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Abstract

Two-source non-malleable extractors are pseudorandom objects which extract randomness
even when an adversary is allowed to learn the behavior of the extractor on tamperings of the
input weak sources, and they have found important applications in non-malleable coding and
secret sharing. We begin by asking how hard it is to improve upon the best known constructions
of such objects (Chattopadhyay, Goyal, Li, STOC 2016, and Li, STOC 2017). We show that
even small improvements to these constructions lead to explicit low-error two-source extractors
for very low linear min-entropy, a longstanding open problem in pseudorandomness.

Given the result above in the information-theoretic setting, we turn to studying two-source
non-malleable extractors in the computational setting, namely in the CRS model first considered
in (Garg, Kalai, Khurana, Eurocrypt 2020). We enforce that both the sampling process for the
input sources and the tampering functions must be efficient, but we do not necessarily put such a
constraint on the adversary distinguishing the output of the extractor from uniform. We obtain
results about two-source non-malleable extractors in the CRS model under different types of
hardness assumptions:

• Under standard assumptions, we show that small improvements upon state-of-the-art sta-
tistical two-source non-malleable extractors also yield explicit low-error two-source non-
malleable extractors in the CRS model for low min-entropy against computationally un-
bounded distinguishers. Remarkably, all previous results on computational extractors
require much stronger assumptions;

• Under a quasi-polynomial hardness assumption, we give explicit constructions of low-
error two-source non-malleable extractors in the CRS model with much lower min-entropy
requirements than their best statistical counterparts, against a computationally bounded
distinguisher;

• Assuming the existence of nearly optimal collision-resistant hash functions, we give a simple
explicit construction of a low-error two-source non-malleable extractors in the CRS model
for very low min-entropy, against a computationally unbounded distinguisher.

1 Introduction

The problem of constructing explicit low-error two-source extractors for low min-entropy sources
was an important focus of research in pseudorandomness over more than 25 years, with fundamen-
tal connections to combinatorics. A deep line of work, culminating in the groundbreaking work of
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Chattopadhyay and Zuckerman [CZ19], succeeded in constructing explicit 1-bit two-source extrac-
tors for polylogarithmic min-entropy with polynomially small error (this was quickly improved to
larger output length [Li16] and near-logarithmic min-entropy [BDT17], which is nearly optimal).
In particular, these results yield explicit constructions of bipartite Ramsey graphs with very good
parameters, which is a fundamental problem in combinatorics.

Unfortunately, the results described above are not appropriate for cryptographic applications,
which are some of the main motivations for constructing randomness extractors. Indeed, the
running time of the proposed constructions is polynomial in 1/ε, where ε denotes the error of the
extractor. Therefore, in order to ensure the constructions are asymptotically efficient, the error
must be non-negligible in the source length.

In the low-error (i.e., negligible in the source length) regime, much less is known. Chor and
Goldreich [CG88] showed that the inner product function is a low-error two-source extractor for
n-bit sources with min-entropy (1/2 + γ)n, where γ > 0 is an arbitrarily small constant. This was
improved by Bourgain [Bou05], who gave an explicit low-error two-source extractor for sources with
min-entropy (1/2− γ)n, where γ > 0 is a small constant. An improved analysis by Lewko [Lew19]
shows that Bourgain’s extractor can handle sources with min-entropy 4n/9. In an incomparable
result, Raz [Raz05] gave an explicit low-error two-source extractor where one of the sources must
have min-entropy (1/2+γ)n for an arbitrarily small constant γ > 0, while the other source is allowed
to have logarithmic min-entropy. A standard application of the probabilistic method shows that
(inefficient) low-error two-source extractors exist for polylogarithmic min-entropy. However, given
the state-of-the-art, it remains a major open problem to construct explicit low-error two-source
extractors for min-entropy δn for a small constant δ > 0. Motivated by this, several works have
studied related problems, such as constructing low-error two-source condensers with small entropy
gap for low min-entropy sources [Rao08, BCDT19], showing reductions from explicit two-source
extractors to other pseudorandom objects with as yet unattained parameters [ZB11, BCD+18],
and constructing low-error two-source extractors for low min-entropy in the computational setting,
under different hardness assumptions [TV00, KLR09, GKK19].

More recently, a strengthened version of two-source extractors, called two-source non-malleable
extractors (also known as seedless non-malleable extractors, in contrast with seeded non-malleable
extractors [DW09]), was introduced by Cheraghchi and Guruswami [CG17]. Roughly speaking, a
function nmExt : {0, 1}n × {0, 1}n → {0, 1}m is said to be a non-malleable extractor if the output
of the extractor remains close to uniform (in statistical distance), even conditioned on the output
of the extractor at several inputs correlated with the original sources. In other words, we require
that

nmExt(X,Y ), nmExt(f1(X), g1(Y )), . . . , nmExt(fr(X), gr(Y ))

≈ε Um, nmExt(f1(X), g1(Y )), . . . , nmExt(fr(X), gr(Y )),

where X and Y are independent sources with enough min-entropy, fi, gi : {0, 1}n → {0, 1}n for
i = 1, . . . , r are arbitrary tampering functions such that (fi, gi) has no fixed points, Um is uniform
over {0, 1}m and independent of the rest, and≈ε means the two distributions are ε-close in statistical
distance (for small ε). The motivation for studying explict two-source non-malleable extractors
stems from the fact that they directly yield explicit split-state non-malleable codes and secret
sharing schemes [DPW18, GK18] (provided the extractor also supports efficient preimage sampling).

The situation regarding explicit low-error two-source non-malleable extractors is, as expected,
much direr than for regular two-source extractors. For n-bit sources, the state-of-the-art construc-
tions by Chattopadhyay, Goyal, and Li [CGL16] and Li [Li17] require min-entropy (1−poly(1/r))n
to handle r tamperings. In particular, if r is constant, then the existing explicit non-malleable
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extractors require min-entropy (1− γ)n for a very small constant γ > 0.

Our contributions. Making a parallel with the approach towards regular low-error two-source
extractors, it is natural to consider the following question:

How hard is it to improve upon the best known low-error two-source non-malleable extractors?

In the first part of our work, we show that small improvements to the parameters of [CGL16,
Li17], without even requiring efficient preimage sampling, lead to explicit low-error two-source
extractors for min-entropy δn with a very small constant δ > 0. Put differently, the constructions
of [CGL16, Li17] are almost the best we can hope for without solving a longstanding open problem
in pseudorandomness along the way. From another perspective, this result also gives an additional
compelling reason for studying two-source non-malleable extractors, besides their applications to
non-malleable codes and secret sharing.

Given our first result above, we turn to constructing two-source non-malleable extractors for
lower min-entropy in the computational setting. More precisely, motivated by recent work of Garg,
Kalai, and Khurana [GKK19] on the Common Reference String (CRS) model, we study the following
open-ended question:

Under which hardness assumptions can we construct two-source non-malleable extractors for low
min-entropy in the CRS model, and with which parameters?

At a high-level, in the CRS model, a CRS is sampled once and for all, and we consider three
adversaries, all with full access to the CRS: The first adversary (the sampler) samples independent
randomness sources (with enough min-entropy), the second adversary (the tamperer) is allowed
to tamper with the sources generated by the sampler, and the third adversary (the distinguisher)
attempts to distinguish the output of the extractor from a uniform distribution given also access
to the extractor’s outputs on tampered versions generated by the tamperer. While we always
constrain the sampler and tamperer to be computationally bounded, at times we will allow the
distinguisher to be computationally unbounded. We present three constructions of two-source
non-malleable extractors in the CRS model based on hardness assumptions of different flavors,
remarkably including one result that can be instantiated with a large range of standard assumptions.
More precisely, from weakest to strongest assumption:

1. Assuming the existence of any family of collision-resistant hash functions, small improvements
on the constructions of [CGL16, Li17] also yield explicit low-error two-source non-malleable
extractors in the CRS model for low min-entropy against a computationally unbounded dis-
tinguisher. Previous works on computational extractors require strong hardness assump-
tions [KLR09, DRV12, GKK19], or put severe constraints on the trade-off between security
and running time of the extractor [TV00].

2. Assuming quasi-polynomial hardness of the DDH assumption1, we construct a low-error two-
source non-malleable extractor in the CRS model for much lower min-entropy and handling
many more tamperings than its statistical counterparts in [CGL16, Li17], against a compu-
tationally bounded distinguisher.

3. Assuming the existence of nearly optimal collision-resistant hash functions, we give a simple
low-error two-source non-malleable extractor in the CRS model for very low min-entropy
against a computationally unbounded distinguisher;

1By quasi-polynomial hardness of the DDH assumption we mean no algorithm running in time nlogn solves the
Decisional Diffie-Hellman problem with non-negligible (in n) advantage.
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We put our results in context of previous work in Section 1.1, and provide a more technical
discussion of our results and techniques in Section 1.2.

1.1 Comparison to previous work

Our connection between explicit two-source non-malleable extractors with slightly improved param-
eters and explicit low-error two-source extractors for low min-entropy fits within a set of results that
show improved versions of different pseudorandom objects imply such two-source extractors. Zewi
and Ben-Sasson [ZB11] show an implication of this type from explicit affine seeded extractors with
good parameters, assuming the Polynomial Freiman-Ruzsa conjecture. More recently, Ben-Aroya
et al. [BCD+18] adapt the approach of [CZ19] to show explicit seeded non-malleable extractors with
improved seed length lead to explicit low-error two-source extractors for low min-entropy. Although
the main result of [BCD+18] yields two-source extractors with unbalanced sources, it is possible to
obtain two-source extractors for balanced sources by further strengthening the parameters of the
initial seeded non-malleable extractor.

