
Multiparty Homomorphic Encryption from
Ring-Learning-With-Errors

Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat and Jean-Pierre Hubaux
Laboratory for Data Security, EPFL
firstname.lastname@epfl.ch

Abstract—We propose and evaluate a secure-multiparty-
computation (MPC) solution in the semi-honest model with dis-
honest majority, based on multiparty homomorphic encryption
(MHE). To support our solution, we introduce a multiparty
version of the Brakerski-Fan-Vercauteren homomorphic cryp-
tosystem, implement it in an open-source library, and evaluate
its performance. We show the main advantages that MHE-based
MPC solutions have over current approaches: Their public tran-
scripts and non-interactive circuit-evaluation capabilities enable a
broad variety of computing paradigms, from the traditional peer-
to-peer setting to cloud-outsourcing and smart-contract technolo-
gies. Exploiting these properties, the communication complexity
of MPC tasks can be reduced from quadratic to linear in the
number of parties, thus enabling secure computation among
thousands of parties. Additionally, MHE-based approaches can
outperform the state-of-the-art solutions even for a small number
of parties. We demonstrate this for three circuits: component-wise
vector multiplication with application to private-set intersection,
private input selection with application to private-information
retrieval, and multiplication triples generation. When evaluated
on the first circuit with eight parties, our approach is 8.6 times
faster and requires 39.3 times less communication than the state-
of-the-art. The input selection circuit over eight thousand parties
requires only 1.31 MB of communication per party and completes
in 61.7 seconds.

I. INTRODUCTION

Secure Multiparty Computation (MPC) protocols enable a
group of parties to securely compute joint functions over
their private inputs while enforcing specific security guarantees
throughout the computation. The exact definition of security
depends on how the adversary is modeled, but the most
common requirement, input privacy, informally states that
parties should not obtain more information about other parties’
inputs than what can be deduced from the output of the
computation. Combining this strong security guarantee with
a general functionality makes the study of MPC techniques
highly relevant. The last decade has seen this established
theoretical field evolve into an applied one, notably due to its
potential for securing data-sharing scenarios in the financial
[13], [12], biomedical [30], [42] and law enforcement [10],
[34] sectors, as well as for protecting digital assets [5].

The transition of MPC techniques to their application do-
mains, however, still faces significant obstacles. In the settings
where no honest majority of parties can be guaranteed, current
MPC protocols are typically based on secret-sharing [46] of
the input data according to some linear secret-sharing scheme
(LSSS), and interactive circuit evaluation. These approaches
have two practical limitations: (i) standard protocols require

many rounds of communication over private channels between
the parties, which makes them inadequate for low-end devices
and unreliable networks. (ii) current approaches require a per-
party communication that increases linearly in the circuit size
(that itself increases at least linearly in the number of parties).
Hence, this quadratic factor quickly becomes a bottleneck for
large circuits and/or number of parties. As a result, many
MPC applications propose outsourced models where the actual
computation is delegated to two non-colluding clouds [40],
[30], [39], [18], [4]. The passive-adversary model is indeed
realistic in concrete data-sharing scenarios [42] and is typically
assumed for honest-but-curious cloud-services. However, the
non-collusion assumptions might not be realistic in some
contexts and, thus, the N -party to two-party reduction not
always possible. Hence, we believe that an efficient and
scalable N -party passive-adversary solution that is compatible
with the cloud-service paradigm is needed.

Homomorphic encryption (HE) techniques have been
known to reduce the communication complexity of MPC for
more than two decades now [26], [20]. By exploiting the new
possibilities offered by lattice-based cryptography, Asharov
et al. proposed a generic HE-based MPC protocol based on
the Learning-with-Errors (LWE) assumption [6]. Until today,
however, no concrete MPC solution implements the generic
HE-based MPC protocol, and the use of HE in MPC is mostly
confined to the offline pre-computations (i.e., not during the
circuit evaluation). We argue that homomorphic encryption
has reached the required level of usability to play a larger
role in the online phase of MPC protocols and to enable new
applications.

We propose, implement, and evaluate a new instance of
the HE-based MPC protocol in the passive-adversary with
dishonest-majority model. We show that this protocol, based
on multiparty homomorphic encryption (MHE), can support
computations among several thousands of parties without
relying on additional non-collusion assumptions. The per-
party communication complexity is reduced to being linear in
the circuit’s inputs and outputs. Furthermore, we discuss the
additional features of the MHE-based approaches, such as their
compatibility and complementarity with existing LSSS-based
MPC, and how they effectively remove the need for private
party-to-party communication channels. Hence, in addition to
the traditional peer-to-peer setting, our MHE-based solution
can operate in a broad range of computing platforms, from
cloud-outsourcing to smart-contract technologies.



Our solution is based on a multiparty version of the BFV
homomorphic encryption-scheme [25] and it can be extended
to other schemes of the same family, such as CKKS [17].
We use secret-sharing [46] to distribute a secret-key of this
scheme among the parties, as proposed by Asharov et al.
[6]. By bringing these techniques to ring-learning-with-errors
(RLWE) cryptosystems and to practice we make the following
contributions:
• We propose a novel multiparty version of the BFV

homomorphic encryption scheme (Section IV). Beyond
Asharov et al.’s construct, our scheme introduces novel
single-round protocols to bridge with LSSS-based ap-
proaches and for bootstrapping a BFV ciphertext in
multiparty settings.

