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Abstract—This work considers the security of systems that
process encrypted multi-dimensional range queries with only
access pattern leakage. Recent work of Kellaris et al. (CCS
2016) showed that in one dimension, an adversary could use the
access patterns of several uniformly random range queries to
reconstruct a plaintext column of numbers “up to reflection.”
We extend this attack to two dimensions and find that the
situation is much more complicated: Information theoretically
it is complex to describe even what is possible to recover for
the adversary in general. We provide a classification of these
limits under certain technical conditions. We also give a faster
algorithm that works for “dense” databases that contain at
least one record for each possible value. Finally we explore
the implications for our classification with real data sets.

1. Introduction

The need to outsource large datasets to third parties
has increased rapidly over recent years. In turn, this has
spurred the study of untrusted storage systems and their
security. Potential solutions like order revealing encryption
have been subject to devastating attacks [2], [4], [7], [14],
a fact that underscores the need to better understand the
security of these schemes. General-purpose primitives like
fully-homomorphic encryption and oblivious RAM provide
theoretical solutions, but the state-of-the-art are still not
efficiently implementable and it is not yet clear if and how
well they would scale to realistic large data.

Other index-based approaches, generally referred to as
encrypted databases (EDBs), provide plausibly practical, but
still leaky, solutions. These systems can support a variety
of query types, including subsets of SQL (e.g. [?], [8]).
When a query is processed by an EDB, the client learns the
results of the query and the third-party storage system learns
some “leakage” about the data and the query. Ideally this
leakage would not be there, but varying levels of leakage
are allowed in order to get more efficient systems. What
sort of leakages should be allowed, however, is a question
of ongoing research. EDBs are being used in academic
research [15], [16], [17] and industry [3], [18], and will
likely continue to be used despite leakage-based attacks
because they still resist other weaker attacks (e.g. a smash-

and-grab data breach no longer reveals an entire column of
credit card information).

In this paper, we initiate the study of leakage of EDBs
processing multi-dimensional range queries on encrypted
columns. We assume only a basic form of leakage called
access patterns, meaning that a persistent passive adversary
will learn which (encrypted) records are returned for each
query. Several recent works [5], [6], [9], [10], [11], [12],
[13] have considered simpler, single-dimensional, variants
of this setting, in which an untrusted storage system holds
a single column of strongly-encrypted numeric values, with
the key stored elsewhere (for example, at a client endpoint).
A client requests several range queries, meaning that for
each query it wants all entries of the column with values
between some given a ≤ b. Newer EDB schemes support
more complex queries than these, but the implications of
their leakage have not been explored in detail. Implementers
may simply assume that the more complex structure of
multi-dimensional queries would mitigate attacks because
it defeats the explicit attacks appearing in the literature, and
this paper works towards addressing that tendency by giving
attacks and also illuminating the basic limitations of such
possible attacks. Moreover, our work provides insight into
the structure of the databases that an attacker can recover
which can potentially be used to inform future techniques
for mitigating these attacks.

AP LEAKAGE OF RANGE QUERIES. Access pattern (AP)
leakage, reveals to the possibly-compromised storage server
which records are returned on each query. AP leakage was
previously considered in several works [6], [9], [10], [11],
[12], [13], where under different conditions, it was shown
that the entire plaintext column could essentially be recov-
ered from the leakage with high probability, primarily when
the client range queries are drawn uniformly at random.

We recall the formal setting for these works. In their
setting, a plaintext database DB consists of a list R entries,
where each each entry is a value in some ordered domain
X , which is typically taken to be a set of the form X =
{1, . . . , N}. A query is a pair q = (a, b) ∈ X 2 with a < b,
and the access pattern of q on DB is the set {j ∈ [R] :
a ≤ DB[j] ≤ b}. A typical attack in this setting, due to
Kellaris et al. [9], shows that DB can almost be recovered



given a sequence of sets computed as AP(DB, q) for around
N4 uniformly random and independently chosen queries q.
We say almost because there is another database DB′ with
“reflected” values, defined by DB′[j] = N−DB[j]+1, that
will generate the same distribution of access patterns and is
thus indistinguishable.

1.1. Our Contributions

We consider AP leakage for multidimensional databases,
which contain multiple numeric columns and support range
queries for records that lie inside of rectangles. We state
most of our results in dimension 2, where most of the
complications already arise.

In more detail, suppose a plaintext database DB consists
of a list R entries, where each entry is from a domain of
the form D = X × X and X is some ordered set. A range
query q on DB consists of two points q = (a,b), where
a = (ax, ay) and b = (bx,by) are from D, and we define the
access pattern of the query, denoted AP(DB, q), to be the
subset of [R] defined by j ∈ AP(DB, q) iff DB[j] matches
the query (i.e. has x and y coordinates between the those
of a and b).

For most of our results we investigate to what extent
DB can be recovered after observing AP(DB, q) for several
uniformly random and independent queries q. Our first set
of results shows that even defining what can information-
theoretically recovered is immensely complicated to de-
scribe, in contrast to the one-dimensional case where re-
covery up to reflection is possible. For instance, we show
that there exist families of O(2R) different databases that
are indistinguishable, and that the exact number depends on
the arrangement of the points of the databases, the domain
sizes in either dimension, as well as number-theoretic con-
siderations, including the number of integral solutions to a
certain Diophantine equation.

We tame this complexity for a wide class of databases by
providing a classification of these indistinguishable families
when the database satisfies some technical conditions. Based
on this classification, we exhibit an attack using around
|X |8 queries (or |X |4 with search pattern leakage) that
recovers the entire family of indistinguishable databases, and
investigate how often our technical conditions tend to hold in
some datasets. We further generalize this attack from square
domains to general rectangular domains, the details of which
can be found in Appendix C. In addition to our attack under
technical constraints, we present a heuristic approach for
database reconstruction that makes no strong assumptions
about the records and their properties.

We also investigate attacks when the database is dense,
meaning that every possible value in the domain is achieved
by some point in the database. This setting was studied
by Lacharité et al [12] in the one-dimensional case, where
they showed that about N2 random queries sufficed for
recovery. We build on their ideas to give an N4 attack in
two dimensions, and also show that most of the complexity
of identified above disappears in the case of dense databases

(though not entirely; there are still either 1, 2, 4 or 8 indis-
tinguishable databases rather 1 or 2).

Furthermore, we investigate the extent to which the
“real” database can be recovered from among a family of
indistinguishable databases given auxiliary data drawn from
the same distribution as the records in the target database.
For this attack, we demonstrate how mean squared error
with respect to the auxiliary training data can be leveraged
to correctly compute the true DB with high accuracy in all
our experiments.

1.2. Prior and related work

Database reconstruction from access patterns has re-
ceived much attention in recent years. Kellaris et al. [9]
showed that for any one-dimensional database defined on
the domain [1, N ], one can determine the exact record val-
ues up to reflection with O(N4 log(N)) uniformly random
queries. Moreover, reconstruction can be done with only
O(N2 logN) queries if the database is dense. Informally,
a dense database is one in which each domain value is
associated with at least one record. In [12], improve on the
dense database attack and present an algorithm that suc-
ceeds in reconstructing dense databases with O(N logN)
queries. For large N , these query complexities can quickly
become impractical, so LMP additionally presented an ε-
approximate database reconstruction (ε-ADR) attack that
recovers all plaintext values up to some additive εN error
with only O(N log ε−1) queries.

Grubbs et al. [6] present a generalization of this ap-
proximation attack, called sacrificial ε-ADR. Unlike LMP’s
attack, the GLMP attacks are scale free and, as such, the
success of the algorithms are dependent only on the value
of ε (as opposed to both ε and N ). The first attack requires
O(ε−4 log ε−1) queries under the assumption of uniformly
random range queries, and the second attack succeeds with
only O(ε−2 log ε−1) uniformly random queries and the ad-
ditional assumption that there exists some record in the
database whose value is in the range [0.2N, 0.3N ] (or its
reflection).

In a different line of work, Kornaropoulos et al. [11]
combined access pattern leakage with search-pattern leak-
age, another form of leakage that is revealed in all known
structured encryption (STE) schemes. Search pattern leakage
reveals repeated queries through the use of search tokens.
By applying statistical learning methods to this additional
information, they are able to reconstruct databases for un-
known query distributions.

2. Preliminaries

PLAINTEXT DOMAINS AND DATABASES. We are concerned
with range queries over some ordered domain X . While
prior work typically took X = {1, . . . , N} for some integer
N , we use centered domains of the form X = {−(N −
1), . . . , 0, . . . , N − 1}. These domains will greatly simplify
our formulae. Except for the implication that |X | is odd,
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this choice of domain is essentially immaterial in that an
attacker can internally shift the data it recovers by the
appropriate offset. We remark that all of our results hold
in even size domains by taking X = {−N + 1,−N +
3, . . . ,−1, 1, . . . , N−3, N−1}, in which case our theorems
will hold as stated.

A domain for a database will always be a set of the form
D =

∏d
i=1 Xi, where Xi are centered domains (possibly

of different sizes). When the Xi are all equal, we say the
domain is square. We define a database DB over the domain
D to be an element of DR, i.e. an R tuple over the Cartesian
product of centered domains Xi, for some integer R. We
refer to d as the dimension of DB and R as the number of
records of DB. We will write DB[j], 1 ≤ j ≤ R, for the
j-th record in DB. For S ⊆ [R], we write DB[S] for the set
of records corresponding to S, i.e. {DB[j] : j ∈ S} ⊆ D.

When d = 2, we will often write P and Q for points in
X1×X2, and refer to the coordinates as Px, Py and Qx, Qy
respectively.

Unless stated otherwise (and specifically in Section 5),
we shall always assume that the records in DB are distinct.
From the point of view of our attacks, it would always be
easy to recognize repeated records at essentially no cost in
adversary effort, as we comment later.

