y;. They are generated using the random value 7;, the queries xf € Q; , and by computing

the masking values t; 4, i.e. ygl;fi = fz(xf) + t;,¢ + r;. The transition from G; to Gg is achieved using a
hybrid argument with sequence Gy i, for k € [n]. As already described in Fig. 12, it holds that G; = Gy o
and Gy = Gy ,,. This results in

WinG (A, n) = Win§ (A, n)] < 37 Win§ " (A, n) — WinG* (A, n)]
k=1
for any PPT adversary A. The transition from Gy 1 to Gy j is justified by the full security of FE. Namely,
in Lemma 5.4, we exhibit a PPT adversary By, for all k € [n] such that:

IWinSH =1 (A, n) — Win§* (A, n)| < Advig 5V (L)

combining both of the statements and noticing that a PPT adversary B; can be obtained by picking
i € [n] and running B;, we can justify the transition from G; to Gy. Namely, in Lemma 5.3, we exhibit a
PPT adversary B; such that:

IWinG (A, n) — Wing (A, n)| < n - Advig 57" ())

Game G3: We change the generation of all the values yf ’Z = Y;, which are computed using the random

7,0 .51
% i

yflf = f’(:vfo) +ti¢+r; to yfg = fl(xfl) + t;¢ + ;. The transition from Gy to Gs is justified by an
information theoretic argumen"c and happens for all ¢ € [n]. In more detail, we prove the transition by
relying on the conditioned perfect security of several instances of the one-time pad as shown in Lemma 3.6.
Namely, in Lemma 5.5, we show that

value 7;, the queries (z]",x]") € Q;¢ and the masking values ¢; . We change the generation from

IWin% (A, n) — Win§ (A\,n)| =0 ,

for all adversaries A. _ ' _ '

Game G4: We replace the encryptions of (2", 0*,£) with the encryptions of (), 4, ¢) for all (9:?’0, ) e
Qi all £ € QL and all i € [n] in the left-or-right oracle and we replace the encryptions of (x7,0*, £) with
the encryptions of (z7,;,,¢) for all 2] € Q] ,, all £ € QL' and all i € [n] in the encryption oracle. The
masking values ¢; , are inserted back into the ciphertext and replace the 0> values. We also replace the
functional key sky := {Skféi‘yi }iein) (see Fig. 11a for the function description) with sky := {skﬁi Yieln)
(see Fig. 14 for the function description). The transition from Gz to G4 is almost symmetric to the
transition from Gy to Gg, justified by the full security of FE applied on every slot i € [n]. Namely, it can
be proven as in Lemma 5.5 that there exists a PPT adversary Bs such that:

[Wingg (X, n) = WinG (A, )] < n- Advig g, (1) -

We defer to the proof of Lemma 5.5 for further details.

Game Gj5: This game is identical to sel—pos*—IND'f'CFE(/\,n, A). The transition from G4 to Gj is almost
symmetric to the transition from Gy to Gy, justified by the security of the PRF. Namely, it can be proven
as in Lemma 5.2 that there exists a PPT adversary Bs such that:

(Wit (A, n) = WinG (A, )| < (h — 1) - AdvpRe 5, (\) -
We defer to the proof of Lemma 5.2 for further details.

Putting everything together, we obtain the theorem. a
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justification/

Game ct!, ct?, sk .
remar
ri — W\ VieEn—1
t; ¢ := Gen(sk;, 1, /) ti ¢ := Gen(sk,1, ) . A [ }
Go Tn == i Ti
Enc® msKki, mj’o,ti A Enc® msk;, xj,ti A ) )
(msks, (217,11, 0)) | Enc?(msks, (2715 ) eyGoni(mss, £5)
ri — W\Vie€n—1
tl‘j = Gen'(ski, 7:7 f) tiyz = Gen’(skh i, f) )\Z [ }
n — — . T
G " i€ln—1] PRF
Enc®(msk;, (mg’o,ti,g,f)) Enc® (msk;, (xf,ti,g,ﬂ)) KeyGenSi(msk fi )
ri < W\, Vi € [n— 1]
Tn == — Zie[nfl] T
Ifi <k
For all £ € QL, (z7°,27") € Qi
ti?g = Gen'(ski, 7:7 Z)
G ft g d:0
. = (ay) et
ti7e = Gen'(ski7z,€) ti,g = Gen'(ski,i,é) yz,(i f ( ,’L ) Yf
Forall £ € QL ,z] € Q;,
. , _ _ tio := Gen’(sks, i, )
Enc®(msk;, (m, 2)), | Enc® (msk;, (a:{,, 0), g oy Full Security
Gix tori < F for i < k Yoo =) F e+ of FE
or 4
ore= . a Qi = {{Qic}eeqr, {Qi }reqr}
Enc® (msk;, (z7°,ti0,€)), |Enc®(mski, (7, tie,0)), V.= {{y‘j"fi}eeQL €1 ell
) i =Wk JElQi el
fori >k fori >k ( ,j’fi} ' ¢ )
Yie seeQL’ jel|Q] Il
If 1 <k:
KeyGen® (mski, f5, v,)
If i > k:
KeyGen® (msk;, f;.,)
ri < W, for all i € [n — 1]
Tn = — Zie[n—l] T
For all £ € QL, (z7°,27") € Q¢
tie := Gen’(sks, i,¥)
yfy’f = i@l tip 41
tie := Gen'(sky, i, £) ti0 := Gen’(ski, i, /) Forall £ € QL' 2] € Q,
Gs t;e := Gen’(sk, 1,¥) G2 = Gin

Enc® (msk;, (| 27, 0%

0))

Enc® (msk;, (z7, 7 0))

yZ = )+t
Q= {{Qi,g}le@h {Q;,Z}ZEQL’}
Y= {{ul Yecor e
(v Yeequsenar 1}

KeyGen® (mski, f5, v, )

Fig. 12a: Description of the games Gy to Go for the proof of selective security.
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Game

J
cti

/3
Cti,é

Skf

justification/

remark

Enc®(msk,, (27", 0%, 0))

k3

Enc®(msk;, (z7,0%,0))

r; < W, for all i € [n — 1]

- Zie[n—l] T

For all ¥ € QL, (m{’o,xg’l) € Qi
ti0 := Gen'(sk;, 1,)

T 1=

il = F @)+t
Forall £ € QL',2] € Q,

ti0 := Gen'(ski,1,¢)

yﬁéfi = @) +tie
Qi :={{Qic}eeqr, {Qi}ecqrr}
Yi = {{vl{ Yecorsenen
{yféfl}eeQL',jenQ;,eH}

KeyGen® (mski, f5, y,)

inf. theoretic

ti.0 := Gen’(sky,1,¥£),
fori <k

t;e := Gen'(sky, 1, ),
fori <k

7 < W\, Vi € [n— 1]

- Zz‘e[nq] i

Tp =

Ifi>k
For all £ € QL, (z7°,27") € Qi 0
tie := Gen’(sk, i,¥)
yfy’gfi = @) d i+
Forall £ € QL' 2] € Q,
tie := Gen’(sk, 1,¢)

Full Security

Gs. | Enc®(msks, (22| tie ],0), | Enc®(msks, (22, tie ], £)), 1 @)+ tio+ 14
o |Ene (s (a2 [t ), | Enc s L [} ) | 0 o= 7)1 o
fori <k for 1 <k Q; = {{Qi,{}zth {Qi,g}zeQu}
EnCSi(mSkiv (xg,lv 0)\56))7 EnCSi(mSk’iv (1‘570)‘74)), Y= {{yzq:lf"}ZGQLJGHQLZ”’
for i >k for i > k {y;f@f }ZeQL’,je[\Q;JH}
If: < k:
KeyGen® (msk;, f;.)
Ifi > k:
KeyGen® (mski, f5, v, )
ri W, forall i € [n — 1]
tie := Gen’(sks,i,¥) ti0 := Gen’(sk;, i, ) )
Tn = — Zie[nfl] i
Gy Gy =G3.p
Enc® (msk;, xf’l, tie ,0)) | Enc®(msk;, :vf, tiol L , ,
s [0 | eno T | i
i W, forallien—1
ti o :=| Gen(sk;, 1, £) ti o :=| Gen(sk;, i, £) " Yy, foralli € [n—1]
G5 Tn 1= — Zie[nfl] Ti PRF

Enc(msk;, (x{l, tie, 0))

Enc® (msk;, (mi, tie,0))

KeyGen® (msk;, fﬁl)

Fig. 12b: Description of the games G3 to G for the proof of selective security.
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Gen(sk;, 1, £) Gen’(sk;, 4, £)

Parse sk; := (msk;, {K; j}em)) | Parse sk; := (mski, {Ki j}iem))
tie =30, (1) STPRFw, ; (0) [t =3, (~1)"<'PRFk, ,;(£)
Return ¢; ¢ If i € HS := {i1,...,%n}, then:
o Ifi=1q,
tio = Zjecs(—l)jQPRFKw (0)
+ 3" RF.(0).
o If i =1i,, for s € {2,...,h},
lie = Zje[n]\{il,is}(_1)j<iPRFKz‘,j ()
— RFs(0).

Return ¢; ¢

Fig. 13: Generation of the tags for the labels in the selective case

fo, v, (@ tie,0) -
Parse Q; := {{Qi¢}rcqr, {Qi }ecor } and
Yi = {{s0] hecoriction {yz/‘{éfi}ZEQL’,J'E[\QQJI]}
If (,2) € Qi
Output: yflfl
If x € Q;g
Output: y;J/“

Fig. 14: Description of the function that is used in the reduction for the selective security reduction.

