
A preliminary version of this paper appears in the proceedings of the 11th International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE 2020). This is the full version.

Leakage-Resilient Authenticated Encryption from
Leakage-Resilient Pseudorandom Functions

Juliane Krämer and Patrick Struck

Technische Universität Darmstadt, Germany
{jkraemer,pstruck}@cdc.tu-darmstadt.de

Abstract. In this work we study the leakage resilience of authenticated encryption schemes. We
show that, if one settles for non-adaptive leakage, leakage-resilient authenticated encryption schemes
can be built solely from leakage-resilient pseudorandom functions.
Degabriele et al. (ASIACRYPT 2019) introduce the FGHF′ construction which allows to build
leakage-resilient authenticated encryption schemes from functions which, under leakage, retain both
pseudorandomness and unpredictability. We revisit their construction and show the following. First,
pseudorandomness and unpredictability do not imply one another in the leakage setting. Unfor-
tunately, this entails that any instantiation of the FGHF′ construction indeed seems to require a
function that is proven both pseudorandom and unpredictable under leakage. Second, however, we
show that the unpredictability requirement is an artefact that stems from the underlying compo-
sition theorem of the N2 construction given by Barwell et al. (ASIACRYPT 2017). By recasting
this composition theorem, we show that the unpredictability requirement is unnecessary for the
FGHF′ construction. Thus, leakage-resilient AEAD schemes can be obtained by instantiating the
FGHF′ construction with functions that are solely pseudorandom under leakage.

Keywords: AEAD · Leakage Resilience · Side Channels · FGHF′

1 Introduction

Authenticated encryption schemes with associated data (AEAD) are fundamental cryptographic prim-
itives which enable Alice to send a ciphertext to Bob such that (1) Eve does not learn anything about
the underlying message and (2) Bob can detect any manipulation of the ciphertext. In recent years, the
study of AEAD schemes has received a lot of attention, for instance through the recent CAESAR com-
petition [9] or the ongoing NIST standardization process on lightweight cryptography [25]. While AEAD
schemes are well studied in the leak-free setting, their leakage resilience is not that well established,
although several schemes [5, 12, 14, 15] which are designed to be secure in the presence of leakage have
been proposed.

A notable work regarding leakage resilience of AEAD schemes is the work by Barwell et al. [5].
They show that the Encrypt-then-MAC paradigm [7] yields a leakage-resilient AEAD scheme if both the
encryption scheme and the MAC are leakage-resilient. They also introduce the corresponding security no-
tions. Recently, Degabriele et al. [14] refined this result by introducing the FGHF′ construction, showing
that leakage-resilient encryption schemes and MACs can be build from fixed-input-length functions which
are both pseudorandom and unpredictable under leakage. While leakage-resilient pseudorandomness is
well established in the literature, leakage-resilient unpredictability has been defined by Degabriele et al.
specifically for the FGHF′ construction. This security notion allows the adversary to obtain leakage for
the input of which it predicts the output.1 This raises the natural question:

What is the relation of pseudorandomness and unpredictability under leakage?

While pseudorandomness and unpredictability imply one another in the leak-free setting, Degabriele
et al. claim that the notions are incomparable under leakage. We confirm their claim by providing two
constructions, each being secure with respect to one notion while being insecure with respect to the other.
This seems to entail that any instantiation of the FGHF′ construction indeed requires a function that is
proven both pseudorandom and unpredictable under leakage. Given that leakage-resilient unpredictability
is a new security notion, our separation result gives rise to another question:

Can leakage-resilient AEAD schemes be built solely from leakage-resilient pseudorandom functions?

1 Note that the same does not work for pseudorandomness. Leakage of a single output bit allows to easily
distinguish the function from a random function.

Surprisingly, we answer this question in the affirmative. We demonstrate that the necessity of leakage-
resilient unpredictability stems from the composition theorem of Barwell et al. [5]. As observed in [14],
this composition theorem imposes a security notion towards the MAC that prohibits constructing it
from a leakage-resilient pseudorandom function. However, the composition theorem aims for arbitrary
encryption schemes and MACs, while the encryption scheme and the MAC of the FGHF′ construc-
tion [14] exhibit a special structure. Thus, we show that recasting the composition theorem from [5] for
these encryption schemes and MACs, allows to relax the security notion of the MAC such that it can
be constructed from a leakage-resilient pseudorandom function. This comes at the cost of imposing a
stronger security notion for the encryption scheme. However, it turns out that the encryption scheme
underlying the FGHF′ construction — without any modification — achieves this stronger notion.

1.1 Our Contribution

Our contribution is threefold.
1) We show that, in contrast to the leak-free setting, pseudorandomness and unpredictability are not

equivalent under leakage, thereby confirming a conjecture made in [14].
2) We recast the N2 composition theorem in the leakage setting by Barwell et al. [5], for a certain class

of encryption schemes and MACs. We show that, in this case, other security notions for the encryption
scheme and the MAC are sufficient to build leakage-resilient AEAD schemes. More precisely, we can
weaken the security notion for the MAC at the cost of strengthening the security notion for the encryption
scheme.

3) We revisit the FGHF′ construction [14] with respect to our recast composition theorem. We show
that the encryption part (without any modification) achieves this stronger security notion. Regarding
the MAC, we show that leakage-resilient pseudorandomness is sufficient to achieve the weaker security
notion imposed by our recast composition theorem. This completely removes the necessity of leakage-
resilient unpredictability to instantiate the FGHF′ construction, as opposed to the initial work [14]. Since
proving leakage-resilient unpredictability turned out to be a main challenge for Slae [14] (a sponge-based
instantiation of FGHF′), this is an important contribution towards building leakage-resilient AEAD
schemes from simpler building blocks.

1.2 Related Work

The first leakage-resilient AEAD scheme RCB was proposed in [3] and broken shortly afterwards [2].
Another series of works propose leakage-resilient authenticated encryption schemes [10–12, 19, 21], sym-
metric encryption schemes and MACs [26]. In contrast to our setting, these works assume that only
some components leak while the other components are assumed to be leak-free, for instance by using
traditional countermeasures like masking [13]. Some of them also assume that the leakage is simulatable,
an assumption that is not beyond dispute [22,28]. Functions and permutations which are pseudorandom
under leakage have been proposed for instance in [14, 16, 18, 29, 30]. Functions which are unpredictable
under leakage have only been studied in [14] which also defined this notion.

1.3 Organization of the Paper

Section 2 provides the necessary background required for this work. In Section 3 we provide the motivation
for our work by showing that, in the leakage setting, pseudorandomness and unpredictability of functions
do not imply one another. We recast the composition theorem for the N2 construction by Barwell et
al. [5] in Section 4. In Section 5, we show that the FGHF′ construction [14] achieves the security notions
demanded by our recast composition theorem.

2 Preliminaries

2.1 Notation

We use the code-based game-playing framework by Bellare and Rogaway [8]. Each game consists of an
initialize procedure, a finalize procedure, and several other procedures. The initialize procedure sets up
the game and its output is given as input to the adversary which was oracle access to the other procedures,
i.e., it can invoke them on the corresponding inputs and receives the output of the procedure in return.
Eventually, the adversary will terminate generating some output which is given as input to the finalize

2

procedure. The output of the finalize procedure determines whether the adversary has won the game or
not. In this work we mainly use distinguishing games, in which the adversary has to determine a secret
bit, i.e., the finalize procedure simply checks whether the adversary has guessed the correct bit or not.
For an adversary A and a game G, we write GA ⇒ x to denote that the output of G, when interacting
with A, is x. Likewise, we write AG ⇒ x to denote that A, when playing G, outputs x.

2.2 Primitives

An authenticated encryption scheme with associated data Aead = (E, D) is a pair of efficient algorithms
such that:

- The deterministic encryption algorithm E : K × N × A ×M → {0, 1}∗ takes as input a secret key
K , a nonce N , associated data A, and a message M to return a ciphertext C .

- The deterministic decryption algorithm D : K×N ×A× {0, 1}∗ →M∪{⊥} takes as input a secret
key K , a nonce N , associated data A, and a ciphertext C to return either a message in M or ⊥
indicating that the ciphertext is invalid.