RANGE QUERIES AND ACCESS PATTERNS. For a d-
dimensional database DB ∈ DR over the domain D =∏d
i=1 Xi, the set of range queries on D, denoted Qrs(D),

consists of pairs q = (a,b) ∈ D × D such that a[i] ≤ b[i]
for each i. We have

|Qrs(D)| =
d∏
i=1

(
|Xi|+ 1

2

)
.1

We define the access pattern of range query q = (a, b)
on DB as

AP(DB, q) =

{
j : DB[j] ∈

d∏
i=1

{a[i], . . . ,b[i]}

}
⊆ [R].

Thus AP(DB, q) consists of the indexes of entries in DB
that lie in the box with a in the “lower left” corner and b
in the “upper right” corner.

EQUIVALENT DATABASES. As we review in the next sec-
tion, Kellaris et al. observed that some distinct databases
will induce the same distribution of access patterns under
random queries. We abstract this notion as follows.

Definition 1. Fix a domain D and let Q be a distribution
on Qrs(D). We say two databases DB0,DB1 over D are
equivalent under query distribution Q and write DB0

Q∼
DB1 if for all S ⊆ [R]

Pr[AP(DB0, q) = S] = Pr[AP(DB1, q) = S],

1. This formula holds because in each dimension there are
(|Xi|

2

)
queries

with distinct endpoints, plus another |Xi| queries with the same upper and
lower endpoints.

Game FDRADB,Q

Oracle Qry()

q
$← Q

return AP(DB, q)

Fin(D̂B)

if D̂B
Q∼ DB output 1

else output 0

Game AllFDRADB,Q

Oracle Qry()

q
$← Q

return AP(DB, q)

Fin(S)
if S = E(DB,Q) output 1
else output 0

Figure 1. Games FDRDB,D and AllFDRDB,D

where q is a query drawn from distribution Q. We define
the set

E(DB,Q) = {DB′ ∈ DR : DB′
Q∼ DB}.

When Q is the uniform distribution on Qrs(D) we drop
it from the notation, writing DB0 ∼ DB1 and E(DB)
respectively.

FULL DATABASE RECONSTRUCTION ATTACKS. Let A be
an adversary, D be a domain for a database DB ∈ DR, and
Q be a distribution on Qrs(D). Define the FDR advantage
of A against DB with query distribution Q to be

Advfdr
DB,Q(A) = Pr[FDRADB,Q = 1],

where the FDRADB,Q is defined in Figure 1. (Recall that in a
game, following [1], an adversary A is run with the oracles
in the game, which in this case include Qry and a special Fin
oracle. When the latter is called, the game ends and produces
an output.) When Q is the uniform distribution on Qrs(D)
we simply write FDRADB and AdvFDR

DB (A) respectively.
We also define a related game AllFDRADB,Q in Figure 1.

This game is the same, except to win, the adversary must
output every database equivalent to DB. We define

Advall-fdr
DB,Q (A) = Pr[AllFDRADB,Q = 1].

OUR DATASETS. We support our findings with analysis
of real datasets. We use hospital records from the years
2004, 2008, and 2009 of the Healthcare Cost and Utilization
Project’s Nationwide Inpatient Sample (HCUP, NIS)2 and
seven years, 2012-2018, of Chicago crime locations from

2. https://www.hcup-us.ahrq.gov/nisoverview.jsp. We did not
deanonymize any of the data, our attacks are not designed to deanonymize
medical data, and authors underwent the HCUP Data Use Agreement
training and submitted signed Data Use Agreements.
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the City of Chicago’s data portal3. Prior works on EDBs
have also used HCUP data for experimental analysis. The
2009 HCUP data was previously used for the KKNO and
LMP attacks, and all three years were used in GLMP19’s
volume leakage paper. These years were chosen due to their
prior use and changes in HCUP’s sampling methodology,
but other years should give similar results. Also, because our
theorem opens up the possibility of reconstructing databases
stored by two attributes, we explore a new setting for access
pattern attacks, geographic databases indexed by longitude
and latitude. We use Chicago crime data which is made
publicly available by the city. Each Chicago database repre-
sents the locations of crimes within a district during a year.
Chicago was re-districted in 2012, so we only use the 22
districts from years after 2012.

Each year of HCUP data contains a sample of inpatient
medical records in the United States. 2004, 2008, and 2009
include data from 1004, 1056, and 1050 hospitals and
8004571, 8158381, and 7810762 records respectively. We
represent a database as the records from a single hospital
in a year indexed by two attributes. The NIS is the largest
longitudinal hospital care collection in the United States and
contains many attributes for each record. We only use a
small subset of attributes which were used by prior works
and come from the Core data file for our analysis. Like
KKNO, we divide the age domain into two attributes for
minors and adults. One problem is that while the Agency
for Healthcare Research and Quality (AHRQ) provides hos-
pitals with a format and domain for each attribute, many
hospitals do not follow the AHRQ guidelines in practice. We
use the AHRQ formats for our domain sizes and omit data
which does not lie within the domain. We use the following
attributes:

We use seven years of Chicago crime data with 22
districts, leading to a total of 154 databases. Exact longitudes
and latitudes are given up to 12 decimal points, but we scale
and group the latitudes and longitudes of crime data into
domains of equal sizes. For an attribute i of ai1,i2 ∈ R and
some chosen domain size N , the rescaled value of i is i′ =
(i−imin)∗(2N−2)

imax−imin
− (N − 1) rounded to the nearest integer.

We choose to scale latitudes to N = 5, 10, 20, 30, 50, 100,
and 1000, and we scale longitudes to domains of size
N multiplied by the ratio of longitude range to latitude
range in that district. The minimum longitude was typically
around N

5 and the maximum around 3.6N . The latitudes
and longitudes were only equal for 6 databases. Also, we
use data with exact longitudes and latitudes as integer values
by multiplying by 1012 and then centering. The minimum
number of crimes in a district across all years was 4162 and
the maximum was 22434.

3. Queries Densities and the KKNO Attack

QUERY DENSITIES. An insight of Kellaris et al. [9] is that,
for uniformly random one-dimensional range queries, the

3. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-
present/ijzp-q8t2
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Figure 2. Plots of ρ(P ) and ρ(Q,P ) for N = 5 (and X = {−4, . . . , 4})
and Q = −3. The functions are viewed as real curves with integral
points marked. If the first stage of KKNO found that the minimal ρ-valued
point has ρ(DB[j∗]) = 16, then it finds DB[j∗] = ±3 in the left plot.
It assumes DB[j∗] = −3. Say another point DB[j] is found to have
ρ(DB[j∗],DB[j]) = 6. In the right plot the attack can solve and find that
DB[j] = 2.

probability that a record belongs to a random query almost
uniquely determines the value of the record. We formalize
their idea via what we call a query density. We later gener-
alize the notion of query densities to higher dimensions.

For a centered domain X = {−(N − 1), . . . , N − 1},
and a set of points P ⊆ X , we define the 1-dimensional
query density function ρ by

ρ(P) = |{(a, b) ∈ Qrs(X ) : P ⊆ {a, . . . , b}}|

Thus ρ(P) is the number of queries which contain P , and is
between 0 and |Qrs(X )| =

(|X |+1
2

)
. The probability that a

uniformly random range query contains all the points in P
is ρ(P)/|Qrs(X )|. In one dimension, our centered domains
make ρ have a simple form:

ρ(P) = (N + minP)(N −maxP).

When P = {P1, . . . , Pt} we sometimes write ρ(P1, . . . , Pt)
as the formula defining ρ does not depend on the order of
its arguments. So for a single point, ρ is particularly simple:

ρ(P ) = (N + P )(N − P ) = N2 − P 2.

We note that ρ implicitly depends on the domain X , but the
domain should always be clear from context.

PRIOR ATTACK. The Kellaris et al. attack can be abstracted
into two steps: The first estimates

ρ(DB[j]) = N2 −DB[j]2

for each j by collecting queries and observing the frequency
with which index j appears. After an accurate estimate
of ρ(DB[j]) is computed with high probability, the attack
solves this quadratic equation, determining DB[j] up to its
sign. See Figure 3 for an geometric example, where on the
left plot this is done by intersecting a conic and a line. At
this point all points can be determined up to sign, but setting
those signs arbitrarily will typically result in a database that
is not equivalent to the one under attack.

To determine the signs, the attack proceeds as follows.
The attack then finds the index of the point with minimal
query density; call this index j∗. The attack arbitrarily fixes
DB[j∗] to (say) the smaller of the two possible points for
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Attributes Description |X | 2004 |X | 2008 |X | 2009
AGE Age in years 91 91 91
AGEDAY Age in days 365 365 365
AGE<18 Age < 18 18 18 18
AGE≥18 Age ≥ 18 73 73 73
LOS Length of stay 366 365 365
AMONTH Admission month 12 12 12
NCH Number chronic conditions N/A 16 26
NDX Number diagnoses 16 16 26
NPR Number procedures 16 16 26
ZIPINC Income quartile of zip code 4 4 4

TABLE 1. HCUP ATTRIBUTES

DB[j∗]. Then there is a second phase that estimates, for all
j 6= j∗,

ρ(DB[j∗],DB[j]) = (N + DB[j∗])(N −DB[j]).

Note that this formula holds because DB[j∗] is the extreme
point in DB and it always “on the same side” of the DB[j].
(If there were not the case then which point is minimum
would depend on DB[j]; this is where the first stage is
crucial.) Finally the attack solves these R−1 linear equations
uniquely for all of the DB[j], j 6= j∗. In the right plot of
Figure 3 this process is done geometrically by intersecting
two lines. Reversing the sign of all the points recovered
results in another equivalent database.

Once standard concentration estimates are applied, the
following is proved:

Theorem 1 ( [9]). For any centered domain X = {−(N −
1), . . . , N − 1}, there exists an adversary A, issuing
O(N2 logN) queries, such that that for all DB ∈ XR,

Advall-fdr
DB (A) ≥ 1− 2−Ω(N).

Moreover, for any DB ∈ XR, E(DB) has the form
{DB,−DB}.

We comment that the query complexity does not depend
on R because we have assumed all of the records in DB
are distinct, and hence R ≤ |X |.