Some works have also focused on constructing extractors in computational settings. Early work
by Trevisan and Vadhan [TV00] can be interpreted as giving explicit extractors for a single source
with logarithmic min-entropy in the CRS model (a similar remark was already made in [DRV12]).
Under strong hardness assumptions, they also construct explicit deterministic extractors for high
min-entropy sources samplable by bounded-size circuits. However, they prove the strong negative
result that, for both settings above, the running time of the extractor must be larger than the time
needed to sample the source. In particular, if one wishes to extract randomness from all efficiently
samplable sources in the CRS model, then the extractor in question cannot be efficient. Dodis,
Ristenpart, and Vadhan [DRV12] implicitly show that this negative result can be avoided if one
instead focuses on single-source condensers in the CRS model, assuming the existence of nearly
optimal collision-resistant hash functions. In a different setting, Kalai, Li, and Rao [KLR09] studied
two-source extractors for information-theoretic sources (without a CRS) against a computationally
bounded distinguisher. They succeed in constructing such extractors for linear min-entropy sources,
under the assumption that nearly optimal exponentially secure one-way permutations exist. To
avoid the reliance on such strong assumptions, Garg, Kalai, and Khurana [GKK19] initiate the
study of two-source extractors in the CRS model. They focus solely on the setting with efficiently
samplable sources and computationally bounded distinguishers, and assume the subexponential
hardness of the DDH assumption2 (a weaker assumption relative to that required by [KLR09]).
Under these conditions, they construct a special type of two-source extractor that lies between
seeded and two-source non-malleable extractors, in the sense that neither source is required to be
uniform, but only the second source is allowed to be tampered. They give such explicit extractors in
the CRS model with balanced sources for min-entropy matching that of the best explicit statistical
two-source extractors. Then, they exploit this extractor and results of [BCD+18] to construct an
extractor of the same type for unbalanced sources with lower min-entropy. We remark that the
assumption in [GKK19] can be weakened to quasi-polynomial hardness of the DDH assumption
if one is aiming to match the min-entropy requirements of the best explicit statistical two-source
extractors, as is done in the first part of [GKK19]. To go below such min-entropy requirements, a
subexponential hardness assumption appears to be necessary.

In this work, we consider the same setting as [GKK19], although for some of our constructions
we allow the distinguisher to be computationally unbounded. We focus on constructing two-source
non-malleable extractors, while, as mentioned above, [GKK19] considers only one-sided tampering.

2By subexponential hardness of the DDH assumption we mean that there exists a constant c ∈ (0, 1) such that no
algorithm running in time 2n

c

solves the Decisional Diffie-Hellman problem with non-negligible (in n) advantage.

4



Furthermore, we study what kind of constructions and parameters are achievable under different
types of hardness assumptions. Recall that our first result shows how to construct two-source non-
malleable extractors in the CRS model for low min-entropy (against an unbounded distinguisher)
from collision-resistant hash functions and statistical two-source non-malleable extractors for very
high min-entropy. In comparison, as discussed above, previous work on low-error computational
(even malleable) extractors for low min-entropy requires at least subexponentially secure hardness
assumptions. For our second construction, we make use of a quasi-polynomial hardness assumption,
and similarly to [GKK19] consider a computationally bounded distinguisher. We are able to match
the min-entropy requirements of the best explicit statistical two-source extractors. Finally, our
last construction of a two-source non-malleable extractor in the CRS model (against an unbounded
distinguisher) is extremely simple, but requires the same strong hardness assumption as [DRV12]
(nearly optimal collision-resistant hash functions).

1.2 Technical overview

In this section, we provide a more in-depth overview of our contributions.

1.2.1 Slightly better two-source non-malleable extractors imply great two-source ex-
tractors.

As our first contribution, we show that small improvements to the parameters of the best known
explicit two-source non-malleable extractors [CGL16, Li17] yield explicit low-error (malleable) two-
source extractors for sources with low linear min-entropy. This result can be seen from two per-
spectives: On the one hand, it suggests that improving significantly upon [CGL16, Li17] is very
challenging, as it would entail solving a longstanding open problem. On the other hand, it shows we
are tantalizingly close to making significant progress on constructing explicit low-error two-source
extractors for low min-entropy, and provides yet one more application of two-source non-malleable
extractors.

The starting points of our construction are an explicit two-source non-malleable extractor nmExt
for high min-entropy sources handling enough tamperings, and two independent n-bit sources X
and Y with min-entropy δn, for some small constant δ > 0. In other words, X and Y have min-
entropy rate δ. If we had access to a uniformly random seed (as is the case for seeded extractors),
we could apply seeded condensers to transform X and Y into shorter sources X ′ and Y ′ which
are (statistically close to) sources with high min-entropy rate. This would allow us to compute
nmExt(X ′, Y ′) and conclude that its output is close to uniform, without even exploiting the non-
maleability of nmExt. Unfortunately, the strategy above is impossible to realize without a uniform
seed, as is our case.

Although deterministic condensers do not exist, there does exist a deterministic object with
related properties, called a somewhere-condenser. Roughly speaking, a somewhere-condenser SCond
receives as input a source X with min-entropy rate δ, and outputs X ′ = SCond(X) composed of
` blocks (X ′1, X

′
2, . . . , X

′
`), with the property that for some random variable I it holds that X ′I is

statistically close to a source with min-entropy rate 1− γ. Importantly, we can write the blocks X ′i
for i 6= I as randomized tamperings of the good block X ′I . Analogously, computing Y ′ = SCond(Y )
leads to ` blocks (Y ′1 , Y

′
2 , . . . , Y

′
` ) and a random index J such that Y ′J is close to a source with high

min-entropy rate, and Y ′j for j 6= J can be written as randomized tamperings of Y ′J . Combined
with the non-malleability properties of nmExt, these observations naturally lead to the candidate
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two-source extractor Ext given by

Ext(X,Y ) =
⊕
i,j∈[`]

nmExt(X ′i‖pi, Y ′j ‖pj), (1)

where pi and pj are the binary representations of indices i and j, respectively. Intuitively, these
suffixes are added to ensure that the tamperings induced by the somewhere-condenser SCond do
not have fixed points. In order to prove that Ext indeed extracts from the low min-entropy sources
X and Y , it is enough to show that nmExt(X ′I‖pI , Y ′J‖pJ) is close to uniform given the side in-
formation nmExt(X ′i‖pi, Y ′j ‖pj) for (i, j) 6= (I, J). This is equivalent to requiring that nmExt re-

sists `2 − 1 tamperings. Explicit constructions of somewhere-condensers with good parameters are
known [BKS+10, Raz05, Zuc06, Li11]. In particular, we can take the number of blocks ` to be
a constant depending only on δ and γ, and the error to be exponentially small in the length of
the output blocks. Therefore, our argument goes through provided we have an explicit two-source
non-malleable extractor for min-entropy rate 1 − γ handling `2 − 1 tamperings. Moreover, the
resulting extractor Ext has low error if nmExt does so.

Overall, our reduction above trades the number of tamperings handled with lowering the original
min-entropy requirement of the underlying two-source non-malleable extractor. We leave formal
details of our general result for Section 3, and present here one important case.

Theorem 1 (Informal). For every constant γ > 0 there exists a constant Cδ such that if there
exists an explicit low-error two-source non-malleable extractor nmExt for min-entropy rate 1 − γ
handling Cδ tamperings, then there exists an explicit low-error two-source extractor for min-entropy
rate δ. In particular, if nmExt handles r = ω(1) tamperings, then for every constant δ > 0 there
exists an explicit low-error two-source extractor for min-entropy rate δ.

Interestingly, by [Li17] (see Proposition 5) we have explicit constructions of low-error non-
malleable extractors for constant min-entropy rate 1− γ (with γ a small constant) and a constant
number of tamperings, and r = ω(1) tamperings for any min-entropy rate 1 − o(1). If this result
is improved to handle any superconstant number of tamperings with some constant min-entropy
rate, then Corollary 2 implies that we have explicit low error two-source extractors for any linear
min-entropy rate. Even improving the number of tamperings handled to a large enough constant
for some constant min-entropy rate would already yield significantly improved explicit low-error
two-source extractors. We remark also that small improvements on the two-source non-malleable
extractor from [CGL16] are enough to make our argument go through as well. We discuss this
in detail in Section 3. Finally, note that the two-source non-malleable extractors we require for
our reduction are very far from optimal. Indeed, it is known that, for any constant δ > 0, with
high probability a random function is a two-source non-malleable extractor for n-bit sources with
min-entropy δn handling r = nΩ(1) tamperings with error 2−Ω(n) [CGGL19].

1.2.2 Two-source non-malleable extractors in the CRS model

In the second part of our work, we focus on constructing two-source non-malleable extractors in
the CRS model first explicitly considered by Garg, Kalai, and Khurana [GKK19], under hardness
assumptions of different strength.

The CRS model. We begin by describing the CRS model for two-source non-malleable extractors
in more detail than in Section 1. Formal definitions can be found in Section 2.4. In this model, we
assume that a CRS (denoted CRS) is first efficiently sampled and set once and for all. Our goal is to
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extract either computationally or statistically perfect randomness from independent weak sources
X and Y which are sampled from CRS by a computationally bounded sampler. As side information,
we disclose the output of the extractor on tampered versions of X and Y . More precisely, for
arbitrary computationally bounded functions g1 and g2, we reveal the output of the extractor
on X = g1(X,CRS) and Y = g2(Y,CRS). We say a candidate function cnmExt is a two-source
non-malleable extractor in the CRS model if it holds that

cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),CRS ≈ U, cnmExt(X,Y ,CRS),CRS,

where U is uniformly distributed and independent of the remaining random variables, and ≈ denotes
either computational or statistical indistinguishability.

