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Abstract

Privacy and machine learning are difficult to coexist due to their nature: parivacy should be kept from
others while machine learning requires large amount of data. Among several possible solutions to this
problem, Fully Homomorphic Encryption (FHE)[1, 2, 3, 4] has been a center of intensive researches in this
field. FHE enables linear operations of ciphertext. To take advantage of this property, many protocols
to achieve statistical operaions have been proposed. On the other hand, many of them are impractical.
Some of the approaches introduce cryptosystems that are not familiar. Moreover, most of their protocols
are approximation which might sensitively depend on our choice of parameters. In this paper, we propose
fast, simple, and exact privacy-preserving linear equation solver using FHE. Our two-party protocol is
secure against at least semi-honest model, and we can exactly calculate the model even without the
bootstrapping.

1 Introduction

Machine learning plays a momentous role in our society today. It is being applied to almost all fields of not only
science such as information science, biology, and physics, but also of industries, or even everyday comodity.
Among technologies where machine learning is used, cloud computing is one of the most intensive field of
study and application. While we can never doubt usefulness of the machine learning, it sometimes requires
reveal of sensitive information. For example, credit scoring is a growing trend in finance: in order to properly
score the user’s credibility, private data such as payment history, diploma, and career would be necessary.
Moreover, sometimes sharing of data is even prohibited by law. For example, patients’ information is not
allowed to share between two different hospitals. Therefore, to fully utilize the ability of machine learning, we
should develop the way to keep privacy preserved when these are proccessed. To tackle this problem, there
has been many protocols proposed. One of the most common choice is Homomorphic Encryption[l, 2, 3, 4],
which enables calculations of ciphertext without decrypting. The other possible choice is Yao’s Garbled
Clircuit. One can evaluate any circuit with this garbled circuit without revealing its input. In out paper, we
propose a simple and exact way to train the given data for Linear Regression, which is one of the most popular
statistical analysis. Our paper is organized as follows: In Sec.3 we introduce so-called Fully Homomorphic
Encryption, and also we review the linear regression and how to do this job in the privacy-preserved way in
Sec.4. Finally we introduce our protocol for the training phase.

2 Our Contribution

We propose a simple and exact way to implement privacy-preserving linear regression. There has been many
protocols which achieves the privacy-preserving linear regression[5, 6, 7]. On the other hand, they are either
complicated and even introduce an encryption scheme which is not used by majority of the community.
Our protocol is within the standard protocol and introduces no uncommon idea. Moreover, in many cases
those schemes are iterative such as gradient descent and Cholesky decomposition. This means their results are
approximation. However, our protocol is exact and can be performed in the reasonable time. Our experiment
shows that linear regression can be carried exactly even without bootstrapping.



3 Homomorphic Encryption

In this section homomorphic encryption, mainly focusing on so-called fully homomorphic encryption (FHE)
is introduced briefly. First its history and basic philosophy are explained, then one particular schemes by
Brakerski/Fan-Vercauteren (BFV or FV) scheme[9] is discussed in a more detail.

3.1 Brief Summary of (Fully) Homomorphic Encryption

History of homomorphic encryption can be traced back to Rivest in 1978 where he termed “privacy homo-
morphism” for homomorphic encryption[10]. In that paper he proposed the existence of some encryption
scheme with which ciphertext can be operated before decrypting it. Since then, the study of homomorphic
encryption has been one of the big area of cryptography. Until now, there has been many homomorphic en-
cryption schemes proposed such as RSA[11], ElGamal[12], Goldwasser-Micali[3], Paillier[4], and many more.
Those schemes are called partially homomorphic: if m; and mqy are plaintext in a plaintext space M and
c1 and co are corresponding ciphertext generated by an ecryption scheme Enc in a ciphertext space C, then
operations -, - are defined both in M and C respectively, and satisfy the following relation

Enc(my +m ma) = Enc(my) -« Enc(msg) = ¢1 - co. (1)

The operation - can be either addition or multiplication, but not both in partially homomorphic encryption
(PHE) schemes.

In 2009, Gentry proposed the first fully homomorphic encryption scheme in his PhD thesis[13], which
is based on ideal lattice. His construction of FHE is as follows: first somewhat homomorphic encryption
(SWHE) scheme is introduced. SWHE is an encryption scheme which allows the limited number of addition
and multiplication. Here the detail of the construction of SWHE is not discussed. But we should note that the
decryption would not work if we add or multiply too many ciphertexts. To tackle this problem, bootstrapping
is defined on SWHE scheme. Bootstrapping is a special technique which makes a noisy ciphertext less noisy.
This is done by applying to a noisy ciphertext a decryption circuit which is homomorphic.