Intuitively, the association between subsets S of [R]
and values of ρ(DB[S]) encapsulates all of the information
available to an FDR adversary. (We make this precise later in
Lemma 1.) The KKNO attack can be thought of as inverting
this association. More formally, view DB as a function
f : [R] → R ⊇ X , defined by f(i) = DB[i], and consider
the following transform

{f : [R]→ R} → {f̂ : 2[R] → R}
DB 7→ D̂B,

where f̂ is defined by f̂(S) = ρ(DB[S]). By the attack
above we see that this transform is two-to-one, unless DB
consists of a single point at 0 (and otherwise DB and −DB
have the same transform; Another consequence of our choice
of centered domains is that this relationship is simple). The
KKNO attack is inverting this transform and finding the full
preimage. Moreover, the attack is efficient in that it only

needs access to about 2R values from amongst the 2R values
of f̂ .

4. Query Densities and Equivalent Databases
in Two Dimensions

Before considering an attack, we examine how the no-
tion of equivalent databases changes in higher dimensions,
and in particular dimension 2 with square domains where
most of the complexities already crop up.

QUERY DENSITIES IN HIGHER DIMENSIONS. We start by
directly generalizing the notion of query density to higher di-
mensions. For centered domains Xi = {−(Ni−1), . . . , Ni−
1} and P ⊆ D =

∏d
i=1 Xi, define

ρ(P) =

∣∣∣∣∣
{

(a,b) ∈ Qrs(D) : P ⊆
d∏
i=1

{a[i], . . . ,b[i]}

}∣∣∣∣∣
Similarly to before, a formula for computing ρ is

ρ(P) =

d∏
i=1

(Ni + min
P∈P

P [i])(Ni −max
P∈P

P [i]).

Thus for a single point P ,

ρ(P ) =

d∏
i=1

(Ni + P [i])(Ni − P [i]) =

d∏
i=1

(N2
i − P [i]2)

We will use several times that equivalence of databases
is determined by equivalence of query densities. The simple
relationship is akin to that of cdfs and pdfs for discrete
distributions.

Lemma 1. For any domain D and any two databases
DB0,DB1 ∈ DR with the same number of records, DB0 ∼
DB1 if and only if for all S ⊆ [R],

ρ(DB0[S]) = ρ(DB1[S]).

The proof of Lemma 1 can be found in Appendix A.1.

EQUIVALENT DATABASES IN SQUARE 2-DIMENSIONAL
DOMAINS. For the remainder of this section we work with
a square domain of the form X 2. To reduce notation, for a
point P ∈ X 2, we write P = (Px, Py) for its coordinates.
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Figure 3. Visualization of the first stage of the KKNO algorithm in two
dimensions. The left plot represents solving ρ(P ) = a by intersecting a
plane with a degree 4 curve in two variables. The intersection of these
curves is plotted on the right, with the 8 integral points highlighted. The
integrals points are obtained by applying rigid motions of the square to
each other. In general there will be additional integral points not obtained
in this way.

We are interested in the structure of E(DB) for DB ∈
(X 2)R. By examining the algebraic formula for ρ and ap-
plying Lemma 1, it is apparent that applying “rigid motions
of the square” to DB will result in an equivalent database.
More formally, define the functions σ((Px, Py)) = (Py, Px)
(reflection across the x = y diagonal) and r(Px, Py) =
(Px,−Py) (rotation 90 degrees clockwise), and extend them
to apply to databases in XR by applying them to every
record. We then have that σ(DB) ∼ DB and r(DB) ∼ DB.
Moreover, iterating r and σ generates 8 databases that are
all equivalent.

We let Rot(X 2) be the set of four rotations on
X 2 by multiples of 90 degrees. Formally, Rot(X 2) =
{r0, r, r2, r3}, where r0 is the identity map. It is then natural
to conjecture that

E(DB) = {r(DB), r(σ(DB)) : r ∈ Rot(X 2)},

and in particular that |E(DB)| ≤ 8. Interestingly, this is
the wrong bound in general: We show that |E(DB)| is not
bounded by a constant and may even be exponential in R.

GENERALIZING KKNO TO 2-DIMENSIONS: AN ATTEMPT.
Let us examine what happens we naively generalize KKNO
to a square domain D = X × X .

The high-level plan is to first recover, up to some
symmetry, the point DB[j∗] which has the smallest query
density. Then the attack would arbitrarily break the sym-
metry to fix DB[j∗], and use the joint query densities
ρ(DB[j∗],DB[j]) to fix the remaining DB[j].

The first step is to estimate ρ(DB[j]) for every j. After
estimating these, we can attempt to implement the first step
of KKNO, which previously solved for DB[j] up to sign.
To the ease the notation in what follows, write DB[j] =
(x, y) ∈ X 2 and ρ(DB[j]) = a. Assume we know a, we
need to solve the equation

a = (N2 − x2)(N2 − y2) (1)

for x, y. This is depicted in Figure 4. As a function of x and
y, ρ is a degree-4 curve. Solving this involves intersecting
the curve with the plane z = a, which results in the curve
on right side of the figure. It is already apparent that the
situation in two dimensions is dramatically different form

x

y

Figure 4. Representation of a family of equivalent databases that are not
generated by the 8 rigid motions of a square. A member of the family is
determined by selecting one point from of each of the diagonally connected
pairs. Each member can be seen to be equivalent via Lemma 1 and
checking cases. The dotted lines represent the set X 2

π which must exist
via Theorem 2. In this case there are ` = 7 sets in the partition.

one dimension: Instead of getting two real points in this
intersection, we get an infinite number of solutions.

We can partially resolve this situation by noting that
the points we want on the curve must be integral: We
are actually attempting to solve (1) over the integers.
By inspection, we can see that if (x, y) is an integral
solution, then we actually have eight integral solutions:
(±x,±y), (±x,∓y), (±y,±x), (±y,∓x) (if x = ±y then
these will not be distinct). These correspond to the rigid
motions discussed above and depicted on the right side of
Figure 4. But there is no reason that these should be the only
integral solutions. It appears that (1) may have an unbounded
number of integral solutions (i.e. the number of solutions
may grow with X ), partitioned into groups of at most 8 by
the rigid motions.

We were not able to solve the Diophantine equation (1)
in general. A line of reasoning, however, is that (1) will
tend to have at most 8 solutions in practice, so we may
heuristically assume there are 8 and proceed.

We show, however that another type of symmetry sneaks
in during the second phase. Even if we fix the point DB[j∗]
up to the eight unavoidable symmetries, there can still be
other points DB[j] that are not uniquely determined. We
will show later that, under a technical condition on DB (that
DB has a “dominating point”, which requires that the point
with minimal query density avoids some coincidences; we
define this precisely below), these points are fixed up to
one specific symmetry. However, we find that there may
be several independent degrees of freedom in how they are
fixed. The result is a family of 8 · 2s equivalent databases,
where s is the degrees of freedom and the 8 comes from the
rigid motions of the square. For a visual example, consider
the family of databases depicted and explained in Figure 4.

4.1. E(DB) over X 2 with a Dominating Point

This section classifies the possible sets E(DB) when
DB is a database over a square domain D = X 2 and
DB contains a point that is extremal in both dimensions in
addition to satisfying an extra number-theoretic condition.
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TECHNICAL LEMMA. We start with a lemma that begins to
limit the possible symmetries within E(DB).

Definition 2. Let X be a centered domain. We define the
partial order � on X 2 by P � Q if Px ≤ Qx and Py ≤ Qy.
We write P 6� Q if this does not hold.

Lemma 2. Let P ∈ X 2 and a, b ∈ R. Then the system of
equations

ρ(Q̂) = a

ρ(P, Q̂) = b

P � Q̂

has at most 2 solutions. Moreover, if Q̂ is one solution,
then σ(Q̂) is the only other possible solution, and it is the
solution if and only if P � σ(Q̂).

The proof of Lemma 2 can be found in Appendix A.2.
In this part we state and prove a theorem on how the

family E(DB) can be described when the point P of DB
with minimal query density also has the most extreme x and
y coordinates, plus avoids some algebraic difficulties.

Definition 3. For a ∈ R, define Ca, to be the curve
generated over R2 by

(N2 − x2)(N2 − y2) = a.

We say a point P ∈ DB is dominating (for DB) if either

Px ≤ min
Q∈DB

{Tx : T ∈ Cρ(Q) ∩ Z2} or

Px ≥ max
Q∈DB

{Tx : T ∈ Cρ(Q) ∩ Z2}

and if either

Py ≤ min
Q∈DB

{Ty : T ∈ Cρ(Q) ∩ Z2} or

Py ≥ max
Q∈DB

{Ty : T ∈ Cρ(Q) ∩ Z2}.

The next definition describes the family of symmetries
that exhibit the degrees of freedom discussed above.

Definition 4. A partition of X = {−(N − 1), . . . , N − 1}
is a tuple π = (a0, a1, . . . , a`) with −(N −1) = a0 < a1 <
· · · < a`−1 < a` = N − 1. For π = (a0, . . . , a`) a partition
of X , define

X 2
π =

⋃̀
i=1

{aj−1, . . . , aj}2.

For a bitstring w ∈ {0, 1}` we define the function

λπ,w : X 2
π → X 2

π

P 7→ σwj (P ), P ∈ {aj−1, . . . , aj}2.

In other words, λπ,w is the identity on the square
{aj−1, . . . , aj}2 if wj = 0, while if wj = 1 it applies the
reflection σ to this square. We define

Λπ = {λπ,w : w ∈ {0, 1}`}.

Game AllSymFDRADB,Q

Oracle Qry()

q
$← Q

return AP(DB, q)

Fin(D̂B, π)

if E(DB) = Sym(D̂B, π) output 1
else output 0

For a partition π and DB ∈ (X 2
π )R we define

Sym(DB, π) = {r(λ(DB)) : λ ∈ Λπ, r ∈ Rot(X 2)}.

Figure 4 gives an example of X 2
π via the dotted line

boxes. The family in that example is an instance of an
Sym(DB, π) from the following theorem.

