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Abstract Light key schedule has found many applications in lightweight blockciphers, e.g. LED,

PRINTcipher and LBlock. In this paper, we study an interesting question of how to design a as light as

possible key schedule from the view of provable security and revisit the four-round key-alternating Feistel

cipher by Guo and Wang in Asiacrypt 18. We optimize the construction by Guo and Wang and propose a

four-round key-alternating Feistel cipher with an ultra-light (in fact non-existent) key schedule. We prove

our construction retain the same security level as that of Guo and Wang’s construction. To the best of our

knowledge, this is the first provably secure key-alternating Feistel cipher using identical round function and

one n-bit master key but with ultra-light (non-existent) key schedule.

We also investigate whether the same refinement works for the three-round key-alternating Feistel cipher.

This time we show a distinguishing attack on such three-round construction with only four encryption queries.

On the positive side, we prove that three-round key-alternating Feistel cipher with a suitable key schedule is

a pseudorandom permutation. This is also the first provable-security result for three-round key-alternating

Feistel cipher.
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1 Introduction

Blockciphers play an fundamental role for cryptography in information security, which usually consist of

round functions and key schedules. As one of the significant modules in blockciphers, key schedules have

not received deserved attention. Commonly, the key schedule takes as input a master key and outputs

the so-called round keys that are used in each round. In the case of AES-128, the master key is a 128-bit

string and the total length of the round keys is 11 · 128 = 1408 bits. The AES-128 key schedule can be

seen as a function from {0, 1}128 to {0, 1}1408.

Scientifically designing the key schedule part of block ciphers is an important but not well-understood

subject. In general, it is not yet clear what practical and necessary principles a good key schedule has to

follow. In order to resist some existing attacks, there are some properties on what a key schedule should

not have, e.g. avoiding (semi-) weak keys, equivalent keys, symmetry and complementation properties,

and actual key information insufficiency [1-2]. Moreover, it should not be possible to mount trivial guess-

and-determine attack attacks, meet-in-the-middle attacks, related-key attacks, slide-attacks or invariant

subspace attacks. Considering the key schedule from the view of provable security is another direction.

In [3], Chen et al. use a lovely key schedule instantiated with a linear orthomorphism to minimize a
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two-round Even-Mansour cipher from just one n-bit master key and one n-bit permutation. They prove

such AES-like construction can achieve beyond the birthday bound security. Recently, Guo and Wang

(GW) [4] also use a linear-orthomorphism key schedule to obtain a birthday-bound secure four-round

key-alternating Feistel (KAF) cipher from just one n-bit master key and one n-bit function. They claim

this four-round construction is theoretically minimal in the sense that removing any component of this

construction would ruin the security.

In addition to providing necessary cryptographic security, the efficiency of the key schedule is also of

great significance, especially for lightweight blockciphers. Lightweight blockciphers are often employed in

source constrained environments such as RFID tags and sensor networks. In these lightweight ciphers,

the key schedules is commonly highly simplified to optimize the software and hardware efficiency. Some

key schedules have round-by-round iteration with low diffusion [5-7], or do simple permutation or linear

operations on master keys [8-9]. In particular, some lightweight ciphers have ultra-light (in fact non-

existent) key schedule, and directly use master keys in each round [10-11].

Our Contributions We start with an interesting question of how to design a as light as possible key

schedule from the view of provable security and revisit the four-round KAF by GW. Although the key

schedule instantiated with linear orthomorphism can be efficient in some instances, it is still unsatisfying

for lightweight ciphers when applied in many source constrained environments. In this paper, we optimize

the construction by GW and propose a new four-round KAF with an ultra-light (non-existent) key schedule.

Interestingly, we find the orthomorphism in their construction can be removed with a slight modification

on the first round, i.e., applying one-bit rotation after the first round function. We prove this refined

construction can achieve the birthday-bound security. Compared with GW’s construction, our proposal

has two advantages. The most significant one is that the key schedule is ultra-light (non-existent), which

needs no computation/memory costs. One can simply bitwise exclusive-or (xor) the n-bit master key in

corresponding rounds without bothering to any round-key derive function. Secondly, the one-bit rotation

is more efficient than the linear orthomorphism used in GW’s construction in most applications, because

it only costs a one-bit shift rather than addition or field multiplication. We believe our construction is

theoretically minimal (or even lighter than GW’s construction) since removing the one-bit rotation or

any other components would make it totally insecure. To the best of our knowledge, this is the first

provably secure key-alternating Feistel cipher using identical round functions and n-bit master key but

without any key schedule.