Since Gentry’s blueprint, several variations of FHE have been proposed so far, and those schemes are
classified into three generations. The first generation include the original Gentry’s approach[13], and several
sophistications[14, 15, 16, 17].

The second generation includes Brakerski-Gentry-Vaikuntanathan (BGV) scheme[8], Brakerski/Fan -
Vaikuntanathan (BFV) scheme[9], and Cheon-Kim-Kim-Song (CKKS) scheme[18]. Theoretical difference
between the first generation and the second generation is that the first generation depends on ideal lattice or
integer for security while many of the second generation schemes uses Learing With Error (LWE) problem,
or its variant Ring LWE (RLWE) problem. Practical difference is that these schemes are much more efficient
than those of the first generations and in some cases it suffices only to run SWHE scheme, i.e., efficient so that
we do not need the bootstrapping for some problems. These second generation schemes are also practically
important since many homomorphic encryption libraries are based on these schemes.

The third scheme is based on Gentry-Sahai-Waters (GSW) cryptosystem[19]. It includes so-called FHEW/[20]
and so-called TFHE[21].

3.2 Example -BFV scheme—

As mentioned in the previous section, there are many variants of FHE scheme. But in the practical sense,
BGYV scheme[8] and BFV scheme[9] are mostly used. Therefore here we review BEV implementation. Here
only BFV scheme is discussed since we implement FHE using BFV scheme and difference between BGV
scheme and BFV scheme is inessential and the library we use in Sec,4.3 is based on BFV.

We first introduce basic notations which follow the original paper[9].

o We consider operations in the polynomial ring R = Z[z]/f(z) where Z[x] means a set of polynomial
with integer coefficient and f(x) is a monic irreducible polynomial with degree d. Usually f(z) = 2¢+1
with d = 2.

e An element of R is denoted by a € R, where we can view a as a vector in some sense since a =
thol a;z*. Addition, subtraction, and multiplication are defined as elementwise operations. The norm
is defined such that ||a| := max;{a;} which is called L> norm. Expansion factor dg is also defined as
or = max{|la-b/|a]bl;a,b e R}

o For an integer ¢, Z, == (—q/2,q/2]. R, is a subset of the polynomial ring R whose coefficient is in
Z4. For an integer a, [a], = a( mod ¢) and satisfies [a], € Z,;. For a € R, [a], is an element of the
polynomial ring R with each coefficient being [a;]4.



e For x € R, |z] is rounding to the nearest integer, |z] is rounding up and [z] rounding down.

o x denotes Gaussian probability distribution over integer Z?, and e + x denotes an element of R with
coefficients sampling from y. a <+ A where A is a set means a uniform sampling from A.

For encryption, we first set R, for ¢ € Z and define the plaintext space to be R; for ¢t € Z with ¢t < q.
A= |g/t].

SecretKeyGen(l)‘) : sample s <+ x and set a secret key sk = s
PublicKeyGen(sk) : sample a <— Ry, e < x and set a public key pk = ([—(a - s+ e)]q, a)
Encrypt(pk, m) : set a plaintext m € Ry, define pg = pk[0], p1 = pk[l]sample u, e, ez + x

(2)

create a ciphertext ct = ([po - u + e1 + Am]g, [p1 - u + e2],)

t .
Decrypt(sk, ct) : s = sk,define ¢o = ct[0], ¢; = ct[1], then calculate HWH
t

q

We can find the following property
Proposition ||x|| < B, then sufficient condition for correct decryption is

A
20rB* + B < 5 (3)

For a proof, see[9].

Addition and multiplication are defined as follows (we do not discuss them in detail, for detailed dis-
cussions, see the original paper[9]). Assume two plaintexts m!, m? and the corresponding ciphertexts
ct! = (¢, cb), ct? = (¢, c3).