Theorem 2. Assume DB ∈ X 2 contains a dominating point
P such that Px, Py < 0 and Cρ(P )∩Z2 = {r(P ), r(σ(P )) :
r ∈ Rot(X 2)}. Then there exists a partition π such that
DB ∈ X 2

π and

E(DB) = Sym(DB, π).

The proof of Theorem 2 can be found in Appendix A.3.

4.2. Attack over X 2 with a Dominating Point

In this section we describe an attack that, given suffi-
ciently many access patterns for random queries for a two-
dimensional DB with a dominating point, recovers D̂B and
π such that E(DB) = Sym(D̂B, π). Strictly speaking this
attack does not fit the syntax of the All-FDR definition,
where the adversary must output E(DB) itself, but this might
be an exponentially large set. Thus we use the following
definition instead. In the game AllSymFDR (see Figure 4.2)
the adversary must find D̂B and π that describe E(DB); We
define

Advall-sym-fdr
DB,Q (A) = Pr[AllSymFDRADB,Q = 1].

As usual we omit Q when it is the uniform distribution.
We next leverage Theorem 2 to develop the attack, which

we first overview. First, the attack identifies and computes
the value of the dominating point Pdom by finding j ∈ [R]
with minimum (estimated) ρ(DB[j]); Call this Pdom. Using
Lemma 2, the attack can determine Pi up to its reflection
by σ by solving a quadratic equation. All that remains is to
sort of the possible symmetries amongst these points.

Next the attack can order these possible points by or-
dered by their minimums, as described at the start of the
proof of Theorem 2. The algorithm iteratively checks to
see if the next point in the ordering, Pi for some i ∈ [R],
satisfies Pj � Pi and Pj � σ(Pi) for all j < i. If this is
true, then Pi must sit in its own partition and π is updated
to (a0, . . . , a`, α,N − 1) where α = min{(Pi)x, (Pi)y}.
Otherwise, π remains the same. The pseudocode for this
attack can be found in Algorithm 1.
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Algorithm 1 DOMSQUAREFDR

Input: A collection, aps, of subsets of [R].
Output: A database D̂B and a partition π of X .

1: Initialize a new database D̂B with R records.
2: Compute the dominating point P1 (relabeling if necessary)
3: for each i ∈ [R] do
4: ρ̂i ← ESTRHO({i, i}, aps)
5: ρ̂i,1 ← ESTRHO({i, 1}, aps)
6: Find Pi ∈ Cρ̂i ∩ Cρ̂i,1 ∩ Z2

7: D̂B[i]← Pi

8: Relabel points by their minimums, breaking ties arbitrarily.
9: π ← (−N + 1, N − 1) . π is set to the trivial partition.

10: for i = 2, . . . , R do
11: if Pj � Pi and Pj � σ(Pi) for all j < i then
12: α← min{(Pi)x, (Pi)y}
13: π ← (a0, . . . , a`−1, α,N − 1)
14: else
15: for j ∈ [R] s.t. D̂B[j] ∈ [a`−1, a`]× [a`−1, a`] do
16: ρ̂i,j ← ESTRHO({i, j}, aps)
17: if ρ̂i,j 6= ρ(σ(Pi), Pj) and ρ̂i,j = ρ(Pi, Pj) then
18: D̂B[i]← Pi
19: break
20: if ρ̂i,j = ρ(σ(Pi), Pj) and ρ̂i,j 6= ρ(Pi, Pj) then
21: D̂B[i]← σ(Pi)
22: break
23: return D̂B and π

For the purpose of estimating the values ρ(Pi, Pj) for
i, j ∈ [R] we use a simple algorithm, denoted ESTRHO,
which accepts a set of indices S ⊆ [R] and aps, a collec-
tion of subsets of [R], as input. It outputs an estimate of
ρ(DB[S]) denoted ρ̂S . It proceeds by computing

ρ̂S ← |{a ∈ aps : S ⊆ a}|/|aps|,

rounding ρ̂S to the nearest integer multiple of
(
N+1

2

)−2
, and

then returning ρ̂S .

Theorem 3. Let DB ∈ (X 2)R be a database contain-
ing a dominating point P such that Px, Py < 0 and
Cρ(P ) ∩ Z2 = {r(P ), r(σ(P )) : r ∈ Rot(X 2)}. Assume
that for all i, j ∈ [R], algorithm ESTRHO({i, j}, aps) cor-
rectly returns ρ(Pi, Pj). Then DomSquareFDR outputs a
database D̂B ∈ (X 2)R and a partition π of [R] such that
E(DB) = Sym(D̂B, π).

Proof. Relabel the records in [R] as in the proof of Theo-
rem 2. We prove the following loop invariant: At the end of
the iteration with value i of the second for loop that starts on
line 10, Sym((P1, . . . , Pi), π) = E(P1, . . . , Pi). Before the
first loop this is holds. Next consider the ith iteration. Either
the if block starting on line 11 or the else statement starting
on line 14 is executed. Following the proof of Theorem 2,
π is updated with exactly the same conditions, and we can
apply the inductive reasoning from that proof to establish
the loop invariant.

Theorem 4. For any centered domain X 2 = {−(N −
1), . . . , N − 1}2, there exists an adversary A, issuing n

queries, such that for all DB ∈ (X 2)R containing a domi-
nating point,

Advall-sym-fdr
DB (A) ≥ 1− 2R2 · exp

(
−2n

N8

)
.

Proof. The adversary queries its oracle n = O(N8 logN)
times and records all the unique responses it receives in
a set aps. Then it runs DOMSQUAREFDR(aps) to obtain
a database and partition (D̂B, π). By Theorem 3 we only
need to check that the outputs of ESTRHO are correct with
probability given in the theorem.

For i ≤ j ≤ R, define the i.i.d. random variables

Xk =

{
1 if i, j are in the k-th sample of aps
0 otherwise,

let E(Xi) = ρ(Pi, Pj)/
(
N+1

2

)2
and let Aij =

∑n
k=1Xk.

ESTRHO succeeds when for all i, j ∈ [R],

Aij
n
∈

[
ρ(Pi, Pj)(
N+1

2

)2 ± ε
]
.

for = ε = 1

2(N+1
2 )

2 = O(N−4). By a standard Chernoff

bound, the probability that this does not happen is at most
exp(−2ε2n). Taking a union bound over the R2 calls to
ESTRHO, we get the claimed bound in theorem.

Once the number of queries is slightly above N8 we
get an adversary with constant advantage. We note that if
one additionally has search pattern leakage, then this can
be reduced to N4 queries using the same method as [13].

In Appendix C, we extend the techniques presented in
this section to non-square domains X1 ×X2.

4.3. Attack over X 2 without a Dominating Point

We next give an approach for finding E(DB) for two-
dimensional DB without a dominating point. Unlike our
attack in the previous section, we cannot formally prove
that it runs in polynomial time, but for practical purposes it
is essentially as efficient as in the dominated case. Moreover
it is still provably correct. We only present the attack over
X 2 but it can be extended to non-square domains X1 ×X2

with similar techniques to those used in Section C. We
implemented this attack and found it ran in essentially the
same time as our more limited algorithm above.

Our approach relies on the assumption that, while there
may not be a record with more extreme coordinates than the
ρ curves of every other record in the database, we can still
choose a record P1 and run Algorithm 1 on the subset of
records in DB that are dominated by P1. This reconstructs a
family of databases equivalent to the P1-dominated subset of
DB. From here, our algorithm incrementally adds the points
undominated by P1 back into each member of this family.
This second stage can, in principle, lead to an exponentially
large description of the family of equivalent databases, but
in our experiments the effect of this scaling was never
substantial.
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OUR ALGORITHM. The algorithm starts by choosing a
good candidate for P1 and determining which points in the
database it dominates. Although an adversary could possibly
check how many points are dominated by each observed ρ
curve to choose the optimal P1, we suggest a heuristic that
the record with the lowest ρ value will typically dominate
the most points. For P1 fixed, we let Dom ⊆ [R] be the set
of indexes of points dominated by P1.

Our attack then considers undominated points one at a
time. Because we are adding points to our family which
are not ordered by their minimums, we can no longer
assure that records which can be reflected over the main
diagonal independently from other records will be described
by distinct squares; There may be any number of integral
points on their ρ-curves.

For each undominated record Pi, the naive approach
would be to check for each integral point on the record’s ρ
curve if this placement would lead to a database consistent
with the observed query densities, i.e. a database DB′ such
that for all S ⊆ Dom ∪ {i}, Pr[AP(DB′, q) = S] matches
the estimated ρ values. Done naively, this approach requires
checking 2|Dom| constraints. We show how to avoid this
with a polynomial computation. In particular we show that
it is sufficient to only check the constraints for |S| ≤ 4. The
following lemma formalizes the core of this reasoning:

Lemma 3. For any database DB ⊆ X1×X2 of size R and
points P, P ′ ∈ X 2, if for every S ′ ⊆ [R] of size at most 4
we have

ρ(DB[S ′], P ) = ρ(DB[S ′], P ′),

then the databases formed by appending either P or P ′ to
DB are equivalent.

The proof of Lemma 3 can be found in Appendix A.4.
The task of adding a single undominated point Pi back

into the family of databases is significantly faster with this
lemma. If the ρ function on a subset of at most four points
in D̂B union with Pi does not equal the observed ESTRHO

value on the indices of those same five points, then D̂B‖Pi
cannot be equivalent to a subset of the real database. If the
ESTRHO value agrees with the computed ρ value on all
subsets of points in DB′ of size at most four union Pi, then
by Lemma 3 D̂B‖Pi must be equivalent to the target DB

(restricted to points P1, . . . , Pi). Thus we can add D̂B‖Pi to
our family of candidate databases. At the end of each j-th
iteration of the for loop starting on line 15, the algorithm
will have computed a family of equivalent databases F , all
of size |D̂B|+ j.

Pseudocode for our heuristic approach can be found in
Algorithm 2. Our code uses a simple subroutine ISDOM
which accepts ρ̂i, ρ̂j ∈ N and tests if every integral point on
ρ̂i dominates the integral points on ρ̂j .