Although we do not discuss it in the following paragraphs, we allow more than one tampering
of X and Y , and also allow the sampler to leak additional auxiliary information about X to help
the distinguisher. Note that the CRS is quite different from an independent uniform seed, since
both the sources and the tampering functions are allowed to depend adversarially on the CRS.

Finally, we remark that the well-known upper bound of 2n tamperings for statistical two-source
non-malleable extractors also holds in the CRS model3. This is unlike one-sided tampering, in
which case an unbounded (polynomial) number of tamperings is allowed in the computational
setting.

Slightly better two-source non-malleable extractors imply great two-source non-malleable
extractors in the CRS model, under a standard assumption. Given our approach in
Section 1.2.1, it is natural to wonder whether the two-source extractor for low min-entropy we
obtain there can be made non-malleable. Unfortunately, it is not clear how to achieve that in
the information-theoretic setting. Indeed, one can tamper X into X 6= X such that SCond(X) =
SCond(X), and this is enough to break the (information-theoretic) non-malleability of the extractor
Ext defined in (1). We move this problem to the CRS model, and ask instead whether Ext can
be made non-malleable in the CRS model. We show that this can be done assuming any family
of collision-resistant hash functions secure against polynomial-time adversaries with not too long
output (namely, output length o(n), where n is the length of X). These can be instantiated from
a large range of standard assumptions.

Intuitively, the only way to break non-malleability of Ext is to proceed as in the paragraph
above, by finding valid tamperings of X and Y that lead to collisions at the input to the underlying
two-source non-malleable extractor nmExt. However, in the CRS model we need only to deal with
efficiently samplable sources and efficient tampering functions. Therefore, we can get around this
problem by sampling a collision-resistant hash function H, and including the hashes H(X) and
H(Y ) as input to nmExt. In other words, we use the intuition above to show that for CRS = H,
the function

cnmExt(X,Y,H) =
⊕
i,j∈[`]

nmExt(X ′i‖pi‖H(X), Y ′j ‖pj‖H(Y )),

where X ′ = SCond(X), Y ′ = SCond(Y ), and pi denotes the binary representation of index i, is a
low-error two-source non-malleable extractor in the CRS model for low min-entropy, provided the
underlying nmExt can handle `2 − 1 tamperings, similarly to the result presented in Section 1.2.1.
The reason for this is that the efficient tampering functions will find non-trivial collisions for H(X)
and H(Y ) only with negligible probability. Remarkably, since we only require that collisions are

3Since there exist pairs (a, b) and (a′, b) such that nmExt(a, b) 6= nmExt(a′, b), we can learn one bit of X by applying
efficient tampering functions g1 such that g1(x) = a if xi = 0 and g1(x) = a′ otherwise, and g2 such that g2(y) = b
for all y. We can then perform analogous tamperings for Y in place of X.
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hard to find at the sampling and tampering levels, the output of cnmExt is statistically close to
uniform given the tamperings and CRS. We leave the formal statement of our result to Section 4,
and instead present a special case very similar to Theorem 1.

Theorem 2 (Informal). Suppose there exists a family H of collision-resistant hash functions h :
{0, 1}n → {0, 1}mh with mh = o(n). Then, for every constant γ > 0 there exists a constant Cδ
such that if there exists an explicit low-error two-source non-malleable extractor nmExt for min-
entropy rate 1− γ handling Cδ tamperings, then there exists an explicit low-error two-source non-
malleable extractor in the CRS model for min-entropy rate δ against a computationally unbounded
distinguisher. In particular, if nmExt handles r = ω(1) tamperings, then for every constant δ > 0
there exists an explicit low-error two-source non-malleable extractor in the CRS model for min-
entropy rate δ.

As discussed in Section 1.2.1, the two-source non-malleable extractors from [CGL16, Li17] come
very close to the desired parameters.

Two-source non-malleable extractors in the CRS model from quasi-polynomial hard-
ness. Since our previous result is conditional on small improvements on the extractors from [CGL16,
Li17], we turn to obtaining unconditional results about two-source non-malleable extractors in the
CRS model under a stronger hardness assumption. To achieve this goal, we employ tools similar
to those used by Garg, Kalai, and Khurana [GKK19], and earlier by Braverman, Hassidin, and
Kalai [BHK11].

The basis for our extractor is a family F of lossy functions, first introduced and constructed
by Peikert and Waters [PW11]. Roughly speaking, F is a family of functions f : {0, 1}n → {0, 1}n
containing both injective and lossy functions, i.e., functions with small image size. The security
of F ensures that for f ∈ F injective with probability 1/2 and lossy with probability 1/2 no
computationally bounded adversary can guess whether f is injective or lossy with non-negligible
advantage. Moreover, we also require a family of collision-resistant hash functions H with output
length not too large (namely, polylogarithmic in the input size).

We show that the approach of [GKK19] for one-sided tamperings can be modified and extended
to two-sided tampering to show that cnmExt is a two-source non-malleable extractor in the CRS
model for much lower min-entropy than the statistical non-malleable extractors from [CGL16, Li17],
under the quasi-polynomial hardness of the DDH assumption.

To set the CRS, first we sample a hash function h← H with output length m. Then, we sample
b← {0, 1}2m, and sample fij from F for i ∈ [2m] and j ∈ {0, 1} such that fibi is injective and fi1−bi
is lossy for every i. Given such CRS, we define our candidate two-source non-malleable extractor
in the CRS model cnmExt as

cnmExt(X,Y,CRS) = Ext(fh(X)‖h(Y )(X), fh(X)‖h(Y )(Y )),

where Ext is a statistical strong two-source extractor, and

fa(x) = f1a1(f2a2(· · · (f2ma2m(x)) · · · ))

Let X and Y denote tamperings of X and Y , respectively. First, due to the security properties
of the family of lossy functions F under the quasi-polynomial hardness of the DDH assumption,
we show that we can assume that h(X)‖h(Y ) = b and h(X)‖h(Y ) 6= h(X)‖h(Y ) hold simulta-
neously. Under these conditions, it follows that fh(X)‖h(Y ) is an injective function and fh(X)‖h(Y )

has small image size. Our final goal is to show that cnmExt(X,Y,CRS) is computationally close
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to uniform given cnmExt(X,Y ,CRS). Since fh(X)‖h(Y ) has small image size and h has small out-

put length, it follows that X and Y do not lose much min-entropy when we reveal fh(X)‖h(Y )(X),

fh(X)‖h(Y )(Y ), and all the hashes. Revealing the information above is stronger than simply dis-

closing cnmExt(X,Y ,CRS), and it ensures that X and Y stay independent and do not lose much
min-entropy. This allows us to invoke the statistical properties of Ext to obtain the desired result.

Instantiating Ext with the best known statistical two-source extractors [Bou05, Lew19, CZ19]
yields cnmExt with much lower min-entropy requirements than its best known statistical counter-
parts [CGL16, Li17] (recall that we have proved that improving upon the parameters of [CGL16,
Li17] in the information-theoretic setting appears to be very challenging). Formal statements and
more details can be found in Section 5.

Theorem 3 (Informal). Assuming the quasi-polynomial hardness of the DDH assumption, there
exists an explicit two-source non-malleable extractor in the CRS model for min-entropy 0.46n and
negligible error handling nΩ(1) tamperings. Moreover, there also exists an explicit two-source non-
malleable extractor in the CRS model for min-entropy nΩ(1) and error 1/nΩ(1) handling nΩ(1) tam-
perings.

Simple two-source non-malleable extractors in the CRS model from nearly optimal
collision-resistant hash functions, against an unbounded distinguisher. Since our previ-
ous result holds only for a computationally bounded distinguisher, we ask whether we can devise
an explicit two-source non-malleable extractor in the CRS model secure against computationally
unbounded distinguishers, potentially by strengthening the underlying hardness assumption. We
show that this is possible with a simple construction, provided we assume the existence of nearly
optimal collision-resistant hash functions. In practice, this is not a far-fetched assumption: For
most widely deployed hash functions such as SHA-256, SHA-512, and SHA-3 there are currently
not better attacks than brute-force.

Suppose for a moment that we have access to a seedless condenser Cond (which does not
exist information-theoretically) and a statistical two-source non-malleable extractor nmExt. Then,
similarly to what was discussed regarding our first result in the CRS model, the only reason why

nmExt(Cond(X),Cond(Y ))

is not non-malleable is that we can tamper X to X 6= X such that Cond(X) = Cond(X). In
order to make this attack unfeasible for efficient tamperings, we can replace Cond by H ← H for
a family of collision-resistant hash functions H. However, it is not clear that the outputs H(X)
and H(Y ) are (statistically close to) high-min entropy sources, more so when conditioned on H.
Fortunately, Dodis, Ristenpart, and Vadhan [DRV12] showed that this is indeed the case (with very
good parameters), provided H is a family of nearly optimal collision-resistant hash functions (in the
sense that the birthday attack is essentially the best attack possible). In other words, they show
that such hash functions are so-called seed-dependent condensers. As a result, it readily follows
that, for CRS = H, the simple function cnmExt defined as

cnmExt(X,Y,H) = nmExt(H(X), H(Y ))

is a low-error two-source non-malleable extractor in the CRS model for low min-entropy against a
computationally unbounded distinguisher, and handling the same number of tamperings as nmExt.
Instantiating nmExt with the two-source non-malleable extractor from [Li17], we obtain the follow-
ing informal result. Formal statements and more details can be found in Section 6.
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Theorem 4 (Informal). If there exist nearly optimal collision-resistant hash functions h : {0, 1}n →
{0, 1}m for some m = Ω(polylog(n)), then there exists an explicit low-error two-source non-
malleable extractor for n-bit sources with min-entropy m.