We denote the key space, the nonce space, the associated data space, and the message space of the scheme
by K, N , A, andM, respectively. We assume that the algorithms are never queried on input not within
these sets. A symmetric encryption scheme is analogously defined with the difference that its input does
not admit associated data. In the security games, this entails that A is implicitly set to the empty string.
In this work we focus on a specific class of encryption schemes, which we call mirror-like. These are
encryption schemes where the encryption algorithm is an involution. Such schemes are fully determined
by their encryption algorithm. Examples for mirror-like encryption schemes are the generic encryption
scheme underlying the FGHF′ construction [14] as well as the sponge-based encryption schemes used in
the AEAD schemes Slae [14] and Isap [15]. Besides these concrete schemes, instantiating block ciphers
with encryption modes like CFB, OFB, and CTR also yield mirror-like encryption schemes.

A message authentication code Mac = (T, V) is a pair of efficient algorithms with an associated key
space K, domain X , and tag length t such that:

- The deterministic tagging algorithm T : K × X → {0, 1}t takes as input a key K and a value X to
return a tag T of size t.

- The deterministic verification algorithm V : K×X ×{0, 1}t → {>,⊥} takes as input a key K , a value
X , and a tag T to return either > indicating a valid input or ⊥ otherwise.

It is required that for any K ,X ∈ K×X , if T ← T(K ,X) then V(K ,X ,T) = >. Within this work we only
consider canonical MACs which are implicitly defined by the tagging algorithm T, i.e., the verification
algorithm recomputes the tag of the message and accepts if the given tag equals the recomputed tag. We
write Mac[F] to denote the canonical MAC built from a function F .

2.3 Leakage Model

Our leakage model follows [5,14], building on leakage resilience as defined in [17]. The model follows the
only computation leaks information assumption [23], i.e., only data that is processed during computation
can leak information. For instance, encrypting a message with a certain key can not leak information
about another key. Leakage is modelled by (deterministic and efficiently computable) functions from some
predetermined set L. Leakage of composite constructions is the composition of the underlying leakage
functions. Thus, if primitive C is a composition of primitives A and B with leakage sets LA and LB ,
then LC = LA × LB is the leakage set of C. In this work we focus on non-adaptive leakage, which we
model by restricting L to be a singleton. Since the leakage depends entirely on the concrete device, the
non-adaptive leakage model is suitable in practice, also argued by several other works [1, 16,18,29,31].

We define the leakage resilience security notions that we need throughout this work. Following the
blueprint by Barwell et al. [5], all notions are defined via security games where the adversary has access to
one or more leakage oracle(s) which leak and one or more challenge oracle(s) which do not leak. According
to [6], the former represent the power of the adversary while the latter model its goals in breaking the
security of the scheme. Regarding the queries by the adversary, we follow [5] and say that an adversary
forwards and repeats a query if it repeats a query across different oracles and the same oracle, respectively.
For instance, querying the same tuple to the leakage encryption and challenge encryption is considered
forwarding as is querying the output of an encryption oracle to a decryption oracle.

3

Non-Adaptive Leakage. All security notions below are defined following the style put forth in [5]. In
particular, the permitted leakage functions are given by a set of leakage functions L. While all our proofs
hold in the general setting of adaptive leakage, we emphasise that we focus on non-adaptive leakage, i.e.,
any leakage set should be thought of as a singleton. This stems from the fact that an instantiation of
the FGHF′ construction requires a leakage-resilient pseudorandom function which is unachievable in the
adaptive leakage setting as discussed in [31], unless further restrictions are imposed on the leakage.

2.4 Security Notions

Leakage-Resilient Encryption. Regarding the restrictions of nonce selection by the adversary, we
define semi-nonce-respecting adversaries. These are adversaries which are nonce-respecting, i.e., they
never repeat a nonce, with respect to the challenge encryption oracle, but not with respect to the leakage
encryption oracle. This follows the recent definition of misuse-resilience given in [4] and used for instance
in [20]. Regarding the decryption oracles, note that there is no restriction imposed on how the nonces
are selected.

For authenticated encryption schemes with associated data, we aim at leakage-resilient authenticated
encryption (LAE) security. It is the counterpart of the security notion given by Rogaway [27], recast in
the leakage setting by Barwell et al. [5].

Definition 1 (LAE Security) Let Aead = (E, D) be an authenticated encryption scheme with associ-
ated data and the game LAE be as defined in Fig. 1. For any nonce-respecting adversary A that never
forwards or repeats queries to or from the oracles Enc and Dec and only makes encryption and decryption
queries containing leakage functions in the respective sets LAE and LV D, describing the leakage sets for
authenticated encryption and verified decryption, its corresponding LAE advantage is given by:

AdvLAE
Aead(A,LAE ,LV D) = 2 Pr

[
LAEA ⇒ true

]
− 1 .

Game LAE

procedure Initialize

b←$ {0, 1}; K ←$K

procedure Enc(N ,A,M)

if b = 0

return C ′ ←$ {0, 1}|E(K ,N ,A,M)|

return C ← E(K ,N ,A,M)

procedure Finalize (b′)

return (b′ = b)

procedure Dec(N ,A,C)

if b = 0

return ⊥
return M ← D(K ,N ,A,C)

procedure LEnc(N ,A,M , L)

Λ← L(K ,N ,A,M)

C ← E(K ,N ,A,M)

return (C , Λ)

procedure LDec(N ,A,C , L)

Λ← L(K ,N ,A,C)

M ← D(K ,N ,A,C)

return (M , Λ)

Fig. 1: Game used to define LAE security.

For symmetric encryption schemes we require IND-CPLA security as defined in [5], which corresponds
to the classical notion of IND-CPA security enhanced with leakage.

Definition 2 (IND-CPLA Security) Let Se = (E, D) be a symmetric encryption scheme and the game
INDCPLA be as defined in Fig. 2. For any semi-nonce-respecting adversary A that never forwards or
repeats queries to or from the oracle Enc and only makes encryption queries containing leakage functions
in the set LE, its corresponding IND-CPLA advantage is given by:

AdvINDCPLA
Se (A,LE) = 2 Pr

[
INDCPLAA ⇒ true

]
− 1 .

4

The N2 composition theorem in [5] requires a stronger variant called IND-aCPLA, where the ‘a’ stands
for augmented. In this notion, the adversary also gets access to a leakage decryption oracle. The queries,
however, are heavily restricted as it can only be queried on queries forwarded from the leakage encryption
oracle LEnc.

Game INDCPLA

procedure Initialize

b←$ {0, 1}; K ←$K

procedure LEnc(N ,M , L)

Λ← L(K ,N ,M)

C ← E(K ,N ,M)

return (C , Λ)

procedure Enc(N ,M)

C ← E(K ,N ,M)

if b = 0

return C ′ ←$ {0, 1}|C |

else

return C

procedure Finalize (b′)

return (b′ = b)

Fig. 2: Game used to define IND-CPLA security.

Leakage-Resilient MACs and Function Families. For MACs, we target essentially the same security
notion as in [5]. The difference is that we allow the adversary to forward queries between its leakage
oracles, while [5] does not allow any forwarding from its leakage tagging oracle but forwarding from its
leakage verification to its challenge oracle. Since the notions are very much akin, we write SUF-CMLA
for our notion and SUF-CMLA∗ for the one from [5].

Definition 3 (SUF-CMLA Security) Let Mac = (T, V) be a message authentication code and the game
SUFCMLA be as defined in Fig. 3. For any adversary A that never forwards queries to or from the oracle
Vfy, and only queries leakage functions to its oracles LTag and LVfy in the respective sets LT and LV ,
its corresponding SUF-CMLA advantage is given by:

AdvSUFCMLA
Mac (A,LT ,LV) = 2 Pr

[
SUFCMLAA ⇒ true

]
− 1 .

Game SUFCMLA

procedure Initialize

b←$ {0, 1}; K ←$K

procedure Vfy(X ,T)

if b = 0

return ⊥
else

v ← V(K ,X ,T)

return v

procedure LTag(X , L)

Λ← L(K ,X)

T ← T(K ,X)

return (T , Λ)

procedure LVfy(X ,T , L)

Λ← L(K ,X ,T)

v ← V(K ,X ,T)

return (v, Λ)

procedure Finalize (b′)

return (b′ = b)

Fig. 3: Game used to define SUF-CMLA security.

For function families, we define both pseudorandomness and unpredictability under leakage. The former
is well established in the literature, the latter was only recently introduced [14].

5

Definition 4 (LPRF Security) Let F : K × X → {0, 1}t be a function family over the domain X and
indexed by K, and the game LPRF be as defined in Fig. 4. For any adversary A that never forwards or
repeats queries to or from the oracle F and only queries leakage functions in the set LF , its corresponding
LPRF advantage is given by:

AdvLPRF
F (A,LF) = 2 Pr

[
LPRFA ⇒ true

]
− 1 .