On the other hand, we also investigate whether the same one-bit rotation works for three-round single-

key KAF with identical round functions. This time we find such three-round construction is not a pseudo-

random permutation (PRP) and show a distinguishing attack on it with only four encryption queries. On

the positive side, we prove that three-round KAF with a suitable key schedule can achieve PRP security.

This is also the first provable-security result for three-round key-alternating Feistel cipher, which may be

independent of the interest.

Organizations. We first establish the notation and recall definitions in Section 2. In Section 3, we

describe our new four-round KAF construction without key schedule and prove the security of it. We

then investigate the three-round KAF, and show a distinguishing attack on three-round KAF without key

schedule and also prove the security of three-round KAF with a suitable key schedule in Section 4. We

finally give the conclusion in Section 5.

2 Preliminaries

Notation. If X is a set, then X
$←− X denotes the operation of picking X from X uniformly at random.

{0, 1}n denotes the set of all n-bit strings. We denote N = 2n for simplicity. For any two strings X,Y

of equal length, X ⊕ Y denotes their bitwise exclusive-or, and X||Y denotes their concatenation. |X|
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denotes the bit length of string X. Func(n) denotes the set of all functions from {0, 1}n to {0, 1}n, and

Perm(n) denotes the set of all permutation on {0, 1}n.

Key-Alternating Feistel Cipher. Given a function f : {0, 1}n → {0, 1}n and a n-bit key K, define

the permutation Ψf
K on {0, 1}2n as Ψf

K(L‖R) = (R,L ⊕ f(R ⊕ K)) where L and R are respectively

the left and right n-bit halves of the input. A key-alternating Feistel cipher (KAF) with r rounds is

specified by r public random functions f = (f1, . . . , fr) from {0, 1}n to {0, 1}n and a round-key vector

K = (K1, . . . ,Kr) (denote by K the set of all key K):

KAF
f
K(L‖R) = Ψfr

Kr
◦ · · · ◦Ψf1

K1
(L‖R).

These functions may be completely independent, or correlated or even identical. In particular, we denote

by KAFSF the variant of KAF with identical round function, i.e.,

KAFSF
f
K(L‖R) = Ψf

Kr
◦ · · · ◦Ψf

K1
(L‖R).

The key spaces of these schemes are not fixed and depend on the concrete contexts.

Security Definitions. We define two types of security notion with respect to the ability of the ad-

versary A, namely pseudorandomness permutation (PRP) and strong pseudorandomness permutation

(SPRP), where in the former A can only make encryption queries to the blockcipher while in the latter

A can make both encryption and decryption queries to the blockcipher. Formally, for any qe and qf , we

define the PRP security of a r-round key-alternating Feistel cipher KAF as

Advprp
KAF (qe, qf )

= max
A
|Pr[K

$←− K, f $←− (Func(n))r : AKAF,f = 1]− Pr[π
$←− Perm(n), f

$←− (Func(n))r : Aπ,f = 1]|

where the maximal is taken over all distinguishers A that ask at most qe encryption queries to the

permutation oracle and at most qf queries to each function oracle. Similarly, we define the SPRP

security of KAF as

Advsprp
KAF (qe, qf )

= max
A
|Pr[K

$←− K, f $←− (Func(n))r : AKAF,KAF−1,f = 1]− Pr[π
$←− Perm(n), f

$←− (Func(n))r : Aπ,π
−1,f = 1]|

where the maximal is taken over all distinguishers A that asks at most qe queries to the permutation

oracle and at most qf queries to each function oracle.

The H-coefficient Technique. Following the notation from Hoang and Tessaro [12], it is useful to

consider interactions between an adversary A with an abstract system S which answers A’s queries. The

resulting interaction can then be recorded with a transcript τ = ((X1, Y1), . . . , (Xq, Yq). Let pS(τ) denote

the probability that S produces τ . It is known that pS(τ) is the description of S and independent of the

adversary A. Let X denote the probability distribution of the transcript τ when A interacting with S.

We say that a transcript is attainable for system S if Pr[X = τ ] > 0.