• We discuss the features of the MHE-based approach
and how it can both be integrated into existing MPC
solutions, and be used directly as a standalone one that
supports both the peer-to-peer and cloud-assisted models.
(Section V).

• We implement our scheme in the Lattigo open-source
library [1] and demonstrate its concrete efficiency for
three example circuits (Section VI).

Through these contributions, this work bridges the gap be-
tween the existing theoretical work on MHE-based MPC and
their application as powerful privacy-enhancing technologies.

II. RELATED WORK

We classify N -party dishonest-majority MPC approaches
in two categories: (a) Linear Secret-Sharing at Data-level (for
short: LSSS-based), which is predominantly implemented in
generic MPC solutions [29], [5], consists in applying secret-
sharing [46] to input data. (b) Multiparty encryption schemes
(for short: MHE-based), use an homomorphic scheme to
encrypt and exchange the input data, that can then be operated
on non-interactively with encrypted arithmetic.

(a) LSSS-based. Most of the available generic MPC so-
lutions, such as Sharemind [11] and SPDZ [22], [21], [32],
apply secret-sharing to the input data. The evaluation of these
arithmetic circuits is generally enabled by the homomorphism
of the LSSS, or by interactive protocols [9] (when no such
homomorphism is available), the most widely implemented
protocol being Beaver’s triple-based protocol [9]. The strength
of approach (a) is to enable evaluation through only simple
and efficient primitives in terms of which the circuit can be
decomposed by code-to-protocol compilers, thus strengthening
usability. However, this approach imposes two practical con-
straints: First, the interactive protocols at each multiplication
gate require all parties to be online and active during the
whole computation, and to exchange private messages with
their peers, often at a high frequency that is determined by
the round complexity of the circuit. Second, the triple-based
multiplication protocol requires a prior distribution of one-time
triples; this can be performed in a pre-computing phase either
by a trusted third-party or by the parties themselves. Indeed,
the latter peer-to-peer case can also be formulated as an
independent, yet equivalent, MPC task (generating the triples

requires multiparty multiplication). Hence, these approaches
are often hybrids that generate the multiplication triples [29]
by using techniques such as oblivious transfer [31] or plain
homomorphic encryption [22], [32] in an offline phase.

(b) MHE-based. In this category, the parties use an HE
scheme to encrypt their inputs, and the computations are
performed using the scheme’s homomorphic operations. To
preserve the inputs privacy, the scheme’s secret key is se-
curely distributed among the parties using some secret-sharing
scheme. Hence, decryption requires the collaboration between
the parties, according to the access structure of the used secret-
sharing scheme. Such constructions are commonly referred to
as threshold [24] or distributed encryption, depending on the
decryption structure they enforce. We use the term multiparty
encryption scheme to designate these constructions in a general
way. We define this term as a primitive and the MPC protocol
it enables in Section III-B. The idea of reducing the volume
of interaction in MPC by using homomorphic encryption can
be traced back to a work by Franklin and Haber [26], later
improved by Cramer et al. [20]. At the time, the lack of
homomorphic schemes that preserve two distinct algebraic
operations ruled out complete non-interactivity at the evalu-
ation phase, thus rendering these approaches less attractive
than approach (a). Nevertheless, task-specific instances that
use multiparty additive-homomorphic encryption have recently
been successful in supporting use-cases in distributed machine
learning [47], [27], highlighting the potential a generic and
usable fully homomorphic encryption (FHE) [28] solution
would have.

This is the idea behind the line of work by Asharov et al. [6]
and López-Alt et al. [36]. These contributions propose various
multiparty schemes in which the ideal secret-key is additively
shared among the parties, and they analyze the theoretical
MPC solution these schemes enable. Although of great inter-
est, this line of work did not find as much echo in applications
as approach (a) has. One possible reason was the lack, at the
time, of available and efficient implementations of Learning
with Errors [43] (LWE) -based homomorphic schemes, in
terms of which these schemes were presented. Today, multiple
ongoing efforts aim at standardizing homomorphic encryption
[3] and at making its implementations available to a broader
public. This new generation of schemes is mostly based on
the Ring Learning with Errors (RLWE) problem [38] and has
brought HE from being practical to being efficient. Therefore,
we argue that MHE-based approaches are now mature and
usable enough to support more than the offline phase of LSSS-
based approaches.

Multi-key encryption schemes, as introduced by López-
Alt et al. [37], are an important class of MHE schemes,
where the ideal secret-key does not have to be defined before
the computation. Instead, the parties provide their input data
encrypted under their own secret key. As the encryption
scheme is both message-homomorphic and key-homomorphic,
the computation result is then encrypted under an on-the-fly
key that is a joint function of the input secret keys. Hence,
only the parties involved in a given computation are required to



participate in the decryption sub-protocol. Unfortunately, when
the number of involved parties is large, the performance cost
of using these schemes can be prohibitive. We will consider a
setting where all the parties have an input in the computation,
which does not require the flexibility and cost of a multi-key
approach. But the two techniques are compatible and could be
used in conjunction to provide better trade-offs between setup,
evaluation and decryption costs.

We will show that, in addition to being interoperable with
approach (a), MHE-based solutions also enable scenarios
where an interactive circuit evaluation does not fit the system
model (e.g., parties going offline, outsourced scenarios) or
the network model (e.g., low-end devices, publicly visible
channels). Hence, we propose and build an open-source MPC
solution that brings the theoretical work on multiparty schemes
[6] to RLWE cryptography and to practice.

