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Abstract

In this paper, a multivariate polynomial and exponential mappings
based password protocol is presented. The method can be utilized in pub-
lic domains. The key generator generates a vector, intended to be used as
a password by the authentication protocol subsequently, such that when
the vector is substituted and evaluated in certain fixed multivariate poly-
nomials – that may be listed in a public domain – the value 0 is found
as a result of proper authentication. The public domain in this context
could be internal to a large, and possibly distributed, system. The key
generator can take hints from the owner of the password to generate the
particular zero vector to suit the user. It may take into consideration
biometric and any other user specific information at the time of key gen-
eration. The information collected by the key generator can be saved
by the owner of the password for its possible retrieval upon requisition by
the user, during the period of its validity, in case it is forgotten by the user.

Keywords: Multivariate polynomials; Exponential mappings; Gröbner ba-
sis; Zeros of mappings; User authentication.
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1 Introduction

In this paper, a multivariate polynomial and exponential mappings based
password protocol is presented. The method can be utilized in public domains.
In recent times, the need to generate and utilize high security passwords has
attracted a great deal of attention. The passwords need be resistant to a vari-
ety of attacks. The authentication protocol for allowing access to an authorized
user of a secure system usually checks only for passwords. The approach of
password based authentication can apply also to implementation of access re-
striction to security critical resources. The authentication method may have to
be to be transparent, eliminating entry into the system by any unauthorized
means to make the use of the system trustworthy. Other forms of application
of this method include – but not limited to – software registry, web access,
watermarking, etc.

A very common and standard method is to store the password itself in
an encrypted form, by a one-to-one or hashing function. The authentication
tests for the equality with the stored encrypted password after applying the
chosen function on the input password. The difficulty relies on the strength
of the encryption file and the resistance of the instances in the password file,
for the particular chosen encryption and hashing functions. The space where
the decryption keys are stored, when encryption mappings are employed, is
the single most point of criticality, whereby necessitating the use of hashing
mappings with default padding message applied at the input. The discussion
moves on to collision-resistant hashing, even for small sized passwords, with
default padding to fit to block length of hashing function input. Some of the
articles for related literature are listed in the references.

The mapping that is used in the method proposed in this paper may be
thought of some sort of hashing, but varies from user to user. These “hash-
ing” mappings are stored in an authentication space, which may be treated as
a public domain. The security does not depend on the difficulty of comput-
ing the preimage of a single password file, for a single encryption or hashing
mapping. The parameters required for the password strength can be selected
for each user, independently. The strength of a password depends on finding a
simultaneous zero vector of authentication multivariate polynomial and expo-
nential mappings. Authentication space may occupy considerably large space
as compared to the size of the password itself, but when an attack occurs, it
may be only one-off on a single user. The rest of the users may remain and
carry on unaffected, because any unauthorised attempt to get a password is an
independent attack for each user. In a future work by the authors, the need for
so much extra space would most likely be overcome by another design.
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2 Multivariate Polynomial and Exponential Map-

ping based Passwords

Let Z be the ring of integers, p be a large prime number, and Z
p

be the
finite field of integers mod p . Let F be a field, which is preferably finite, and
intended to be of characteristic p , although this assumption is not explicitly
utilized in the discussion.

2.1 Multivariate Polynomial Mappings

In this subsection, F is not necessarily assumed to be finite, and the discus-
sion holds also for fields of characteristic 0.

Password Key Generation. The key generation steps are as follows:

1. collects information on the following items from the user: the choice of
the field F, the dimension of the password key vector n, and information
for retrieval of the password in case it needs to be retried by filling out a
questionnaire;

2. the system uses internally defined high security hash and padding infor-
mation, possibly involving user specific discrete choices, to generate a
password vector c ∈ F

n; the user specific discrete choices may be based
on the place and time of origin and any other information that the user is
able to supply discretely; the information required to retrieve the password
in case it is requisitioned by the user is saved in encrypted form by the
system, but remains inscrutable by unauthorized means; this information
may not always directly lead to retrieval of the original password vector c,
but may be useful for resetting the former password and choosing another
password for subsequent uses;

3. the system randomly chooses sparse multivariate polynomials qi(x) with
coefficients in F, where x = (x

1
, . . . , x

n
), for i = 1, . . . , L, for some large

positive integer L, selected as part of security parameter; the product
terms in the sum of products form of qi(x), for i = 1, . . . , L, may be small
in number (which are certainly many more than just one), but are very
diverse in their appearance; the authentication polynomials are Pi(x) =
qi(x)− qi(c), for i = 1, . . . , L; thus, Pi(c) = 0, for i = 1, . . . , L;

4. the authentication polynomials Pi(x), for i = 1, . . . , L, together with the
information concerning F and n, are saved in an authentication space
accessible by the system and user; since the system itself contains users
internal to it, who may be more privileged than the owner of the password
and other external users, the authentication space is considered as a public
domain by the system.
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Authentication Protocol. The authentication steps are as follows:

1. to gain a fresh access by a user, the system requests the user to enter the
password vector w ∈ F

n, which the user must oblige;

2. the system tests whether the condition Pi(w) = 0, for 1 ≤ i ≤ L, is satis-
fied, for granting access to the user.

The aspect of transparency in this context is that the authentication space
may be visible to – but unmodified by – the environment, along with the au-
thentication test process. But once the authentication step is over, the password
vector appears nowhere, except as known to the owner of the password. Thus,
the password vector is seen by the system only during authentication test, but
this part can be treated as a memoryless operation. If any other user having
gained access to the authentication polynomials tries to get the password, then
the only available option is to solve these polynomials to find a zero vector. Any
zero vector can pass the authentication test, but getting a zero vector from the
authentication polynomials is hard.