Lemma 5.2 (Transition from Gy to Gi). For any PPT adversary A, there exists a PPT adversary B’
such that

IWin% (A, n) = Win§ (\,n)| < (h — 1) - Advpre.s (A1)
where h < n denotes the number of honest users.

Proof. This proof works mainly as described in [ABG19].

For all the honest positions i,j € HS, we can replace the PRF PRF with a random function RF. This is
due to the fact that the keys K; ; (with ¢, j € HS) are totally hidden from the adversary A. We can show
that it is sufficient for the transition of game Gy to G; to rely on the security of the PRF in A — 1 chosen
slots. In more detail, we write the ordered set HS := {i1,...,in}, with 43 < iy < -+ < ip. For all keys of the
form K;, ; with j € HS \ {i1} we rely on the security of the PRF.

The adversary B’ works as follows. After receiving CS and the challenge messages {Q; ¢}icin)ccor and
{Qi s tiem) teqrs from A, it samples msk; < Setup® (1*) for all i € [n] and sets msk := {msk; };c[,). In the
next step, B’ samples K; ; = K; ; < {0, 1}, for all i € [n] \ {i1} and j > i. The secret keys for the corrupted
positions i € CS are defined as sk; := (msk;, {K; j}jc[n)). After B has set the secret keys for the corrupted
positions, it sends them to A. B’ answers the queries to QLeftRight(i, x{’o, xf’l, ¢) and QEnc(i, xf, ¢) using the
defined sk; for ¢ € CS and uses msk to simulate the QKeyG oracle.
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The generation of the masking values ¢; o for the honest position, depends on the queried slot. For the
first honest slot i1, B’ computes

h

tig = Z(_1)j<i1PRFKi1,j(£)+ZRFS(£) )

jecs s5=2

This masking value is used to answer the queries QLeftRight(i, :cg;o, x{;l,é) and QEnc(iy, x{l,ﬁ).
For all the other honest slots, B’ computes

h
tig= . (~1)J<UPRFg, (0)+ > RF(0)
J€m\{is,i1} s=2
and uses it to answer queries of the form QLeftRight(i;, ft’o,x{; ,0) and QEnc(i¢, x] ‘ ,0).

In this experiment, the adversary B’ is interacting with h — 1 instances of the INDPRF(/\, B’) experiment.
With many instances we mean that the adversary is querying many different experiments but in all of these
experiments the reply is either the random function evaluation or the pseudorandom functions evaluation.
It can be shown via a simple hybrid argument that the many instances experiment follows from a single
instance experiment. a

Lemma 5.3 (Transition from G; to Gy). For any PPT adversary A, there exists a PPT adversary 1B
such that
IWinG (A, n) — WinG (A, n)| < n - Advig 57" (V)

Proof. To prove that G; is indistinguishable from Gy we need to apply a hybrid argument over the n slots,
using the full security of the single-input functional encryption scheme.
Using the definition of the games in Fig. 12 and the triangle inequality, we can see that

IWinG (A, n) — Win% (A, n) Z Wlnle Y\ n) — Wini"k()\,n)| ,
k=1

where G; corresponds to game Gi o and whereas G is identical to game Gy ,,.
Now, we can bound the difference between each consecutive pair of games for every k € [n].

Lemma 5.4. For every k € [n|, there exists a PPT adversary By against the sel-FULL property of the
single-input scheme FE such that

IWinS- =1 (A, n) — Win§ = (A, n)| < AdvigEUME (L)

Proof. We build an adversary Bj, that simulates G; ;143 to A when interacting with the underlying
sel—FULLZE experiment.

In the beginning of the reduction, By, receives CS, {Qi ¢}icn) reqr and {Q;7e}i€[n]7g€QL/ from A and sets
Qi = {{Qir}treqr,{Q] o }eeqr }- If k € CS, the adversary By directly outputs o < {0, 1}. This is due to
the fact that the games G; y_1 and Gy are identical in this case, which results in an advantage equal to
0 and Lemma 5.4 trivially holds. If k ¢ CS, By, generates msk; < Setup® (1*) for all i € [n] \ {k}, samples
Ki; =K < {0, 1}* for all i < j € [n], with i € CS and sets sk; := (msk;, {Ki,j}jem) for i € CS.

In the first step, to answer the left-or-right queries, By computes t; o := Gen’(sk;, i, ) for all i > k and
all i € CS for all £ € QL. To generate the final ciphertexts it does the following: For all (xg,07$g‘,1) € Qi
for all £ € QL, By, computes the ciphertexts ctje + Enc®(msk;, (x g 1,0’\,6)) for all i < k and i € HS and

7

Cti,é < Enc®(msk;, (270, t;4,¢)) for all i > k or i € CS. To compute ctiz — EnCSi(mskk,xi’B,tfz,E) (with

t?l =t;0 and t})z = 0"), By, submits the set {((xk g, l), (mk Lo, 0))}ecor,jel|..|) @S its own left-or-right

queries to the experiment. It receives {ctfC Z}EGQ L.je[|Q:c|] @S an answer to its queries.
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The adversary By behaves similar to answer the encryption oracle queries. In more detail, for all 33‘ € Q’
for all ¢ € QL', By, first computes t; o := Gen'(sk;, 4, ) for all i > k and i € CS and for all £ € QL'. If i = k, Bk
submits the left-or-right query ((z7,t; ¢,), (z7,0%,£)) for all j € [|Qi|] and £ € QL' to its own left-or-right
oracle and receives ct;{ , as an answer. For 7 < k and 1 € HS, By, uses its master secret key msk; and computes
ct; , < Enc(msk;, (27, ti0,0)) for all j € [|Qir|] and £ € QL' and for i > k and i € CS, By, uses its master
secret key msk; and computes ct; , < Enc(msk;, (z7,0%,0)) for all j € [|Qis|] and £ € QL.

As an answer to the queries asked by A in the beginning of the game, By, sends ({sk; }iccs, {Ctz,e}ie[n],EeQL,je[\Qi,z\]a
{ctiiem ecqrr jeqar 1) to A

Whenever the adversary A asks a key generation query QKeyG({ fi}ie[n]) By, samples r; < Y, for all
i € [n] and sets r, := =, _q) 7i- For all the left-or-right oracle queries (a0, 27 1) € Qi forall l € QL

K3
and i € [n], By generates t; , := Gen'(sk;, i, ¢) for all i € [k] \ CS and computes y = fi @) + tig 4 7
for all j € [|Q;|]. For all the encryption queries 27 € Q;, for all £ € QL and i € [n], By generates
tie ::‘Gen’(ski,i,é) for all i€ [k]\ CS and computes ygéfl = fi(x)) +tig+r forall j € [1Q o]l Bk sets Y; :=
{{yg.;g }ZEQL,je[‘Qi’A],{ygéf Yeeqrjeliq; 0} for all i € [n] and computes sk« KeyGen® (mski, f5, v,)

for the slots i < k with ¢ € HS and sky; < KeyGen® (mskl, ) fori > k or i €1CS To generate sk, By
queries its own key generation oracle QKéyG on ( ffk, ka v, ), this query fulfills the functional restriction, i.e.
it holds that fF¥ (z7 0y = f8, v, (x 29) for all (z1°%,-) € Q¢ for all £ € QL. By, receives sk ¢k as an answer, sets
sky = {Ska }ze[k 1\es Y {Skfk} U {Ska }Ze({k+1 . n}ucs) and sends sk to A.

This covers the simulation of the game G1 k—1+g- Finally, B outputs the same bit 8’ returned by .A. Thus,
we obtain the lemma. 0O

The proof of the lemma follows by noticing that the adversary B” in the lemma statement can be obtained
by picking k € [n] and running Bj. O

Lemma 5.5 (Transition from Gs to G3). For any adversary A it holds that
IWin% (A, n) — Win% (\,n)| =0 .

Proof. We build a PPT adversary B” that simulates Goy s to A, when interacting with (|HS|—1)-|QL|-|Q¢|
instances of the one-time pad in the CON-PERF-INDg experiment, as proven in Lemma 3.6. With many-
instances we mean that encryption oracle of the one-time pad can be queried several times, but always the
same position (left or right) is encrypted. In more detail, a new key sz ; is chosen for every position 7 € [n],
for every label £ € QL and for every function {fi}ie[n] €Qy.

In the beginning of the reduction, B" receives CS, {Qi r}icin) ceqr and {Q] s }iein) reqrs from A and
sets Q; = {{Qir}icor, {le}geQL/}. Then B generates msk; < Setup®(1*) for all i € [n], samples
Kij = Kji ¢+ {0,1}" for all i < j € [n], with i € CS and sets sk; := (msk;, {Ki ;}je[n) for i € CS.

To answer the left-or-right queries, B”' proceeds different Corresponding to the queried position <. For all
(220, 27") € Qi for all £ € QL B computes the ciphertexts ct! , < Enc™(msk;, (z'", 0%, 0)) if i € HS and
it computes the ciphertext ctm +— Enc® (msk;, (z io,tu,é)) with tu := Gen'(sky, i, /) for i € CS.