III. BACKGROUND

We define our problem statement and recall the high-level
building block of the MHE-based MPC solution.

A. Problem and Security Models

We model a secure-multiparty-computation setting in terms
of a problem that needs to be solved under a set of security
constraints (by an MPC protocol). Definition 1 formulates the
secure-multiparty-computation problem we consider for the
scope of this work.

Definition 1. Let P = {P1, P2, . . . , PN} be a set of N parties
respectively holding inputs (x1, x2, . . . , xN ) (input parties)
and let R be a party that can be either inside or outside of
P (receiver party). Let f(x1, x2, . . . , xN ) = y be a function
(ideal functionality) over the input parties’ inputs. Let A be a
static semi-honest adversary that can corrupt R and/or up to
N − 1 parties in P .
The secure-multiparty-computation problem consists in pro-
viding the receiver R with y = f(x1, x2, . . . , xN ), yet A
must learn nothing more about {xi}Pi /∈A than what can be
deduced from the inputs {xi}Pi∈A and output y it controls
(input-privacy).

The solution to a secure-multiparty-computation problem
is a protocol denoted πf that realizes the problem’s ideal
functionality f and preserves input privacy. Equivalently, the
execution of πf emulates an ideal setting where parties have
collective access to an oracle that, provided with their inputs,
will carry out the computation of f and that will provide R
with its output.

Our definition permits that the receiver party R is outside
of the set of input parties P . That is, in such case, there is no
need for R to have an active role in the input’s access control
mechanism. Indeed, only the parties having inputs to f should
have such role.

We assume that the parties in P have access to a uniformly
random Common Reference String (CRS) [15], and they are
connected through authenticated channels, which are not re-
quired to be confidential.

For consistency with our concrete solution, we model
multiple-receiver MPC tasks as the composition of single-
receiver sub-tasks: Let O be a set of NO output parties,
we define FO = (f1, f2, . . . , fNO ) (joint ideal functionality),
where fi(x1, x2, . . . , xN ) = yi for each output party i ∈ O ,
as the composition of all private ideal functionalities.

B. Multiparty Homomorphic Encryption

A multiparty encryption-scheme securely splits the secret
key of an encryption scheme among N parties, according to a
secret-sharing scheme. Hence, the operations in the original
scheme that depend on the secret key are implemented in
the multiparty scheme as special-purpose secure-multiparty
protocols. Definition 2 formalizes this intuition for a HE
scheme.

In addition to the security-related parameters, HE schemes
require proper parameterization to support the evaluation of the
target ideal functionality. We model this dependency by intro-
ducing an abstract homomorphic capacity parameter, which we
denote κ. In practice, κ represents a choice of cryptographic
parameters that determine the maximum width (i.e., the size
of the plaintext space) and depth of the homomorphic circuits
the scheme can evaluate before some kind of re-encryption is
needed.

Definition 2. Let E=(SecKeyGen,PubKeyGen,Enc,Eval,
Dec) be an abstract homomorphic encryption scheme, λ a
security parameter, κ a homomorphic-capacity parameter, and
let S = (Share,Combine) be an N -party secret sharing
scheme. The associated multiparty homomorphic encryption
scheme is obtained by applying the secret-sharing scheme S
to E’s secret key sk (ideal secret key) and is defined as the
tuple
E∗ = (πSecKeyGen , πPubKeyGen , E.Enc , πDec , E.Eval),

where πSecKeyGen, πPubKeyGen, πDec are multiparty protocols
that have the following private ideal functionalities for each
party Pi:

Ideal secret-key generation:
fi,πSecKeyGen

(λ) = ski = S.Sharei(E.SecKeyGen(λ, κ)).

Collective public-key generation:
fi,πPubKeyGen

(sk1, sk2, . . ., skN )

= E.PubKeyGen(S.Combine(sk1, sk2, . . ., skN ), κ),

Collective decryption:
fi,πDec

(sk1, sk2, . . ., skN , ct)
= E.Dec(S.Combine(sk1, sk2, . . ., skN ), ct).

As the S.Combine operation has to be embedded in fπDec
,

the secret-sharing scheme defines an access structure [46]
that characterizes the access structure of E∗. For example, an
additive secret-sharing of the secret key results in a scheme
where all parties must collaborate to decrypt a ciphertext,
whereas only a threshold number of them are required when



using Shamir secret-sharing [46]. In this work, we focus on
additive secret sharing of the key, which can be replaced by
Shamir’s in scenarios with less strict requirements.

In Section IV, we construct a multiparty version of the
Brakerski-Fan-Vercauteren somewhat-homomorphic encryp-
tion scheme [25], where the secret key is additively shared
among the parties.

C. MHE-Based MPC Protocol

We provide an overview of the MHE-based MPC protocol,
that we formulate for an abstract MHE scheme E∗ in Pro-
tocol 1. The idea of using homomorphic cryptosystems as a
standalone MPC solution has been discussed in cryptographic
research [20], [6]. However, to the best of our knowledge,
no concrete MPC framework has been built to exploit those
ideas. In this work, we take this step and show that we can
build efficient systems, not only in the traditional peer-to-peer
setting but also in the outsourced one where parties are assisted
by a semi-honest entity such as a cloud provider.