Addition(ct', ct?) : et' + ct® = (¢} + ¢§, ¢1 + i)

PERTI 12 1, 42 1,2 1.2 1. .2 1. .2
Multiplication(ct', ct®) : ct' - ct” = (¢ - ¢§, ¢y - ¢t + €1 - €5, 1 - €F)

(4)
Addition is intuitive, but Multiplication is not. To make sense of it, consider Decrypt. There one has to
compute ¢y + ¢ - s = Am + v + qr. Therefore

(eg+er-s)(cg+ei-s)=(cp+e5)+(co-elter-cg) s+ (er-ci)-s’

5

:Ale.m2+... ()
where we can see elements of Multiplication as coefficient of each s®. As one can see, Decryption increases of
the size of ciphertext. To deal with this problem there is a technique called relinearlize, but we do not discuss
here. It is also important to note that both Addition and Multiplication increase “noise” v, and particularly
for Multiplication increment of noise is exponential.

4 Privacy-Preserving Linear Regression

In this section, we discuss the problem of linear regression. Manipulating data with privacy-preserving
manner dates back to Lindell and Pinkas in 2000[22]. After this seminal work, many protocals have been
introduced. It is not easy to classify every protocal into some classes since there are so many, but most of all
protocols adopt at least one of three techniques. One can split his data and share one part of the original
data with one server, and different part with different server. BGW/[23] is included in this group. Another
way is to use homomorphic encryption. The other way is to use Yao’s garbled circuit protocol (GCP)[24, 25]

First, few basics of linear regression are summarized. Next, several approaches to the linear regression
problem using homomorphic encryption are introduced. We also look at GCP. GCP is another possible choice
for implementing privacy-preserving linear regression. Finally, we propose a new scheme which is fast and
easy to implement

4.1 Basics of Linear Regression

Let us suppose we are given a data consisting of N independent variables (z1, 22, ,2x) and an output y.
From this data we want to relate the output to variables. One ansatz is to assume they are linearly related,
i.e., we assume

y = Bz + Baxg + -+ Byay + € (6)



where € is error. To relate properly we need more data: assume we are given a dataset consisting of D data,
ie., {(yl7 i1, T2 ,xin)Zgl}. We want to find a linear relation

D
Yi = Zﬁjxi,j + €. (7)
j=1

In the vector and matrix representation, (7) is equivalent to
y=XB+e, (8)

where (y); = vi, Xij = @i, (8): = Bi, (€); = ;. We next consider optimazation of 8. In the least square
method, we minimize the L? norm of the error €. In other words we should minimize

L(B) =y - XB, (9)

where the norm of € is represented as a function of 3, i.e., £(8), and it is called the object function. To find
the minimum is easy since we can differentiate the object function and obtain

oL
—=-2XT(y-X 10
5 (v XB) (10)
and the optimal 3 is given by 8 = (X TX )_1 XTy. So essentially the linear regression is to solve an inverse
matrix XX and multiply it by Xy.

If we impose a condition that a norm of 3 should not be large, this problem is called ridge regression.
The redge regression problem is solved easily just by adding another term in (9) such that

Lr(B) =y — XB)> + A |8 (11)

where the second term is a penalty for large 3. The optimal 3 is given by 3 = (XTX + )\1)_1 XTy, where
1 is an unit matrix. Therefore in either linear regression or ridge regression, what we should do is first to
calculate an inverse matrix and then to multiply it by some vector. Notice that with FHE multiplication is
done easily, on the other hand, matrix inversion is not trivial. Therefore many proposed schemes of privacy
preserving mainly try to solve this problem.

4.2 Proposed Scheme: Masking Matrix Method
4.2.1 Informal Description of the Method

When one tries to send message, it is possible that he adds some random number so that no one can guess
it. Also in linear regression using homomorphic encryption, this trick is sometimes used such as[5, 7]. Not
only in the context of homomorphic encryption for linear regression, but also many other context[27, 28].
The basic idea is simple: assume Alice want to calculate @ which satisfies A3 = b but she cannot compute
it. Bob can compute it but Alice does not want Bob to know the matrix A and the vector b. Then Alice
can generate some random invertible matrix R and some random vector r. She compute AR and b + Ar
and send them to Bob. Bob cannot extract any information of A, b from what he gets since they are masked.
He, then calculates (AR)~!(b+ Ar), which is equivalent to R~'A~'b+ R~'r. Therefore Alice can get A~'b
by multiplying R from the left side followed by the substruction by . Alice outsources difficult matrix
inversion to Bob while the original matrix is kept secret. Combination of FHE and this method gives us a
fast, easy-to-implement, and exact method of linear regression.