To answer the encryption oracle queries xf € Q;, forall £ € QL', B first computes t;  := Gen'(sk;, i, 0)
for all i € CS and for all £ € QL’. Then Bj uses its master secret key msk; and computes ctg,z —
Enc(msk;, (a: i, 0)) for i € CS for all j € [|Qi,|] and £ € QL' and ct;, < Enc(msk;, (xi, 0*,¢)) for
i€ HS for all j € [|Q;e]] and £ € QL'

As an answer to the queries asked by A in the beginning of the game, B” sends ({sk; }iccs, {ctf’g}ie[n}’geQL’jeHQu”,

{ctiebicpl ccqu jeiar ) to A |
Whenever the adversary A asks a key generation query QKeyG({f*};c[n)), B queries the underlying
one-time pad for all the honest slots except one, i.e. for all i € HS \ {k}. In more detail, B queries the
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underlying one-time pad with (f?(z?%), fi(z?")) for all i € HS \ {k}, all (270, 27") € Qs and all £ € QL.
B also queries the underlying one-time pad with (f?(z?), fi(z])) for all i € 7—[8 \ {k}, all 2/ € Q; ¢ and all
¢ € QL'. To prove that this query made by B’ is valid, in the sense of the CON-PERF-INDg game, we need
to show that for all i € #S \ {k}, all (z7°,27") € Qi and all £ € QL it holds that fi(z}'') — fi(z;°) =
izl — fi(2??). This follows irnmediately from the fact that a left-or-right query needs to be asked in
every position and the fact that f(z]°,...,220) = f(«}",... 201) for all i € [n], all (z7°,2)") € Qi and
all £ € QL, which is equivalent to 37, fial?) = Yiclnl Fi(z?°) in the case of separable functions. In
more detail, we consider the case in which a left-or-right query has been asked in every position at least

once and another left-or-right query, (x{;o, x{;l), is made for the slot i*. For the function evaluation of this

query, it must hold that }7; .\ () Fizl®y + fi@ah’) = Zle[n]\{i*} fi(zi') + fi(zl"), which results in
ity = fi(z0) = iy [ 1’0) - Zle[n]\{l y fi(x; 1) since this holds for all j € [|Q;.¢]] it directly
follows that f#(z}:2") — fi(z1:%) = fi(zh') — fi(220) for all (z f*o, 7Y € Qg 4 for all £ € QL. After showing that
the condition of the CON-PERF-INDg game is fulﬁlled7 we show that B perfectly simulates the key generation.
After B" received the replies yj I of its queries (f(z2%), fi(zl)) for all i € HS \ {k}, all (2%, 27") € QZ ¢

and all £ € QL, it computes e/ = f(xI°, ... 230) = f(a?', ... 23) for all j € [|Q,]] and sets yk’g =

e?f - (Xie en)\{k} yf{ ) for all j € [|Qz‘i” B sets Y; := {{yi{ beeQrjelQi s {y;jéf }ZEQL’JE[IQ’ ol 1} In the
final step, B" generates ska ~+ KeyGen(msk;, f§. y,) foralli € HS and Skfz + KeyGen(msk;, f; ) for all
i€ CS, sets sky := {sk]u }167{3 U {Sk]u }iecs and sends sky to A.

This shows the perfect mmulatlon of G2+5. Finally, B"”" outputs the same bit 3’ returned by A. Thus, we
obtain the lemma. O

6 Adaptive Security

To prove the adaptive security of our construction, we face two main problems that do not occur in the case of
selective security: First, we do not know all the honest slots in advance and therefore cannot directly replace
the honest pseudorandom function evaluations with random function evaluations. The second problem is
that we cannot encode all the function evaluations inside the functional keys since we do not know all the
messages that are going to be queried in advance.

We overcome the first problem using a proof technique borrowed from [ABG19]. We define an explicitly
honest Slots (as i 1n [ABGlQ]) as slots where the first left-or-right oracle query happens for different messages
z¥ and z}, i.e. :1: 75 x . Notice that if a slot ¢ is disclosed as explicitly honest it cannot be corrupted
afterwards anymore and we can replace the pseudorandomness in this slot with real randomness (i.e. by
relying on the security of the PRF). To know which slots are going to be explicitly honest, we will guess,
at a very high level, the number of corrupted slots and the index of the first and the last slots that will be
corrupted. This results only in a polynomial loss in the reduction instead of an exponential loss. Note that
by Conditions (*) (see Definition 2.4) it follows that if an explicitly honest slots does not occur that we can
relay on the security of the underlying functional encryption scheme. The details for this part of the proof
are described below. To solve the second issue, we make use of the | position in the different encryptions.
In more detail, we create a list that contains all the functions that have already been queried to the key
generation oracle. Whenever the adversary queries the left-or-right oracle or the encryption oracle on a new
challenge, we place all the function evaluations for every previous queried functions inside the L position
of the ciphertext. Combining this with the approach from the selective security proof, we ensure that the
function evaluation happens correctly no matter if the encryption or left-or-right oracle query happened
before or after a functional key query. Since the ciphertext also contains function evaluations, we need to
replace them together with function evaluations contained inside the functional key. This happens with the
same information theoretic argument as in the selective security case extended to the ciphertexts. The formal
proof is described below.
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Theorem 6.1 (¢-message-and-key ad-pos™-IND-security of MCFE). Let FE = (Setup®, KeyGen®, Enc®,
DecSi) be a g-message-and-key bounded ad-FULL-secure single-input functional encryption scheme for the
functionality class F;*°, and PRF an IND secure pseudorandom function, then the MCFE scheme |MCFE
described in Fig. 10 is a g-message-and-key bounded ad-postT-IND-secure functional encryption scheme for
the functionality class F3. Namely, for any PPT adversary A, there exists PPT adversaries B and B’ such
that:

Adviscrea(A) < 2(n + 1)n(n — 1) - Advpre s(A) +4(n + 1)n - Advig 57" (A)

Proof. The arguments used for the generation of the values ¢; , is based on the proof in [ABG19] and we
recap those parts here adapted to our construction. '

We denote by @Q; ¢ the encryption queries of the form (xf’o
key queries of the form (f, ;) made for every position i € [n].

For the case with only one honest (non-corrupted) position, we proceed in the same way as for the selective
security case.

As in Abdalla et al. [ABG19], we consider a slot ¢ as explicitly honest if the first left-or-right oracle query
QLeftRight(i,z) ", 2", £) that has been made for this slot contains two challenges such that z,"° # x}"'. This
can happen under any label £. For the slots that are not explicitly honest, i.e. it holds for the first query
that 2, ® = 2", it must hold that for all further queries j in this slot that f(z7%) = f(z?") (a detailed
reasoning why this holds can be found in the proof of Lemma 6.6) and therefore the security of such a slot ¢
can be directly reduced to the security of the underlying functional encryption scheme.

For the cases with more than one honest position, we use a hybrid argument with the games defined in

Fig. 15. This results in:

,xj’l,ﬂ) made for position ¢ and by Q; ; the

7

+ x .
Advieres NP (A, n) = [WinS (A, n) — Win$ (A, n)] -
We describe the different intermediate games in more detail:

Game G The game is the same as the ad-pos™-IND, game, but with the difference that the number of
explicitly honest slots is guessed in advance. This happens by choosing a uniformly random «* < {0,...,n}.
This guess is necessary since the honest slots are not known in advance as in the selective case. The game
behaves exactly as the ad-pos™-INDy game, except that it outputs 0 and ignores A’s output in the case
that the guess k* was incorrect. Since the guess is correct with probability n%ﬂ, we have

WinS (A, n) = Wi oy INDo ().

(n+1)

Game Gj: We change the distribution of the ¢; , values that are needed to answer left-or-right oracle
QLeftRight and encryption oracle QEnc queries, for the case xk* > 2. For these, the t; , vector gets
computed as usual, but a share of a perfect k* out of k* secret sharing is added. This game is similar to
the game G; from Fig. 12 for the proof of Theorem 5.1. Similarly to Lemma 5.2, we justify this transition
using the security of the PRF with the crucial difference that corruptions happen adaptive here. Therefore,
the reduction does not know the set of honest slot in advance. Since guessing the entire set of explicitly
honest slot would incur an exponential security loss, we gradually introduce the shares. Starting with 2
out of 2 perfect secret sharing, then 3 out of 3 until we reach the the k* out of k* secret sharing among all
the queried slots. This gradual introduction happens via a hybrid argument that is described in Fig. 18.
To go from one hybrid to another, we only require to guess a pair of slot (7,;) (namely the first and the
last slot to be reveled ) to use the security of the PRF on the key K; ;. Namely, in Lemma 6.2, we show
that there exists a PPT adversary By such that:

Win§ (A, n) — Win§ (A, n)| < n(n — 1) - AdVER 5, (A, n) .