We consider an abstract computing party C that carries
out the homomorphic evaluation of the ideal functionality.
In purely peer-to-peer settings, the parties themselves assume
the role of C, either by distributing the computed circuit, or
by delegating the computation to one designated party. In
the cloud-assisted setting, a semi-honest cloud provider can
assume this role. Although it is frequent to define the role of
computing party in current MPC applications [30], [4], [5], it
is usually a part of the N -party to 2-party problem reduction
that introduces non-collusion assumptions. In the MHE−MPC
protocol, the computing parties are not required to be part of
the computation data access structure, removing the need for
such assumptions.

The Setup step instantiates the multiparty encryption
scheme. It is independent from the rest of the protocol: it
has to be run only once for a given set of parties and a given
choice (λ, κ) of cryptographic parameters. Whereas this step
can resemble the offline phase of the LSSS-based approaches,
it is fundamentally different in that it produces public-keys that
can be used for an unlimited number of circuit evaluations.
This implies that the Setup step does not directly depend on
the number of multiplication gates in the circuit, but only on
the maximum circuit depth the parties want to support. This
is because the encryption scheme (and its keys) have to be
parameterized to support a sufficient homomorphic capacity
κ.

The In step corresponds to the input phase: The parties use
the public encryption procedure of E∗ to encrypt (with the
collective public-key cpk) their inputs and provide them to C
for evaluation.

The Eval step consists in the evaluation of the ideal func-
tionality, using the homomorphic property of the scheme to
compute the encrypted output. As this step requires no secret
input from the parties, it can be performed by any semi-honest
entity C.

The Out step enables the receiver R to obtain its output.
This requires collaboration among the parties in P , according

Protocol 1. MHE−MPC

Public input: f the ideal functionality
Private input: xi for each Pi ∈ P
Output for R: y = f(x1, x2, . . . , xN )

Setup: the parties instantiate the MHE scheme E∗

ski = E∗.πSecKeyGen(λ, κ),

cpk = E∗.πPubKeyGen(κ, sk1, . . . , skN ),

In: each Pi encrypts its input and provides it to C
ci = E∗.Encrypt(cpk, xi),

Eval: C computes the encrypted output for the ideal
functionality f

c′ = E∗.Eval(f, c1, c2, . . . , cN ),

Out: the parties in P execute the decryption protocol
y = E∗.πDec(sk1, . . . , skN , c

′).

to the access structure defined by the sharing of the ideal
secret key. As a public output might not be acceptable in all
scenarios, we augment the distributed cryptosystem E∗ with a
collective key switching protocol πColKeySwitch, which enables
the parties to obliviously re-encrypt a ciphertext that originally
decrypts under a shared secret key sk into a new ciphertext
that decrypts under the receiver’s secret key sk′. This protocol
generalizes πDec; in fact, decryption (or the ability to decrypt)
can be mapped to the particular case of switching to a secret
key sk′ = 0 (or any publicly known value). Given that pk′ is
a public key for the secret key sk′, the ideal functionality of
key switching,

fColKeySwitch = E.Encrypt(pk′, E.Decrypt(sk, ct)),

can be computed with no secret input from the receiver R.
Thus, whenever R has no input in the computation, it is fully
decoupled from the secure multiparty computation problem.

We propose a concrete, practical and open-source instance
of the MHE−MPC protocol. In this instance, E∗ is the
Brakerski-Fan-Vercauteren (BFV) homomorphic scheme [25].
Hence, this instance supports the computation of any function
that can be represented or approximated by a polynomial over
the plaintext space of BFV (defined in Section III-E).

D. Mathematical Notation

We denote [·]q the reduction of an integer modulo q, and d·e,
b·c, b·e the rounding to the next, previous, and nearest integer
respectively. When applied to polynomials, these operations
are performed coefficient-wise. We use regular letters for
integers and polynomials, and boldface letters for vectors of
integers and of polynomials. aT denotes the transpose of a
vector a. Given a probability distribution α over a ring R,
a ← α denotes the sampling of an element a ∈ R according
to α, and a ← R implicitly denotes uniform sampling in R.
For a polynomial a, we denote its infinity norm by ‖a‖.



E. The BFV Encryption Scheme

The Brakerski-Fan-Vercauteren cryptosystem [25] is a ring-
learning-with-errors [38] scheme that supports both additive
and multiplicative homomorphic operations. Due to its practi-
cality, it has been implemented in most of the current lattice-
based cryptographic libraries [45], [41], [1] and is part of the
draft HE standard [3].

We first recall the original and most common instantiation
of the (centralized) BFV encryption scheme that is detailed in
Scheme 1. The ciphertext space is Rq = Zq[X]/(Xn + 1),
the quotient ring of the polynomials with coefficients in Zq
modulo (Xn + 1), where n is a power of 2. We use [− q2 ,

q
2 )

as the set of representatives for the congruence classes modulo
q. Unless otherwise stated, we consider the arithmetic in Rq ,
so polynomial reductions are omitted in the notation. The
plaintext space is the ring Rt = Zt[X]/(Xn + 1) for t < q.
We denote ∆ = bq/tc, the integer division of q by t.