CORRECTNESS. After the first stage of the algorithm, which
ends on line 12, we have constructed a partition that de-
scribes the family of equivalent databases from the access
patterns of records dominated by P1. The correctness of this
stage follows from the correctness of DOMSQUAREFDR.

The algorithm then proceeds to the second stage, where it
first initializes two sets: F = Sym(D̂B, π) and T = ∅. For
each integral point along Cρ̂i (i not in the dominating set)
and for each database DB′ ∈ F , the algorithm then proceeds
to compute ρ for all subsets of points containing Pi of size
at most five in DB′‖Pi and check them against the values
of ESTRHO on those same points. Correctness of this step
follows from Lemma 3.

The following invariant is maintained at the end of the
j-th iteration of the for loop on line 15: the databases in F
are all the databases equivalent to the target DB restricted
to the points P1, . . . , Pj . This invariant follows from the
fact that the algorithm brute-force tests all integral points
Pi ∈ Cρ̂i along with each each DB′ ∈ F , and adds DB′‖Pi
to T precisely when the ρ values of DB′‖Pi agree with the
observed ESTRHO values given aps. At the end of each j-
th iteration, F is updated to T and T is initialized to ∅ so
the process can be repeated for the next point Pi+1 until all
candidate points have been tested and added accordingly.

We experimentally find that for most real databases, the
π computed by DOMSQUAREFDR describes relatively few
partitions. As such, it is generally computationally feasible
to iterate through all possible databases in the family F .
While we find a handful of real examples of databases
where no record dominates another, they typically contain
few points, allowing an adversary to run the second stage
of the algorithm relatively quickly.

4.4. Experimental Evaluation

Our structure theorem leaves a few issues open for
empirical exploration: How often do databases have the
dominating point required for an attack? How often does our
heuristic method succeed in running quickly and generate a
family of databases with manageable size in the absence of
a dominating point? How many entries would an adversary
usually observe in a partition π, and in the rectangular
case, how many of those partition entries can be fixed?
(Note that in the rectangular case, it is possible that a
point’s reflection across the diagonal may no longer be
integral, hence reducing the number of possible symmetries.
Further details can be found in Appendix C.) We explore
these questions through data representative of what might
realistically be stored in an encrypted database with two-
dimensional range queries.

As described in Section 2, we use HCUP records and
Chicago crime data. For HCUP data, we choose pairwise
attributes for our indices. We attempt to choose attributes
with a variety of data distributions. Also, we avoid pairs
of attributes which do not logically make sense to compare
(e.g. AGE by AGE BELOW 18). For Chicago data we scale
and group latitudes to domains of certain sizes, N , and then
scale longitudes to domains of size N multiplied by the ratio
of longitude to latitude in that district. Our results are in
Table 2.

We observe that the number of databases with domi-
nating points varies greatly with the domain sizes and the
distributions of different attributes. Overall, we could run
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Attributes |X | # Dominated # Heuristic |E(DB)| = 4/8/16 Total DBs
2004 AGE & LOS 91x366 787 217 1004/0/0 1004
2004 AGEDAY & ZIPINC 365x4 664 13 677/0/0 677
2004 AGE<18 & NPR 18x16 955 17 972/0/0 972
2004 AMONTH & ZIPINC 12x4 932 16 948/0/0 948
2004 NDX & NPR 16x16 336 668 0/997/7 1004
2008 AGE≥18 & NPR 73x18 1013 42 1055/0/0 1055
2008 AMONTH & NCH 12x16 961 44 1005/0/0 1005
2008 NCH & NDX 16x16 196 860 0/1054/1 1056
2008 NCH & NPR 16x16 1021 35 0/1053/3 1056
2008 NDX & NPR 16x16 674 354 0/1052/4 1056
2009 AGE<18 & LOS 18x366 851 117 968/0/0 968
2009 AMONTH & AGEDAY 12x365 597 47 644/0/0 644
2009 NCH & NDX 26x26 73 974 0/1043/7 1050
2009 NCH & NPR 26x26 991 54 0/1049/1 1050
2009 NDX & NPR 26x26 301 714 0/1017/3/ 1050
Chi LAT & LONG 5 149 5 154/0/0 154
Chi LAT & LONG 10 121 33 154/0/0 154
Chi LAT & LONG 20 56 98 154/0/0 154
Chi LAT & LONG 30 27 127 154/0/0 154
Chi LAT & LONG 50 26 128 154/0/0 154
Chi LAT & LONG 100 21 133 154/0/0 154
Chi LAT & LONG 1000 15 139 154/0/0 154

TABLE 2. EXPERIMENTAL MEASUREMENTS OF THE STRUCTURE THEOREM INSTANCES.

Algorithm 2 NONDOMSQUAREFDR

Input: A collection, aps, of subsets of [R].
Output: A family of databases F .

1: Initialize a new database D̂B with R records.
2: Initialize a set Dom.
3: Let P1 dominate the most points (relabeled if necessary).
4: for each i ∈ [R] do
5: ρ̂i ← ESTRHO({i}, aps)
6: if ISDOM(ρ̂1, ρ̂i) then
7: ρ̂i,1 ← ESTRHO({1, i}, aps)
8: Find Pi ∈ Cρ̂i ∩ Cρ̂i,1 ∩ Z2

9: D̂B[i]← Pi
10: Dom← Dom ∪ {i}
11: Project aps to only {1} ∪Dom

12: (D̂B, π)← DOMSQUAREFDR(aps)
13: F ← Sym(D̂B, π)
14: T ← ∅
15: for i ∈ [R] \Dom do
16: ρ̂i ← ESTRHO({i}, aps)
17: for each P ∈ Cρ̂i ∩ Z2 do
18: for each DB′ ∈ F do
19: if CHECK4(DB′, P ) = TRUE then
20: T ← T ∪ {DB′‖P}
21: F ← T ; T ← ∅
22: return F

23: procedure CHECK4(DB, P )
24: n = |DB|
25: for all S ⊆ [n], |S| ≤ 4 do
26: ρ̂← ESTRHO(S ∪ {n+ 1}, aps)
27: if ρ̂ 6= ρ(P,DB[S]) then
28: return FALSE
29: return TRUE

our dominated point attack on 10767 out of the 15674
databases in our experiments, but there are attribute pairings
with over 90% of databases with dominating points and
attributes with less than 10%. As we increase our domain for
the Chicago data, the number of databases with dominating
points strictly decreases until a lower bound. Using a domain
where the latitudes and longitudes are simply multiplied by
1012 and centered to get exact reported locations of crimes,
we find this lower limit to be 8 databases with dominating
points.

Also, most dominated databases were partitioned into
families of the minimum possible size generated by the
canonical symmetries – 8 databases for square domains and
4 databases for rectangular domains. This leads to a strategy
to speed up the heuristic approach for our experiments.
While on lines 25-28 of Algorithm 2 we check for every
undominated point P that the union of each S, |S| ≤ 4,
with P matches the observed ρ values, in practice we first
attempt to run the algorithm checking only subsets S such
that |S| ≤ 2. This check is faster to compute and must return
TRUE for every database where all S, |S| ≤ 4, match the
observed values. This attempt will output a superset of F .
If the size of this superset is the minimum size for a family
of square or rectangular databases, then F must be equal to
the superset. Thus, we only need to run the algorithm again
to check for all subsets such that |S| ≤ 4, in the case that
the first run outputs a family of databases that is larger than
the minimum.

Our heuristic attack succeeded for all of the remaining
databases with similar runtimes to the dominated instances.
We found the family of equivalent databases for all 4907
databases without dominating points and it was only neces-
sary to run the heuristic a second time to check |S| ≤ 4 for
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18 instances.
The vast majority of databases were partitioned into a

family of minimum size (15647 out of 15674 attackable
DBs). A total of 26 databases had a family of size 16
and a single database from the HCUP 2008 NCH & NDX
attributes had five partitions, leading to a family of 128
databases. Also, every group in rectangular partitions could
be fixed to not be reflectable, suggesting that few real
databases using these attributes would have an extremely
large number of equivalent databases.

5. Full DB Reconstruction with Dense Records

In this section we no longer assume that the records in
DB are distinct. Recall that a database DB ∈ DR is dense if
all values in D are achieved by a at least one record in DB.
In this section we show that E(DB) has a simple form for
dense DB, in both the square and non-square cases. We also
give an attack that recovers all of E(DB) using O(N2 logN)
queries.

This attack generalizes the prior 1-dimensional attack for
dense databases [9], but there is an interesting complication.
We start with an overview of our attack: similar to the dense
full reconstruction attack in 1-dimension [9], the first step
is to sample enough queries so that the set {AP(DB, q) :
q ∈ Qrs(D)} can be accurately reconstructed (it is a set
and not a multiset when DB is dense). The next step is to
partition [R] according to the value of r. We do this using
an algorithm of [12], which for each r finds the class( ⋂

{q∈Qrs(D):
r∈AP(DB,q)}

AP(DB, q)

)
\

( ⋃
{q∈Qrs(D):
r/∈AP(DB,q)}

AP(DB, q)

)
.

The appendix in [12] describes a computationally efficient
method for determining the record partitions without explic-
itly computing set intersections and unions; We refer to this
algorithm as FindEqualLMP and use it below.

From here we attempt to apply the prior dense-attack
idea: Find the access pattern set amax corresponding to
largest query AP(DB, q) that does not return every record.
In one dimension, this query must leave out exactly records
with one of the extreme values. But in two dimensions this
is no longer true; See Figure 5. What is left out of amax are
records corresponding to an extreme row or column. We
cannot a priori know if a row or column will be omitted,
but we can determine which was the case by examining the
number of values achieved by the records that were left out
(either |X1| or |X2|).

We can continue as in [9] by finding the largest query
strictly contained in amax, and so on. This is analagous to
the ordering step of their algorithm and will partition the
records into rows or columns. We can then apply the attack
again to each row or column, and order them up to reversal.
But there is one final wrinkle, in that the reversals in these
rows/columns must be coordinated; Any should be reversed
if and only if all are reversed. We disambiguate the reversals
by locating the smallest query containing one of the extreme

. . .