1.3 Organization

The remainder of the paper is organized as follows: In Section 2, we introduce notation and prelim-
inary concepts and results. Section 3 discusses the reduction from low-error two-source extractors
for low min-entropy to low-error two-source non-malleable extractors for high min-entropy. In Sec-
tion 4, we discuss the related reduction in the CRS model from standard assumptions. Section 5
focuses on non-malleable extractors in the CRS model obtained from the quasi-polynomial hardness
of the DDH assumption. Finally, simple non-malleable extractors in the CRS model obtained from
nearly optimal collision-resistant hash functions are analyzed in Section 6.

2 Preliminaries

2.1 Notation

Random variables are usually denoted by uppercase letters such as X, Y , and Z. Sets are usually
denoted by uppercase calligraphic letters such as S and T . Given two strings x and y, we denote
their concatenation by x‖y. The base-2 logarithm is denoted by log. We say an algorithm is size-t
if it can be computed by a (possibly randomized) circuit of size at most t. Moreover, we use poly(n)
to denote an arbitrary polynomial in n.

2.2 Statistical distance and min-entropy

In this section, we introduce the basic concepts of statistical distance and min-entropy, along with
useful lemmas.

Definition 1 (Statistical distance). Given two distributions X and Y over a set X , the statistical
distance between X and Y , denoted by ∆(X;Y ), is defined as

∆(X;Y ) = max
S⊆X
|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]|.

We may write ∆(X;Y |Z) as shorthand for ∆(X,Z;Y,Z), and say that X and Y are ε-close,
also written X ≈ε Y , if ∆(X;Y ) ≤ ε. For a random variable X ∈ {0, 1}, we informally call
∆(X;U1) = |Pr[X = 1]− 1/2| the bias of X.

Definition 2 (Min-entropy). Given a distribution X over X , the min-entropy of X, denoted by
H∞(X), is defined as

H∞(X) = − log

(
max
x∈X

Pr[X = x]

)
.

Definition 3 (Average min-entropy). Given distributions X and Z, the average min-entropy of X
given Z, denoted by H̃∞(X|Z), is defined as

H̃∞(X|Z) = − log

(
Ez←Z

[
max
x∈X

Pr[X = x|Z = z]

])
.

10



Lemma 1 ([DORS08]). Given arbitrary distributions X and Z such that |supp(Z)| ≤ 2λ, we have

H̃∞(X|Z) ≥ H∞(X,Z)− λ ≥ H∞(X)− λ.

Lemma 2 ([MW97]). For arbitrary distributions X and Z, it holds that

Pr
z←Z

[H∞(X|Z = z) ≥ H̃∞(X|Z)− s] ≥ 1− 2−s.

Lemma 3. Suppose X and Z are random variables such that H̃∞(X|Z) ≥ k and E is an event
with Pr[E] ≥ p. Then, it holds that

H̃∞(X|E,Z) := H̃∞((X|E)|Z) ≥ k − log(1/p).

Proof. We have

Ez←Z

[
max
x

Pr[X = x|E,Z = z]
]

=
∑
z

Pr[Z = z|E] ·max
x

Pr[X = x,E|Z = z]

Pr[E|Z = z]

≤
∑
z

Pr[Z = z|E] ·max
x

Pr[X = x|Z = z]

Pr[E|Z = z]

=
∑
z

Pr[Z = z]

Pr[E]
·max

x
Pr[X = x|Z = z]

≤ 1

p
· Ez←Z

[
max
x

Pr[X = x|Z = z]
]

≤ 2−k

p
,

where the second inequality follows from Pr[E] ≥ p and the last inequality follows from the fact
that H̃∞(X|Z) ≥ k.

2.3 Extractors and condensers

We present some important objects from pseudorandomness.

Definition 4 ((n, k)-source). A distribution X ∈ {0, 1}n is said to be an (n, k)-source if H∞(X) ≥
k. Moreover, X is said to be flat if it is uniformly distributed over a set of size at least 2k.

Definition 5 ((k, ε)-extractor). A function Ext : {0, 1}n×{0, 1}n → {0, 1}m is said to be a (strong,
average-case) (k1, k2, ε)-extractor if for independent random variables X and (Y,W ) such that X
is an (n, k1)-source and H̃∞(Y |W ) ≥ k2 we have

Ext(X,Y ), X,W ≈ε Um, X,W.

If k1 = k2 = k, we say Ext is a (strong, average-case) (k, ε)-extractor.

It is easy to see that every non-average-case (k, ε)-extractor Ext is also an average-case (k +
log(1/γ), ε+ γ)-extractor for any γ > 0. We will need the following explicit two-source extractors.

Proposition 1 ([Bou05, Lew19]). There exists an explicit strong average-case (k, ε)-extractor Ext :
{0, 1}n × {0, 1}n → {0, 1} with k = 0.45n and ε = 2−Ω(n).
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Proposition 2 ([Raz05]). For any constant γ > 0 there exists an explicit strong average-case
(k1, k2, ε)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1} with k1 = O(log n), k2 = (1/2 + γ)n, and
ε = 2−Ω(n).

Proposition 3 ([CZ19]). There exists an explicit strong average-case (k, ε)-extractor Ext : {0, 1}n×
{0, 1}n → {0, 1} with k = polylog(n) and ε = n−Ω(1).

Definition 6 ((k, ε, r)-non-malleable extractor). A function nmExt : {0, 1}n×{0, 1}n → {0, 1}m is
said to be a (strong, average-case) (k, ε, r)-non-malleable extractor if for every pair of independent
distributions X and (Y,W ) such that X is an (n, k)-source and H̃∞(Y |W ) ≥ k and every family
of tampering functions g1i, g2i : {0, 1}n → {0, 1}n where one of g1i and g2i has no fixed points for
all i = 1, . . . , r, we have

∆(nmExt(X,Y );Um|X,W, nmExt(g11(X), g21(Y )), . . . , nmExt(g1r(X), g2r(Y ))) ≤ ε.

Proposition 4 ([CGL16, GKP+18]). There exists an explicit strong average-case (k, ε, r)-non-

malleable extractor nmExt : {0, 1}n×{0, 1}n → {0, 1}m where k = n−nΩ(1), ε = 2−n
Ω(1)

, r = nΩ(1),
and m = nΩ(1).

Proposition 5 ([Li17, GKP+18]). For every constant r there exists a small enough constant γ >
0 such that there exists an explicit strong average-case (k, ε, r)-non-malleable extractor nmExt :
{0, 1}n × {0, 1}n → {0, 1}m where k = (1− γ)n, ε = 2−Ω(n/ logn), and m = Ω(n).

Moreover, if k = (1 − o(1))n, then there is r = ω(1) such that there exists an explicit strong

(k, ε, r)-non-malleable extractor with ε = 2−n
Ω(1)

and m = nΩ(1).

Although Li [Li17] presents its non-malleable extractor for the case r = 1 only, it is straightfor-
ward to check that it can be extended to more than one tampering as above.

The following lemma states that non-malleable extractors are also resilient against tampering
functions with independent shared randomness.

Lemma 4. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a (k, ε, r)-non-malleable extractor, and let
R be an arbitrary distribution over some set R. Then, for any tuple of functions (g1i, g2i)i∈[r] of
the form g1i, g2i : {0, 1}n ×R → {0, 1}n such that for every fixing R = rand and i = 1, . . . , r either
g1i(·, rand) or g2i(·, rand) has no fixed points, it holds that

∆(nmExt(X,Y );Um|nmExt(g11(X,R), g21(Y,R)), . . . , nmExt(g1r(X,R), g2r(Y,R)), R) ≤ ε

whenever X and Y are independent (n, k)-sources also independent of R.
Moreover, if nmExt is strong, (g1i, g2i)i∈[r] are as above and F : {0, 1}n × R → {0, 1}∗ is an

arbitrary function, we have

∆(nmExt(X,Y );Um|F (X,R), nmExt(g11(X,R), g21(Y,R)), . . . , nmExt(g1r(X,R), g2r(Y,R)), R) ≤ ε

Proof. The claim follows from the fact that the desired inequality holds for every fixing R = rand
by the definition of non-malleable extractor (in the case of strong non-malleable extractors, also
because F (X, rand) is a function of X only).

Definition 7 (Somewhere-k sources). A distribution Y = (Y1, . . . , Y`) ∈ {0, 1}m·` is said to be
an elementary somewhere-k source if there is i ∈ [`] such that H∞(Yi) ≥ k. Then, a distribution
Y ∈ {0, 1}m·` is said to be a somewhere-k source if Y is a convex combination of elementary
somewhere-k sources.
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Definition 8 (Somewhere-condenser). A function SCond : {0, 1}n → {0, 1}m·` is said to be a
(δ → δ′, ε)-somewhere condenser if for every (n, δn)-source X there exists a somewhere-(δ′m)
source Y ∈ {0, 1}m·` such

SCond(X) ≈ε Y.

We will need the following two somewhere condensers due to Zuckerman and Li [Zuc06, Li11].
The first one transforms an input source with potentially low min-entropy rate into a somewhere-
k source with constant min-entropy rate. The second somewhere condenser transforms an input
source with constant min-entropy rate into a somewhere-k source with potentially large min-entropy
rate. We note that other somewhere-condensers have also been constructed in [BKS+10, Raz05].

We begin by stating a somewhere-condenser that condenses sources to min-entropy rate 3/4,
due to Zuckerman [Zuc06].