The scheme is based on two kinds of secrets, commonly
sampled from small-normed yet different distributions: The
key distribution is denoted R3 = Z3[X]/(Xn + 1), where
coefficients are uniformly distributed in {−1, 0, 1}. The RLWE
error distribution χ over Rq has coefficients distributed accord-
ing to a centered discrete Gaussian with standard deviation σ
and truncated support over [−B,B].

The security of BFV is based on the hardness of the
decisional-RLWE problem [38], that is informally stated as
follows: Given a uniformly random a← Rq , a secret s← R3,
and an error term e ← χ, it is computationally hard for an
adversary that does not know s and e to distinguish between
the distribution of (sa+e, a) and that of (b, a) where b← Rq .

Encrypted arithmetic operations must preserve the plaintext
arithmetic. We denote BFV.Add and BFV.Mul the homo-
morphic addition and multiplication respectively, and refer
the reader to [25] for their implementation. The BFV.Mul
operation outputs a ciphertext consisting of three Rq elements,
that can be seen as a degree two ciphertext. This higher degree
ciphertext can be further operated on and decrypted. But it is
often desirable to reduce this degree back to one, by using a
BFV.Relinearize operation [25]. This operation is public but
requires the generation of a special type of public key, referred
to as the relinearization key (rlk).

In the BFV scheme, decryption of a ciphertext (c0, c1) can
be seen as a two-step process. The first step requires the secret
key to compute a noisy plaintext in Rq as

[c0 + sc1]q = ∆m+ ect, (1)

where ect is the ciphertext overall error, or ciphertext noise. In
the second step, the message is decoded from the noisy term
in Rq to a plaintext in Rt, by rescaling and rounding

[b t
q

(∆m+ ect)e]t = [bm+ at+ ve]t, (2)

where m ∈ Rt, a has integer coefficients, and v has coeffi-
cients in Q. Provided that ‖v‖ < 1

2 , Eq. (2) outputs m. Hence,
the correctness of the scheme is conditioned on the noise
magnitude ‖ect‖, that must be kept below q

2t throughout the

Scheme 1. BFV
BFV.SecKeyGen(1λ): Sample s← R3. Output: sk = s

BFV.PubKeyGen(sk):
Let sk = s. Sample p1 ← Rq , and e← χ. Output:

pk = (p0, p1) = (−(sp1 + e), p1)

BFV.RelinKeyGen(sk, w):
Let sk = s. Sample r1 ← Rlq , e← χl. Output:

rlk = (r0, r1) = (s2w − sr1 + e, r1)

BFV.Encrypt(pk, m):
Let pk = (p0, p1). Sample u← R3 and e0, e1 ← χ.
Output: ct = (∆m+ up0 + e0 , up1 + e1)

BFV.Decrypt(sk, ct):
Let sk = s, ct = (c0, c1). Output:

m′ = [b t
q

[c0 + c1s]qe]t

homomorphic computation, notably by choosing a sufficiently
large q. To preserve this condition when multiplying with the
rlk (as a part of BFV.Relinearize), ciphertexts are temporarily
decomposed in a basis w < q and the product is performed
on each element of the decomposition [25]. We write l =
dlogw(q)e the number of coefficients in this decomposition,
and w = (w0, w1, ..., wl)T the base-w reconstruction vector.

IV. THE MULTIPARTY BFV SCHEME

We introduce a novel multiparty version of the Brakerski-
Fan-Vercauteren (BFV) cryptosystem [25] that supports the
MHE−MPC protocol (Protocol 1, Section III-C). It is worth
noting that, although formulated for the BFV scheme, the
introduced protocols can be straightforwardly adapted to other
RLWE-based cryptosystems, such as BGV [14] or the more
recent CKKS [17], that enables homomorphic approximate
arithmetic. In fact, we implemented both multiparty versions
for the BFV and CKKS schemes in the Lattigo open-source
library [1]. Even though our high-level approach follows
the blueprint of the LWE-based protocols by Asharov et al.
[6], we introduce several improvements to their schemes. In
particular, we propose a novel procedure for generation of
relinearization keys that introduces significantly less noise
in the key than the procedure proposed by Asharov et al..
Additionally, we propose a generalization of the distributed
decryption procedure, from which we derive novel protocols
that bridge between the MHE-based and LSSS-based MPC
protocols, and that enable the practical bootstrapping of a BFV
ciphertext.

We use additive secret-sharing to distribute the BFV secret
key, denoted as s in the following, among the N parties in P .
We denote si the secret key share of party Pi, thus

s =

[∑
Pi∈P

si

]
q

. (3)



Protocol 2. EncKeyGen
Public Input: p1 (common random polynomial)
Private Input for Pi: si = ski (secret key share)
Public Output: cpk=(p0, p1) (collect. encrypt. key)

Each party Pi:
1) samples ei ← χ and discloses p0,i = −(p1si + ei)

Out: from p0 =
∑
Pj∈P p0,j , outputs cpk = (p0 , p1)

As a result, this scheme tolerates up to N − 1 colluding
corrupted nodes in the passive-adversary model, and can be
viewed as a N-out-of-N threshold encryption scheme. Thus,
when used as E∗ in the MHE−MPC protocol, this scheme can
solve secure-multiparty-computation problems in the strictest
dishonest-majority setting: where no set of colluding parties
should be able to extract the inputs of an honest party.