Game Gj: We replace the encryptions of (xg’O,L,ti7g,€) with the encryptions of (mg’l,Zi,OA,K) for all
(22, :I:Zl) € Qiy, all £ € QL and all i € [n] in the left-or-right oracle and we replace the encryptions

K2
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of (xz, L, t;4,¢) with the encryptions of (mf, Z!,0*,0) for all xf € @, for all £ € QL in the encryption
oracle. The values ¢; , in the left-or-right queries and the encryption queries are replaced with 0 to
make the ciphertexts independent from the masking values ¢; . The hardcoded values z] ;€ Z; are

g1
i

values ¢; ¢, i.e. zfg = fz(arfo) +t; ¢ + r;. The same holds for the hardcoded values z;fl}fi € Z!. They are

generated using the values (f%,r;) € Q; r, the queries :cf € Q;,z and by computing the masking values

generated using the values (f,r;) € Qs ¢, the queries (xz’o, x]") € Q;¢ and by computing the masking

tie, i.e. z;j’fi = f’(xf) + ti¢ + 7. We also replace the functional key sky := {sky: }ic[n (see Fig. 11b
for the function description) with sk := {skfiQ_ . bien] (see Fig. 17 for the function description). The

hardcoded values yfg ‘e Y; are generated using the random value r;, the queries (xf’o, xil) € Q¢ and

by computing the masking values ¢; ¢, i.e. yff = fi(zg’o) +t; ¢ + 7;. The same holds for the hardcoded
values y;j,gf " They are generated using the random value r;, the queries xf € Q'IM and by computing the

masking values t; ¢, i.e. yijef = fl(xf) +t;,¢ + ;. The transition from G} to G5 is achieved using a hybrid
argument with sequence G ,, for k € [n]. As already described in Fig. 15, it holds that Gf = G}, and
G5 = G} ,,. This results in

Win% (An) = Win% (A, )| < 37 [WinG = (A, n) = WinG+ (A, n)]
k=1

for any PPT adversary A. The transition from G} ,_; to GI , is justified by the full security of FE. Namely,
in Lemma 5.4, we exhibit a PPT adversary By for all k& € [n] such that:

WinSi = (A, n) — WinG* (A, m)| < Advit EUEE(N)
combining both of the statements and noticing that a PPT adversary B; can be obtained by picking

i € [n] and running B;, we can justify the transition from G} to G5. Namely, in Lemma 5.3, we exhibit a
PPT adversary B; such that:

WinS (A, n) — Win%Z (A, )] < n - AdviEURE ()
Game Gj: We change the generation of all the values yf’gl €Y; and zg’[l € Z;, which are computed using
the random values 7;, the queries @; ¢ and Q; y and the masking values ¢; ;. We change the generation

from yg,’lfz = fi(@%) +tig + i to yi’f = fi(@l") + tie + r; and from sz = fi(@)%) +tig + i to
zf ’Z Ci= fl(a:{ 1+ t;.¢ + ri. The transition from G} to Gj is justified by an information theoretic argument
and happens for all ¢ € [n]. In more detail, we prove the transition by relying on the conditioned perfect

security of several instances of the one-time pad as shown in Lemma 3.6. Namely, in Lemma 6.6, we show
that

Win%2 (A, n) — Win§ (A,n)| =0,

for all adversaries .A.
Game Gj: We replace the encryptions of (xg’l,Zi,O)‘,E) with the encryptions of (l‘g’l,J_,ti7¢,£) for all

(270, 27") € Qiy, all £ € QL and all i € [n] in the left-or-right oracle and we replace the encryptions
of (xf, Z!,0*,¢) with the encryptions of (:rf, L,t;¢,¢) for all acf € Qi all £ € QL and all i € [n] in the
encryption oracle. The masking values t; ¢ are inserted back into the ciphertext and replace the 0* values.
We also replace the functional key sk := {SkfiQ.YY‘ }iemn) (see Fig. 11b for the function description) with
sky = {Skf;'i}ie[n} (see Fig. 17 for the function zflescription). The transition from Gj3 to G} is almost
symmetric to the transition from G to Gj, justified by the full security of FE applied on every slot i € [n].

Namely, it can be proven as in Lemma 6.4 that there exists a PPT adversary By such that:
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IWinS (A, ) — Win§i (A, )| < 1 - AdvEg BUEE (L)

We defer to the proof of Lemma 6.4 for further details.

Game Gj: The transition from G} to Gf is almost symmetric to the transition from Gj to Gj, justified by
the security of the PRF. Namely, it can be proven as in Lemma 5.2 that there exists a PPT adversary B3
such that:

IWinSi (A, n) = Win% (A, )| < n(n — 1) - AdvpRPs, (A, n) .

Since G} is exactly as the game ad—pos"’—IND'f'CFE()\, n, A) except the guess k* < {0,...,n}, we have

Wini‘g (\,n) = Winooyy-INDy ) )

1
(n+1)

Putting everything together, we obtain the theorem. a
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justification/

Game ct{ y Ct;{g sky remark
ri =W, Vie[n—-1
tig = Gen(ski,i,é) tig = Gen(ski,i,é) o A [ ]
G Tn == ey i
Enc®(msk, (270, L, ti.¢,¢ Enc®(msk;, (27, L, t;r, 0 ; ;
( (@ «0) ( (@ ) KeyGen® (msk;, fr,)
- ri — W, Vien—1
tl‘,g = Gen"(sk¢7i7f) ti,g :=| Gen (Ski,i7€) )\Z [ ]
n = — . T4
Gf r i€[n—1] PRF
S (mskq, (270, 1, #; Enc® (msk;, (27, L, t; 0, ¢ ; ;
Enc (mSk 7(1'7, 7J-7t ’g,f)) nc (mS 7(117 y Liyly )) KeyGens'(mskhfﬁi)

*
1.k

t;o := Gen"(sk;, i, £)

ti0 := Gen' (sk;, 1, £)

Ifi <k
Add (2% 27") to Qi
For all (f%,r:) € Qis
zflf“ = fi@l) +tip 41
Zi = {Zf,’f}(fi,-)e@i,f

Ifi<k
Add 27 to Qi
For all (f,r;) € Qs 5
z?efL = fia@)) Ftie+ 1
zL =125 Ypeon,

Enct(msk, (07", 2,07} 1),

Enc® (msk;, (mg,, 0)),

T <—JA,W S [n—l]

- Zie[nfl] Ti

T i=

Ifi <k
Add (f*,7i) to Qi
For all £ € QL,
(220 27") € Qi
ti0 := Gen' (sk;, 1, £)
yff = fi@l) dtie+ 1
For all ¢ € QL',ZEf € Q;,e
tie := Gen” (sk;, 1, £)
yzy’{i = fl(xf) +tie+Ti
Q; = {{Qi,c}ecor,
{Qgﬁe}eeQL’}

for i < k fori <k o
ori<i fori <k Vi = {{y}] teeqricii.
Enc®(msk;, (z7, L, ti.e, €)), Enc™ (mskg, (], L, ti e, £)), v
. {vi; }EEQL’JEHQQ z‘]}
fori >k for i >k |
Ifi <k
KeyGeﬂSi(mSkia JMQIYl)
Ifi > k:
KeyGen® (msk;, f;.)

Full Security
of FE

Fig. 15a: Description of the games Gf to G7 ;, for the proof of adaptive security.
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justification/

Game ct, ct?, sk
’ ’ remark
ri < W\, Vi € [n — ].]
Tn = — Zie[n—l] i
Add (f*,7:) to Qi s
For all £ € QL,
J,0 .51 )
tie = Gen"(ski, i,f) tie = Gen//(ski7i7[) (Iz 7?{1‘ ) € Qi
Add (27,27 to Qi Add 27 to Q! e = Gen(ski, 4, )
Lo ’ R y = @)+t 4
For all (f*,7:) € Qir For all (f*,7:) € Qi &t K i "
all (i) ¢ C T s For all £ € QL', 2! € Q)
G3 2= @) et | 2 = ) e || € QL. € Qi G; =Gi,
Zi = {2 irea 20 = {250 o ti,e 1= Gen'(sky, i, ()
i i, 1 )EQ; i il L)EQ; i . .
L : s yf,f = f(x]) + tie + i
. : . . Qi = {{Qie}ecqr,
Enc®(msk;, (7 0)) | Enc¥(msk;, (1‘37, ) |
{Qi,Z}ZGQL’}
Vo= {{y]] Yeeqriieni,el;
{7 Yeequr jena i}
KeyGen® (mski, f5, v,)
r; < W\, Vi € [n— 1]
Tn = — Zie[nfl] i
Add (f*,r;:) to Qi z
For all ¢ € QL,
(@0 27 € Qi
tio = Gen” (sk;, i, ¢ A k. 7 v '
N4 . ( ) ) ) tz,l = Gen (Sk“%f) ti,l = Gen”(ski, Z,Z)
Add (277, 2]7) to Qi Add 27 to @, v
' i i, 3, f* i/ 7,1
) D, 1= ;) +tie + 1
For all (f*,r:) € Qs For all (f*,7:) € Qi,r Vit fo ) o
Y . . - opd . . ’ /
G3 Zf,’{ = fl(le) +tie+Ti Zz/'?éf = fx]) + tie + 1 Forall £ € QL' 2] € Qi inf. theoretic

Zi =1 Y piyeon

Enc® (msk;, (ﬂcZ’l, Z;,0%,0))

Zi == Yo vean

Enc® (msk;, (7, Z!,0*, 1))

tie := Gen"(skq, 1, £)
yil = Fl) it
Q; = {{Qi,}tecor,
{Q;,Z}ZEQL/}
Y= (0] Yecansetionn
Wi heearrseranan}

KeyGenSi(mSki7 szl Y )

Fig. 15b: Description of the games G5 to Gj for the proof of adaptive security.
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Game

J
cti e

/3
Cti’z

Skf

justification/

remark

tio := Gen”(sky, i, /)

tio := Gen” (skq, 1, £)

Ifi>k
Add (21, 20") to Qi
For all (f%,r;) € Qiz
zfgfl = i@l + i+

Ifi>k
Add =] to Ql,
For all (f% 7)) € Qi.f

i

2= i @]) e+

ri < W, forall i € [n —1]