Lemma 5. For δ and n such that δn = ω(1) there is an explicit (δ → 3/4, ε)-somewhere condenser
SCond : {0, 1}n → {0, 1}m·` with ` = poly(1/δ), m = n/poly(1/δ), and ε = 2−Ω(m).

Improving upon the analysis of [Zuc06], Li [Li11] obtained the following somewhere-condenser
that condenses sources to potentially very high min-entropy rate. A version of this somewhere-
condenser also appears in [BDT16]4.

Lemma 6. For every T = T (n) < n there exists a (3/4 → 1 − 1/T, ε)-somewhere-condenser

SCond : {0, 1}n → {0, 1}m·` with ` = T 5/2, m = n/T
5 log(3/2)

2 , and ε = 2−n/T
c

for some c > 1,
provided n is large enough.

Combining Lemmas 5 and 6 immediately leads to the following corollary.

Corollary 1. For every constant δ > 0 and every T = T (n) < n there exists a (δ → 1 − 1/T, ε)-

somewhere-condenser SCond : {0, 1}n → {0, 1}m·` with ` = Oδ(T
5/2), m = Ωδ(n/T

5 log(3/2)
2 ), and

ε = 2−Ωδ(n/T
c) for some absolute constant c > 1, provided n is large enough.

2.4 Computational extractors in the CRS model

In this section, we present the relevant definitions of computational pseudorandom objects in the
CRS model. As usual, all parameters are functions of a single security parameter λ. For the sake
of clarity, we do not write this dependence explicitly in the rest of the paper.

Definition 9 ((t, k)-samplable sources in the CRS model). A tuple

(X,AUX, Y ) ∈ {0, 1}n × {0, 1}a × {0, 1}n

is said to be a tuple of (t, k)-samplable sources in the CRS model if there exists CRS ∈ {0, 1}c such
that the following hold:

• There exists a size-t circuit G such that (X,AUX, Y )← G(CRS).

• (X,AUX) and Y are conditionally independent given CRS.

• H∞(X|CRS = crs) ≥ k and H∞(Y |CRS = crs) ≥ k for every fixing CRS = crs.

4The work [BDT16] has been retracted. However, the somewhere-condenser presented there is a restatement of
the one of Li [Li11], and is correct.
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When AUX is the empty string, we say (X,Y ) are (t, k)-samplable sources without auxiliary infor-
mation.

Moreover, we say (X,AUX, Y ) is a tuple of (t, k1, k2)-samplable sources in the CRS model if
in the above we have H∞(X|CRS = crs) ≥ k1 and H∞(Y |CRS = crs) ≥ k2.

Definition 10 ((t, t′, t′′, k, ε, r)-non-malleable extractor in the CRS model). A function cnmExt :
{0, 1}n × {0, 1}n × {0, 1}c → {0, 1}m is said to be a (t, t′, t′′, k, ε, r)-non-malleable extractor in the
CRS model if there is CRS ∈ {0, 1}c such that the following holds:

For every tuple (X,Y,AUX) of (t, k)-samplable sources from CRS, every tuple of deterministic
size-t′ circuits g11, . . . , g1r : {0, 1}n×{0, 1}a×{0, 1}c → {0, 1}n and g21, . . . , g2r : {0, 1}n×{0, 1}c →
{0, 1}n such that for every i ∈ [r] and every fixing CRS = crs either g2i(·, crs) has no fixed points
or g1i(·, aux, crs) has no fixed points for every fixing AUX = aux, and every size-t′′ adversary A we
have

|Pr[A(cnmExt(X,Y,CRS), L1, . . . , Lr,AUX,CRS) = 1]

− Pr[A(Um, L1, . . . , Lr,AUX,CRS) = 1]| ≤ ε(t),

where Li = cnmExt(g1i(X,AUX,CRS), g2i(Y,CRS),CRS). We set t′′ =∞ to denote that A is allowed
to be computationally unbounded.

We say cnmExt is a (t, t′, t′′, k, ε, r)-non-malleable extractor without auxiliary information if
the above holds for all (t, k)-samplable sources (X,Y ) without auxiliary information.

Moreover, we say cnmExt is a (t, t′, t′′, k1, k2, ε, r)-non-malleable extractor in the CRS model if
the above holds for (t, k1, k2)-samplable sources.

Observe that every non-malleable extractor resilient to auxiliary information is, in particular,
strong.

2.5 Other relevant computational objects

In this section, we present other computational objects that will prove useful throughout the paper.

Definition 11 ((t, δ)-collision-resistant hash function family). A family of functions H is said to
be (t, δ)-collision-resistant if for every size-t adversary A it holds that

Pr[X1 6= X2, H(X1) = H(X2)] ≤ δ,

where H ← H and (X1, X2)← A(H).

Definition 12 (Seed-dependent condenser). A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is said
to be a (k →ε k

′, t)-seed-dependent condenser if for every X ← G(S), where S ← {0, 1}d, G is a
size-t circuit, and H̃∞(X|S) ≥ k, it holds that

Cond(X,S), S ≈ε Z, S,

where H̃∞(Z|S) ≥ k′.

Dodis, Ristenpart, and Vadhan [DRV12] showed that collision-resistant hash functions with
strong security are good seed-dependent condensers.

Lemma 7 ([DRV12]). Suppose H is a family of (t, 2β−1−m)-collision-resistant hash functions h :
{0, 1}n → {0, 1}m for some β > 0. Then, the function Cond(X,H) = H(X) where H ← H is an
(m− β + 1→ε m− β − log(1/ε), t)-seed-dependent condenser.
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We will also require the following notion of a family of lossy functions, first introduced and
constructed by Peikert and Waters [PW11].

Definition 13 ((t, n, ω)-lossy function family). A function family F = {F}λ∈N is a (t, n, ω)-lossy
function family if the following conditions hold:

• There are two PPT seed generation algorithms Ginj and Gloss such that for any size-poly(t)
adversary A it holds that

|Prs←Ginj(1λ)[A(s) = 1]− Prs←Glos(1λ)[A(s) = 1]| = negl(t);

• For every λ ∈ N and every f ∈ Fλ, f : {0, 1}n → {0, 1}n.

• For every λ ∈ N and every s ∈ Ginj, fs ∈ Fλ is injective.

• For every λ ∈ N and every s ∈ Glos, fs ∈ Fλ is lossy, i.e., its image size is at most 2n−ω.

• There exists a PPT algorithm Eval such that Eval(s, x) = fs(x) for very λ ∈ N, every s in the
support of Ginj(1λ) ∪ Glos(1λ), and every x ∈ {0, 1}n.

Lemma 8 ([PW11, BHK11]). For any constant γ ∈ (0, 1) and for every Ω(λ) ≤ n ≤ poly(λ) there
exists a (t, n, ω)-lossy function family with t = λlog λ and ω = n−nγ, assuming the quasi-polynomial
hardness of the DDH assumption.

3 From slightly better two-source non-malleable extractors to two-
source extractors for low min-entropy

In this section, we show that slight improvements on the state-of-the-art explicit constructions
of two-source non-malleable extractors [CGL16, Li17] are enough to obtain low error two-source
extractors for low linear min-entropy. More precisely, we have the following result.

Theorem 5. For every constant δ > 0 there exists a constant Cδ > 0 such that the following holds:
If for m large enough and some γ = γ(m) ≥ 1/m there exists an explicit (m(1−γ)−3 logm, ε,Cδ ·

(1/γ)5)-non-malleable extractor nmExt : {0, 1}m × {0, 1}m → {0, 1}, then there exists an explicit
(δn, ε′)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1} with ε′ = ε + 2−Ω(γcn) and n = Θ(m · (1/γ)c),
where c is an absolute constant.

Proof. Let nmExt : {0, 1}m × {0, 1}m → {0, 1} be the non-malleable extractor with the parameters
as in the theorem statement, and let SCond : {0, 1}n → {0, 1}m′·` be the (δ → 1− γ, ε)-somewhere
condenser from Corollary 1, and m = m′ + dlog `e.

Consider the function F : {0, 1}n × {0, 1}n → {0, 1} defined as

F (X,Y ) =
⊕
i,j∈[`]

nmExt(SCond(X)i‖pi,SCond(Y )j‖pj),

where pi denotes the dlog `e-bit binary representation of i ∈ [`]. We prove that F is an extractor
with the desired parameters.

By the properties of SCond, there exist V,W ∈ {0, 1}m′` independent somewhere-k′ sources with
k′ = (1 − γ)m′ such that SCond(X) ≈ε1 V and SCond(Y ) ≈ε1 W for ε1 = 2−Ω(γcn). Therefore, it
suffices to show that ⊕

i,j∈[`]

nmExt(Vi‖pi,Wj‖pj) ≈ε U1, (2)
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and the desired result follows by combining the previous observations with the triangle inequality.
By the properties of V and W , there exist independent random variables I, J ∈ [`] such that

H∞(Vi|I = i),H∞(Wj |J = j) ≥ (1− γ)m′.

Consider arbitrary fixings I = i and J = j. We show that (2) holds for all fixings, and hence it
holds in general as well. Under such a fixing, it is enough to show that

∆(nmExt(Vi‖pi,Wj‖pj);U1|(nmExt(Vi′‖pi′ ,Wj′‖pj′)(i′,j′)6=(i,j)) ≤ ε. (3)

We will now use the properties of nmExt to prove (3). Note that we can jointly simulate all pairs
(Vi′‖pi′ ,Wj′‖pj′) for (i′, j′) 6= (i, j) as randomized split-state tamperings of (Vi‖pi,Wj‖pj). In other
words, there exist randomized functions g1i′ , g2j′ : {0, 1}m × R → {0, 1}m, all sharing the same
independent randomness R ∈ R, such that

(Vi‖pi,Wj‖pj), (g1i′(Vi‖pi, R), g2j′(Wj‖pj , R))(i′,j′)6=(i,j)

∼ (Vi‖pi,Wj‖pj), (Vi′‖pi′ ,Wj′‖pj′)(i′,j′)6=(i,j).