.

..

|X1|

|X2| amax

(a) Step 1

. . ..
.. .

.. .
.. .

.. .
..

(b) Result of Step 1

. . ..
.. .

.. .
.. .

.. .
..

(c) Result after running LMP

. . ..
.. .

.. .
.. .

.. .
..

(d) Result after Step 3

Figure 5. Visualization of the maximal query in two dimensions.

values per row/column. Since it is the smallest such query,
these extreme values must the be the largest, or they all must
be the smallest. In either case we learn which rows/columns
to reverse, in order to obtain an equivalent database.

THE CORE OF THE ATTACK. We describe two algorithms,
PARTITION and DENSEFDR. Both of these need to be
given as input the full access pattern set {AP(DB, q) : q ∈
Qrs(D)} in order to be correct. Afterwards we recall how
this set can be computed via coupon-collecting.

The algorithm PARTITION implements the idea of [9] in
two dimensions. We will actually run the same algorithm on
two different types of inputs: Sometimes on the full domain,
and sometimes on specific rows or columns. In the latter
case it collapses essentially to the prior attack, but we state
it as one algorithm for brevity and clarity of the ideas. After
describing PARTITION we prove it correct for the different
types of inputs in Lemmas 4 and 5. The pseudocode for
PARTITION (Algorithm 4) can be found in Appendix A.3.

Lemma 4. Let D = X1 × X2, DB ∈ DR be dense,
aps = {AP(DB, q) : q ∈ Qrs(D)}. Assume algorithm
FindEqualLMP(|X1|, |X2|, aps) returns a partition of [R]
such that r, r′ are in the same set if and only if DB[r] =
DB[r′]. Then PARTITION(|X1|, |X2|, aps) outputs an array
A of size |Xb| for some b ∈ {1, 2} with one of following
properties:

1) For all i = −Nb + 1, . . . , Nb − 1,
A[i] = {r ∈ [R] : DB[r][b] = i},

2) For all i = −Nb + 1, . . . , Nb − 1,
A[i] = {r ∈ [R] : DB[r][b] = −i}.

Proof. Fix D and DB ∈ DR. We first claim that the
algorithm will output an array of size |Xb|, b ∈ {1, 2}. The
size of A is determined on line 4. This line depends on
amax and B. The former is the largest set that is not all of
U = [R], which (because DB is dense) must be a query for
the entire domain except one of the end “row” or “column”
(say it’s a row). Thus all of the elements of U \ amax

constitute one row or column, and then FindEqualLMP will
partition this set into |Xb̄| buckets for some b̄, and then the
algorithm computes N = Nb as the “other” dimension.
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We next prove that the conclusion of the lemma holds
for this DB by induction on i. For i = −Nb + 1, A[i] is
set to the end row outside of amax, which contains r with
DB[r][b] = ±i.

Now suppose that one of the cases (say the first for
simplicity) holds up to some i. Then set ai consists of
records with the first i values −Nb + 1, ...,−Nb + 1 + i in
dimension b. The set ai+1 will correspond to the smallest
query strictly containing ai (and such a query exists because
DB is dense), meaning that the corresponding query for ai+1

is larger by 1 in the appropriate dimension. This means that
ai+1 \ ai are the records with value −Nb + 1 + (i+ 1), and
first case holds for the next i. The second case holding is
similar.

Note that the next lemma involves a non-centered (but
trivial) domain.

Lemma 5. Let D = X1 × {j} for some integer j, DB ∈
DR be dense, aps = {AP(DB, q) : q ∈ Qrs(D)}. Assume
algorithm FindEqualLMP(|X1|, |X2|, aps) returns a partition
of [R] such that r, r′ are in the same set if and only if
DB[r] = DB[r′]. Then PARTITION(|X1|, |X2|, aps) outputs
an array A of size |Xb| for some b ∈ {1, 2} with one of
following properties:

1) For all i = −Nb + 1, . . . , Nb − 1,
A[i] = {r ∈ [R] : DB[r][1] = i},

2) For all i = −Nb + 1, . . . , Nb − 1,
A[i] = {r ∈ [R] : DB[r][1] = −i}.

An analogous version holds when D = {j} × X2.

Proof. This lemma follows almost exactly as before. All
we need to verify is that for these domains the algorithm
will compute N = N1. But this obvious since FindEqualLMP

will find N1 different buckets. Since amax will consist of all
records r except those with DB[r][1] = N1 − 1 or −N1 +
1, the algorithm finds D′ = 1 and hence D = |X1| as
desired.

Next we give the algorithm DENSEFDR. This imple-
ments our strategy of first partitioning by rows or columns,
then partitioning within rows or columns, and finally cor-
recting the signs to be consistent across rows or columns.
This last part is the primary deviation from prior work and
is implemented on lines 8–11.

The next theorem gives a description of E(DB) for dense
DB and shows that DENSEFDR is correct.

Theorem 5. For all centered domains X1,X2, |X1| 6= |X2|,
D = X1 × X2 and DB ∈ DR, if aps = {AP(DB, q) :
q ∈ Qrs(D)}, then DENSEFDR(|X1|, |X2|, aps) outputs a
database D̂B such that

D̂B ∈ {DB, τ1(DB), τ2(DB), τ1(τ2(DB))} = E(DB).

If on the other hand |X1| = |X2|, and the rest of the
conditions are the same, then

D̂B ∈ {r(DB), r(σ(DB)) : r ∈ Rot(X1 ×X2)} = E(DB).

Algorithm 3 DENSEFDR

Input: Domain sizes |X1|, |X2|, collection aps of subsets of [R].
Output: database D̂B.

1: A← Partition(aps)
2: Let b ∈ {1, 2} be the dimension recovered (so |A| = 2Nb−1})

and b̄ = 3− b.
3: Initialize D̂B with R records.
4: for j = −Nb + 1, . . . , Nb − 1 do
5: for r ∈ A[j] do
6: D̂B[r][b]← j

7: Bj ← Partition({a ∈ aps : a ⊆ A[j]})
8: aends ← arg mina∈aps{|a| : For all j, either Bj [−Nb̄ + 1] ⊆
a or Bj [Nb̄ − 1] ⊆ a}

9: for j = −Nb + 1, . . . , Nb + 1 do
10: if Bj [Nb̄ − 1] ⊆ aends then
11: Reverse Bj
12: for k ∈ [−Nb̄ + 1, Nb̄ − 1] do
13: for each r ∈ Bj [k] do
14: D̂B[r][b̄]← k

15: return D̂B

Proof. For the first part, fix D = X1×X2 with |X1| 6= |X2|,
and let DB ∈ DR. After the nested loops on lines 4–7,
by Lemma 4 we have that D̂B[r][b] = ±DB[r][b] for all
r and one of b ∈ {1, 2}, with the sign consistent across
all points. By Lemma 5, we have that within each Bj ,
D̂B[r][b̄] = ±DB[r][b̄], with the sign consistent with each
Bj but possible not between them.

Next we argue that aends corresponds to range query
with endpoints −Nb+1, Nb−1 in dimension b (i.e. the entire
range) and the one-point-range consisting of only −Nb̄ + 1
or Nb̄ − 1 in dimension b̄. This follows because aends must
contain such a query, and since it is of minimum size then
it must equal such a query.

Finally we claim that after the loop on lines 9–11, the
signs across all of the Bj are consistent, so the final nested
for loop gives D̂B with the desired property. This follows
because if some Bi, Bj have different signs, then aends will
contain the set of records with minimum value −Nb̄+ 1 for
one and records with maximum Nb̄−1 for the other, and in
this case the algorithm will reverse the sign on one them.
The consistency across all Bj follows transitively.

The case |X1| = |X2| follows similarly, except that the
dimension recovered may be mislabeled, so a rotation may
arise. That both of these sets are equal to E(DB) can be
checked directly. The case of |X1| = |X2| also follows from
Theorem 2.

PUTTING IT TOGETHER. Finally we construct an adversary
A in proof of the following theorem:

Theorem 6. For any centered domain X1×X2 = {−(N1−
1), . . . , N1 − 1} × {−(N2 − 1), . . . , N2 − 1}, there exists
an adversary A, issuing O(N2 logN) queries where N =
N1 ·N2, such that that for all dense DB ∈ (X1 ×X2)R,

Advall-fdr
DB (A) ≥ 1− 2−Ω(N).
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Proof. The adversary simply queries its oracle O(N2 logN)
times, and records all of the unique responses it recieves
in a set aps. Then it runs DENSEFDR(|X1|, |X2|, aps), to
get a database D̂B, and A outputs appropriate the set of
4 or 8 reflected version of D̂B as indicated in Theorem 5.
Also by Theorem 5, we have that A correctly computes
E(DB) whenever aps consists of every unique query, and
this happens with all but 2−Ω(N) probability by the coupon
collector bound.

6. Automatically Finding DB in E(DB)

Our attacks in Sections 4, and those of prior work [9],
[12] only recover E(DB) and not DB. Indeed, this is the
best one can hope for if one insists on recovering DB with
the same worst-case guarantee over DB of Theorems 1
and 3. However in practice it is intuitive that an attacker
could do better, by observing the distribution of the data
recovered and applying one of the allowed symmetries to
best match the expected distribution. This section formalizes
this process, starting with the 1-dimensional case where
there are only two possibilities in E(DB) and then for the
2-dimensional case where |E(DB)| can be much larger.

ATTACK SETTING. We assume that an attacker has run an
attack that recovers E(DB), and aims to determine which
member of that set is the correct database. With no context
this is impossible, so we assume that the adversary has aux-
iliary knowledge of the data distribution through a similar
dataset. In our experiments below, we give the attack similar
data from different hospitals, or data about a Chicago district
from a prior year.

This attack setting is not totally realistic because if an
attack had such auxiliary knowledge then it would probably
also apply it during the initial phase that recovered E(DB),
but doing so is an open problem that requires different ideas.
For now we interpret our experiments here as determining if
sometimes recovering E(DB) essentially allows recovering
DB itself.