- Zie[n—l] i

Ty =

Ifi>k
Add (f*,7i) to Qi
For all £ € QL,
(x{’o,xf’l) € Qi

t;0 := Gen' (sk;, 1, £)
VL= P

For all £ € QL ,z) € Qi
tie := Gen” (sk;, 1, £)

Full Security

G3 Zi = Zj’fi i ) 7! = Z/-j’fi i ) i oo
3.k { i,0 }(f )EQi f { i, }(f )EQif yf,’{ = f’b(xZ) +tio 4+ of FE
_ , . . Qi = {{Qi}ecqr,
Enc(msk;, (x| L tic|,€)), |Enc¥(msk;, (x2,]| L,tie|0)), L
‘ ‘ (@ decarr}
fori <k for i <k v, (q j’fi}
: ) ) ) i = WYier steQL,j L
EnCSI(mski7(‘CL‘ZY17Z7510>\7£))7 EnCSI(mSkia(xzaZz(70>\7€))7 { /}[fi}EQ setie JH }
Yii se Y] i
for i >k for i >k - €QLN . ElIQu el
If i <k:
KeyGen® (msk;, f;,)
Ifi > k:
KeyGen® (msk;, szlYL)
r; < W, for all i € [n — 1]
tie := Gen” (sk;, 1, £) tie := Gen” (sk;, 1, £) S .
Gi ! e Gi = Gi.
Enc® (mskq, (27", L, tie |, ¢ Enc®(mskq, (27, L, tie |, £ - ;
b e [T} | o 2 [} ) | e
ri< W, forallien—1
ti,g = Gen(ski,i,Z) ti,g = Gen(ski,i,ﬁ) y)\z [ ]
G T T Lien PRF

Enc® (msk;, (:UZI, L, tie, £))

Enc(msk;, (27, L,ti0,0))

KeyGen®' (msk;, fﬁl)

Fig. 15c: Description of the games G ; to Gj for the proof of adaptive security.
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Gen(sk;, i, £) Gen”(sk;, i, £)

Parse sk; := (msk;, {Ki j}jem)) | Parse sk; := (mskq, {Kij}jem))
tie =30, (1)7S'PRFK, ; (0) | tie =3, (1)’ <'PRFx, ,(£)
Return ¢; ¢ We denote by {i1,...,ix} the set of explicitly
honest slots in the order they are revealed.
Ifi € {é1,...,%x}, then:
o Ifi=14,
tie ==Y, ;(~=1)”<'PRFk, ;(¢)
+ 3 e
o Ifi =iy, forse{2,...,k"},
tig = Z#i(—l)KiPRFKM (0)
— Ug g

Return ¢; ¢

Fig. 16: Generation of the tags for the labels in the adaptive case

fiQiaYi (ZC, Zia ti,é,‘e) :
Parse Q; := {{Qi.c}ecqr, {Qic}ecar}

Vi = {{vl] Yicioaecor (v }iel@leeqrr}
If (,2) € Qie

Parse Z; := {zf{ Yriyeqi s

If yf;f is defined
Return y?:f
Return sz
IfreQi,
Parse Z; := {z'.j‘fi} ;
R A (G e
If yﬂf " is defined
Return y;j l}f '

15, %
Return 27,/

Fig. 17: Description of the function that is used in the reduction for the adaptive security
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Go.i, for k€ {0,...,n}:
K+ {0,...,n}, forall s € {2,...,k"} for all £ € [g],usc + Va

({ski}icin), msk) « Setup’(1*, n)
a<_AQCor(~),QKeyG(~),QEnc(~,~,~),QLeftRight(~,~,~,‘)(1)\)

Output « if Condition (*) is satisfied AND the guesses k* and \* are correct, or

0 otherwise.

QCor(3) :

Return sk;

QKeyG(f) :
Return sk; < KeyGen'(msk, f)

QEnc(i, 27, ¢) :
Parse sk; := (mski, {Ki;j}je[n)), vi,e := Zj#(—l)jQPRFKM (0).
We denote by {i1,...,4.} the set of explicitly honest slots in the order they are
revealed (i1 is the first honest slot, i2 the second, ...), and we set 6 := min(x*, k).
If & > 2 then do the following:

—1If i =41, then t; 0 := v e + ZZZQ Us,e

~Ifi=1s, for s € {2,...,0}, then ;¢ := v — usy

—Ifi=1ids fors€{0+1,...,5"}, then t; 0 := v

—If i = is, for s > k”*, that means k > k", the guess was incorrect.

Ends the game and outputs 0.

If 0 < 2, then ¢; 0 1= v .
Return Enc’(ski, (27, L, t; 0, €))

QLeftRight(i,J:Z’O,x{’l,é) :
Parse Ski = (mski, {Ki,j}je[n])7 Vie ‘= Zj¢i(—1)j<iPRFKi_j (é)
We denote by {41,...,4i.} the set of explicitly honest slots in the order they are

revealed, and we set § := min(k”, k).
If & > 2 then do the following:
S If i =1, then tig = vie+ Y, e
~Ifi=1d, for s€{2,...,0}, then t; ¢ :=v; ¢ — usy
—Ifi=1ids fors€{0+1,...,5"}, then t; 0 := v,
—If i = is, for s > k*, that means k > k", the guess was incorrect.
Ends the game and outputs 0.
If 0 < 2, then ¢; 0 1= v .
Return Enc’(ski, (270, L t;0,€))

Fig. 18: Games for the proof of Lemma 6.2. The guess k* is correct if it equals the size of the set of explicitly
honest slots.
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Lemma 6.2 (Transition from G§ to Gy). For any PPT adversary A, there exists a PPT adversary BB’
such that ) )
WinSe (A, n) — Win§ (A, n)| < n(n — 1) - Adviee 5 (M) -

Proof. To prove that Gj is indistinguishable from G} we need to apply a hybrid argument over the explicitly
honest users by relying on the security of the PRF.
Using the definition of the games in Figs. 15 and 18 and the triangular inequality, we can see that

n
WinS (A, n) = WinGE (m)] < S [Win5 " (A, n) — Win§ (A, )|
k=2

where G} corresponds to game G}, (and G§ ;) and whereas G¥ is identical to game G ,,. Since G§ , = G§ 1,
we do not analyze the transition between these two games.
Now, we can bound the difference between each consecutive pair of games for every k € {2,...,n}.

Lemma 6.3. For every k € {2,...,n}, there exists a PPT adversary By against the IND property of PRF
such that o N
IWin 251 (A, n) — Win§# (A, n)| < n(n — 1) - Advie 5, ()
Proof. This proof works mainly as described in [ABG19].
We build an adversary By that simulates Gg,_;, 5 for k € {2,...,n} to A when interacting with the

underlying INDZRF experiment.

If k* < 2, the games G§ ,_; and Gj ;. are the same. Therefore, we only consider the case where £* > 2.

The adversary Bj starts by guessing the first and k’th honest slots i* and j*, by sampling random
i*, j* < [n], with ¢* < j*. Whenever A asks an encryption or left-or-right oracle query, By, replies as described
in Fig. 18 for every explicitly honest slot in the order they are revealed. Since By has guessed the first
and k’th explicitly honest slot, it knows how to answer the queries for every explicitly honest slot that
is revealed in between. If it turns out that the guess of By is incorrect, the simulation ends and returns
0. If the guess turns out to be correct, we can rely on the security of the PRF on the key K« ;« to a
uniformly random value RF(¢). Then we argue that RF(¢) is identically distributed to RF(¢) + us, and
therefore, since the former distribution corresponds to Gj ,_; and the latter game G§ ;, the computational
indistinguishability between G, and G§ ,_, follows. We analyze the advantage of this transition in more
detail. The guessing of the two honest slots happens with probability 771(”271), which results in a security loss
e sy - WIS (X n) — WinS0 (A, )| < AdVERR s, (A) < [Win3o (A, ) — WinSP+ (A, m)| <
@ . Advg\é]a,;k (A). Finally, we switch RF(£) back to PRFk,, . (£) using the security of the PRF on the key
Kis j» a second time. This results in the advantage described in the lemma.

For every corruption query QCor (%), By just returns sk; and for every key generation query QKeyG(f), By
just computes and returns sk < KeyGen'(msk, f). O

O

(n=1)
of 11

Lemma 6.4 (Transition from G} to G}). For any PPT adversary A, there exists a PPT adversary B
such that ) *
[Win§ (A, n) = Win$ (A, n)| < n - AdviE R ()

Proof. To prove that Gj is indistinguishable from G35 we need to apply a hybrid argument over the n slots,
using the full security of the single-input functional encryption scheme.
Using the definition of the games in Fig. 15 and the triangular inequality, we can see that

WinG (A, n) = Win$E (A n)] < 37 [WinG 5 (A, n) — WinG (A, m)]
k=1

where G} corresponds to game Gf , and whereas G5 is identical to game Gj ,,.
Now, we can bound the difference between each consecutive pair of games for every k € [n].
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Lemma 6.5. For every k € [n], there exists a PPT adversary Bj, against the ad-FULL property of the
single-input scheme FE such that

WinG =" (A,m) = WinS ()| < AdvEEE™(A)

Proof. We build an adversary Bj that simulates G}, ;.5 to A when interacting with the underlying

sel—FULL;E experiment.