Indeed, on input (vi‖pi, wj‖pj), this can be done by sampling V ′ = (V |I = i, Vi = vi) and W ′ =
(W |J = j,Wj = wj) using the extra independent randomness R, and setting g1i′(vi‖pi, R) = V ′i′‖pi′
and g2j′(wj‖pj , R) = W ′j′‖pj′ for all (i′, j′) 6= (i, j). Moreover, since pa 6= pb for a 6= b, all tampering
functions g1i′ and g2j′ above have no fixed points for every fixing of the randomness. Finally, since
` = Oδ((1/γ)5/2) and γ ≥ 1/m, it follows that

H∞(Vi‖pi),H∞(Wj‖pj) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm

and that nmExt handles at least `2 ≤ Cδ(1/γ)5 tamperings for a suitable constant Cδ > 0 depending
only on δ. Taking into account these observations and noting that Vi‖pi and Wj‖pj are independent,
we can invoke Lemma 4 to conclude (3) holds, which completes the proof.

We now present two remarkable corollaries of Theorem 5, one of which was already informally
presented in Section 1.2.

Corollary 2. Suppose that for some r = r(m) = ω(1), ε = ε(m), and some constant c > 0 there
is an explicit (m(1 − γ), ε, r)-non-malleable extractor for large enough m. Then, for any constant
δ > 0 and large enough n there exists an explicit (δn, ε′)-extractor with ε′ = ε(Ω(n)) + 2−Ω(n).

Corollary 3. There exists an absolute constant α > 0 such that if for some constant β < α there
exists an explicit (m −m1−β, ε,m6β)-non-malleable extractor nmExt : {0, 1}m × {0, 1}m → {0, 1},
then for any constant δ > 0 and large enough n there exists an explicit (δn, ε′)-extractor with

ε′ = ε(nΩ(1)) + 2−n
Ω(1)

.

According to Corollary 3, improving the min-entropy requirement of the CGL extractor in
Proposition 4 to m−mc0 for a sufficiently small constant c0 > 0 would immediately yield explicit
low error two-source extractors for any linear min-entropy rate.

4 Computational two-source non-malleable extractors for low min-
entropy from any collision-resistant hash function family

In this section, we show how the construction used to prove Theorem 5 can also be used to obtain
computational non-malleable extractors for low min-entropy efficiently samplable sources, efficient
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tampering, and a computationally unbounded distinguisher from slight improvements on the state-
of-the-art constructions of non-malleable extractors for high min-entropy sources. This can be
achieved under the weak hardness assumption that families of collision-resistant hash functions
with decent parameters exist.

Theorem 6. For every constant δ > 0 there exists a constant Cδ > 0 such that the following holds:
If for m large enough and some γ = γ(m) ≥ 1/m there exists an explicit (m(1− γ)− 3 logm−

mh, ε = negl(m), Cδ ·(1/γ)5)-non-malleable extractor nmExt : {0, 1}m×{0, 1}m → {0, 1}, then there
exists an explicit (poly(n), poly(n),∞, k = δn, ε = negl(m), r = 1)-non-malleable extractor cnmExt :
{0, 1}n × {0, 1}n → {0, 1} in the CRS model without auxiliary information with n = Θ(m · (1/γ)c),
where c is an absolute constant, provided that there exists a family H of (poly(n), negl(n))-collision-
resistant hash functions h : {0, 1}n → {0, 1}mh with mh = o(n).

Proof. Towards proving the desired statement, we modify the construction used to prove Theorem 5
by including the hashes of the sources in the input to nmExt. More precisely, we set CRS = H for
H ← H, and consider the function cnmExt : {0, 1}n × {0, 1}n ×H → {0, 1} defined as

cnmExt(X,Y,H) =
⊕
i,j∈[`]

nmExt(SCond(X)i‖pi‖H(X), SCond(Y )j‖pj‖H(Y )),

where nmExt is as in the theorem statement, SCond : {0, 1}n → {0, 1}m′·` is the (δ/2→ 1− γ, ε1)-
somewhere condenser from Corollary 1, pi denotes the dlog `e-bit binary representation of i, and
m = m′ + dlog `e+mh.

Fix (t, δn)-samplable sources X and Y and size-poly(t) deterministic tampering functions g1, g2 :
{0, 1}n×H → {0, 1}n such that for each h ∈ H, one of g1(·, h) and g2(·, h) has no fixed points. Our
goal is to show that

cnmExt(X,Y,H), cnmExt(X ′, Y ′, H), H ≈ε U1, cnmExt(X ′, Y ′, H), H, (4)

where X ′ = g1(X,H) and Y ′ = g2(Y,H), and ε = negl(n). We begin by claiming that the collision-
resistance of H ensures that

Pr
H

[X 6= X ′, H(X) = H(X ′)] = negl(n),

Pr
H

[Y 6= Y ′, H(Y ) = H(Y ′)] = negl(n).

Indeed, if this does not hold, then we can break the collision-resistance of H by considering the
size-poly(t) adversary that on input H ← H first samples (X,Y ), and then outputs either (X,X ′)
or (Y, Y ′) with probability 1/2. Since one of g1(·, h) and g2(·, h) has no fixed points for each
fixing H = h, this adversary succeeds with non-negligible probability. With this in mind, with
probability 1 − negl(n) over the fixing H = h, we have Pr[X 6= X ′, h(X) = h(X ′)] = negl(n) and
Pr[Y 6= Y ′, h(Y ) = h(Y ′)] = negl(n). Throughout the remainder of the proof we can fix such
h ∈ H and assume that g1(·, h) has no fixed points without loss of generality. Moreover, we will
also condition X on the events h(X) 6= h(X ′) and h(X) = z1 and Y on the event h(Y ) = z2 from
now on. Since h(X) 6= h(X ′) holds with probability 1− negl(n), by Lemmas 1 and 2 we have

H∞(X|h(X) 6= h(X ′), h(X) = z1) ≥ δn− 1−mh − negl(n) ≥ δn/2

with probability 1 − negl(n) over the choice of z1. Likewise, we have H∞(Y |h(Y ) = z2) ≥ δn/2
with probability 1− negl(n) over the choice of z2. From here onwards, fix such z1 and z2.
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Given the fixings in the previous paragraph, by the properties of SCond there exist independent
somewhere-k′ sources V,W ∈ {0, 1}m′` with k′ = (1 − γ)m′ and independent random variables
I, J ∈ [`] such that SCond(X) ≈ε1 V and SCond(Y ) ≈ε1 W , and

H∞(Vi|I = i) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm−mh, (5)

H∞(Wj |J = j) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm−mh. (6)

for all valid fixings I = i and J = j. We now wish to proceed by replacing SCond(X) and
SCond(Y ) by V and W , respectively, in our analysis. Observe that we can write A(SCond(X)) =
(SCond(X ′)i‖i‖h(X ′))i∈[`] for a randomized functionA that on input v samples x from (X|SCond(X) =
v) and sets A(v) = (SCond(g1(x, h))i‖i‖h(g1(x, h)))i∈[`] (if the sampling of x fails, simply output a
fixed bitstring whose suffix differs from z1). By our conditioning, we may assume that A(v) 6= v‖i‖z1

for all i ∈ [`]. Analogously, we can also write B(SCond(Y )) = (SCond(Y ′)j‖j‖h(Y ′))j∈[`] for a ran-
domized function B. Therefore, it now suffices to show that⊕

i,j∈[`]

nmExt(SCond(X)i‖i‖z1, SCond(Y )j‖j‖z2),

⊕
i,j∈[`]

nmExt(A(SCond(X))i, B(SCond(Y ))j)

≈ε′ U1,
⊕
i,j∈[`]

nmExt(A(SCond(X))i, B(SCond(Y )j). (7)

Using the fact that SCond(X),SCond(Y ) ≈2ε1 V,W , the condition in (7) follows if we show that⊕
i,j∈[`]

nmExt(Vi‖i‖z1,Wj‖j‖z2),
⊕
i,j∈[`]

nmExt(A(V )i, B(W )j)

≈ε U1,
⊕
i,j∈[`]

nmExt(A(V )i, B(W )j). (8)

Consider arbitrary fixings I = i? and J = j?. We show that then we have

∆(nmExt(Vi?‖i‖z1,Wj?‖j‖z2);U1

|(nmExt(Vi‖i‖z1,Wj‖j‖z2))(i,j)6=(i?,j?), (nmExt(A(V )i, B(W )j))i,j∈[`]) ≤ ε, (9)

which implies (8) and concludes the proof. Analogously to the proof of Theorem 5, we can write
g1

1i(Vi?‖i‖z1, R) = Vi‖i‖z1 and g1
2j(Wj?‖j‖z2, R) = Wj‖j‖z2 for randomized tampering functions

g1
1i, g

1
2j : {0, 1}m × R → {0, 1}m for i 6= i? and j 6= j?. Observe that the g1

1i’s and g1
2j ’s have no

fixed points, since pi 6= pi? and pj 6= pj? . Moreover, we can also write g2
1i(Vi?‖i‖z1, R) = A(V )i and

g2
2j(Wj?‖j‖z2, R) = B(W )j for randomized tampering functions g2

1i, g
2
2j : {0, 1}m×R → {0, 1}m for

i 6= i?. By our previous conditioning, we know that g2
1i has no fixed points, i.e., g2

1i(Vi?‖i‖z1, r) 6=
Vi?‖i‖z1 for all r. Finally, since there are at most 2`2 ≤ Cδ(1/γ)5 tamperings for a suitably
large constant Cδ depending only on δ, and since Vi?‖pi?‖z1 and Wj?‖pj?‖z2 are independent and
H∞(Vi?‖pi?‖z2),H∞(Wj?‖pj?‖z2) ≥ (1−γ)m−3 logm−mh by (5) and (6), we can invoke Lemma 4
to conclude (9) holds, which completes the proof.