Removing the leakage oracle LF restores the classical notion of PRF security. We denote the corresponding
game analogously to the other games by PRF (dropping the L for ‘leakage’). We will use this game for
our separation example in Section 3.

Game LPRF

procedure Initialize

b←$ {0, 1}; K ←$K

procedure LF(X , L)

y ← F (K ,X)

Λ← L(K ,X)

return (y, Λ)

procedure F(X)

if b = 0

return y ←$ {0, 1}t

else

return F (K ,X)

procedure Finalize (b′)

return (b′ = b)

Fig. 4: Game used to define LPRF security.

Definition 5 (LUF Security) Let F : K × X → {0, 1}t be a function family over the domain X and
indexed by K, and the LUF game be as defined in Fig. 5. Then for any adversary A its corresponding
LUF advantage is given by:

AdvLUF
F (A,LF) = Pr

[
LUFA ⇒ true

]
.

A crucial difference between LUF and LPRF is that the former allows the adversary to obtain leakage
for an input and still being able to win the game by predicting the output for this input while the latter
does not allow such queries. This is exactly the difference that we exploit in our separation example.

Game LUF

procedure Initialize

win← false; K ←$K

procedure Lkg(X , L)

Λ← L(K ,X)

return Λ

procedure Finalize

return (win)

procedure F(X)

S ←∪X
Y ← F(K ,X)

return Y

procedure Guess(X ,Y ′)

Y ← F(K ,X)

if X 6∈ S ∧Y = Y ′

win← true

return (Y = Y ′)

Fig. 5: Game used to define LUF security.

Pseudorandom Generator and Hash Functions. We make use of the following definition of a
pseudorandom generator which enables the adversary to specify the output length (in bits) by querying
it to the challenge oracle. The difference to [14] is that we stick to the single challenge case as opposed
to their notion of multiple challenges.

6

Definition 6 (Pseudorandom Generators) Let G : S × N → {0, 1}∗ be a pseudorandom generator
with an associated seed space S, and let the PRG game be as defined in Fig. 6. Then for any adversary
A, making exactly one query to G, its corresponding PRG advantage is given by:

AdvPRG
G (A) = 2 Pr

[
PRGA ⇒ true

]
− 1 .

Game PRG

procedure Initialize

b←$ {0, 1}

procedure Finalize (b′)

return (b′ = b)

procedure G(L)

if b = 0

R ←$ {0, 1}L

else

S ←$ S
R ← G(S ,L)

return R

Fig. 6: Game used to define PRG security.

For a hash function H over a generic domain X , we define its collision resistance below.

Definition 7 (Collision-Resistant Hash Functions) Let H : X → {0, 1}w be a hash function. Then
for any adversary A its corresponding advantage is given by:

AdvCR
H (A) = 2 Pr[H(X0) = H(X1) ∧X0 6= X1 ∧X0, X1 ∈ X | (X0, X1)← A] .

2.5 The FGHF′ Construction

Degabriele et al. [14] developed the FGHF′ construction, which allows to build a leakage-resilient AEAD
scheme from four simple building blocks: two fixed-input-length functions F and F ′, a pseudorandom
generator G, and a hash function H. The function F and the pseudorandom generator G build the
encryption scheme Se[F ,G] while the hash function H and the function F ′ build the MAC Mac[H,F ′].
The construction is illustrated in Fig. 7 while the pseudocode is given in Fig. 8.

E[F ,G]

T[H,F ′]

F G ⊕

H F ′

N C

T

M
Ke

Km

A

Fig. 7: Graphical representation of the FGHF′ construction. It corresponds to the N2 composition of
Se[F ,G] and Mac[H,F ′] which are in turn composed of a fixed-input-length LPRF F , a PRG G, a
vector hash H, and a fixed-input-length function F ′ that is both a LUF and an LPRF. The encryption
and tagging algorithm of Se[F ,G] and Mac[H,F ′] are E[F ,G] and T[H,F ′], respectively.

7

E((Ke,Km),N ,A,M)

// Compute ciphertext using Se[F,G]

S ← F(Ke,N)

Ce ← G(S , |M |)⊕M

// Compute tag using Mac[H,F ′]

H ← H(N ,A,Ce)

T ← F ′(Km,H)

return C ← (Ce,T)

D((Ke,Km),N ,A, (Ce,T))

H ← H(N ,A,Ce)

T ′ ← F ′(Km,H)

if T ′ = T

S ← F(Ke,N)

M ← G(S , |Ce|)⊕ Ce

return M

return ⊥

Fig. 8: Pseudocode of the FGHF′ construction.

The notable feature of the construction is that only the fixed-input-length functions have to be
leakage-resilient, while the pseudorandom generator and the hash function can be instantiated with
off-the-shelf primitives from the literature. The security implications, which illustrate the main result
from [14], are displayed in Fig. 9. Note the special structure of the FGHF′ construction, that is, Se[F ,G]
being a mirror-like encryption scheme and Mac[H,F ′] being a canonical MAC (considering the composi-
tion of H and F ′ a function with variable-input-length). Combined with our leakage model, we conclude
that the leakage sets LE and LD for Se[F ,G] are equal as are the leakage sets LT and LV for Mac[H,F ′],
i.e., LE = LD = LF × LG and LT = LV = LH × LF ′ . Here, LF , LG, LH , and LF ′ are the leakage sets
of the underlying components F , G, H, and F ′. The very same is implicitly assumed in [14]. Likewise,
we obtain the leakage sets LAE = LE ×LT = LF ×LG×LH ×LF ′ = LD ×LV = LV D for the resulting
AEAD scheme.

LAE

IND-aCPLA LPRF SUF-CMLA∗

LPRF PRG CR LPRF CR LUF

F G H F ′ H F ′

[5, Theorem 1]

[14, Theorem 2] [14, Theorem 5] [14, Theorem 3,4]

Fig. 9: Security implications for the FGHF′ construction from [14, Theorem 6]. Note that we do not give
the formal definition of IND-aCPLA and SUF-CMLA∗ as we use slightly different notions.

3 Unpredictability and Pseudorandomness under Leakage

Along with the FGHF′ construction, Degabriele et al. [14] introduce a security notion for unpredictability
of functions under leakage. They prove the existence of functions that achieve both unpredictability and
pseudorandomness under leakage. Regarding the relation between these notions, they claim them to
be incomparable, without giving a clear justification or a proof for this statement. We confirm this by
providing a separation example which proves that the notions do not imply one another. Therefore,
we give two functions: under leakage, the first function is unpredictable but not pseudorandom, while
the second function is pseudorandom but not unpredictable. For both functions, we assume a function
which, under leakage, is both unpredictable and pseudorandom. Note that this assumption is valid as
the existence of such functions has been shown in [14] for the sponge-based instantiation Slae of the
FGHF′ construction.

8

3.1 Under Leakage: Unpredictability ; Pseudorandomness

We start with the simple case, that is, a function which is unpredictable but not pseudorandom under
leakage.

Construction 8 Let F∗ : {0, 1}k × {0, 1}n → {0, 1}t be a function. Define the function

F : {0, 1}k × {0, 1}n → {0, 1}t+1

F(K ,X) 7→ 0 ‖ F∗(K ,X) .

Lemma 9 Let F∗ be a function that is both a LUF and an LPRF and F be the function constructed
from F∗ according to Construction 8. It holds that F is a LUF but not an LPRF.

Proof. The function F is LUF as any LUF adversary against F can easily be transformed into a LUF
adversary against F∗. On the other hand, the leading 0 of any output makes it easy to distinguish the
function from a random function. If, after several queries, an output starting with 1 is observed, the
adversary outputs 0 (indicating ideal), otherwise, it outputs 1 (indicating real). ut

3.2 Under Leakage: Pseudorandomness ; Unpredictability

Now we address the complex part of the separation example and show that there are functions which
are pseudorandom but not unpredictable under leakage.

Construction 10 Let FO : {0, 1}s ×{0, 1}n → {0, 1}t and FI : {0, 1}k ×{0, 1}n → {0, 1}s be functions.
The subscripts O and I indicate the outer and inner function, respectively. Define the function

F : {0, 1}k × {0, 1}n → {0, 1}t

F(K ,X) 7→ FO(FI(K ,X),X) .

The idea of Construction 10 is as follows. It uses some master key K and, for each input X , it derives
a session key using the inner function FI , i.e., Ks = FI(K ,X). The output Y is generated by the outer
function FO using the session key Ks and input X . The lemma below shows that the construction is
pseudorandom but not unpredictable under leakage.