2.2 Multivariate Polynomial and Exponential Mappings

In this subsection, let F be a finite field of characteristic p , containing
three or more elements. Let G be a subgroup of nonzero elements of F, with
n ≥ 2 elements. It is preferable that n be not too small, and G be the full
group of nonzero elements of F. Let Z

n
be the ring of integers with addition

and multiplication mod n. The discussion can indeed be extended to fields of
characteristic 0 as well, with Z in place of Z

n
. Let α be a primitive element of

G, i.e., G = {αi : 0 ≤ i ≤ n−1}. If F is of characteristic 0, then G can chosen to
be {αi : i ∈ Z}, which is a possibly infinite group, for some α ∈ F\{0, 1}. For
obtaining a finite group, when the field characteristic is 0, it may be convenient
choose F to be the cyclotomic field, with α as a primitive n-th root of unity, to
get a finite group G.

With exponential mappings, the components of the password vector c and
the indeterminate vector x are elements of Z

n
or Z, as appropriate, and Pi(x) =

Qi(x)−Qi(c), in step 3 in the preceding section, whereQi(x) =
∑J

i

j=1 βi, jα
[q

i, j
(x)],

for some positive integer J
i
> 1, sparse multivariate polynomials q

i, j
(x), with

coefficients in Z
n
or Z, as appropriate, but with very diverse terms occurring in

them, and nonzero scalars βi, j ∈ F\{0}, for 1 ≤ j ≤ Ji and 1 ≤ i ≤ L. The
elements Qi(c) are evaluated in F, and substituted in their respective places.

3 Security Analysis

In this section, the main known methods for solving multivariate polynomials
are described.
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Zeros of Multivariate Polynomial Mappings. Almost all the methods
for solving multivariate polynomial mappings are formulated based on Hilbert’s
Nullstellensatz. A slight variation is to apply the Euclidean long division algo-
rithm along one particular independent variable, treating the coefficients as the
elements of the integral domain of polynomial functions or the field of rational
functions in the remaining variables. Some of the prominent methods are found
in [2], [4] and [5]. The terms in the given multivariate polynomials are visualized
as points in a lattice, whose components are formed by the exponents of the
independent variables. The elements in the lattice are somehow ordered, as in
a dictionary, but the particular order relation may be vary from algorithm to
algorithm. For two polynomials g

1
and g

2
, polynomials f

1
and f

2
are found,

such that f
1
g
1
+ f

2
g
2
= g

3
, where the dominant term in g

3
is smaller than that

in either of g
1
or g

2
. The tuple (f

1
, f

2
, −1) is called the syzygy of (g

1
, g

2
, g

3
).

If s
1
> 2 and s

2
> 2 are the number of terms in the polynomials g

1
and g

2
,

respectively, then the number of terms in the polynomial g
3
can be as high as

s
1
+ s

2
− 2, which means that the number of terms can grow exponentially in a

sequence of derivation steps. The syzygies are used mainly for succinct repre-
sentation of the derivation steps in the ideal generation process, which allows a
trade-off between space and time, avoiding the resulting polynomials to be ex-
plicitly stored in the directed acyclic graph of derivation representation, whose
nodes contain information of previous nodes, the syzygy in this step, and the
dominant term of the resulting polynomial in the ideal. Hence the polynomial
g
3
(and −1) itself need not be stored, and the pointers to nodes from where

g
1
and g

2
are found, the corresponding syzygy polynomials f

1
and f

2
, together

with the lattice point (exponent vector) of the dominant term of g
3
, are saved

as part of the information in the node corresponding to g
3
. The computation

path starting from ancestral nodes where the correspondingly previously com-
puted resulting polynomials are explicitly stored down to the nodes where the
derivation step is currently applied must be tracked, and the polynomials must
be re-evaluated along the path, for each derivation step, when syzygies are used
for space-time trade-off. The lengths of the derivation paths, i.e., the number of
nodes in the paths, obviously grow at least linearly with the numbers of terms in
the polynomials in the ideal generated thus far. The total number of terms can
be exponential in the maximum degree of a single independent variable, when
it is attempted to be eliminated from two polynomials in two or more variables,
including the independent variable in question. Thus, F must be chosen such
that it contains considerably large number of elements.

Zeros of Multivariate Polynomial and Exponential Mappings. It is
not directly known how to solve multivariate exponential mappings. As an
indirect method, γi, j ∈ F, 1 ≤ j ≤ J

i
and 1 ≤ i ≤ L, may be chosen, such that

∑J
i

j=1 βi, jγi, j − Qi, j(c) = 0, for 1 ≤ i ≤ L, and the multivariate polynomial
equations q

i, j
(x) = log

α
(γi, j) – where log

α
is the discrete logarithm function

defined on G with respect to base α – with the additional conditions that γi, j ∈
G, 1 ≤ j ≤ J

i
and 1 ≤ i ≤ L, may be attempted to be solved. If G is the group of
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nonzero elements of a finite field F, the number of possibilities for the sequences
of elements γi, j ∈ G, 1 ≤ j ≤ J

i
and 1 ≤ i ≤ L, may remain excessively large,

which is the main contributory reason for the choice of F as a finite field, with
G as the group of nonzero elements of F.
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