We now describe the H-coefficient technique of Patarin [13-14]. Generically, it considers an adversary

that aims at distinguishing a ”real” system Sre from an ”ideal” system Sid. The interactions of adversary

with those systems induce two transcript distributions Xre and Xid respectively. It is well known that

the statistical distance SD(Xre, Xid) is an upper bound on the distinguishing advantage of A.

Lemma 1. [13-14] Let Θ = Θgood t Θbad be the set of attainable transcripts for ideal system Sid. If

there exists ε > 0 such that for any τ ∈ Θgood, it has

pSre(τ)

pSid(τ)
> 1− ε.

Then SD(Xre, Xid) 6 ε+ Pr[Xid ∈ Θbad].
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At the end of this section, we introduce a simple and efficient operation, i.e. one-bit rotation ε. It

has been used in Luby-Rackoff construction [15-16]. Note that the gap between Luby-Rackoff Feistel

construction and key-alternating Feistel construction is non-negligible and one cannot simply borrow

the security results of the former to the latter. We will use the following useful property of ε in our

construction. The proof can be found in [15].

Lemma 2. Let ε be the rotation of one bit. Then for any c ∈ {0, 1}n,

Pr[x
$←− {0, 1}n : x⊕ ε(x) = c] 6

2

N
.

3 Four-Round Single-Key KAFSF Without Key Schedule

f

f

f

f

K

ϕ

Li Ri

Si Ti

f

f

f

f

ε

K

Li Ri

Si Ti

Xi

Yi

Figure 1: Left: Guo and Wang’s four-round single-key KAFSF with key-schedule function ϕ. Right: Our

four-round single-key KAFSF without key schedule, where ε is the rotation of one bit.

In this section, we propose a four-round single-key KAFSF without key schedule and prove that it is a

strong pseudorandom permutation (SPRP). See the right of Fig. 1 for an illustration.

Our security result for four-round KAF is as follows.

Theorem 1. For the four-round single-key KAFSF without key schedule, it holds

Advsprp
KAFSF(qe, qf ) 6

4qeqf
N

+
13q2e
N

+
q2e

2N2
.

In the remaining of this section, we will prove Theorem 1. Following the notational framework of

Section 2, the real system Sre here is a pair of oracles (KAFSF, f) while the ideal system Sid is a pair

of oracles (π, f), where f is the public random function in KAFSF and π is a perfect 2n-bit random

permutation. The adversary A is assumed to be computationally unbounded and hence deterministic

without loss of generality. A is also assumed to never make repeated queries since it only receives

the same response if asking the same query. The interactions of A with its system is recorded by a

pair of (QE ,QF ), where QE = ((L1‖R1, S1‖T1), . . . , (Lqe‖Rqe , Sqe‖Tqe)) is the qe construction query-

response tuples when interacting with the permutation oracle (KAFSF in system Sre or π in system Sid),

and QF = ((x1, y1), . . . , (xqf , yqf )) is the qf primitive query-response tuples when interacting with the

function oracle f . For convenience, we will slightly modify the security experiment by revealing to the

adversary A the secret key K in the real system, or a ”dummy” key K chosen uniformly at random

from {0, 1}n if in the ideal system. Note that this can only enlarge the distinguishing advantage of the

adversary A because it can simply ignore this piece of information if it wants. All in all, the transcript

of the attack is encoded by the triplet τ = (QE ,QF ,K).
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Bad Transcripts. Denote by Θ the set of all attainable transcripts for ideal system Sid, denote by

Q+
F = {x1, . . . , xqf } the set of input values to function f . We begin our proof by defining bad transcripts.

Definition 1. We say a transcript τ = (QE ,QF ,K) is bad if there exists (L‖R,S‖T ) ∈ QE and x ∈ Q+
F

such that R ⊕ K = x or S ⊕ K = x. Denote by Θbad, resp. Θgood the set of bad, respectively good

transcripts.

We upper bound the probability to obtaining a bad transcript in the ideal world.

Lemma 3. For any integers qe and qf , one has

Pr[Xid ∈ Θbad] 6
2qeqf
N

.

Proof. For each of qeqf pairs of (LR,ST ) and x, the event (K ⊕ R = x ∨K ⊕ S = x) happens with

probability at most 2/N since K is uniformly chosen. Hence by the union bound, the probability that τ

is bad is at most 2qeqf/N .