We refer to the original centralized scheme as the ideal
scheme: the ideal centralized functionality that needs to be
emulated in a multiparty setting. By extension, we also refer
to s as the ideal secret key, to emphasize that it exists as
such only through interaction between the parties. In the next
subsections, we reformulate all the private operations of the
original BFV scheme (i.e., those that depend on the secret key)
as secure N -party protocols. We detail the security arguments
in Appendix A. In order to abstract the actual system model,
we do not define how parties disclose and aggregate their
shares yet. In Section V, we present concrete system models
and discuss their features.

A. Ideal-Secret-Key Generation
We propose a simple ideal-secret-key generation proce-

dure, in which each party samples its own share as si =
BFV.SecKeyGen(λ, κ) independently. Thus, the ideal secret-
key is generated in a non-interactive way. Eq. (3) applies, but
this does not result in a usual sharing of s, in the sense that
the distribution of the shares is not uniform in Rq . This is
not an issue because the security of our scheme (analyzed in
Appendix A) does not rely on this property. However, the norm
of the resulting ideal secret key grows with O(N), which has
an effect on the noise growth (analyzed in Appendix C).

By using techniques such as those described in [44], it might
be possible to generate ideal secret keys in R3 as if they were
produced in a trusted setup. However, this would introduce the
need for private channels between the parties.

B. Collective Encryption-Key Generation
The collective encryption-key generation, detailed in Proto-

col 2, emulates the BFV.PubKeyGen procedure. It is part of
the setup phase of the MHE−MPC protocol. In addition to the
public parameters of the cryptosystem (which we will omit in
the following), the procedure requires a public polynomial p1,
uniformly sampled in Rq , to be agreed upon by all the parties.
For this purpose, they sample its coefficients from the com-
mon reference string (CRS). In the passive-adversary model,
the CRS can be implemented by any keyed pseudorandom
function. We used BLAKE2b [7] in our implementation.

After the execution of the EncKeyGen protocol, the parties
have access to a copy of the collective public key

cpk =
([∑
Pi∈P

p0,i
]
q
, p1

)
=
([
− (p1

∑
Pi∈P

si +
∑
Pi∈P

ei)
]
q
, p1

)
,

(4)
that has the same form as the ideal public key pk in Scheme 1,
with larger worst-case norms ‖s‖ and ‖e‖. The norm grows
linearly in N hence is not a concern (as shown in Appendix
C), even for large number of nodes. Another notable feature
of the EncKeyGen protocol is that it would apply to any kind
of linear sharing of s, as long as the shares are valid RLWE
secrets and the norm of the reconstruction is small enough.
This includes uniformly random shares of a traditional BFV
secret key in R3.

C. Collective Relinearization-Key Generation

In order to enable the computing entity C to perform non-
interactive relinearizations (hence, non-interactive multiplica-
tions), the parties need to generate a public relinearization
key (rlk) associated with their ideal secret key s. Protocol 3
(RelinKeyGen) emulates the centralized BFV.RelinKeyGen for
this purpose; it produces pseudo-encryptions of s2wb for each
power b = 0 . . . l of the decomposition basis parameter w.
This protocol is also part of the setup phase of the MHE−MPC
protocol. It requires a public input a, uniformly sampled in Rlq
from the CRS. We use vector notation to express that these
pseudo-encryptions are generated in parallel for every element
of the decomposition base w = (w0, w1, ..., wl)T .

Asharov et al. proposed a method to produce relinearization
keys for multiparty schemes based on the LWE problem [6].
This method could be adapted to our scheme but results in
significantly increased noise in the rlk (hence, higher noise
in relinearized ciphertexts) with respect to the centralized
scheme. One cause for this extra noise is the use of the
public encryption algorithm to produce the mentioned pseudo-
encryptions. By observing that the collective encryption key
is not needed for this purpose (because the secret key is
collectively known), we propose Protocol 3 as an improvement
over the method by Asharov et al.

After completing the RelinKeyGen protocol, the parties have
access to a relinearization key of the form
rlk = (r0, r1) = (−sb+s2w+se0+e1+ue2+e3 , b ), (5)

where b = sa + e2 and ek =
∑
j ek,j for k = 0, 1, 2, 3.

As opposed to the technique by Asharov et al., r1 contains
no error. This significantly reduces the output noise, as this
component (and its error terms) is multiplied by the base-w
decomposed ciphertext during relinearization.

A relevant feature of the proposed RelinKeyGen protocol
is its independence from the actual decomposition basis w:
It is compatible with other decomposition techniques, such as
the one used for type II relinearization [25], those based on
the Chinese Remainder Theorem, as proposed by Bajard et
al. [8] and Cheon et al [16], and even hybrids of these two
approaches (which we use in our implementation).



Protocol 3. RelinKeyGen
Public Input: a ∈ Rlq and w the decomposition basis
Private Input of Pi: si = ski
Output: rlk = (r0, r1)

Each party Pi:
1) samples ui ← R3, e0,i, e1,i ← χl and discloses
(h0,i , h1,i) = (−uia + siw + e0,i , sia + e1,i)

2) from h0 =
∑
Pj∈P h0,j and h1 =

∑
Pj∈P h1,j ,

samples e2,i, e3,i ← χl and discloses
(h′0,i , h′1,i) = (sih0 + e2,i , (ui − si)h1 + e3,i)

Out: from h′0 =
∑
Pj∈P h′0,j and h′1 =

∑
Pj∈P h′1,j ,

outputs rlk = (h′0 + h′1 , h1)

D. Collective Key-Switching Protocols

The key-switching functionality enables the oblivious re-
encryption operation to support the output procedure of the
MHE−MPC protocol. That is, given a ciphertext ct decrypting
under some input key s along with an output key s′, the
key-switching procedure computes ct′ such that Dec(s, ct) =
Dec(s′, ct′). Its instantiation as a protocol depends on whether
the parties performing the re-encryption have access to a
sharing of the output secret key (i.e., have a collective access to
it), or only have its corresponding public-key. Therefore, we
develop protocols that perform key-switching for these two
settings: When s′ is collectively known, the ColKeySwitch
protocol is used. When only a public key is known, the
PubColKeySwitch protocol is used.