4.2.2 Model

Our architecture follows that of [5, 7], which means we assume the following entities,

o Data Provider (DP): it is made up of m users. ith user holds dataset ¢ which is denoted by DO; =
(i1 - xiN,yi). Thereis no need for physical existence of DP, i.e., we do not need any institution which
manages users’ information, rather we just group people who want to use some service and therefore
have to send their information.

e Machine Learning (ML) Server: ML server collects the information from DP and is resposible for
calculating the model. In the example shown above, Alice plays a ML server.

e Crypto Service Provider (CSP): CSP is responsible for generating a set of public key and secret key. CSP
also coorperate ML server for calculating the model which Bob did in the above-mentioned example.
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Figure 1: A schemetic figure of training phase. For the meaning of each notation, refer to Sec.4.2.4
4.2.3 The Threat Model

For a sake of privacy, both the ML server and the CSP should not learn anything other than what is revealed
by the linear regression. In the following, first we assume those two parties are honest-but-curious, i.e., they
follow the algorithm, but they also try to extract information from what is given to them. Therefore the
algorithm in Sec.4.2.4 is secure only against honest-but-curious entities.

However, the ML server and the CSP can be malicious. We assume the following cases as [5] does: the
ML server might use only dataset partially given by DP to extract some information. Also the ML server
deliverately executes wrong calculations. The CSP can make mistakes in its calculation intentionally as well.
Morever, it decrypts ciphertexts wrongly. We address how to deal with these behaviors in the subseqent
section.

We do not assume the ML server and the CSP collude and we assume key distribution is properly done
so that everyone has a set of correct public key and secret key.

4.2.4 Training Phase

First let us consider the training phase: make a proper model 3 which minimizes £(3) in (9) or £,(3) in
(11). We take the following step:

o DP first encrypts data and sends it to the ML server.

DP can make a choice. It can send a raw data, i.e., each DO; just sends (w1, - ,%i N, ¥i),_,» OF it can also
process its data for better performance, i.e., DO; sends an encrypted matriz Enc(z} z;) and an encrypted
vector Enc(z}y;), namely

Enc(z;12:1) Enc(x;ix;2) --- Enc(ziizin) Enc(z;,1y;)

T EHC(I7;721‘1‘71) EHC(I@Q.’,E@Q) cee EHC($¢72$17N> T EHC(JI@QZ%)
Enc(x; x;) = . ) . ,Enc(x; y;) = . . (12)

Enc(x; nx;1) Enc(x; yxi2) --- Enc(z; nzin) Enc(x; nyi)

e The ML server constructs a matrix and a vector for the linear regression while they are encrypted.

If DP sends a raw data, then the ML server first constructs Enc(X) and calculates Enc(X T X) and same for
Enc(XTy). If DP sends a processed data, then the ML server just sums up all the matrices and vectors, i.e.,
Enc(X'X) = Y, Enc(z}®;) and Enc(X"y) = >, Enc(z}y;) using homomorphic property of encryption
scheme.

e The ML server masks the original matrix and vector and sends them to CSP

The ML server invents a random invertible matrix R and a random vector r and calculates Enc(XT X R)
and Enc(X Ty + XTXr) and sends to CSP. At this stage the ML does not know anything about the original
information and CSP even after receiving those matrix and vector, does not know anything about the original
information since they are masked by random matrix and vector. Therefore unless the ML server and CSP
collude, this is secure.

e CSP decrypts what it receives from the ML server and calculates the model which is not an actual
model we want, and sends this model to the ML server



CSP decrypts and calculates (XTXR)"}(XTy + XTXr) = R-Y(XTX) 'y + R~!7 and sends it to the ML
server after encrypting it.

e The ML server multiplies what it receives from CSP by R from the left followed by subtracting 7, which
gives (XTX)71XTy.

4.2.5 Security

Both the training scheme and the evaluation scheme are secure against honest-but-curious entities, In this
section we try to extend these schemes to cover even malicious entites. Again we assume the ML server and
CSP can be malicious, but they do not collude.