Analysis of Good Transcripts. We now analyze good transcripts when adversary A interacting with

these two systems. Let τ = (QE ,QF ,K) be a good transcript. Since in the ideal system, the construction

oracle is a perfect 2n-bit random permutation and independent of the function f , we simply have

pSid(τ) =
1

|K| ·Nqf
·
qe−1∏
i=0

1

N2 − i
. (1)

We now proceed to lower bound the probability to obtain a good transcript in the real system. For

1 6 i 6 qe, we denote by Xi = ε(f(Ri ⊕ K)) ⊕ Li the input to the second round function, and Yi =

f(Si ⊕K)⊕ Ti the input to the third round function. We define some bad conditions as follows:

c.1 there exists some i such that Xi ∈ Q+
F or Yi ∈ Q+

F ;

c.2 there exists a pair of (i, j) for i 6= j satisfying at least one of the following conditions:

c.2.1 Xi ∈ {Ri ⊕K,Yi, Si ⊕K,Rj ⊕K,Xj , Yj , Sj ⊕K};
c.2.2 Yi ∈ {Ri ⊕K,Si ⊕K,Rj ⊕K,Xj , Yj , Sj ⊕K};
c.2.3 Xj ∈ {Ri ⊕K,Si ⊕K,Rj ⊕K,Yj , Sj ⊕K};
c.2.4 Yj ∈ {Ri ⊕K,Si ⊕K,Rj ⊕K,Sj ⊕K}.
If none of above conditions is fulfilled, then given tuples QF and a key K, the occurrence of τ in the

real system is equivalent to the event of 2qe new and distinct equations on the random round-function

f , which is relatively easy to compute. We first consider the first bad condition. Since both Ri ⊕K and

Si ⊕K are fresh inputs to function f , the values Xi and Yi remain uniformly distributed. Hence by the

union bound

Pr[c.1] 6
2qeqf
N

.

We then analyze the condition c.2.1:

• For any element x ∈ {Ri ⊕K,Si ⊕K,Rj ⊕K,Sj ⊕K}, the equation Xi = x holds with probability

at most 1/N because Xi is uniformly distributed.

• For x = Yi, if Si = Ri, then Pr[Xi = x] = Pr[ε(f(Ri ⊕K)) ⊕ f(Ri ⊕K) = Li ⊕ Ti] = 2/N due to

Lemma 2. Otherwise Pr[Xi = x] = 1/N since both f(Ri ⊕K) and f(Si ⊕K) are uniformly distributed

and independent of each other.

• For x = Xj , if Ri 6= Rj , then Pr[Xi = x] = 1/N since both ε(f(Ri ⊕ K)) and ε(f(Rj ⊕ K)) are

uniformly distributed and independent of each other. If Ri = Rj , then necessarily Xi 6= x since otherwise

this would contradict the hypothesis that LiRi and LjRj are two distinct queries.

• For x = Yj , if Ri 6= Sj , then Pr[Xi = x] = 1/N since both ε(f(Ri ⊕K)) and f(Sj ⊕K) ⊕ Tj are

uniformly distributed and independent of each other. Otherwise Pr[Xi = x] = Pr[ε(f(Ri⊕K))⊕ f(Sj ⊕
K) = Li ⊕ Tj ] = 2/N which comes from Lemma 2.

By the union bound and summing over above terms, for any pair (i, j), we have

Pr[c.2.1] 6
9

N
.
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By similar arguments, we can obtain

Pr[c.2.2] 6
7

N
,

and

Pr[c.2.3] 6
6

N
,

and

Pr[c.2.4] 6
4

N
,

for any pair (i, j). Since there are at most
(
qe
2

)
such pairs, the probability of the occurrence of event c.2

is at most

Pr[c.2] 6

(
qe
2

)
· 26

N
6

13q2e
N

.