1) Collective Key-Switching (ColKeySwitch): Protocol 4
details the steps for performing a key switching when the
input parties collectively know the output secret key s′. In the
context of the MHE−MPC protocol, this would be the case
in scenarios such as the decryption procedure (as discussed
below) and in the case of an ideal secret key update (when a
party leaves or joins the system). Also, assuming confidential
party-to-party channels, a receiver could provide the parties
with secret-shares of a secret key it controls.

After the execution of the ColKeySwitch protocol on an
input ct = (c0, c1), for which c0 + sc1 = ∆m+ ect where ect
is the ciphertext’s error, the parties have access to ct′ satisfying

BFV.Dec(s′, ct′)=b t
q

[c0 +
∑
j

(
(sj−s′j)c1 + ej

)
+ s′c1]qe

= b t
q

[c0 + (s− s′)c1 + eCKS + s′c1]qe

= b t
q

[∆m+ ect + eCKS]qe = m, (6)

where eCKS =
∑
j ej , and where the last equality holds pro-

vided that ‖ect + eCKS‖ < q/(2t); i.e., if the output ciphertext
noise plus the protocol-induced noise remains within decrypt-
able bounds. The ColKeySwitch protocol yields a decryption
procedure, as the special case where s′j = 0 ∀Pj ∈ P ,
and is the basis for bridging MHE-based and LSSS-based
approaches, as explained in Section IV-E.

Protocol 4. ColKeySwitch
Public input: ct = (c0, c1)
Private input for Pi: si, s′i
Public output: ct′ = (c′0, c1)

Each party Pi:
1) samples ei ← χ and

discloses hi = (si − s′i)c1 + ei

Out: from h =
∑
j hj ,

outputs ct′ = (c′0, c1) = (c0 + h, c1)

2) Collective Public-Key Switching (PubColKeySwitch):
The use of the ColKeySwitchprotocol is limited to the cases
where parties have collective knowledge of the output secret
key s′. Indeed, that may not be the case when considering
an external receiver. This situation would require confidential
channels between the receiver and each party in P , in order
to either (i) collect decryption shares from all parties, or (ii)
distribute an additive sharing of its secret key to the system.
However, (i) would quickly become expensive for a large
number of parties, and (ii) would require R to trust at least
one party in P . Moreover, confidential point-to-point channels
might not fit the system model (e.g., on public smart-contract
technologies). We introduce the PubColKeySwitch protocol to
overcome this issue.

Protocol 5 details the steps for key switching when the
input parties know only a public key for the output secret
key s′. As it requires only public input from the external
receiver and its output is encrypted under the receiver’s key,
the PubColKeySwitch turns the ColKeySwitch protocol into a
public-transcript, public-output one and decouples the receiver
from the secure-multiparty-computation problem at hand.

After the execution of the PubColKeySwitch protocol on an
input ciphertext ct = (c0, c1) for which c0 + sc1 = ∆m+ ect,
and a target public key pk = (p′0, p

′
1) such that p′0 = −(s′p′1+

epk), the parties hold ct′ satisfying

Dec(s′, ct′)=b t
q

[c0+
∑
j

(
sjc1+ujp

′
0+e0,j

)
+s′
∑
j

(
ujp
′
1+e1,j

)
]qe

=b t
q

[c0+sc1+up′0+s′up′1+e0+s′e1]qe

=b t
q

[∆m+ ect + ePCKS]qe = m, (7)

where ed =
∑
j ed,j for d = 0, 1, u =

∑
j uj , and the total

added noise ePCKS = e0 + s′e1 + uepk depends on both the
protocol-induced and the target-public-key noises. Provided
that ‖ect + ePCKS‖ < q/(2t), Equation (7) holds.

E. Bridging MPC approaches

The flexibility of the ColKeySwitch protocol can be har-
nessed to bridge MHE-based and LSSS-based MPC ap-
proaches. We provide two procedures enabling encryption-to-
shares and shares-to-encryption functionalities:

1) Encryption-to-Shares (Enc2Share): Given an encryption
(c0, c1) of a plaintext m ∈ Rt, the parties can produce an



Protocol 5. PubColKeySwitch
Public input: pk′ = (p′0, p

′
1), ct = (c0, c1)

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1)

Each party Pi:
1) samples ui ← R3, e0,i ← χ, e1,i ← χ, and
discloses

(h0,i , h1,i) = (sic1 + uip
′
0 + e0,i , uip

′
1 + e1,i)

Out: from h0 =
∑
j h0,j and h1 =

∑
j h1,j ,

outputs ct′=(c′0, c
′
1)=(c0 + h0, h1)

additive sharing of m over Rt by masking their share in the
decryption (i.e., ColKeySwitch with s′ = 0) protocol: Each
party Pi ∈ {P2, PN} samples its own additive share Mi ←
Rt and adds a −∆Mi term to its decryption share hi before
disclosing it. Party P1 does not disclose its decryption share
h1 and derives its own additive share of m as

M1 = BFV.Decrypt(s1, (c0 +

N∑
i=2

hi, c1)) = m−
N∑
i=2

Mi.