SYMMETRY BREAKING IN ONE DIMENSION. From Theo-
rem 1, in the one dimensional case where DB ∈ XR,
E(DB) = {±DB}, so we only need to distinguish between
DB and its reflection. We assume access to training database
DBtrain, which we think of as a distribution (i.e. a pmf) µtrain
on the domain X . Then we consider another database DBtest,
which we again think of as a distribution µtest. Let µ0 = µtest
and µ1 be the distribution of −DBtest. Our attacker selects
the reflection by using the µb that minimizes the mean
squared error with respect to µtrain. More formally, define

MSE(µtrain, µb) =
1

|X |
∑
x∈X

(µtrain(x)− µb(x))2.

The attack selects the b with smaller MSE(µtrain, µb).
To experimentally test this approach, we take the overall

data distribution across all hospitals for a single attribute of
2008 HCUP data as our training distribution DBtrain and use
each hospital from the 2009 HCUP data for that attribute

as a DBtest. We use use HCUP 2008 domain sizes and
exclude HCUP 2009 data which exceed those domains. We
present our results in Table 3. From this we can see that the
reflection is typically easy to remove. For smaller domains
this does not work as well. For other domains like admission
month (AMONTH) where the data are fairly uniform it is
harder to accurately determine the symmetry.

SYMMETRY BREAKING IN TWO DIMENSIONS. We ex-
tend this technique to two-dimensional reconstruction.
While there are at most two equivalent databases in the
one-dimensional case, there exist families of equivalent
databases with sizes exponential in R for two dimensions.
In this setting we assume we have computed D̂B and π
such that E(DBtrain) = Sym(DBtrain, π) as in our attack,
and we attempt to find DB amongst these sets. We proceed
as before, except now we have several possible µ1, . . . , µd,
and we again choose the one that minimizes MSE(µtrain, µi).

We again use HCUP 2008 data to train and HCUP 2009
data to test, taking attributes with equal domains across
the two years and databases with a dominating point. For
Chicago crime locations, we use 2012 data to train and
test with all years from 2013 to 2018. We omit districts
where the integeral domain for the longitude of a district
is different from the training year due to differences in the
longitude to latitude ratios. We present our two-dimensional
results in Table 4.

We note that joint accuracy has a baseline of 1/8 =
0.125 (with one partition) in the square case and 1/4 = 0.25
(with only fixed partitions) in the rectangular case. In this
table we report the accuracy of determining the rotation of
the database and then for the correct rotations, the accuracy
of determining the reflection for each unfixed partition. A
database is accurately determined if both the rotation and
all reflections are correct. From these experiments we see
that it is typically possible to find DB in E(DB) with high
probability.
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Appendix A.
Supplementary Content for Section 4

A.1. Proof of Lemma 1

Proof. The forward direction is easy. For the reverse direc-
tion, fix two databases DB0,DB1. We must show that for
all S ⊆ [R],

Pr[AP(DB0, q) = S] = Pr[AP(DB1, q) = S]
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for a uniformly random query q ∈ Qrs(D). We use induction
on |S|, starting at |S| = R down to 0. For |S| = R, we have

Pr[AP(DB0, q) = S] = |Qrs(D)|−1ρ(DB0[S])

= |Qrs(D)|−1ρ(DB1[S])

= Pr[AP(DB1, q) = S].

For the inductive step, we have for b ∈ {0, 1},

|Qrs(D)|−1ρ(DBb[S]) =
∑
S′⊇S

Pr[AP(DBb, q) = S ′].

Using ρ(DB0[S]) = ρ(DB1[S]) and the inductive hypothe-
sis, all of the terms except S ′ = S on the right-hand size
are equal, so we have that these remaining terms are also
equal, establishing the lemma.

A.2. Proof of Lemma 2

Proof. Fix some P and a, b Then if Q̂ is any solution to the
system,

a = ρ(Q̂) = (N + Q̂x)(N + Q̂y)(N − Q̂x)(N − Q̂y)

Since P � Q̂, we know which coordinates of the points
{P, Q̂} are minimal and maximal, and applying the formula
for ρ we have

b = ρ(P, Q̂) = (N + Px)(N + Py)(N − Q̂x)(N − Q̂y),

so
b

(N + Px)(N + Py)
= (N − Q̂x)(N − Q̂y).

and
a(N + Px)(N + Py)

b
= (N + Q̂x)(N + Q̂y).

These last two equations can be added and solved for Q̂xQ̂y
and Q̂x + Q̂y. The sum and product uniquely determine
Q̂x, Q̂y, and can be computed using the quadratic formula.
The possible solutions are (Q̂x, Q̂y) and (Q̂y, Q̂x).

For the backward direction, suppose that P 6� σ(Q̂).
Then the third equation would not be satisfied and the lemma
follows.

A.3. Proof of Theorem 2

Proof. The proof will be by induction on R. We begin with
some simplifying assumptions. We will order the points in
set X 2 by their minimums (i.e. P ∈ X 2 comes before
Q ∈ X 2 in the ordering if min{Px, Py} < min{Qx, Qy}),
breaking ties arbitrarily.

For DB = (P1, . . . , PR), by applying σ and a rotation,
then relabeling the subscripts, we may assume that P1 is the
dominating point and that the points P1, . . . , PR respect the
ordering described above.

For R = 1 the theorem is true for the trivial partition,
by our assumption the dominating point. Now assume the
theorem is true for databases consisting of R − 1 points

and fix some DB = (P1, . . . , PR) with the same assump-
tions as above. We will find a partition π that yields the
claimed descriptions of DB and E(DB) as follows. By
induction there exists a partition π′ = (a0, . . . , a`) such
that (P1, . . . , PR−1) ∈ (X 2

π )R−1

E(P1, . . . , PR−1) = Sym((P1, . . . , PR−1), π′).

We let α = min{(PR)x, (PR)y} and take

π =


(a0, . . . , a`−1, α,N − 1) if Pj � PR and σ(PR)

for all 1 ≤ j < R

π′ otherwise.

Clearly DB ∈ (X 2
π )R. We claim that this π gives the desired

description, i.e. that E(DB) = Sym(DB, π).

Claim 1. E(DB) ⊆ Sym(DB, π).

Proof of claim. Suppose D̂B ∈ E(DB), D̂B =

(P̂1, . . . , P̂R) and write D̂BR−1 = (P̂1, . . . , P̂R−1).
By Claim 1, D̂BR−1 ∼ DBR−1, and then by induction
we have that D̂BR−1 = r(λ′(DBR−1)) for λ′ ∈ Λπ′ and
r ∈ Rot(X 2).

We will show D̂B ∈ Sym(DB, π) by finding λ ∈ Λπ
such that D̂B = r(λ(DB)). By induction we know that for
j < R, P̂j = r(λ′(Pj)). We will choose λ to agree with λ′

on these points and also map P̂R = r(λ(PR)).
We start by understanding the possible values for

P̂R, last point in D̂B. Specifically, we show that P̂R ∈
{r(PR), r(σ(PR))}. Since D̂B ∼ DB, we have that

ρ(P̂R) = ρ(PR),

ρ(P̂R, P̂1) = ρ(PR, P1).

By our inductive hypothesis, the second constraint becomes

ρ(P̂R, r(σ
b1(P1))) = ρ(PR, P1).

Since P1 is dominating, ρ(P̂R, r(σ
b1(P1))) = ρ(P̂R, r(P1)).

Also, ρ(PR) = ρ(r−1(PR)) and ρ(P̂R, r(P1)) =
ρ(r−1(P̂R), P1), so the original constraints are equivalent
to

ρ(r−1(P̂R)) = ρ(PR),

ρ(r−1(P̂R), P1) = ρ(PR, P1).

By Lemma 2, this system has at most two solutions Q,Q′,
such that P1 � Q and P1 � Q′ by our assumption on
the location of P1. One of these solutions is clearly Q =
r−1(P̂R) = PR. The other is thus Q′ = r−1(P̂R) = σ(PR),
which proves that P̂R ∈ {r(PR), r(σ(PR))}.

Now there are two cases to consider, depending on
how π was formed. In the first case, where π =
(a0, . . . , a`−1, α,N − 1), we are done, because we can let
λ agree with λ′ for all of the squares up to the last one, and
then let it apply σ or not as needed to map PR appropriately.

In the second case, where π = π′, we take λ = λ′.
To show that D̂B = r(λ(DB)) we only need to show that
P̂R = r(λ(PR)).
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Since π was constructed using the second case, and by
our ordering of the points in DB, we must have that exactly
one of Pj � PR or Pj � σ(PR) for some 1 ≤ j ≤ R −
1 is true. By Lemma 2, ρ(σ(PR), Pj) 6= ρ(PR, Pj). We
claim that P̂R = r(σw`(PR)), where w` ∈ {0, 1} is the bit
indicating the action of λ′ on its last square. Since D̂B ∼
DB, we have ρ(P̂R) = ρ(PR) and ρ(P̂R, P̂j) = ρ(PR, Pj),
and the latter is equivalent to

ρ(P̂R, rσ
w`(Pj)) = ρ(PR, Pj).

Taking P̂R = rσw`(PR) satisfies this equation. The only
other possible solution, P̂R = rσ1−b`(PR), does not. This
is because

ρ(rσ1−b`(PR), rσb`(Pi)) = ρ(σ1−b`(PR), σb`(Pi))

= ρ(σ(PR), Pi)

6= ρ(PR, Pi).

This shows that D̂B = r(λ(DB)) and establishes the claim.

We complete the proof of the theorem with the following
the claim.

Claim 2. Sym(DB, π) ⊆ E(DB).

Proof of claim. Let D̂B ∈ Sym(DB, π), D̂B = r(λ(DB)).
We aim to prove D̂B ∼ DB. Since r−1(D̂B) ∼ D̂B, it
suffices to prove λ(DB) = DB for every λ ∈ Λπ. By
Lemma 1, we only need to show that for every S ⊆ [R],
ρ(D̂B[S]) = ρ(λ(D̂B[S])) = ρ(DB[S]). But this can been
by examining the four relevant points in each case.