As mentioned before, if none of above bad conditions is fulfilled, then given tuples QF and a key K, the

probability pSre(τ) is equivalent to the probability of below event:

f(X1) = R1 ⊕ Y1, . . . , f(Xqe) = Rqe ⊕ Yqe ,
f(Y1) = S1 ⊕X1, . . . , f(Yqe) = Sqe ⊕Xqe ,

where X1, . . . , Xqe , Y1, . . . , Yqe are 2qe fresh and distinct input values to random function f . It is clear

that this event holds with probability 1/N2qe . Hence for any τ ∈ Θgood,

pSre(τ)

pSid(τ)
>

1
|K|·Nqf · (1−

2qeqf
N − 13q2e

N ) · 1
N2qe

1
|K|·Nqf ·

∏qe−1
i=0

1
N2−i

> (1− 2qeqf
N
− 13q2e

N
) · (1− q2e

2N2
)

> 1− 2qeqf
N
− 13q2e

N
− q2e

2N2
.

Applying Lemma 1 and combining above equation and Lemma 3, the distinguishing advantage of the

adversary A can be bounded by

SD(Xre, Xid) 6
4qeqf
N

+
13q2e
N

+
q2e

2N2
,

which concludes the proof of Theorem 1.

Remark. Note that the security result of our 4-round KAFSF can also be generalized to multi-user

security via a similar analysis of Guo and Wang [4], i.e., partitioning the key into two good and bad sets

instead of partitioning transcripts, while the security result of our 3-round KAFSF (will be analyzed in

next section) cannot since there exists certain bad transcripts.

4 Three-Round Single-Key KAFSF

One natural question is whether our refinement works for three-round key-alternating Feistel cipher. In

this section, we will show a distinguishing attack on 3-round KAFSF without key schedule. After that, we

present a PRP-secure 3-round single-key KAFSF with a suitable key schedule.
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Figure 2: Left: 3-round single-key KAFSF without key schedule, where ε is the rotation of one bit. Right:

3-round single-key KAFSF with key-schedule function ϕ.

4.1 Attack on 3-Round KAFSF Without Key Schedule

We show a distinguishing attack on 3-round KAFSF without key schedule where the one-bit rotation ε is

applied after the first round function (See the left of Fig. 2. for an illustration). This attack is similar to

that in [16]. Same analysis would work when the rotation ε is applied after the last round function. Our

attack on 3-round KAFSF requires four forward queries, and is as follows:

1. The adversary first asks L1‖R1 and L2‖R1 to the three-round KAFSF, and receives the responses

S1‖T1 and S2‖T2 respectively.

2. Let ∆ = ε(L1 ⊕L2 ⊕ T1 ⊕ T2). The adversary then asks S1‖0 and S2‖∆ to KAFSF, and receives the

responses S3‖T3 and S4‖T4 respectively. One can check the equation S3 ⊕ S4 = S1 ⊕ S2 holds with

probability 1.

When the adversary is interacting with an 2n-bit random permutation, the probability of the event

S3⊕S4 = S1⊕S2 occurring is about 1/N2. Hence the success probability to distinguish this KAFSF from

an 2n-bit random permutation is about 1− 1/N2 ≈ 1.

Remark. As pointed out by Nandi [16], similar attack still works for the other simple variants of

function ε, e.g. when ε(x) = α · x (the Galois field multiplication by a primitive element α) or any other

linear function ε as long as Pr[x
$←− {0, 1}n : ε(ε(x ⊕ c1)) ⊕ ε(ε(x ⊕ c2)) = ∆] is non-negligible for some

fixed constants ∆, c1, and c2.

4.2 PRP-Secure 3-Round Single-Key KAFSF With a Suitable Key Schedule

Besides providing an attack on 3-round single-key KAFSF without key schedule, on the positive side, we

propose a 3-round single-key KAFSF with key-schedule function ϕ and prove that it achieves PRP security.

See the right of Fig. 2. for an illustration.

Key Schedule. We begin by defining the key schedule used in our construction.

Definition 2 (orthomorphism). We say ϕ is an orthomorphism if both ϕ and x 7→ x ⊕ ϕ(x) are a

permutation on {0, 1}n.

Note that ϕ(xL‖xR) = xL‖xL ⊕ xR and ϕ(x) = c � x (where � is the extension field multiplication)

are two instances of orthomorphisms. Orthomorphisms have found many cryptographic applications, e.g.

in [4, 17-18].

Our construction achieves PRP security when scheduling the key by the orthomorphism ϕ. The security

result for 3-round single-key KAFSF using the orthomorphism ϕ is as follows.
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Theorem 2. For 3-round single-key KAFSF using an orthomorphism ϕ as the key-schedule function, it

holds

Advprp
KAFSF(qe, qf ) 6

3qeqf
N

+
6q2e
N

+
q2e

2N2
.