Lemma 11 Let FO and FI be two functions and F be the function constructed from FO and FI according
to Construction 10. Suppose FI is both a LUF and an LPRF and FO is PRF. Then F is an LPRF but
not a LUF.

Proof. We first show that F is an LPRF. For simplicity, we restrict the adversary to a single challenge
query and argue at the end how it can be lifted to multiple challenge queries. We make use of the games
G0, G1, and G2 displayed in Fig. 10. The games are constructed such that G0 is equal to LPRF with
secret bit b = 1 and G2 is equal to LPRF with secret bit b = 0. Recall that the leakage set LF of F
is the Cartesian product of the leakage sets LO of FO and LI of FI . Reformulation to the adversarial
advantage yields

AdvLPRF
F (A,LF) = 2 Pr

[
LPRFA ⇒ true

]
− 1

= 2
(

Pr
[
LPRFA ⇒ true ∧ b = 1

]
+ Pr

[
LPRFA ⇒ true ∧ b = 0

])
− 1

= 2
(
Pr
[
ALPRF ⇒ 1 ∧ b = 1

]
+ Pr

[
ALPRF ⇒ 0 ∧ b = 0

])
− 1

= 2
(
Pr
[
ALPRF ⇒ 1 | b = 1

]
Pr[b = 1] + Pr

[
ALPRF ⇒ 0 | b = 0

]
Pr[b = 0]

)
− 1

= Pr
[
ALPRF ⇒ 1 | b = 1

]
+ Pr

[
ALPRF ⇒ 0 | b = 0

]
− 1

= Pr
[
ALPRF ⇒ 1 | b = 1

]
− Pr

[
ALPRF ⇒ 1 | b = 0

]
= Pr

[
AG0 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]
. (1)

For the game hop between G0 and G1, we construct an LPRF adversary Alprf against FI as follows.
When A makes its query X to F, Alprf queries X to its own challenge oracle to obtain the session key Ks,
computes Y ← FO(Ks,X), and sends Y back to A. For leakage queries (X , (LO, LI)) by A, Alprf queries
its own leakage oracle on (X , LI) to obtain (Ks, ΛI), computes Y ← FO(Ks,X) and ΛO ← LO(Ks,X),

9

Initialize

K ←$ {0, 1}k

procedure LF(X , (LO, LI))

Ks ← FI(K ,X)

ΛI ← LI(K ,X)

Y ← FO(Ks,X)

ΛO ← LO(Ks,X)

return (Y , (ΛO, ΛI))

procedure F(X) in G0

Ks ← FI(K ,X)

return Y ← FO(Ks, X)

procedure F(X) in G1

Ks ←$ {0, 1}s

return Y ← FO(Ks,X)

procedure F(X) in G2

return Y ←$ {0, 1}t

Fig. 10: Games G0, G1, and G2 used in the proof of Lemma 11. The games share the leakage oracle LF,
while each game uses its own challenge oracle as described.

and sends (Y , (ΛO, ΛI)) back to A. It is easy to see that Alprf perfectly simulates G0 or G1 for A
depending on its own challenge. Also all queries by Alprf are permitted as it queries exactly the same
values as A. Hence we conclude with

Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ AdvLPRF

FI
(Alprf ,LI) . (2)

For the game hop between G1 and G2, we construct the following PRF adversary Aprf against FO. At
the start, Aprf samples a random master key K which it will use for the leakage queries by A. Whenever
A queries (X , (LO, LI)) to its leakage oracle, Aprf (locally) computes Ks ← FI(K ,X), ΛI ← LI(K ,X),
Y ← FO(Ks, X), and ΛO ← LO(Ks,X), and sends (Y , (ΛO, ΛI)) to A. For the challenge query X by
A, Aprf forwards the query to its own challenge oracle and the response back to A. It is again easy
to see that Aprf perfectly simulates the games G1 and G2 for A depending on its own challenge. The
significant feature is that Aprf can simulate the leakage oracle for A locally, which is why we only need
PRF security as opposed to LPRF security. We conclude with

Pr
[
AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]
≤ AdvPRF

FO
(Aprf) . (3)

Inserting (2) and (3) in (1) yields

AdvLPRF
F (A,LF) = Pr

[
AG0 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]
≤ AdvLPRF

FI
(Alprf ,LI) + AdvPRF

FO
(Aprf) .

We briefly discuss how the proof can be adapted if A is allowed to make multiple challenge queries.
The first part works exactly the same, that is, Alprf forwards the query X to get the session key Ks

and computes Y ← FO(Ks,X). For the second part, there is a subtle issue why the same reduction
does not work if A makes multiple challenge queries. In G1, A expects that every query uses a fresh
session key sampled uniformly at random, while the key used in the game PRF is fixed, thus it can not
simulate the correct game for A. Instead, the game hop can be lifted to multiple challenge queries via
a straightforward hybrid argument, where Aprf answers the first i − 1 queries with random values, the
i-th query using its own challenge oracle just as described for the single challenge case, and the last q − i
queries with FO(Ks,X) for a randomly chosen session key Ks. This induces a factor q , the number of
challenge queries, into the bound above.

It remains to show that F is not a LUF. We construct the following LUF adversary. It queries its
leakage oracle Lkg on a randomly chosen input X , leaking the session key Ks. Given the session key, it
computes Y ← FO(Ks,X) and sends (X ,Y) to its challenge oracle Guess, which will set the winning
flag to true. ut

Our LUF adversary exploits the fact that the game LUF allows to obtain leakage for the input for which
the output is predicted. Hence, the adversary leaks the session key Ks for some input X , which enables
it to perfectly predict the output. Note that this does not enable the adversary to predict an output for a
different input. Our LUF adversary bypasses the LUF security of the inner function FI and attacks the
outer function FO instead. Regarding the LPRF security, observe the following. The LPRF adversary is

10

also able to obtain a session key Ks through its leakage oracle. However, this session key is only valid for
the queried input and the game LPRF does not allow to query this input to the challenge oracle, which
would make the notion unachievable anyway. We essentially show that it is sufficient to secure the master
key K by deriving the session keys using an inner function with strong security guarantees (LPRF and
LUF in our case).

We believe this result to be of independent interest as it shows that extra caution is judicious in
the leakage setting. Our constructions show how well-known and established results from the leak-free
setting, like the equivalence between pseudorandomness and unpredictability, do not necessarily remain
valid in the leakage setting.

4 Leakage Resilience of the N2 Construction

In the previous section we established that the security notions LUF and LPRF are incomparable.
This entails that any instantiation of the FGHF′ construction has to prove LPRF and LUF security
separately. Considering the instantiation Slae [14], proving these notions is the most complex part
of the work. Thus, we now turn our attention towards removing the requirement of LUF security. As
argued in [14], LUF security is required to build a secure MAC according to the composition theorem
for the N2 construction [5] (see also Fig. 9). Recall that Degabriele et al. [14] prove that the encryption
scheme Se[F ,G] and the MAC Mac[H,F ′], underlying the FGHF′ construction, achieve the security
notion required by the N2 composition theorem by Barwell et al. [5]. However, Barwell et al. prove their
composition for arbitrary encryption schemes and MACs, while Degabriele et al. focus on a mirror-like
encryption scheme and a canonical MAC. In this section, we recast the composition theorem for the N2
construction to the case of mirror-like encryption schemes and canonical MACs.

The theorem below shows that the N2 composition of a mirror-like encryption scheme and a canonical
MAC is LAE-secure if the underlying components are. For ease of exposition, we give the full proof for
our setting. Subsequently, we discuss how our proof differs from the one given in [5].

Theorem 12 (LAE Security of the N2 Construction) Let Se = (E, D) be a mirror-like symmetric
encryption scheme with associated leakage sets (LE ,LD) and Mac = (T, V) be a canonical MAC with
associated leakage sets (LT ,LV). Let N2 be the composition of Se and Mac as displayed in Fig. 7 with
associated leakage sets LAE = LE × LT and LV D = LD × LV . For any nonce-respecting adversary
Aae against N2 there exists a semi-nonce-respecting IND-CPLA adversary Ase against Se, an LPRF
adversary Alprf against T, and a SUF-CMLA adversary Amac against Mac such that:

AdvLAE
N2 (Aae,LAE ,LV D) ≤ AdvINDCPLA

Se (Ase,LE) + AdvLPRF
T (Alprf ,LT)

+ AdvSUFCMLA
Mac (Amac,LT ,LV) .