We denote by EHS the set of explicitly honest slots and by RS the set of remaining slots. We also
denote the labels queried to left-or-right oracle by QL and to the encryption oracle by QL' upper-bounded
by ¢. Before answering any oracle queries, the adversary Bj, initializes the lists Q;, for all i € [n] and
all £ € QL, the lists g,e for all i € [n] and all £ € QL' and the list Q; 5 for all i € [n]. Afterwards, B,
generates msk; < Setup®(1*) for all i € [n] \ {k}, samples K, ; = K;; + {0, 1}* for all i € [n],i < j and sets
Ski = (mski, {Ki,j}je[n])'

For every corruption query QCor(i) with i # k, B, sends sk; to A. If a corruption query is asked for k,
the adversary B;, directly outputs « < {0,1}. This is due to the fact that the games G} ,_; and G}, are
identical in this case, which results in an advantage equal to 0 and Lemma 6.5 trivially holds. The same
happens in the case that k is not an explicitly honest slot. '

Whenever A asks a left-or-right query (i, 7’ 70 ,0), By, adds ( i , Zl) to the list @); » and computes
ti o := Gen"(sk;,i, /). To generate the final mphertext B;, proceeds different corresponding to the different
positions . For i < k and i € EHS, B), computes zfzfl = fi(xj’o) + ti0 4 r; for all (f',7;) € Q; ¢, sets Z; :=
{Zz:g‘l}(fi’,)eQi,f and computes ctz_é  Enc®(sky, (x", Z;, 0%, €)). For i = k, B}, computes zj = = fRal®) +
tio+7y for all (f*,rk) € Qu.r, sets Zy, = {Zz:gl}(fif-)eQiyf anq submits ((xk s Lo tke, 0), (xk 2y, 0A ,0)) to its
own left-or-right oracle and receives the ciphertext ctj, , < Enc® (msk,, (z kB, Z8.t8 1)) (with Z2° = 1, Z' = Z,,
and t° = t; 4, t* = 0*) as an answer. For i > k and i € RS, B, computes ctie + Enc®(sk;, (a:Z s L. tie,0)).
Finally B}, sends ctge as a reply to A.

The adversary B, behaves similar to answer an encryption oracle query. In more detail, whenever A asks
an encryption query (i,z?,¢), B}, adds = to the list Q;J and computes t; o := Gen” (sk;, 4, ¢). To generate the
final ciphertexts B; proceeds different corresponding to the different positions . For ¢ < k and i € EHS,
Bj. computes z;{éfl = fi(ad) + tig + 7 for all (f,m) € Qi»f’ sets Z] := {zféfl}(fg.)eQi,f and computes
ct'J — Encs'(skz,( 171,00 0)). For i = k, B), computes zgéf i= fR(x]) +tpe+ry for all (f*, ry) € Qp g, sets
Zy = {zl , }kaQk ; and submits ((xi, Litie,f), (va, Z;,0%,4)) to its own left-or-right oracle and receives
the (31phertext Ctké «— Enc¥(msky, (z1, Z'°, 1%, 0)) (with 2 = 1, Z'' = Z, and 1 = t),4, t* = 0*) as an
answer. For ¢ > k and i € RS, Bj, computes ctije <« Enc¥(ski, (7, L, t;¢,¢)). Finally B, sends ct J@ as a reply
to A.

Whenever the adversary A asks a key generation query QKeyG({ [ Yiem))s By samples 7; < Yy for all
i € [n] and sets 7y 1= — > ien—1 Ti- Then By adds (f',r;) to the list Q; . For all the left-or-right oracle
querles (] 70 ]’1) € Qiy for all £ € QL, B,, generates t; , := Gen"(sk;, 4, ) for all i € [k] \ RS and computes
yZ e = fi(x] 0y + t;¢ +r; for all j € [Qg]. For all the encryption queries xf € Qj forall £ € QL', By,
generates t; o := Gen” (i, /) for all i € [k] \ RS and computes ygéfl = fi(@)) + tig + 7 for all j € [Q)). B,

sets Y; := {{yf{ }je[Qz],geQL,{yﬂf }iel@)eeqr } and computes SkfiQ‘,Y. — KeyGenSi(msk,-,féth) for the
slots i < k with i € EHS and sky: « KeyGen® (msk;, fﬁ) for i > k or i € RS. To generate sksx, B) queries
its own key generation oracle QKeyG on ( f,kk7 f5, v,), this query fulfills the functional restriction, i.e. it
holds that fF* (z7, 0) = f5. v, (x 2°) for all (2°,-) € Qi for all £ € QL. B}, receives skyx as an answer, sets
Skf = {Skfz }ze[k 1\rs U {Skfk} U {ska }26({k+1 .,n}URS) and sends Skf to A.

This covers the simulation of the game G1 k—1+p- Finally, B;. outputs the same bit 3" returned by .A. Thus,
we obtain the lemma. O
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The proof of the lemma follows by noticing that the adversary B” in the lemma statement can be obtained
by picking k € [n] and running B} . O

Lemma 6.6 (Transition from G} to Gj). For any adversary A it holds that
|Winj§ (A\n)— WinJGL‘§ (A n)| =

Proof. We build a PPT adversary B that simulates G, 5 to A, when interacting with ([EHS| —1) - A" - [Qy|
instances of the one-time pad in the CON-PERF-INDg experiment, as proven in Lemma 3.6. With many-
instances we mean that encryption oracle of the one-time pad can be queried several times, but always the
same position (left or right) is encrypted. In more detail, a new key kf ¢ is chosen for every position i € [n],
for every label ¢ € QL and for every function {f* }ze[n] € Qy.

We denote by EHS the set of explicitly honest slots and by RS the set of remaining slots. We also
denote the labels queried to left-or-right oracle by QL and to the encryption oracle by QL' upper-bounded

by ¢. Before answering any oracle queries, the adversary B’ initializes the lists Q; ¢ for all ¢ € [n] and
all £ € QL, the lists Q; , for all i € [n] and all £ € QL and the list Q; y for all i € [n]. Afterwards, B"
generates msk; < Setup® (1*) for all i € [n], samples K; ; = K;; « {0, 1}* for all i € [n],i < j and sets
sk; := (msk;, {K; j}jen)) for all i € [n].

For every corruption query QCor(i) asked by A, B” sends sk; to A.

Whenever the adversary A asks a key generation query QKeyG({f"}icjnj), B” adds (f*,ri) to Qi .
Afterwards, B queries the underlying one-time pad for the explicitly honest slots i € E"H_S unequal to the x*’th
explicitly honest slot. In more detail B”’ queries the underlying one-time pad with (f*(x ’O)+t’ o fi( j’l)—I—t; 2)

with ¢} , = Gen(skl, i,0), for all (270 27") € Qi and all £ € QL. B also queries the underlying one-time

pad with (fi(z)) +t, o Nt ) with t; , = Gen(sk;, i, (), for all = Q;, and all £ € QL'. To prove
that this query made by B’” is vahd in the sense of the CON- PERF IND[g game, we need to show that
for all (z7° 27') € Qi and for all £ € QL it holds that fi(z)") — fi(z}®) = fi(z?") — fi(«?°). This
follows immediately from the fact that a left-or-right query needs to be asked in every position, and the fact
that f(z] 0, L ah0) = f(ad 1, o abty for all (270, 22t € Qi and for all £ € QL, which is equivalent to
Yiem) i(a)?) = Yiem) i(27°) in the case of separable functions. In more detail, we consider the case in which

a 1eft or-right query has been asked in every position at least once and another left-or-right query7 (x] 70 gt ) is

1*71

made for the slot i*. For the function evaluation of thls query, it must hold that Zze[n]\ (i Fia0)+ fial) =

Zze \{z }f ( 1 1)_|_fz( * ), Wthh results mn fZ( Z* ) f ( Z*O) = Zle[n]\{l*} fl( z* ) . Zie n\{l*} f (SL’l )7
since this holds for all j € [Q,] it directly follows that fi(z") — fi(z;°) = fi(al') — fi(22) for all
(:1730 e Qi for all £ € QL. After showing that the condition of the CON-PERF-INDg game is

? 7,

fulfilled, we show that B’ " perfectly simulates the key generation After B"” received the replies yfg " of
its queries (fi(«2°), fi(z")) for all i € EHS \ {x*}, all («7°,20") € Qi and all £ € QL, it computes

f = f(a) 30 b0y = f(xl’l,.. xbb) for all j € [Q] and sets yj’fn = ez’f — (Eie[n]\{ﬁ }yff’f +
Z e\ {x* }sz ) for all j € [Qc]. B" sets Y; := {{yzz }JG [Qc), ZGQLa{yzZ }Je Jeeqr/}- In the final step,
B generates Skf1 -+ KeyGen(msk;, fQ y,) for all i € EHS and skf7 — KeyGen(mskZ, fi) foralli e RS,
sets sky := {Skfz }1659.[5 U {skfl }iers and sends sk to A.