In the remaining of this section, we will prove Theorem 2.

Bad Transcripts. We use exactly the same notations as in the proof of 4-round KAFSF in Section 3.

Note that here we only allow the adversary A to make encryption queries since we are aiming at proving

PRP security. Let τ = (QE ,QF ,K) be the transcript that records the interactions of the adversaryA with

those systems, where QE = ((L1‖R1, S1‖T1), . . . , (Lqe‖Rqe , Sqe‖Tqe)) and QF = ((x1, y1), . . . , (xqf , yqf )).

Denote by Q+
F = {x1, . . . , xqf } the set of input values to function f . Denote by Xre resp. Xid the

transcript distribution when A interacting with system Sre = (KAFSF, f), respectively system Sid = (π, f).

We then define bad transcripts.

Definition 3. We say that an attainable transcript τ = (QE ,QF ,K) is bad if at least one of the

following conditions is fulfilled:

• there exists two distinct construction queries (Li‖Ri, Si‖Ti) and (Lj‖Rj , Sj‖Tj) in QE such that

Si = Sj ;

• there exists (Li‖Ri, Si‖Ti) ∈ QE and xj ∈ Q+
F such that K ⊕Ri = xj or ϕ(K)⊕ Si = xj ;

• there exists two (not necessarily distinct) (Li‖Ri, Si‖Ti) and (Lj‖Rj , Sj‖Tj) in QE such that Ri ⊕
K = Sj ⊕ ϕ(K);

Denote by Θbad, resp. Θgood the set of bad, respectively good transcripts.

We then upper bound the chance to obtain a bad transcript in the ideal world.

Lemma 4 (Bad Transcripts). For any integers qe and qf , one has

Pr[Xid ∈ Θbad] 6
q2e

2(N + 1)
+

2qeqf + q2e
N

.

Proof. We consider these three conditions one by one. Firstly, for each of the
(
qe
2

)
pairs of (Li‖Ri, Si‖Ti)

and (Lj‖Rj , Sj‖Tj), the event of Si = Sj occurs with probability at most N2(N−1)/N2(N2−1) = 1/(N+

1) because in the ideal world π is a perfect 2n-bit random permutation and independent of the function f .

For each of the qeqf pairs of (Li‖Ri, Si‖Ti) and xj , the chance of the event (K⊕Ri = xj∨ϕ(K)⊕Si = xj)

occurring is at most 2/N since K is uniformly chosen and ϕ is a permutation over {0, 1}n. On the

other hand, for each of the q2e pairs of (Li‖Ri, Si‖Ti) and (Lj‖Rj , Sj‖Tj) (not necessarily distinct), the

probability of the event Ri ⊕K = Sj ⊕ ϕ(K) occurring is at most 1/N since K is uniformly chosen and

ϕ is an orthomorphisms. Hence by the union bound,

Pr[Xid ∈ Θbad] 6
q2e

2(N + 1)
+

2qeqf + q2e
N

,

which concludes the proof.

Analysis for Good Transcripts. Let τ = (QE ,QF ,K) be a good transcript. Since in the ideal world,

the construction π is a perfect 2n-bit random permutation and independent of the internal function f ,

we simply have

Pr[Xid = τ ] =
1

|K| ·Nqf
·
qe−1∏
i=0

1

N2 − i
. (2)

We then lower bounding the probability to obtaining τ in the real world. For 1 6 i 6 qe, we denote by

Xi = f(Ri ⊕K)⊕ Li the input to the second round function. We define two bad conditions as follows:

c.1 there exists some i such that Xi ∈ Q+
F ;

c.2 there exists a pair of (i, j) for i 6= j satisfying at least one of the following conditions:

c.2.1 Xi ∈ {Ri ⊕K,Si ⊕ ϕ(K), Rj ⊕K,Xj , Sj ⊕ ϕ(K)};
c.2.2 Xj ∈ {Ri ⊕K,Si ⊕ ϕ(K), Rj ⊕K,Sj ⊕ ϕ(K)}.
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If none of above conditions is fulfilled, then given the tuples QF and a key K, the probability of Xre = τ

is equivalent to the probability of 2qe new and distinct equations on the random round-function f . We

bound the probability of above conditions first. We begin with the first condition. Since τ is good, the

value of f(Ri ⊕K) remains uniformly distributed, and hence

Pr[c.1] 6
qeqf
N

.