We have shown that E(DB) = Sym(DB, π) for our
chosen π, completing the proof.

A.4. Proof of Lemma 3

Proof. Let DB ⊆ X1 ×X2 P, P
′ ∈ X1 ×X2. We show that

the assumption in the claim implies for every S ⊆ [R] it
holds that

ρ(DB[S], P ) = ρ(DB[S], P ′),

and then apply the previous claim. Define four (not necessar-
ily distinct) points Qminx, Qmaxx, Qminy, Qmaxy, in DB[S]
to be those that minimize or maximize the x and y coordi-
nates over DB[S] respectively. Then

ρ(DB[S], P ) = ρ(Qminx, Qmaxx, Qminy, Qmaxy, P ).

and

ρ(DB[S], P ′) = ρ(Qminx, Qmaxx, Qminy, Qmaxy, P ′).

These are equal by the assumption in the claim, with set S ′
corresponding to the at most 4 min/max points.

Appendix B.
Pseudocode for PARTITION Algorithm

In this section we provide a detailed description of
PARTITION. The first step is to compute the total universe of
the input access patterns. In line 2, we use FindEqualLMP to
compute which record ID’s coincide. Once the largest query
is determined lines 4 and 5 determine the domain size not
recovered and the domain size recovered, respectively. Since
the domain is centered at 0, we can determined the value of
N by computing (D + 1)/2. Line 8 computes the extreme
row/column/point remaining after subtracting the maximum
query from the universe and then lines 10-12 iteratively
compute the next row/column/point, ai, by computing the
minimum superset of A[−N + 1] ∪ · · · ∪A[i− 1].

The pseudo code can be found in Algorithm 4.

Algorithm 4 PARTITION

Input: |X1|, |X2|, and aps, a collection of subsets of Z>0.
Output: array A

1: U = ∪a∈apsa
2: B ← FindEqualLMP(aps)
3: amax ← arg maxa∈aps{|a| : a 6= U}
4: D′ ← (|{B(r) : r ∈ U \ amax}|+ 1)/2
5: D ← {|X1|, |X2|} \ {D′}
6: N = (D + 1)/2
7: Initialize array A with D empty sets
8: A[−N + 1] = U \ amax

9: a−N+1 ← amax

10: for i = −N + 1, . . . , N − 1 do
11: ai ← arg mina∈aps{|a| : ai−1 ( a}
12: A[i] = ai \ ai−1

13: return A

Appendix C.
E(DB) over X1 ×X2 with a Dominating Point

We extend Theorems 2 and 3 to cover non-square do-
mains D = X1 × X2. The primary complication is that
σ, which reflects over the main diagonal, does not extend
to such D as stated. We can define a reflection across the
diagonal geometrically (over the rationals), but even this will
not typically map integral points to integral points (i.e. it will
not typically give a permutation on D). Below we show our
previous structure theorem on E(DB) holds as long as this
reflection does map the points of DB to integral points of
D, and if not then we can eliminate some of the symmetries.

It will be convenient to use intervals of rational numbers,
so for a centered domain X = {−N + 1, . . . , N − 1} we
define

XQ = {a ∈ Q : −N + 1 ≤ a ≤ N − 1}.

Our definitions for AP(DB, q), query densities, equivalent
databases and E(DB) all extend to elements DB ∈ XQ

1 ×
XQ

2 as stated. It also simplifies what follows to avoid using
rotations (which are not defined as stated for X1 6= X2) and
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instead use τ1, τ2 defined by τ1(Px, Py) = (−Px, Py) and
τ2(Px, Py) = (Px,−Py). Combined with a reflection across
the diagonal, τ1 and τ2 will still generate the 8 rigid motions
of the square.

Next, we define the diagonal reflection in XQ
1 ×X

Q
2 as

σN1,N2
(Px, Py) = (

N1

N2
Py,

N2

N1
Px).

Extend τ1, τ2, and σN1,N2
to databases DB ∈ DR point-

wise as before. By examining the formula defining query
densities and applying Lemma 1, we get that τ1(DB) ∼
DB, τ2(DB) ∼ DB, and σN1,N2

(DB) ∼ DB, and com-
posing these gives the 8 rigid motions of the square. As
before, this is not the full set E(DB) for the same rea-
son; The remaining symmetries are analogous (to square
domains case) λπ,w symmetries, which map points of DB
to X1 ×X2 ⊆ XQ

1 ×X
Q
2 , as we shall now prove.

The next lemma is a version of Lemma 2 but over
rational non-square domains.

Lemma 6. Let X1,X2 be centered domains. Let P ∈ X1 ×
X2 and a, b ∈ R. Then the system of equations in Lemma 2
has at most 2 solutions. Moreover, if Q̂ ∈ X1 × X2 is one
solution, then σ(Q̂) is the only other possible solution, and it
is the solution if and only if P � σN1,N2

(Q̂) and σN1,N2
(Q̂)

has integral coordinates.

The proof for this lemma is similar to the proof of
Lemma 2. Solutions in X1×X2 must also be solutions over
Q × Q; The two possible rational solutions for the system
of equations are (Q̂x, Q̂y) and σ(Q̂) The coordinates of
σN1,N2

(Q̂) might not be integers, in which case the system
only has one solution.

STRUCTURE DEFINITIONS AND THEOREM The next defi-
nition describes the family of symmetries that exhibit the
additional degrees of freedom for non-square domains dis-
cussed above. Note that in the following definition, we take
a single partition of one domain and “stretch” it to produce a
partition of the other domain. The choice of X1 is of course
arbitrary.

Definition 5. Let π = (a0, a1, . . . , a`) be a partition of XQ
1 ,

we define

XQ
1,π,j = {x ∈ XQ

1 : aj−1 ≤ x < aj}.

and

XQ
2,π,j = {x ∈ XQ

2 :
N2

N1
aj−1 ≤ x <

N2

N1
aj}.

Define

XQ
1,π ×X

Q
2,π =

⋃̀
j=1

XQ
1,π,j ×X

Q
2,π,j .

For a bitstring w ∈ {0, 1}` we define the function

λπ,w : XQ
1,π ×X

Q
2,π → X

Q
1,π ×X

Q
2,π

P 7→ σ
wj

N1,N2
(P ), P ∈ XQ

1,π,j ×X
Q
2,π,j .

For a database DB ∈ X1,π × X2,π, we define the set
ΛDB,π ⊆ {λπ,w : w ∈ {0, 1}`} such that all of the points
of λπ,w(DB) ∈ XQ

1,π ×X
Q
2,π are integral. For a partition π

and DB ∈ (X1 ×X2)R we define Sym(DB, π) to be

{t(λ(DB)) : λ ∈ ΛDB,π, t ∈ {id, τ1, τ2, τ1 · τ2}}.

where id is the identity function.

Theorem 7. Assume DB ∈ X1×X2 contains a dominating
point P such that Px, Py < 0 and Cρ(P ) ∩ Z2 = {t(P ) :
t ∈ {id, τ1, τ2, τ1 · τ2}} ∪ {{t(σ(P )) : t ∈ {id, τ1, τ2, τ1 ·
τ2} ∧

(
σ(P ) ∈ Z2

)
}. Then there exists a partition π such

that DB ∈ X1,π ×X2,π and

E(DB) = Sym(DB, π).

Proof. We only show how the proof differs from that of
Theorem 2. We again use induction on R and generate the
partition π in exactly the same fashion and claim that π
gives E(DB) = Sym(DB, π).

Proceeding in the similar manner as Theorem 2, we show
E(DB) ⊆ Sym(DB, π). Structurally, the proof to show that
E(DB) ⊆ Sym(DB, π) proceeds as in Theorem 2 with the
only difference being we use t ∈ {id, τ1, τ2, τ1 · τ2} instead
of Rot(X 2) to generate the symmetries. Note the following
properties we use for any r ∈ Rot(X 2) in the proof for
Theorem 2, also hold for t ∈ {id, τ1, τ2, τ1 · τ2}:

ρ(PR) = ρ(t−1(PR)),

ρ(P̂R, t(P1)) = ρ(t−1(P̂R), P1).

and thus, the rest of the proof proceeds exactly as in
Theorem 2, except in the case, σb`(P ) 6∈ Z2, where we
make w` = 1 − b`. The next step in the proof is to show
that Sym(DB, π) ⊆ E(DB) and it proceeds exactly as in the
proofs of Theorem 2.

To give an idea of how often σ(Q) 6∈ Z2 and the
adversary would be able to discard (non-integral) solutions
that satisfy ρ(Q) = a and ρ(P,Q) = b for some domi-
nating point P , consider the following example: Lets say
gcd(N1, N2) = N2 where N1 6= N2 are positive integers.
Then N1 = c ·N2 for some constant integer c. Then only for
Qx ∈ X1 that are multiples of c, we get σN1,N2

(Q) ∈ Z2

and for Qx that are not multiples of c, the adversary can dis-
card σN1,N2

(Q) as a potential solution for the corresponding
records.

The algorithm for non-square domains is the same as
the algorithm for square domains except with an additional
check of whether a record in a partition has been assigned
non-integral values, in which case we take the reflection
of the entire partition as the only possible solution for a
particular candidate value of the dominating point. One way
to understand the algorithm is smoothly squeeze a non-
square domain into a square domain, run the algorithm
for reconstruction of databases in square domain and then
unsqueeze the domain to a non-square domain. However,
some of the symmetric databases will assign non-integral
values to the records and these databases will be discarded.

17


	Introduction
	Our Contributions
	Prior and related work

	Preliminaries
	Queries Densities and the KKNO Attack
	Query Densities and Equivalent Databases in Two Dimensions
	E(DB) over X2 with a Dominating Point
	Attack over X2 with a Dominating Point
	Attack over X2 without a Dominating Point
	Experimental Evaluation

	Full DB Reconstruction with Dense Records
	Automatically Finding DB in E(DB)
	References
	Appendix A: Supplementary Content for Section 4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 3

	Appendix B: Pseudocode for Partition Algorithm
	Appendix C:  E(DB) over X1X2 with a Dominating Point