For every left or—rlght query (i, zo,xz 1,6) asked by A, B” adds (xg’o, xfl) to the list @Q; . To generate
the final ciphertexts B’ proceeds different corresponding to the different positions . For the explicitly honest
slots i € EHS unequal to the x*’th explicitly honest slot, B" queries the underlying one-time pad. In more
detail, B” queries the underlying one-time pad with (f(z7°) + ti o izt + ti o) with t; , = Gen(sk;, 1, £),
for all (f%,-) € Q;, #- These queries are valid for the same reason as described in the key generation queries.
After B recelved the replies z” I of its queries (fi(xg’o) + i 0 fl(:czl) +ti4), for all (f%,-) € Qip, it sets

Z; = {Zi,lf }(fi,‘)eQi,f and generates ctgl — Enc¥(sk;, (z7', Z;,0%,€)) as a reply for A. For a left-or-right query
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for the x*’th explicitly honest slot, B/ computes ezj’f = f(ﬂcjll’o7 coy@l0) = f(x{’l, cooaibyforall f € Qyand
all (7, 27") € Qi°. Then, B sets zi*fé = el — (i s} yf}c + 2 i\ (5} zfef ) for all f* € Q¢

Afterwards, B sets Zo« = {zif; Hp eqn. , and generates cti*)@ — Enc(skys, (20}, Z,e 02, 0)) and
sends it as a reply to A. For all the remaining slots : € RS, B computes ctg,[ + Enc® (sk;, (xz’o, L,tie,0))
with ¢; o := Gen" (sk;, i, ) as a reply for A.

The adversary B"” behaves similar as described above in order to answer an encryption oracle query.
In more detail, whenever A asks an encryption query (i,z7,¢), B adds z] to the list @} ,. To generate
the final ciphertexts B proceeds different corresponding to the different positions i. For the explicitly
honest slots i € EHS unequal to the x*’th explicitly honest slot, B’ queries the underlying one-time
pad. In more detail, B” queries the underlying one-time pad with (f*(z]) +t; ,, f*(x]) + t; ,) with ] , =
Gen(sk;, i, ), for all (f*,-) € Q; . These queries are valid for the same reason as described in the left-

*

or-right queries and under Condition (*) of the security definition. After B" received the replies zl'-jéf " of

its queries (fi(z]) + t;,, fi(z]) +t;,), for all (f,) € Qi it sets Z] = {Z:-'}jéfi}(fi’.)thf and generates
ct/i{e +— Enc®(sk;, (x{, Z!,0*,0)) as a reply for A. For an encryption query for the x*’th explicitly honest
slot, B” computes ¢, == f(a°, ... 250) = f(a', ..., 2}t for all f € Qf and all (z2°,20") € Q. Then,
B sets zg:f;* = e%’j’f - (Zie[n]\{n*}yi’f + Xiem\ (s} z:Jef) for all f*° € Q- . Afterwards, B sets

7. = {z;{fe Hger )eq,. , and generates ctgw  Enc(skur, (2., Z'..,0%, ) and sends it as a reply to A.
For all the remaining slots : € RS, B computes ct;jj < Enc®(ski, (z, L, t;0,£)) with t; o :== Gen" (sk;, i, )
as a reply for A.

This shows the perfect simulation of G5, 5. Finally, B outputs the same bit 5’ returned by A. Thus, we

obtain the lemma. O

7 Decentralized Multi-Client Functional Encryption

7.1 Definition of Decentralized Multi-Client Functional Encryption

For a decentralized version (i.e. a decentralized setup and functional key generation), we consider the notion
of decentralized multi-client functional encryption (DMCFE) as introduced in [CDG'18a]. The work of
Chotard et al. [CDGT18a] and all the other works using the notion of decentralized multi-client functional
encryption [CDGT18b, ABKW19, ABG19] still consider a centralized setup procedure but mention that this
could be fully decentralized by running the setup procedure using an multi-party computation protocol. Now,
we define the notion of DMCFE in a fully decentralized way:

Definition 7.1 (Decentralized Multi-Client Functional Encryption). Let F = {F\}x be a family
(indexed by \) of sets Fy of functions f: Xx1 X --- X Xxn — Vx.Let Labels = {0,1}" or {L} be a set of
labels. A decentralized multi-client functional encryption scheme (DMCFE) for the function family F and the
label set Labels is a tuple of siz algorithms DMCFE = (Setup, KeyGenShare, KeyGenComb, Enc, Dec):

Setup = (P1,...,Pn): Is an interactive protocol between n PPT algorithms Pi,...,Pn, s.t. for alli € [n] P;
on input 1 and interacting with P; for all j € [n] with i # j obtains the i-th secret key sk;.

KeyGenShare(sk;, f): Takes a secret key sk; from position i and a function f € Fy, and outputs a partial
functional key sk 5.

KeyGenComb(sky f,...,sky r): Takes as input n partial functional decryption keys sk s, ..., sky. r and outputs
the functional key sky.

Enc(sk;, x;,¢) is defined as for MCFE in Definition 2.3.

Dec(sky,ctig, ..., cCty ) is defined as for MCFE in Definition 2.3.

® where 7 = 27" =0 for all i € RS
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A scheme DMCFE s correct, if for all \,n € N, {sk;};c},) are the output of Setup = (Py,...,Py) evecuted
between P1,...,Pn, f € Fx, £ € Labels, z;, € X\;, when sk; ; < KeyGenShare(sk;, f) for i € [n], and
sk < KeyGenComb(sky ¢, ...,sky, ), we have

Pr [Dec(sky, Enc(ski, z1,9), ..., Enc(sky, zn,0)) = f(z1,...,2n)] =1 .

Definition 7.2 (Security of DMCFE). The xx-yy-IND security notion of DMCFE (xx € {sel,ad} with
vy € {posT,any}) is similar to the notion of MCFE (Definition 2.4), except that the Setup is executed by
Pi,..., Py and the adversary A can corrupt a subset of them, namely P;,,...,P;, s.t. j; € CS. Moreover,
there is no msk and the key generation oracle is now defined as:

Key generation oracle QKeyG(f): Computes sk; ; < KeyGenShare(sk;, f%) for all i € [n] and outputs
{ski s }iepm)-

7.2 Construction of Decentralized Multi-Client Functional Encryption

Setup™(1*,n) :
For all ¢ € [n]: P; executes the following steps:
msk; < Setup® (1*)
Run party P; of IT obtaining PRF keys s.t. for all j € [n] with j >
Kij = Kji + {0,1} and Kf ; = Kj; « {0, 1}
Set sk; := (msk;, {Ks,j, sz}je[n])
Return sk;
KeyGenShare™ (sk;, f*) :
Parse sk; := (msk;, {Ki j, sz}je[n])
rig = 20(—1) S PREe (f)

Generate a functional key for friiy ; (defined in Fig. 11a [Fig. 11b))

skpi < KeyGen® (msk;, fﬁi‘f), where the size of skﬁ;l is bounded by q.

Return sk
KeyGenComb™ (ski,f,...,skn f) :

sk := {skyi}ieln)

Return sky

Enc™ (ski, x;, £) :

Parse sk; := (msk;, {Kij, Kij}je[n])

tie =3, (=1)’<'PRFk, ;(f)

cti o < Enc®(msks, (zi, L, ti¢,£)),| where the size of ct! is bounded by ¢
Return ct; ¢

Dec({ski }icpn), {cti}icn)) :

Compute Dec™(skji,ctie) = f*(2:) + tie + iy

Return f(x1,...,2n) = Zie[n] f’b(mz) +tie + 1

Fig.19: The generic construction of g-message bounded sel-DMCFE and g¢-message-and-key bounded
ad-DMCFE | decentralized multi-client functional encryption from single-input functional encryption.
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In this section we describe the necessary modifications to turn the presented MCFE of Fig. 10 into a
decentralized MCFE scheme (DMCFE). In the decentralized setting, following Section 7.1, the algorithm
KeyGenShare is decentralized and non-interactive. Therefore we can not directly use KeyGen as described
in Fig. 10 since the r;-values for a certain function f are required to be chosen in such a way that their sum
is equal to 0, which requires a simultaneous generation of the functional keys. A way to work around this
problem is to generate the r;-values as a PRF output, in the same way as for the encryption procedure Fig. 10.
In more detail, for the position i the r; s-value for the function f is defined as r; f := Z#i(—l)jQPRFKE ; ().
The idea of decentralizing a multi-client functional encryption scheme in this way has already been inforfnally
described in [ABKW19].

The PRF keys for KeyGenShare and Enc are generated during the setup phase, where the setup is executed
between a set of players Py,..., Py, (i.e.,, P; is the i-th client of DMCFE scheme). Let IT = (P1,...,P,)
be a n-party MPC protocol [Yao86] that securely computes the function Fx which is defined as follows.
Fic on input the indexes 1,...n outputs for each index i the keys {K;, ;, Kz‘F,j}je[n}' s.t. j € [n] with j >
Ki; = K + {0, 1}* and K, = KF, « {0,1}*. In the setup phase P; executes the player P, of IT thus
obtaining keys for the functional keys and for the encryption algorithm.

We formally describe the DMCFE scheme in Fig. 19. Following the approach of Section 6 we also obtain a
decentralized MCFE scheme | DMCEE  that is ad-IND secure with a bounded number of message-and-functional

key queries. The adaptively secure scheme [DMCEE is also formally described in Fig. 19.

Correctness. The correctness of DMCFE follows from the correctness of FE, and the completeness of I1.
Finally we note that Dec(sky,cty s, ...,cCty ) outputs the value Zie[n] Fim) +tig+rip = Zie[n] Fi(xs),
where the last equality follows from the fact that Zie[n] t;0 =0 and Zie[n] ri¢ = 0.

Theorem 7.3 (sel-post-IND security). Let FE = (Setup®, KeyGen®, Enc®, Dec®) be a g-message bounded
sel-FULL-secure single-input functional encryption scheme for the functionality class F;-*, PRF an IND
secure pseudorandom function, and II secure realizes function Fy, then DMCFE described in Fig. 19 is
q-message bounded sel-post-IND-secure for the functionality class FP.