Next we consider the condition c.2.1:

• For any x ∈ {Ri ⊕K,Si ⊕ϕ(K), Rj ⊕K,Sj ⊕ϕ(K)}, the event of Xi = x happens with probability

at most 1/N since f(Ri ⊕K) is uniformly distributed;

• For x = Xj , if Ri 6= Rj , then Pr[Xi = x] = 1/N since both f(Ri⊕K) and f(Rj ⊕K) are uniformly

distributed and independent of each other. If Ri = Rj , then necessarily Xi 6= x since otherwise this

would contradict the hypothesis that Li‖Ri and Lj‖Rj are two distinct queries.

By the union bound, for any pair (i, j), we have

Pr[c.2.1] 6
5

N
.

By similar arguments,

Pr[c.2.2] 6
4

N
.

Since there are
(
qe
2

)
such pairs, the event c.2 happens with probability at most

Pr[c.2] 6

(
qe
2

)
· 9

N
6

9q2e
2N

.

As mentioned before, if none of above bad conditions is met, given the tuples QF and a key K, the event

Xre = τ is equivalent to the event:

f(X1) = R1 ⊕ S1, . . . , f(Xqe) = Rqe ⊕ Sqe ,
f(S1 ⊕ ϕ(K)) = X1 ⊕ T1, . . . , f(Sqe ⊕ ϕ(K)) = Xqe ⊕ Tqe ,

where X1, . . . , Xqe , S1⊕ϕ(K), . . . , Sqe ⊕ϕ(K) are 2qe fresh and distinct inputs to random function f due

the goodness of τ and the excursion of bad conditions c.1 and c.2. Hence for any good τ ,

Pr[Xre = τ ]

Pr[Xid = τ ]
>

1
|K|·Nqf · (1−

qeqf
N − 9q2e

2N ) · 1
N2qe

1
|K|·Nqf ·

∏qe−1
i=0

1
N2−i

> (1− qeqf
N
− 9q2e

2N
) · (1− q2e

2N2
)

> 1− qeqf
N
− 9q2e

2N
− q2e

2N2
.

Combining above equation and Lemma 4 and applying Lemma 1, the distinguishing advantage of the

adversary A can be bounded by

SD(Xre, Xid) 6
qeqf
N

+
9q2e
2N

+
q2e

2N2
+

q2e
2(N + 1)

+
2qeqf + q2e

N

6
3qeqf
N

+
6q2e
N

+
q2e

2N2
,

which concludes the proof of Theorem 2.
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5 Conclusion

In this paper, we consider how to design a as light as possible key schedule which has found many

applications in lightweight ciphers, from the point of view of provable security. In particular, we optimize

the 4-round key-alternating Feistel by Guo and Wang [4] and propose a new 4-round key-alternating

Feistel with an ultra-light (non-existent) key schedule. Our result sheds some light on designing ultra-

light (non-existent) key schedule for blockcipher from the view of provable security. To the best of our

knowledge, this is the first provably secure key-alternating Feistel without any key schedule. We also

investigate whether our optimization works for 3-round key-alternating Feistel. We show a distinguishing

attack on 3-round key-alternating Feistel without key schedule, and prove that with a suitable key schedule

3-round key-alternating Feistel is a PRP.
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vances in Cryptology – EUROCRYPT’92. Balatonfüred, Hungary: Springer, Heidelberg, Germany,

1993: 256-266.

[16] NANDI M. The characterization of Luby-Rackoff and its optimum single-key variants//GONG G,

GUPTA K C. Lecture Notes in Computer Science: volume 6498 Progress in Cryptology - IN-

DOCRYPT 2010: 11th International Conference in Cryptology in India. Hyderabad, India: Springer,

Heidelberg, Germany, 2010: 82-97.

[17] SADEGHIYAN B, PIEPRZYK J. A construction for super pseudorandom permutations from a

single pseudorandom function//RUEPPEL R A. Lecture Notes in Computer Science: volume 658

Advances in Cryptology – EUROCRYPT’92. Balatonfüred, Hungary: Springer, Heidelberg, Ger-
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