Similarly to the previous section, we present two corollaries that are especially meaningful given
the current state-of-the-art constructions of two-source non-malleable extractors [CGL16, Li17], one
of which was already informally presented in Section 1.2.
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Corollary 4. Suppose that for some r = r(m) = ω(1), ε = negl(m), and some constant c > 0 there
is an explicit (m(1 − γ), ε, r)-non-malleable extractor for large enough m. Then, for any constant
δ > 0 and large enough n there exists an explicit (poly(n),poly(n),∞, k = δn, ε = negl(n), r = 1)-
non-malleable extractor in the CRS model without auxiliary information, provided that there exists
a family H of (poly(n), negl(n))-collision resistant hash functions h : {0, 1}n → {0, 1}mh with
mh = o(n).

Corollary 5. There exists an absolute constant α > 0 such that if for some constant β < α there
exists an explicit (m−m1−β, ε = negl(m),m6β)-non-malleable extractor nmExt : {0, 1}m×{0, 1}m →
{0, 1}, then for any constant δ > 0 and large enough n there exists an explicit (poly(n), poly(n),∞, k =
δn, ε = negl(n), r = 1)-non-malleable extractor in the CRS model without auxiliary informa-
tion, provided that there exists a family H of (poly(n), negl(n))-collision resistant hash functions
h : {0, 1}n → {0, 1}mh with mh ≤ nρ for a small enough constant ρ > 0.

5 Computational non-malleable extractors from quasi-polynomial
hardness assumptions

In this section, we construct computational two-source non-malleable extractors in the CRS model
assuming the quasi-polynomial hardness of the DDH assumption. We begin by constructing such a
non-malleable extractor for relatively high min-entropy that handles many tamperings. Then, we
use this construction as a stepping stone to obtain a non-malleable extractor in the CRS model for
low min-entropy.

Theorem 7. Suppose the following objects exist:

• A family H of (poly(t1), negl(t1))-collision-resistant hash functions h : {0, 1}n → {0, 1}k2;

• A family of (poly(t2), n, ω)-lossy functions F , where t2 ≥ 22k2 = t
ω(1)
1 and ω = n − nγ for

some constant γ ∈ (0, 1).

• A strong average-case (k, ε)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1}, where Ω(t1) ≤ n ≤
poly(t1).

Then, there exists an explicit (poly(t1),poly(t1),poly(t2), k′ = k+r(4k2+3nγ+1), ε+negl(t1), r)-
non-malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the CRS model.

We instantiate Theorem 7 with the best known explicit statistical two-source extractors in
Appendix 5.2.

5.1 Proof of Theorem 7

Our candidate construction is as follows: First, to define CRS, begin by sampling b ← {0, 1}2k2 ,
and then sample functions fij from F for i ∈ [2k2] and j ∈ {0, 1} such that fibi is injective and
fi1−bi is lossy for each i. Finally, sample h← H and set

CRS = (h, (fij)i∈[2k2],j∈{0,1}) ∈ {0, 1}c.

Our function cnmExt : {0, 1}n × {0, 1}n × {0, 1}c → {0, 1} is defined as

cnmExt(x, y,CRS) = Ext(fh(x)‖h(y)(x), fh(x)‖h(y)(y)),
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where for a ∈ {0, 1}2k2 we denote fa(x) = f1a1(f2a2(· · · (f2k2a2k2
(x)) · · · )).

For the sake of exposition, we present the proof for the case r = 1 only. The extension to r > 1
tamperings is straightforward. In order to show Theorem 7, we must argue that, for arbitrary
(poly(t1), k′)-samplable sources (X,AUX, Y ), valid size-poly(t1) tampering functions g1 : {0, 1}n ×
{0, 1}a×{0, 1}c → {0, 1}n and g2 : {0, 1}n×{0, 1}c → {0, 1}n, and every size-poly(t2) distinguisher
A it holds that

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1]| ≤ ε+ negl(t1), (10)

where X = g1(X,AUX,CRS) and Y = g2(Y,CRS). As a first step, we prove that it suffices to
consider cases where h(X)‖h(Y ) 6= h(X)‖h(Y ) and h(X)‖h(Y ) = b, where b denotes the indices of
the injective functions (fibi)i∈[2k2].

Lemma 9. Let E denote the event that h(X)‖h(Y ) 6= h(X)‖h(Y ) and h(X)‖h(Y ) = b hold
simultaneously. Then, if

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1|E]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1|E]| ≤ ε+ negl(t1), (11)

it follows that (10) holds.

Proof. We proceed similarly to the proof of the analogous claim in [GKK19]. Suppose that (11)
holds for every tuple of (poly(t1), k′)-samplable sources (X,AUX, Y ), tampering functions g1 and
g2, and size-poly(t2) adversary A, but

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1]| > ε+ 1/p(t1), (12)

where X = g1(X,AUX,CRS) and Y = g2(Y,CRS), for some pair of (poly(t1), k′)-samplable sources
(X,AUX, Y ), some tampering functions g1 and g2, some size-poly(t2) adversary A, and some poly-
nomial p. We show that this breaks the t2-security of the family of lossy functions F . By the
t2-security of F , we know that for every size-poly(t2) adversary B we have

2−2k2 − negl(t2) ≤ Pr[B(CRS) = b] ≤ 2−2k2 + negl(t2). (13)

Consider the size-poly(t2) adversary B that on input CRS samples (X,AUX, Y ), and first checks
whether h(X)‖h(Y ) 6= h(X)‖h(Y ). If that is the case, then B outputs b′ = h(X)‖h(Y ) as a
guess for b, else it outputs b′ ← {0, 1}2k2 . Since Pr[h(X)‖h(Y ) = h(X)‖h(Y )] = negl(t1) by the
collision-resistance of H and the fact that X 6= X or Y 6= Y by hypothesis, using (13) we have that

(1− negl(t1))2−2k2 − negl(t2) ≤ Pr[h(X)‖h(Y ) = b, h(X)‖h(Y ) 6= h(X)‖h(Y )]

≤ (1 + negl(t1))2−2k2 + negl(t2). (14)

We now proceed to construct a size-poly(t2) adversary B′ such that

Pr[B′(CRS) = b] ≥ 1.5 · 2−2k2 .

This contradicts (13), which concludes the proof. On input CRS and for N = p(t1)3, B′ proceeds
as follows:
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1. Sample (X,AUX, Y ) from CRS. If h(X)‖h(Y ) = h(X)‖h(Y ), then re-sample (note that this
takes time poly(t1)). Otherwise, set z = h(X)‖h(Y ).

2. For i ∈ [N ]: Sample (Xi,AUXi, Yi) from CRS conditioned on h(Xi)‖h(Yi) = z and h(Xi)‖h(Yi) =
h(Xi)‖h(Yi). By (14), this takes time poly(t2). Set

δi = |A(cnmExt(Xi, Yi,CRS), cnmExt(Xi, Yi,CRS),AUXi,CRS)

−A(U1, cnmExt(Xi, Yi,CRS),AUXi,CRS)|,

where Xi = g1(Xi,AUXi,CRS) and Yi = g2(Yi,CRS). Note that A has size poly(t2).

3. Compute δ = 1
N

∑N
i=1 δi. If δ < ε+ 1

4p(t1) , then output b′ = z. Else, output b′ ← {0, 1}2k2 .

We now show that Pr[b′ = b] ≥ 1.5 · 2−2k2 . It holds that E[δ|z = b] ≤ ε+ negl(t1) < ε+ 1
8p(t1) . On

the other hand, by (12) and (14) we have E[δ|z 6= b] ≥ ε+ 1
2p(t1) . By the Chernoff bound and the

choice of N = p(t1)3, we then have

Pr[b′ = b|z = b] = Pr

[
δ < ε+

1

4p(t1)

∣∣∣∣z = b

]
≥ 1− exp(−Ω(p(t1))) = 1− negl(t1),

and

Pr

[
δ ≥ ε+

1

4p(t1)

∣∣∣∣z 6= b

]
≥ 1− exp(−Ω(p(t1))) = 1− negl(t1).

The latter inequality then implies that Pr[b′ = b|z 6= b] ≥ (1 − negl(t1))2−2k2 . Combining these
observations with (16) yields

Pr[b′ = b] ≥ (2− negl(t1))2−2k2 ≥ 1.5 · 2−2k2 ,

which contradicts (13), as desired.

Based on Lemma 9, we can now work under the assumption that the event E holds and
show (11). First, combining Lemma 3, (14), and the definition of E, we have that

H̃∞(fb(X)|E,CRS) = H̃∞(X|E,CRS) ≥ k′ − 2k2 − 1 ≥ k + 2k2 + 3nγ

H̃∞(fb(Y )|E,CRS) = H̃∞(Y |E,CRS) ≥ k′ − 2k2 − 1 ≥ k + 2k2 + 3nγ .