Proof (Sketch). The security proof proceeds very similar to the one of Theorem 5.1, with the following two
differences:

1. We consider an initial game G} where we switch to the simulator Sy of IT in order to simulate P;,,...,P;,
s.t. 7; € HS. The transition from GJ to Gy follows from the security of I1.

2. The game G; is slightly modified and separated into two games, G} and G}. The game G} corresponds to
G; and in game G/ we switch from the pseudorandom values PRFKE1 . (f) to random values RF,(f), for

all s € {2,...,h}, where the set of honest users is denoted as HS := {il, ...,ip}, h < n as the number of
honest users, and RF a random function.
is described as G; but w.r.t. the keys KF . | where iy € HS.

11,050

The transition from G] to G and from G to Gg follows from Lemma 5.2 with the observation that all
the keys Kj, ., KJF'i,jk with j;, jx € HS are not visible to A since we are executing Sy for Pj,,...,P;, with
ji € HS in Setup. O

Theorem 7.4 (ad-post-IND security). Let FE = (Setup®, KeyGen®, Enc®, Dec®) be a g-message-and-key
bounded ad-FULL-secure single-input functional encryption scheme for the functionality class F;", PRF
an IND secure pseudorandom function and Il secure realizes function Fi with security against adaptive
corruption, then the [DMCEE scheme described in Fig. 10 is a g-message-and-key bounded ad-FULL-secure
for the functionality class F;°P.

The security proof proceeds very similar to the one of Theorem 6.1 with the argument described above.
Moreover correctness of [ DMCEE follows from the same arguments as the correctness of DMCFE.
Finally, we note that the compiler of Section 2.3 can be slightly modified in order to obtain the decen-

tralized schemes DMCFE’ and IDMCFE" , which are sel-any-IND and ad-any-IND secure. The algorithms
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KeyGenShare’, KeyGenComb', Enc’, Dec’ work as described in Fig. 4, whereas the algorithm Setup’ is defined as

an interactive algorithm in order to preserve the decentralized nature of the schemes DMCFE’ and [ DMCFE" .
We notice that the algorithm Setup’ as described in Fig. 4 can be easily decentralized using the same
decentralization techniques as for DMCFE and [DMCFE|. In particular, let IT = (P, ..., P,) be a n-party
MPC protocol [Yao86] that securely computes the function Fiey, which is defined as follows: On input a index

i, Fxey outputs the keys {k; j, ki j};ecn), where k; j, k; j < {0, 1}’\. Formally, Setup’ is defined as follows:

Setup’ = (P1,..., Py) :

ski + Setup(1*), for all i € [n]

For all i € [n]: P; executes the following steps:
Run party P; of IT obtaining PRF keys s.t. for all j € [n] :
ki; and kj; < {0,1}.

ski := (ski, {ki,j, kji}iem))

Return {sk; }ic(n)

Theorem 7.5. Let DMCFE = (Setup, KeyGenShare, KeyGenComb, Enc, Dec) be an xx-post-IND-secure (key
and) message bounded DMCFE scheme for a family of functions F, SE = (GenSE, Enc°E, DecSE) an IND-CPA
secure symmetric key encryption scheme, II secure realizes function Fiey (with security against adaptive
corruption), then the DMCFE scheme DMCFE' = (Setup’, KeyGenShare’, KeyGenComb', Enc’, Dec’) described
in Section 7.2 is (key and) message bounded xx-posT-IND secure.

Proof (Sketch). The security proof proceeds very similar to the one of Theorem 5.1, but we consider an initial
(different) game Gj where we switch to the simulator Sy of IT in order to simulate P;,,...,P;, s.t. j; € HS.
The transition from G§ to Gj follows immediately from the security of II. O

8 Outsourceable Multi-Client Functional Encryption

8.1 Definition of Outsourceable Multi-Client Functional Encryption

In addition to the definition of (decentralized) multi-client functional encryption, we present another definition
called outsourceable multi-client functional encryption (OMCFE). The notion of OMCFE makes it possible to
outsource the decryption procedure of the n different ciphertexts to at most n different entities. This notion
is especially useful in the case of a very resource consuming decryption procedure. The different ciphertexts
ct; ¢ can be send together with the corresponding partial functional key sk; r to the i-th entity. The partial
decryption procedure applied on ct; ¢ using sk; ; generates a decryption share s; ¢. Finally, the shares s; ; for
every position i € [n] can be used to reconstruct the final functional output f(z1,...,x,). We capture this
notion formally.

Definition 8.1 (Outsourceable Multi-Client Functional Encryption). Let F = {Fx}ren be a col-
lection of function families (indexed by A), where every f € Fy is a polynomial time function f: Xy1 X

- X Xyn — Vx. Let Labels = {0,1}" or {L} be a set of labels. A outsourceable multi-client functional
encryption scheme (OMCFE) for the function family Fy supporting n users, is a tuple of four algorithms
OMCFE = (Setup, KeyGen, Enc, PartDec, DecComb):

Setup(1*,n): Takes as input a unary representation of the security parameter \ and the number of parties n,
and generates n secret keys {sk;}icn) and a master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f € Fy, and outputs n functional
keys sky ¢, ...skp, .
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Enc(sk;, z;,€): Takes as input a secret key sk;, a message x; € Xy ; to encrypt, a label { € Labels, and outputs
a ciphertext ct; g.

PartDec(sk;, r, ct; ¢): Takes as input a functional key sk; y and a ciphertext ct; ; and outputs a decryption
share 8,0 € Vx.

DecComb({si¢}icin)) Takes as input n decryption shares {s;s}icin) under the same label £ and outputs a
value y € Y.

We require that the computational complexity of DecComb is independent from the computational complexity
of the function f, where f € Fy.

A scheme OMCFE is correct, if for all \,n € N, ({sk; }ig[n], msk) < Setup(1*,n), f € Fx, z; € X\i, when
{ski,r }ieln) < KeyGen(msk, f), we have

Pr[DecComb(PartDec(sky, s, Enc(skq, z1,£)), ..., PartDec(sky, s, Enc(sky, zy, £))) = f(z1,...,2,)] = 1.

The security definition for this new notion is the same as for multi-client functional encryption.

We remark that in [FT18] the authors describe a definition of distributed public key FE that has a similar
syntax as our definition of OMCFE. Our main goal is to provide a notion of MCFE with an outsourceable
decryption procedure, whereas Fan and Tang [FT18] try to construct a public-key functional encryption
scheme that achieves a notion of function-hiding. In particular, our definition does not require any privacy
w.r.t. the partial functional key.

Respectively, we can also define a decentralized version of OMCFE by decentralizing the key generation
procedure and the setup as in Definition 7.1. This adaption is straightforward and we omit it here.

8.2 Construction of Outsourceable Multi-Client Functional Encryption

In our OMCFE = (Setup, KeyGen, Enc, PartDec, DecComb) the algorithms Setup, KeyGen, Enc corresponds
respectively to the one of the MCFE scheme MCFE described in Figure 10. Instead PartDec, DecComb are
defined as follow:

PartDec(sk;, 7, cti¢) :

Return s, ¢ = Dec™ (ski, s, cti ¢)
DecComb({si ¢}icn) :

Return f(x1,...,2n) = Eie[n] SiLe-

We observe that the our DecComb satisfies the efficient requirement stated in Definition 8.1, indeed
DecComb of the proposed scheme is composed of only addition operations.

Correctness. The correctness of OMCFE follows from the correctness of FE, moreover s; ; corresponds to
fi(z;) + ti o+ m; for i € [n], which in turns implies that DecComb({si,¢}icln)) outputs the value Zie[n] Sip =
> i) Ji(zi) +tig+r= > i) fi(z;), where the last equality follows from the fact that > ie[n tie = 0 and

Zze[n] ri = 0.
Theorem 8.2. Let FE = (Setup®, KeyGen®', Enc®', Dec®) be a g-message bounded sel-FULL-secure single-input
functional encryption scheme for the functionality class F;** and PRF an IND secure pseudorandom function,

then the OMCFE scheme described in Section 8.2 is g-message bounded ad-pos™-IND-secure scheme for the
functionality class F:2P.

We notice that the proof of Theorem 6.1 can be carried out in a very similar way for Theorem 8.2. In more
detail, we can consider the same hybrid experiments as described for Theorem 6.1 with the only difference
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that the decryption phase is composed of the algorithms PartDec and DecComb. Except for this difference,
the proof proceeds as the proof for Theorem 6.1.

Following the approach of Section 6 we also obtain an outsourceable MCFE scheme [OMCFE | that is
ad-posT-IND-secure with a bounded number of message-and-key queries. In the adaptively secure scheme
OMCEE = (Setup, KeyGen, Enc, PartDec, DecComb) the algorithms Setup, KeyGen, Enc correspond to the ones

of the MCFE scheme MCFE as described in Fig. 10, whereas PartDec, DecComb are defined specifically
defined for the OMCFE scheme.

Theorem 8.3. Let FE = (Setup®, KeyGen® Enc®, Dec®) be a g-message-and-key bounded ad-FULL-secure
single-input functional encryecheme for the functionality class F;-* and PRF an IND secure pseudorandom

function, then the OMCFE| scheme described in Section 8.2 is g-message-and-key bounded ad-pos™-IND-secure
scheme for the functionality class FiP.

The proof proceeds with the same arguments as the proof of Theorem 8.2.
We remark that we achieve sel-pos™-IND and ad-post-IND securityfor the schemes OMCFE and [OMCFE
respectively.
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