In the training phase, the possible senarios for the malicious ML server are

e the ML deliberately outputs a wrong calculation
e it does not pick all the information given by DP to extract some information

These misbehaviors can be detected by the following test: DP prepares a “dummy” training set and send it
to the ML server. The dummy data is constructed such that for N dimensional data, i.e., the data with N
variables, threre are N data which means DO, (i = 1,--- , N). For ith DO, the data is as follows

DO/L':(O;'.'7xi,i:mi7"'307yi) (13)

Only ith variable is a nonzero arbitrary number and y; is also arbitrary. Using DO the ML server calculates
a matrix and a vector as in Sec.4.2.4 and sends the masked matrix to CSP. Notice that only when the ML
properly calculate XX without dropping any information XTX becomes an invertible matrix. Then CSP
decrypts the matrix and calculate the determinant of it. Then if the determinant is zero, which means the
ML server cannot properly calculate the matrix so CSP can reject it.

In the scoring phase, the ML server also can be malicious by sending a different model. On ther other
hand, in terms of security this assumption is meaningless since we assume the ML server aims at extracting
DQ’s information by its misbehaviors, but sending a different model reveals nothing.

CSP can be malicious as well, and we assume CSP can produce a wrong result. Even if CSP is malicious,
CSP cannot obtain any personal information from what it has been given since the matrix and the vector
it receives are just random: suppose X' X R € GL(N,Z) which means this N x N matrix is invertible and
XTy + XTXr € ZV. Random matrix and vector are defined such that there exists an integer M and for
any integer m € [—M, M] each component of them, i.e., R, ;, 7 satisfy

1 1
Pr[R;; =m] = —,Pr[ry =m] = M

(14)
It is easy to see that for sufficiently large M, for any matrix A and any vector a with each component in the
interval [—M, M],

N2
Pr[XTXR = A] =Pr[R= (XTX)"'4] = (1)
2M (15)
1\N
PrXTy + XT"Xr =a] =Pr[r = (XTX) (a - XTy)] = (W)
Therefore this method is secure in terms of privacy even against a malicious CSP. Moreover, one can even
detect a malicious CSP by the following trick. DP prepares a “dummy” training set and send it to the ML
server. The dummy data is constructed such that for NV dimensional data, i.e., the data with N variables,
threre are N data which means DO;(i =1,--- ,N) and rank(X) = N. From this detaset one can construct
the model 3 such that y — X3 = 0. The ML server follows the scheme and sends the masked matrix and
the masked vector to CSP. Finally the ML server obtain the model which is encrypted Enc(83). Then the
ML server calculates y — X3 and let us denote this answer by s. Although the ML server only has Enc(s),
it can determine if s is 0 or not. The ML server generate random scalars, vectors, matries and multiplies by
s from the right. Then the ML server can detect the malicious CSP when if all the results are not same.

4.3 Experiment

In this section we look at performance of each method.
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4.3.1 Gradient Descent

To compare MMM’s performace with the existing method, we first consider the gradient descent. It is
particularly efficient if a matrix considered is sparse. Staring from an initial value 8%, using (10) with
learning rate 0 the model can be updated as follows:

gl — gl—1l | 5xT (y ~ Xg[H]) . (16)

Particularly, Esperanca et al. studied gradient descent method[26]. Mathematically, with suitable choice of
the initial value Bl% and learing rate §, a convergence to the optimal result is assured. Suitable choice of §
means § € (0,2/(S(XTX))) where S(A) is the spectral radius (difference between the largest eigenvalue and
the smallest eigenvalue) of operator A. In [26], authors found oscillatory nature of Bk,

. k
ﬁ[k] _ Z(_l)n+1 (k > 5n(XTX)n71XTy (17)

—-—n

Using (17), we can accelerate the gradient descent as one can find in [26] First, even before using FHE we
should look at convergence of sequence B¥! which this method outputs. We generate seven datasets whose
dimension is five, i.e., (21, -+ ,Zis5, yi)z:y Figure.2 shows convergence of the model Bl¥]

From Fig.2 we can understand performance is sensitive to the learning rate § and when 6 > 3.0 x 1073
the model diverges, which agrees with theory(for example, [29]). We also introduce Nesterov’s accelerated
gradient (NAG)[30]. In NAG, gradient descent is modified such that

sl — glh=11 4 5xT (y _ Xﬂ[k—u)

(18)
B — glh-1 _ (sm _ s[k—l])
This method is useful particularly when the simple gradient descent exhibit slow convergence

From this result, we choose to use NAG for the calculation. The implementation of linear regression
with FHE is executed using PySEAL[31]. In our implementation, around 4~5 iterations are possible and the
following is the result of our experiment. Here our dataset is made up of eight data whose dimension is five,
ie, N=8 D =5.