Proof. Since Se is a mirror-like encryption scheme and Mac is a canonical MAC, it holds that LE = LD

and LT = LV . This immediately implies that the leakage sets LAE and LV D of N2 are identical. We us
a sequence of games G0, . . . ,G3 shown in Fig. 11. Game G0 is the game LAE instantiated with N2 with
secret bit fixed to 1. In game G1, the decryption oracle is changed to reject any queried ciphertext. Game
G2 and G3 are like G1, except for the following differences. Game G2 generates challenge ciphertext by
sampling it at random while but still computing the real tag of this ciphertext. In game G3 both the
ciphertext and the tag are sampled at random. Hence G3 equals the game LAE instantiated with N2 with
secret bit fixed to 0. Using a simple reformulation to the adversarial advantage, similar to (1), yields

AdvLAE
N2 (Aae,LAE ,LV D) = Pr

[
ALAE

ae ⇒ 1 | b = 1
]
− Pr

[
ALAE

ae ⇒ 1 | b = 0
]

= Pr
[
AG0

ae ⇒ 1
]
− Pr

[
AG3

ae ⇒ 1
]

=

3∑
i=1

(
Pr
[
AGi−1

ae ⇒ 1
]
− Pr

[
AGi

ae ⇒ 1
])
. (4)

Below we bound each of the game hops. The hop from G0 to G1 is bound by the SUF-CMLA security
of the underlying MAC Mac, the hop from G1 to G2 by the IND-CPLA security of the underlying
encryption scheme Se, and the hop from G2 to G3 by the LPRF security of the tagging algorithm T.

Let us start with the adversarial advantage between games G0 and G1. We construct the follow-
ing SUF-CMLA adversary Amac. It samples a random key Ke for the encryption scheme Se. Queries

11

procedure Initialize

Ke,Km ←$K

procedure Enc(N ,A,M)

Ce ← E(Ke,N ,M)

T ← T(Km,N ,A,Ce)

return C ← (Ce,T)

procedure LEnc(N ,A,M , L)

parse L as (Le, Lt)

Ce ← E(Ke,N ,M)

T ← T(Km,N ,A,Ce)

C ← (Ce,T)

Λe ← Le(Ke,N ,M)

Λt ← Lt(Km,N ,A,Ce)

Λ← (Λe, Λt)

return (C , Λ)

procedure Dec(N ,A,C) in G0 and G1

parse C as (Ce,T)

v ← V(Km,N ,A,Ce,T)

if v = ⊥
return ⊥

return ⊥
return M ← D(Ke,N ,Ce)

procedure LDec(N ,A,C , L)

parse L as (Ld, Lv)

parse C as (Ce,T)

v ← V(Km,N ,A,Ce,T)

Λv ← Lv(Km,N ,A,Ce,T)

if v = ⊥
return (⊥, Λv)

M ← D(Ke,N ,Ce)

Λd ← Ld(Ke,N ,Ce)

return (M , Λd, Λv)

procedure Enc(N ,A,M) in G2

Ce ←$ {0, 1}|E(Ke,N ,M)|

T ← T(Km,N ,A,Ce)

return C ← (Ce,T)

procedure Enc(N ,A,M) in G3

Ce ←$ {0, 1}|E(Ke,N ,M)|

T ←$ {0, 1}|T(Km,N ,A,Ce)|

return C ← (Ce,T)

Fig. 11: Games G0, . . . ,G3 used to prove Theorem 12. The oracles LEnc and LDec are identical across the
games. Game G1 is the same G0, except that it includes the boxed code. Games G2 and G3 are like G1,
except for the oracle Enc which are displayed at the bottom.

12

(N ,A,M) to Enc are answered by Amac as follows. It computes the ciphertext Ce ← E(Ke,N ,M), ob-
tains the tag T by invoking its oracle LTag on ((N ,A,Ce), ∅)2, and sends the ciphertext C ← (Ce,T)
back to Aae. Leakage encryption queries (N ,A,M , (Le, Lt)) are processed as follows. The ciphertext
Ce ← E(Ke,N ,M) and corresponding leakage Λe ← Le(Ke,N ,M) are computed locally by Amac.
Subsequently, it queries its leakage oracle LTag on ((N ,A,Ce), Lt) to obtain (T , Λt) and sends back
C ← (Ce,T) and Λ← (Λe, Λt) to Aae. For any leakage decryption query (N ,A, (Ce,T), (Ld, Lv)), Amac

forwards ((N ,A,Ce),T , Lv) to its leakage oracle LVfy to obtain (V , Λv), which it forwards to Aae if
V = ⊥. Otherwise, i.e., V = >, Amac computes M ← D(Ke,N ,Ce) and Λd ← Le(Ke,N ,Ce), and
sends back (M , Λd, Λv) to Aae. Whenever Aae queries its oracle Dec on (N ,A, (Ce,T)), Amac forwards
((N ,A,Ce),T) to its oracle Vfy. If the response of Vfy is ⊥, it forwards it to Aae, otherwise, it computes
M ← D(Ke,N ,Ce) and sends it to Aae.

Clearly, Amac queries its leakage oracles LTag and LVfy only on the permissive functions, as Aae does.
Amac does also not make any prohibited query, as it invokes its challenge oracle Vfy if and only if Aae

makes a query to its challenge decryption oracle Dec which never forwards any query to or from it.
Recall that the difference between G0 and G1 is that the former implements the real decryption oracle

while the latter rejects any decryption query. Conditioned on the secret bit b of SUFCMLA being 0, Amac

never decrypts Ce, hence it perfectly simulates G1 for Aae. Likewise, if b = 1, Amac only decrypts if the
tag T is valid, thus it perfectly simulates G0 for Aae. Hence we conclude with

Pr
[
AG0

ae ⇒ 1
]
− Pr

[
AG1

ae ⇒ 1
]
≤ AdvSUFCMLA

Mac (Amac,LT ,LV) . (5)

For the remaining game hops, note that the oracle Dec rejects any ciphertext irrespective of the validity
of the tag which is why we omit it in the description as every reduction simply responds with ⊥.

For the game hop between G1 and G2, we construct an IND-CPLA adversary Ase as follows. It
generates a key Km for Mac and runs the adversary Aae answering its queries as follows. For leakage
queries (N ,A,M , (Le, Lt)) to LEnc it passes (N ,M , Le) to its own oracle LEnc and obtains (Ce, Λe) in
return. It computes the tag T ← T(Km,N ,A,Ce), corresponding leakage Λt ← Lt(Km,N ,A,Ce), and
sends ((Ce,T), (Λe, Λt)) back to Aae. For leakage queries (N ,A, (Ce,T), (Ld, Lv)) to LDec, Ase first
computes V ← V(Km, (N ,A,Ce),T) and Λv ← Lv(Km,N ,A,Ce,T). If V = ⊥, it sends (⊥, Λv) back to
Aae. If V = >, it forwards (N ,M , Le) to its own leakage encryption oracle LEnc to obtain (M , Λd)3 and
sends (M , (Λd, Λv)) back to Aae. Queries (N ,A,M) to Enc are handled by obtaining Ce from its own
challenge encryption oracle invoked with (N ,M), computing the tag T ← T(Km,N ,A,Ce), and sending
(Ce,T) back to Aae.

Since Aae queries its leakage oracles only on functions in the corresponding leakage set, so does
Ase. Every challenge encryption query by Aae entails that Ase invokes its challenge encryption query.
Likewise, every leakage query, either encryption or decryption, leads to a leakage encryption query by
Ase. As a valid LAE adversary, Aae does not forward queries from challenge to leakage oracles or vice
versa, as does Ase. Note further that Ase is semi-nonce-respecting. This follows from Ase simulating
both leakage oracles of Aae using its leakage encryption oracle and Aae being nonce-respecting.

It is easy to see that Ase perfectly simulates either G1 or G2 for Ase. The games differ in the ciphertext
part Ce generated by Enc. In G1 it is the encryption of the message M , while it is a random bit string in
G2. By setting Ce to the output of its own challenge oracle, Ase simulates G1 and G2 for Aae conditioned
on the secret bit b of the game INDCPLA being 1 and 0, respectively. It holds that

Pr
[
AG1

ae ⇒ 1
]
− Pr

[
AG2

ae ⇒ 1
]
≤ AdvINDCPLA

Se (Ase,LE) . (6)

Finally, we construct the following LPRF adversary Alprf to bound the adversarial advantage between
G2 and G3. It generates a key Ke for the underlying encryption scheme. Leakage encryption queries
(N ,A,M , (Le, Lt)) are processed by locally computing Ce ← E(Ke,N ,M) and Λe ← Le(Ke,N ,M),
invoking LF on ((N ,A,Ce), Lt) to obtain (T , Λt), and sending ((Ce,T), (Λe, Λt)) back to Aae. For leakage
decryption queries (N ,A, (Ce,T), (Ld, Lv)),Alprf sends ((N ,A,Ce), Lv) to its leakage oracle LF to obtain
(T ′, Λv). If T 6= T ′, Alprf sends (⊥, Λv) to Aae. Otherwise, Alprf computes locally M ← D(Ke,N ,Ce)
and Λd ← Ld(Ke,N ,Ce), and sends (M , (Λd, Λv)) to Aae. For queries (N ,A,M) that Aae makes to its
challenge encryption oracle Enc, Alprf samples a random bit string Ce of appropriate length, invokes its
challenge oracle F on (N ,A,Ce) to obtain T , and sends (Ce,T) back to Aae.