As a result, by Lemma 2 it holds that with probability at least 1 − 2−n
γ

= 1 − negl(t1) over the
fixing CRS = crs it holds that

H∞(fb(X)|E,CRS = crs),H∞(fb(Y )|E,CRS = crs) ≥ k + 2k2 + 2nγ . (15)

For the remainder of the proof, we fix such a good choice CRS = crs. According to the definition
of cnmExt, in order to prove that (11) holds it is now enough to show that for every size-poly(t2)
distinguisher A′ we have

|Pr[A′(Ext(fb(X), fb(Y )), SideInfo,AUX, crs) = 1|E]

− Pr[A′(U1,SideInfo,AUX, crs) = 1|E]| ≤ ε+ negl(t1), (16)

where
SideInfo = (h(X), h(X), h(Y ), h(Y ), fh(X)‖h(Y )(X), fh(X)‖h(Y )(Y )).
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Note that X and Y become independent under E and crs when we fix h(X)‖h(Y ) = b = b1‖b2
and h(X)‖h(Y ) = b′ = b′1‖b′2 for b 6= b′. Since the output length of h is k2, by (15) and Lemmas 1
and 2 we have

H∞(fb(X)|E,CRS = crs, h(X) = b1, h(X) = b′1) ≥ k + nγ , (17)

H∞(fb(Y )|E,CRS = crs, h(Y ) = b2, h(Y ) = b′2) ≥ k + nγ , (18)

with probability 1− negl(t1) over the choices of b and b′. Under E and the good fixings CRS = crs,
h(X)‖h(Y ) = b, and h(X)‖h(Y ) = b′, the inequality in (16) follows if we show that

Ext(fb(X), fb(Y )), fb(X), fb′(Y ) ≈ε U1, fb(X), fb′(Y ), (19)

because (fb′(X),AUX) can be written as a (possibly inefficient) randomized function of fb(X) only.
Since fb(X) and (Y, fb′(Y )) are independent under the conditionings above, and since Ext is an
strong average-case (k, ε)-extractor, (19) follows from (17) and the fact that

H̃∞(fb(Y )|E,CRS = crs, h(Y ) = b2, h(Y ) = b′2, fb′(Y )) ≥ k,

which in turn holds by (18) and Lemma 1, noting that fb′ contains a lossy function at a fixed index
and hence has image size at most 2n−ω = 2n

γ
. Since the fixings of CRS = crs, h(X)‖h(Y ), and

h(X)‖h(Y ) are good with probability 1− negl(t1), this implies (16) and concludes the proof.

5.2 Instantiations of Theorem 7

In this section, we instantiate Theorem 7 with the explicit statistical two-source extractors presented
in Section 2. Throughout this section, we set the following parameters

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

where λ is the security parameter. Then, the quasi-polynomial hardness of the DDH assumption
allows us to assume the existence of the following objects:

• A family H of (poly(t1), negl(t1))-collision-resistant hash functions h : {0, 1}n → {0, 1}k2 ,
where k2 = log λ · log log λ.

• A family of (t2, n, ω)-lossy functions F , where t2 ≥ 22k2 = t
ω(1)
1 and ω = n − nγ for some

constant γ ∈ (0, 1).

Using Bourgain’s extractor (Proposition 1), we immediately obtain the following corollary.

Corollary 6. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

there exists an explicit (poly(t1),poly(t1),poly(t2), k′ = 0.46n, ε = negl(t1), r = Ω(n1−γ))-non-
malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the CRS model.

Although Theorem 7 is stated for sources with the same min-entropy only, it can be easily
generalized to sources with different min-entropies. Using Raz’s extractor (Proposition 2), we
obtain the following corollary.
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Corollary 7. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

for all constants δ > 0 and 1 > c > γ there exists an explicit (poly(t1), poly(t1), poly(t2), k′1 =
O(nc), k′2 = (1/2 + δ)n, ε = negl(t1), r = Ω(nc−γ))-non-malleable extractor cnmExt : {0, 1}n ×
{0, 1}n → {0, 1} in the CRS model.

Finally, using the Chattopadhyay-Zuckerman extractor (Proposition 3), we obtain the following
corollary.

Corollary 8. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

for every constant 1 > c > γ there exists an explicit (poly(t1),poly(t1), poly(t2), k′ = O(nc), ε =
t1
−Ω(1), r = Ω(nc−γ))-non-malleable extractor cnmExt : {0, 1}n×{0, 1}n → {0, 1} in the CRS model.

6 A simple non-malleable extractor in the CRS model from nearly
optimal collision-resistant hash functions

In this section, we present a simple construction of a non-malleable extractor in the CRS model
against computationally bounded samplers and tamperings and against a computationally un-
bounded distinguisher that can be instantiated from families of nearly optimal collision-resistant
hash functions and high min-entropy information-theoretic non-malleable extractors. To be precise,
we have the following result.

Theorem 8. Suppose H is a family of (3t, 2β−1−m = negl(n))-collision-resistant hash functions
h : {0, 1}n → {0, 1}m, and suppose nmExt : {0, 1}m × {0, 1}m → {0, 1} is an explicit strong (m −
β − 2 log2 n, ε = negl(n), r = 1)-non-malleable extractor. Then, there exists an explicit (t, t,∞, k =
m − β + 1, ε = negl(n), r = 1)-non-malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the
CRS model.

Moreover, if nmExt is not strong, then cnmExt is a (t, t,∞,m− β + 1, ε = negl(n), r = 1)-non-
malleable extractor in the CRS model without auxiliary information.

Remark 1. Note that, in Theorem 8, the underlying nmExt for m-bit sources and the resulting
cnmExt for n-bit sources have similar min-entropy requirements. When n� m, this means that we
start with an extractor nmExt for m-bit sources with high min-entropy rate, and construct a new
extractor cnmExt for n-bit sources with very low min-entropy rate.

Theorem 8. We set CRS = H for H ← H and consider the function

cnmExt(x, y,H) = nmExt(H(x), H(y)).

For the sake of clarity, we present the proof for the case r = 1 only. The generalization to r > 1
tamperings is straightforward. Fix (k = m−β+1, t)-samplable sources (X,AUX, Y ) and size-poly(t)
deterministic tampering functions g1, g2 : {0, 1}n ×H → {0, 1}n. Our goal is to show that

∆(nmExt(H(X), H(Y ));U1|H, nmExt(H(g1(X,AUX, H)), H(g2(Y,H)))) = negl(n). (20)

Consider an arbitrary fixing H = h. Making use of the collision-resistance properties of H, with
probability 1− negl(n) over the fixing H = h it either holds that
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Pr[h(X) = h(g1(X,AUX, h))] = negl(n) (21)

or
Pr[h(Y ) = h(g2(Y, h))] = negl(n),

since either g1(·, aux, h) has no fixed points for any aux or g2(·, h) has no fixed points. We now
assume that g1(·, aux, h) has no fixed points for any aux, in which case (21) holds. The proof for
the case where g2(·, h) has no fixed points is analogous. Additionally, by Lemma 7 coupled with
Lemma 2, with probability 1− negl(n) over the fixing H = h we also have

h(X), h(Y ) ≈negl(n) V,W, (22)

where V,W ∈ {0, 1}m are independent random variables satisfying

H∞(V ),H∞(W ) ≥ m− β − log2 n.

After such a fixing, it now suffices to show that

∆(nmExt(h(X), h(Y ));U1|nmExt(h(X ′), h(Y ′)),AUX) = negl(n), (23)

where X ′ = g1(X,AUX, h) 6= X and Y ′ = g2(Y, h). We can see (h(X ′),AUX) and h(Y ′) as random-
ized functions of h(X) and h(Y ), respectively. In other words, there exist randomized functions A,
B, and C with shared randomness such that

nmExt(h(X), h(Y )), nmExt(h(X ′), h(Y ′)),AUX

∼ nmExt(h(X), h(Y )), nmExt(A(h(X)), B(h(Y ))), C(h(X)),

where Pr[A(h(X)) = h(X)] = negl(n). Therefore, using (22), in order to prove (23) it is enough to
show that

∆(nmExt(V,W );U1|nmExt(A(V ), B(W )), C(V )) = negl(n). (24)

By (22) and the properties of A, it also holds that Pr[A(V ) = V ] = negl(n). Therefore, we
can condition on the event A(V ) 6= V and invoke Lemma 4 with nmExt, V , and W (which stay
independent and have enough min-entropy after this conditioning) to conclude that (24) holds. The
last statement of Theorem 8 follows by an analogous proof with a non-strong nmExt.

Using the non-malleable extractor from Proposition 5 in the statement of Theorem 8, we im-
mediately obtain the following corollary.

Corollary 9. Suppose H is a family of (3t, 2β−1−m)-collision-resistant hash functions h : {0, 1}n →
{0, 1}m for β = c · m, where c > 0 is a small enough constant. Then, there exists an explicit
(t, t,∞, k = m−β+1, ε = negl(n), r = 1)-non-malleable extractor cnmExt : {0, 1}n×{0, 1}n → {0, 1}
in the CRS model.

Note that the hash output length m in Corollary 9 controls the min-entropy requirement of
cnmExt. In particular, if m = polylog(n), then we obtain a low-error two-source non-malleable
extractor for polylog(n) min-entropy.

The birthday bound tells us that the best possible security for a hash function with m-bit
outputs we can hope for is (t, t2/2m)-collision-resistant. In practice, there are several candidates for
which brute-force is the best possible attack. Among them are the widely deployed hash functions
SHA-256, SHA-512, SHA-3, and discrete logarithm (over elliptic curves) based constructions. Using
any of these hash functions in Theorem 8 allows us to obtain a practical low-error two-source non-
malleable extractor for sources with polylogarithmic min-entropy.
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