To obtain Fig.4 and Fig.5, we set parameters § and 1 to be D/tr(X*X) and —0.5, respectively. Although
division is not supported by FHE, approximation is possible by Newton’s method. Figure.5 suggests that our
naive implementation using PySEAL allows only 4 ~ 5 iterations, which might not be sufficient. Therefore it
is highly expected that if other ways to implement gradient descent, or other libraries such as HElib enable
more iterations, then gradient descent would be a good candidate for achieving linear regression.

Moreover, as is evident from Fig.8, the more dimensions the system has, the more complicated calculation
becomes and time consumption is lenearly denpendent on the dimension of dataset.

4.3.2 Matrix Masking Method
Finally we explore the validity of MMM. As shown in Fig.9, the result obtained by MMM is very acurate and



w woa A

o U o u

! L L L
X

Error Norm
N
n
X

Figure 4: Plot of error norm |y — X3|? for 15 datasets.

12

14

10
X
9<
8 x x
g 71
S
c 61 X X
—_
O s
_
w
4<
s X
X
X
21 x
: . . . . . . . .
2 3 4 5 6 7 8 9 10

Dimension of dataset

5.0 [ ] e

4.8 A

4.6

4.4

# of iteration

4.21

401 @€ @ o @ o o o e o6 o o o [ ]

2 4 6 8 10 12 14

Figure 5: Plot of the number of iteration for each train-

ing phase

Number of iteration

1 T T T T T T T

2 3 4 5 6 7 8 9 10
Dimension of dataset

Figure 6: Plot of the average error norm |y — X 3|? for Figure 7: Plot of the average number of iteration for

datasets. with 2 ~ 10 dimension of data.

each training phase with 2 ~ 10 dimension of data.

X

Figure 8: Plot of the average time for executing the program for given datasets with 2 ~ 10 dimension of

data

4

5

6

7

8

10

Dimension of dataset



le—11

200+

1501

100 -

Error norm
N
X
Time[s]

50 4 x

: : . : . : . . : 2 3 4 5 6 7 8 9 10
Dimension of dataset

Dimension of dataset

Figure 10: Plot of the average time for executing the
program for given datasets with 2 ~ 10 dimension of
data

Figure 9: Plot of the average error norm |y — X 3|? for
datasets. with 2 ~ 10 dimension of data.

almost exact. Figure 10 implies time needed to execute linear regression by MMM is quadratically increasing.
This can be explained as follows: since MMM requires matrix multiplication with matrix, therefore one has
to calculate D? elementwise multiplications. Compared with Fig.8, it seems that gradient descent is faster
particularly when dimension is big, but we should take into account the fact that gradient descent requires
many iteration and possibly bootstrapping.

5 Discussion

Here we discuss practicability of each method: Gradient descent and Matrix Masking Method.

Gradient descent: gradient descent is the simplest method we can use for the linear regression. This
means implementation is straightforward. It is also secure against at least honest-but-curious entities. How-
ever, we should care about the implementation of FHE scheme since Sec. 4.3.1 shows naive implementation
using PySEAL fails to obtain satisfactory results. Moreover, even if some other libraries can obtain good
result, our experiment suggests that bootstrapping should be used and it might take a long time to finish
calculation. Collection of data also consumes noise budget since if local does not calculate encrypted matrix
and encrypted vector locally, then the corresponding server has to calculate them instead. If the number of
datasets is large, then just preparing encrypted matrix and vector take much of noise budget, which might
lead to faiure in estimation of the model.

MMM: implementation of MMM is simple and this method avoids the most difficult part of the linear
regression, inversion of matrix. Since CSP calculate inversion of matrix which is not encrypted, the result
is exact and speedy calculation is expected. This method is also secure against at least honest-but-curious
entites. Although one does not have to care about matrix inversion, this does not mean we can collect data
from arbitrary number of data owners since addition consumes noise budgets although it is very small.

’ \ Method \ Computational Complexity \ Security Limitation of Calculation
Cramer’s formula | Exact O(N3N!) semi-honest there is
Gradient Descent | Iterative O(N?) semi-honest there is

GC Tterative O(N?)* semi-honest No limitation
MMM Exact X semi-honest A
Table 1: Table of characteristics of each method introduced.
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