Recall that the difference between G2 and G3 is how the tag T is generated. In G2 it is the real
tag computed on a random ciphertext, in G3 it is a random bit string. By construction, Alprf perfectly
simulates G2 and G3 if its own challenge bit b (from the game LPRF) is equal to 1 and 0, respectively.

2 Amac does not submit a leakage function, as it simulates a challenge oracle for Aae.
3 Note that E(K ,N ,C) = D(K ,N ,C).

13

Every challenge (leakage) query by Alprf stems from a challenge (leakage) query by Aae. As Aae does
not forward queries between its challenge and leakage oracles neither does Alprf . Hence we conclude that
Alprf is a valid LPRF adversary against T.

Pr
[
AG2

ae ⇒ 1
]
− Pr

[
AG3

ae ⇒ 1
]
≤ AdvLPRF

T (Alprf ,LT) . (7)

Inserting (5), (6), and (7) in (4) gives the desired result. ut

We will now go into the differences between our proof and the proof from [5]. In [5], the first game
hop differs in that it also changes the leakage decryption oracle LDec. The change is such that any
leakage decryption query which are not forwarded from the leakage encryption oracle is rejected by
returning ⊥. In [5], this change is necessary in order to bound the second game hop with the security
of the underlying encryption scheme. To detect the difference, the LAE adversary Aae has to submit
a (fresh) valid ciphertext to LDec as an invalid ciphertext would be rejected anyway. This entails that
Aae has generated a (fresh) valid tag for this ciphertext, which the reduction will use to distinguish
whether its challenge oracle implements the verification algorithm or ⊥. Since the leakage decryption
oracle is simulated via the leakage verification oracle, the reduction has to forward this leakage query to
its own challenge oracle to distinguish between the real and the ideal world. This is exactly the query
which prevents building such a MAC from a function which is pseudorandom and ultimately led to the
introduction of LUF security by Degabriele et al. [14].

The next two game hops are the same as in our proof, except that the leakage decryption oracle
does not decrypt any fresh ciphertext due to the change in the first game hop. This restriction allows
to bound the second game hop by the IND-aCPLA security of the underlying encryption scheme, as the
only queries that can not be answered with the oracle from the game INDaCPLA (decryption of fresh
ciphertext) are answered with ⊥. In our case of mirror-like encryption schemes, this issue does not arise
if the scheme is secure with respect to semi-nonce-respecting adversaries in which case we only need
IND-CPLA security as forwarded leakage decryption queries are answered like fresh queries.

The third game hop is essentially the same, again only differing in the leakage decryption oracle.
Since the LPRF adversary simulates the encryption-related part of the game locally, this difference is
trivial.

Finally, Barwell et al. [5] have a fourth game hop. In this game hop, where the challenge oracles are
already idealised, they merely revert the change of the leakage decryption oracle from the first game hop
in order to end up with the idealised game, that is LAE with secret bit 0. Since we never change any
leakage oracle throughout our proof, we do not need this additional game hop.

5 Leakage Resilience of the FGHF′ Construction

Having established the leakage resilience of the N2 composition for mirror-like encryption schemes and
canonical MACs, we turn our attention towards the FGHF′ construction. Since our recast composition
theorem imposes different security notions for the encryption scheme and the MAC, it remains to show
that the encryption scheme Se[F ,G] and the MAC Mac[H,F ′] of the FGHF′ construction achieve
these notions. In Section 5.1 we show that we can build a SUF-CMLA-secure MAC from a function
which is pseudorandom under leakage. Combined with the result of Degabriele et al. [14] we obtain the
SUF-CMLA security of Mac[H,F ′]. In Section 5.2, we show that the encryption scheme Se[F ,G] (proven
IND-aCPLA-secure against nonce-respecting adversaries by Degabriele et al. [14]) achieves IND-CPLA
security against semi-nonce-respecting adversaries.

5.1 Building Leakage-Resilient MACs from LPRFs

The following theorem shows that we can construct a SUF-CMLA-secure MAC from a function that
is an LPRF. The difference to [14] is that our security notion does not allow the adversary to forward
queries from its leakage oracle to its challenge oracle. The proof is given in Appendix A.1.

Theorem 13 Let F : K × X → {0, 1}t be a function family with associated leakage set LF , and let
Mac[F] be the corresponding canonical MAC with associated leakage sets LT , LV where LF = LT = LV .
Then, for any SUF-CMLA adversary Amac against Mac[F] which makes q queries to Vfy, there exists
an adversary Alprf against F such that:

AdvSUFCMLA
Mac[F] (Amac,LT ,LV) ≤ AdvLPRF

F (Alprf ,LF) +
q

2t − q
.

14

Note that the above theorem states that for any LPRF F the canonical MAC Mac[F] is SUF-CMLA-
secure with the same message space as F . In order to let the MAC handle arbitrarily long inputs, we
need F to handle arbitrarily long inputs. This is achieved by first hashing the (arbitrarily long) input
using a collision-resistant hash function and then applying the function F . The resulting construction
yields an LPRF with arbitrary input length as has been shown by Degabriele et al. [14, Theorem 5].

5.2 Se[F ,G] is IND-CPLA Secure

The theorem below states that the encryption scheme Se[F ,G] constructed from a fixed-input-length
function F and a PRG G (cf. Fig. 7) is IND-CPLA-secure against semi-nonce-respecting adversaries
if F is an LPRF and G is a secure PRG. We essentially show that the proof from [14] also holds for
semi-nonce-respecting adversaries. Since we only need IND-CPLA security, we prove it for this case,
adaptation to IND-aCPLA is straightforward. The proof is given in Appendix A.2.

Theorem 14 Let Se[F ,G] be the mirror-like encryption scheme depicted in Fig. 7, composed of a fixed-
input-length function family F and a PRG G with respective associated leakage sets LF and LG. Then,
for any semi-nonce-respecting IND-CPLA adversary Ase against Se[F ,G], making q queries to Enc, and
associated leakage sets LE = LF × LG, there exist an LPRF adversary Alprf against F and a PRG
adversary Aprg against G such that:

AdvINDCPLA
Se[F,G] (Ase,LE) ≤ AdvLPRF

F (Alprf ,LF) + q AdvPRG
G (Aprg) .

The difference to [14] is that they consider PRGs which can be queried multiple times while we stick
to the standard single query case. This entails that we need a hybrid argument over the q encryption
queries by Ase, which induces the factor q . In [14], the hybrid argument appears in the proof of the
sponge-based PRG.

5.3 Security of the FGHF′ Construction

We can now state our main result, the following theorem, which states that the FGHF′ construction yields
an LAE-secure AEAD scheme, if the underlying functions F and F ′ are leakage-resilient pseudorandom,
G is a secure PRG, and H is a collision-resistant hash function. The theorem follows directly from
Theorem 12, Theorem 13, and Theorem 14 combined with [14, Theorem 5]. The implications are also
illustrated in Fig. 12.

Theorem 15 (LAE Security of the FGHF′ Construction) Let F be a fixed-input-length LPRF, G
a PRG, H a vector hash function, and F ′ be a fixed-input-length LPRF with associated leakage sets
LF , LG, LH , and LF ′ , respectively. Let FGHF′ be the composition of F , G, H, and F ′ (see Fig. 7)
with associated leakage sets LAE = LV D = LF × LG × LH × LF ′ . Then for any nonce-respecting LAE
adversary Aae against FGHF′, making qE and qD queries to Enc and Dec, respectively, there exist
adversaries Alprf , Alprf , Aprg, and Ahash such that:

AdvLAE
FGHF′(Aae,LAE ,LV D) ≤ AdvLPRF

F (Alprf ,LF) + 2 AdvLPRF
F ′ (Alprf ,LF ′)

+ qE AdvPRG
G (Aprg) + 2 AdvCR

H (Ahash) +
qD

2t − qD
.

Theorem 15 improves [14, Theorem 6] by removing the additional requirement of unpredictability under
leakage imposed on F ′. This entails that any instantiation of the FGHF′ construction can rely on the
same function to instantiate F and F ′, thus one could name it FGHF instead. Indeed, the sponge-based
instantiation Slae [14] uses the same function to instantiate F and F ′, however, pseudorandomness and
unpredictability under leakage were proven separately.

Acknowledgements

We thank Jean Paul Degabriele and Christian Janson for helpful discussions. This work was funded by
the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

15

LAE

IND-CPLA LPRF SUF-CMLA

LPRF PRG CR LPRF

F G H F ′

Theorem 12

Theorem 14 [14, Theorem 5] Theorem 13

Fig. 12: Our security implications of the FGHF′ construction (cf. Theorem 15).

References

1. Michel Abdalla, Sonia Beläıd, and Pierre-Alain Fouque. Leakage-resilient symmetric encryption via re-
keying. In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of LNCS, pages
471–488. Springer, Heidelberg, August 2013.

2. Farzaneh abed, Francesco Berti, and Stefan Lucks. Insecurity of RCB: Leakage-resilient authenticated en-
cryption. Cryptology ePrint Archive, Report 2016/1121, 2016. http://eprint.iacr.org/2016/1121.

3. Megha Agrawal, Tarun Kumar Bansal, Donghoon Chang, Amit Kumar Chauhan, Seokhie Hong, Jinkeon
Kang, and Somitra Kumar Sanadhya. Rcb: leakage-resilient authenticated encryption via re-keying. The
Journal of Supercomputing, 74(9):4173–4198, Sep 2018.

4. Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated encryption robustness with minimal
modifications. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of
LNCS, pages 3–33. Springer, Heidelberg, August 2017.

5. Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenticated encryption in the face
of protocol and side channel leakage. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 693–723. Springer, Heidelberg, December 2017.

6. Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling AE robustness notions.
In Jens Groth, editor, 15th IMA International Conference on Cryptography and Coding, volume 9496 of
LNCS, pages 94–111. Springer, Heidelberg, December 2015.

7. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of
LNCS, pages 531–545. Springer, Heidelberg, December 2000.

8. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006.

9. Daniel J. Bernstein. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, 2014.

10. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Tedt, a leakage-
resilient AEAD mode for high (physical) security applications. IACR Cryptology ePrint Archive, 2019:137,
2019.

11. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Leakage-
resilient and misuse-resistant authenticated encryption. Cryptology ePrint Archive, Report 2016/996, 2016.
http://eprint.iacr.org/2016/996.

12. Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. On leakage-resilient au-
thenticated encryption with decryption leakages. IACR Trans. Symm. Cryptol., 2017(3):271–293, 2017.

13. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
398–412. Springer, Heidelberg, August 1999.

14. Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges resist leakage: The case of authenticated
encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of
LNCS, pages 209–240. Springer, Heidelberg, December 2019.

15. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and Thomas Unterluggauer. ISAP
– towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryptol., 2017(1):80–105, 2017.

16. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions and side-channel attacks
on Feistel networks. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 21–40. Springer,
Heidelberg, August 2010.

16

http://eprint.iacr.org/2016/1121
http://eprint.iacr.org/2016/996

17. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th FOCS, pages 293–302.
IEEE Computer Society Press, October 2008.

18. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-resilient symmetric cryptogra-
phy. In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 213–232.
Springer, Heidelberg, September 2012.

19. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Leakage-resilient authenticated
encryption with misuse in the leveled leakage setting: Definitions, separation results, and constructions.
Cryptology ePrint Archive, Report 2018/484, 2018. https://eprint.iacr.org/2018/484.

20. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Authenticated encryption with
nonce misuse and physical leakage: Definitions, separation results and first construction - (extended abstract).
In Peter Schwabe and Nicolas Thériault, editors, LATINCRYPT 2019, volume 11774 of LNCS, pages 150–172.
Springer, Heidelberg, 2019.

21. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Towards lightweight side-channel
security and the leakage-resilience of the duplex sponge. IACR Cryptology ePrint Archive, 2019:193, 2019.

22. Jake Longo, Daniel P. Martin, Elisabeth Oswald, Daniel Page, Martijn Stam, and Michael Tunstall. Simu-
latable leakage: Analysis, pitfalls, and new constructions. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 223–242. Springer, Heidelberg, December 2014.

23. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Heidelberg, February 2004.

24. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic composition. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 257–274.
Springer, Heidelberg, May 2014.

25. National Institute of Standards and Technology. Lightweight cryptography standardization process, 2015.
26. Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-resilient authentication and encryp-

tion from symmetric cryptographic primitives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
ACM CCS 2015, pages 96–108. ACM Press, October 2015.

27. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, ACM CCS
2002, pages 98–107. ACM Press, November 2002.

28. François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-resilient symmetric cryptography under
empirically verifiable assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 335–352. Springer, Heidelberg, August 2013.

29. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti Yung, and Elisabeth Os-
wald. Leakage resilient cryptography in practice. In Ahmad-Reza Sadeghi and David Naccache, editors,
Towards Hardware-Intrinsic Security - Foundations and Practice, Information Security and Cryptography,
pages 99–134. Springer, 2010.

30. Yu Yu and François-Xavier Standaert. Practical leakage-resilient pseudorandom objects with minimum
public randomness. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 223–238. Springer,
Heidelberg, February / March 2013.

31. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical leakage-resilient pseudorandom
generators. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages
141–151. ACM Press, October 2010.

17

https://eprint.iacr.org/2018/484

A Proofs for Section 5

A.1 Proof of Theorem 13

Proof. We prove the theorem using games G0, G1, and G2 (cf. Fig. 13), where G0 and G2 are the game
SUFCMLA with secret bit 1 and 0, respectively. Similar to (1), we obtain

AdvSUFCMLA
Mac[F] (Amac) = 2 Pr

[
SUFCMLAAmac ⇒ true

]
− 1

= Pr
[
ASUFCMLA

mac ⇒ 1 | b = 1
]
− Pr

[
ASUFCMLA

mac ⇒ 1 | b = 0
]

= Pr
[
AG0

mac ⇒ 1
]

+ Pr
[
AG2

mac ⇒ 1
]

=

2∑
i=1

(
Pr
[
AGi−1

mac ⇒ 1
]
− Pr

[
AGi

mac ⇒ 1
])
. (8)

To bound the first term, we construct an LPRF adversary Alprf against F as follows. It runs Amac and
answers all leakage queries (to LTag and LVfy) using its own leakage oracle LF. More formally, queries
(X , Lt) to LTag are forwarded to LF as is the response (T , Λt) back to Amac. For queries (X ,T , Lv) to
LVfy, Alprf obtains (T ′, Λv) by querying LF on (X , Lv). It sends (V , Λv) back to Amac, where V ← >
if T = T ′ and V ← ⊥ otherwise. Whenever Amac makes a query (X ,T) to Vfy, Alprf forwards X to F
to obtain T ′. If T = T ′ it sends > to Amac, otherwise, it sends ⊥.

It is easy to see that Alprf perfectly simulates G0 and G1 for Amac conditioned on the secret bit
of game LPRF being 1 and 0, respectively. For every leakage (challenge) query by Amac, Alprf makes
exactly one leakage (challenge) query. As an SUF-CMLA adversary, Amac does not forward queries to or
from its challenge oracle, which yields that Alprf does not make any prohibited query. Hence we conclude
with

Pr
[
AG0

mac ⇒ 1
]
− Pr

[
AG1

mac ⇒ 1
]
≤ AdvLPRF

F (Alprf ,LF) . (9)

For the second term, note that the leakage oracles LTag and LVfy are independent of the challenge oracle
Vfy in both G1 and G2, thus we only consider the challenge oracle Vfy. To distinguish the games, the
adversary Amac has to make a query (X ,T) to Vfy which would result in > in G1. This means that Amac

has to guess the value f [X] for an arbitrary X . Since f [] is sampled randomly from {0, 1}t, we have

Pr
[
AG1

mac ⇒ 1
]
− Pr

[
AG2

mac ⇒ 1
]
≤ q

2t − q
. (10)

Inserting (9) and (10) into (8) proves the claim. ut

procedure Initialize

K ←$K

procedure LTag(X , L)

Λ← L(K ,X)

T ← F(K ,X)

return (T , Λ)

procedure LVfy(X ,T , L)

Λ← L(K ,X)

T ′ ← F(K ,X)

if T ′ = T

return (>, Λ)

return (⊥, Λ)

procedure Vfy(X ,T) in G0

T ′ ← F(K ,X)

return (T ′ = T)

procedure Vfy(X ,T) in G1

if f [X] = ⊥
f [X]←$ {0, 1}t

return (f [X] = T)

procedure Vfy(X ,T) in G2

return ⊥

Fig. 13: Games G0, G1, and G2 used in the proof of Theorem 13. The leakage oracles LTag and LVfy are
the same across the games. In each includes the challenge oracle Vfy as specified by the

18

A.2 Proof of Theorem 14

Proof. The proof works through a sequence of games G0, . . . ,G3 (cf. Fig 14). Game G0 is the game
INDCPLA instantiated with Se[F ,G] and secret bit fixed to 1 and game G3 is the same with secret bit
fixed to 0. Using the equivalent notion of adversarial advantage, similar to (1), we obtain

AdvINDCPLA
Se[F,G] (Ase,LE) = 2 Pr

[
INDCPLAAse ⇒ true

]
− 1

= Pr
[
AINDCPLA

se ⇒ 1 | b = 1
]
− Pr

[
AINDCPLA

se ⇒ 1 | b = 0
]

= Pr
[
AG0

se ⇒ 1
]

+ Pr
[
AG3

se ⇒ 1
]

=

3∑
i=1

(
Pr
[
AGi−1

se ⇒ 1
]
− Pr

[
AGi

se ⇒ 1
])
. (11)

We start with the first term for which we construct the following LPRF adversary Alprf against F . For
queries (N ,M) to Enc by Ase, Alprf invokes its own challenge oracle on N to obtain S . Subsequently,
it computes R ← G(S , |M |) and sends C ← R ⊕ M to Ase. Leakage queries (N ,M , (LF , LG)) are
processed as follows. The tuple (S , ΛF) is obtained from the oracle LF upon querying it on (N , LF), while
C ← G(S , |M |) ⊕M and ΛG ← LG(S ,M) are computed locally by Alprf before sending (C , (ΛF , ΛG))
to Ase. Note that this proof is essentially the one from [14]. The difference is that we consider Ase to be
semi-nonce-respecting ([14] restricts it to be nonce-respecting). This entails that Ase is allowed to make
two queries (N ,M1, (LF , LG)) and (N ,M2, (LF , LG)) to its leakage oracle LEnc. By construction, Alprf

would invoke its leakage oracle LF twice on (N , LF), which is not a problem since the game LPRF does
not restrict such queries. Alternatively, Alprf could keep a table of its queries and first look up whether
it already made such a query and answer accordingly.

Since the games G0 and G1 solely differ in generating the seed S for G during queries to Enc, Alprf

perfectly simulates game G0 and G1 conditioned on the secret bit of the game LPRF being 1 and 0,
respectively. We conclude with

Pr[AG0
se ⇒ 1]− Pr[AG1

se ⇒ 1] ≤ AdvLPRF
F (Alprf ,LF) . (12)

Next, we bound the game hop between G1 and G2 for which we introduce a sequence of hybrid games
H0, . . . ,Hq , displayed in Fig. 15. The games differ in how the value R is sampled. In Hi, for the first i
queries, it is sampled ideally, i.e., a random bit string of length identical to the queried message. For the
remaining q − i queries, it is sampled real, i.e., the output of the PRG G on input a random seed and
the length of the queried message. It follows that H0 = G1 and Hq = G2, hence

Pr[AG1
se ⇒ 1]− Pr[AG2

se ⇒ 1] ≤ Pr[AH0
se ⇒ 1]− Pr[AHq

se ⇒ 1]

≤
q∑

i=1

(
Pr
[
AHi−1

se ⇒ 1
]
− Pr

[
AHi

se ⇒ 1
])

We construct PRG adversaries R1, . . . ,Rq to bound the game hops between each pair of consecutive
hybrid games. Adversary Ri proceeds as follows. It samples a key K for the function F . This allows
to perfectly simulate the leakage oracle LEnc for Ase. For leakage queries (N ,M , (LF , LG)), it (locally)
computes S ← F(K ,N), C ← G(S , |M |) ⊕ M , ΛF ← LF (K ,N), and ΛG ← LG(S ,M), and sends
(C , (ΛF , ΛG)) to Ase. Repeating nonces of the semi-nonce-respecting adversary Ase do not cause any
issues, Ri can even keep a table of nonces with corresponding outputs and leakage to respond correctly.
Let (N1,M1), . . . , (Nq ,Mq) denote the challenge queries that Ase makes to Enc. For queries (Nj ,Mj) with
j < i, Ri samples R ←$ {0, 1}|Mj | and sends C ← R ⊕Mj back to Ase. For queries (Nj ,Mj) with j > i,
Ri samples a seed S for G, computes R ← G(S , |Mj |) and sends C ← R ⊕Mj back to Ase. For the i-th
query, (Ni,Mi), Ri invokes its own oracle G on |Mi| to obtain R, computes C ← R⊕Mi. It is easy to see
that Ri simulates Hi−1 and Hi if its challenge bit b from the game PRG is 1 and 0, respectively. Hence,
we have

Pr
[
AHi−1

se ⇒ 1
]
− Pr

[
AHi

se ⇒ 1
]
≤ AdvPRG

G (Ri) .

19

Collecting everything and defining Aprg to be the adversary with the highest PRG advantage among
R1, . . . ,Rq yields

Pr[AG1
se ⇒ 1]− Pr[AG2

se ⇒ 1] ≤
q∑

i=1

(
Pr
[
AHi−1

se ⇒ 1
]
− Pr

[
AHi

se ⇒ 1
])

≤
q∑

i=1

AdvPRG
G (Ri)

≤
q∑

i=1

AdvPRG
G (Aprg)

≤ qAdvPRG
G (Aprg) . (13)

Since the challenge oracles Enc in G2 and G3 output identically distributed ciphertexts the adversary can
not distinguish these games which yields

Pr[AG2
se ⇒ 1]− Pr[AG3

se ⇒ 1] = 0 . (14)

Inserting (12), (13), and (14) into (11) yields the desired result. ut

procedure Initialize

K ←$K

procedure Enc(N ,M) in G0 and G1

S ← F(K ,N)

S ←$ {0, 1}n

R ← G(S , |M |)
return C ← R ⊕M

procedure LEnc(N ,M , (LF , LG))

S ← F(K ,N)

R ← G(S , |M |)
C ← R ⊕M

ΛF ← LF (K ,N)

ΛG ← LG(S ,M)

return (C , (ΛF , ΛG))

procedure Enc(N ,M) in G2

R ←$ {0, 1}|M |

return C ← R ⊕M

procedure Enc(N ,M) in G3

return C ←$ {0, 1}|M |

Fig. 14: Games G0, G1, G2, and G3 used to prove Theorem 14. Game G1 contains the boxed code, G0 does
not. For games G2 and G3 we only display the oracle Enc as the leakage oracles are identical to those in
G0 and G1.

procedure Initialize

K ←$K; c ← 0

procedure LEnc(N ,M , (LF , LG))

S ← F(K ,N)

R ← G(S , |M |)
C ← R ⊕M

ΛF ← LF (K ,N)

ΛG ← LG(S ,M)

return (C , (ΛF , ΛG))

procedure Enc(N ,M)

c ← c + 1

if c ≤ i

R ←$ {0, 1}|M |

else

S ←$ {0, 1}n

R ← G(S , |M |)
return C ← R ⊕M

Fig. 15: Hybrid games Hi used to prove Theorem 14.

20

	Leakage-Resilient Authenticated Encryption from Leakage-Resilient Pseudorandom Functions
	Introduction
	Our Contribution
	Related Work
	Organization of the Paper

	Preliminaries
	Notation
	Primitives
	Leakage Model
	Security Notions
	Leakage-Resilient Encryption.
	Leakage-Resilient MACs and Function Families.
	Pseudorandom Generator and Hash Functions.

	The FGHF Construction

	Unpredictability and Pseudorandomness under Leakage
	Under Leakage: Unpredictability Pseudorandomness
	Under Leakage: Pseudorandomness Unpredictability

	Leakage Resilience of the N2 Construction
	Leakage Resilience of the FGHF Construction
	Building Leakage-Resilient MACs from LPRFs
	Se [F,G] is IND-CPLA Secure
	Security of the FGHF Construction

	Proofs for Section 5
	Proof of Theorem 13
	Proof of Theorem 14