2) Shares-to-Encryption (Share2Enc): Given a secret
shared value m ∈ Rt such that m =

∑N
i=1Mi, the parties

produce an encryption ct = (c0, c1). To do so, each party
Pi samples a from the CRS and produces a ColKeySwitch
share for the ciphertext (∆Mi, a) with input key 0 and output
key s. The ciphertext centralizing the secret-shared value m
is then ct = (

∑N
i=1 c0,i, a). This is equivalent to a multiparty

encryption protocol.

F. Collective Bootstrapping (ColBootstrap)

The Share2Enc and Enc2Share protocols can be combined
into a multiparty bootstrapping procedure (Protocol 6), en-
abling the parties to reduce the ciphertext noise back to a
fresh-like one, which enables further computation even when
reaching the homomorphic capacity limits. This is a crucial
functionality for the BFV scheme, for which the bootstrapping
procedure is expensive.

Intuitively, the ColBootstrap protocol consists in a con-
version from an encryption to secret-shares and back, im-
plemented as a parallel execution of the Enc2Share and
Share2Enc protocols. It is an efficient single-round protocol
that the parties can use during the evaluation phase, instead
of a computationally heavy bootstrapping procedure. Note,
however, that making use of that functionality introduces
interaction at the evaluation step of the MHE−MPC protocol.
In practice, a broad range of applications would not (or
seldom) need to rely on this primitive, as the circuit complexity
enabled by the practical parameters of the BFV scheme
would suffice. But the ColBootstrap protocol offers a trade-
off between computation and communication (demonstrated
in Section VI-B), and more flexibility when the computation
circuit is not known in advance.

Protocol 6. ColBootstrap
Public input: a a common random polynomial and ct =
(c0, c1) with noise variance σ2

ct

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1) with noise variance Nσ2

Each party Pi:
1) samples Mi ← Rt, e0,i ← χ, e1,i ← χ and

discloses
(h0,i , h1,i) = (sic1−∆Mi+e0,i , −sia+∆Mi+e1,i)

Out: from h0 =
∑
j h0,j and h1 =

∑
j h1,j ,

outputs (c′0, c
′
1) = ([b tq ([c0 + h0]q)e]t∆ + h1 , a)

G. Packed-Encoding and Rotation Keys

One of the most powerful features of RLWE-based schemes
is the ability to embed vectors of plaintext values into a
single ciphertext. Such techniques, commonly referred to as
packing, enable arithmetic operations to be performed in
a single-instruction multiple-data fashion, where encrypted
arithmetic results in element-wise plaintext arithmetic. Pro-
vided with public rotation keys, any semi-honest party can
operate arbitrary rotations over the vector components [16],
which opens up homomorphic function evaluation to a broad
kind of non-linear functions. Generating these rotation keys
(that are pseudo-encryptions of the equivalent rotation on the
secret-key coefficients) can be done in the multiparty scheme,
by means of an RotKeyGen sub-protocol. We do not detail this
protocol, as it is a straightforward adaptation of EncKeyGen.
We will make use of rotations in the input-selection example
circuit in Section VI-C.

V. FEATURES ANALYSIS

We now discuss the high-level aspects of the MHE−MPC
protocol, when instantiated with the multiparty BFV scheme
of Section IV.

A. Introduced trade-offs

We first discuss the trade-offs inherent to our construct, and
briefly show how to optimize them.

1) Circuit Privacy: RLWE-based cryptosystems have the
fundamental property of decrypting to noisy plaintext mes-
sages (Eq. (1)) that are then decoded by the decryption
algorithm (Eq. (2)). As the noise depends on the evaluation
circuit and its intermediate values, this cryptosystem family
does not directly ensure circuit privacy. This has an important
implication for our multiparty scheme, where Equations (6)
and (7) show that both ColKeySwitch and PubColKeySwitch
permit the final error term to be obtained by the receiver.
By exploiting these dependencies, an attacker with the output
secret key could try to extract information about the input key
or the intermediate plaintext values in the computation.

The solution proposed by Asharov et al. [6], commonly
referred to as smudging or noise flooding, consists in adding
fresh noise to the ciphertext and to the decryption shares. We



could adapt this approach to our scheme by sampling the noise
introduced during the ColKeySwitch and PubColKeySwitch
protocols from a distribution that has a variance σ2

smg signifi-
cantly larger than that of the input ciphertext noise distribution
(represented by σ2

ct). Concretely, choosing σ2
smg = 2λσ2

ct

bounds the advantage of an attacker trying to extract infor-
mation from the output noise to 2−λ.

While theoretically ensuring circuit privacy, this technique
will, in practice, lead to less efficient parameters for circuits
of large depth. Hence, whereas our initial approach used
smudging as placeholder circuit-privacy technique (in our
security argument of Appendix A), it should be replaced by
a more efficient solution. A promising direction was recently
explored by de Castro et al. in the context of oblivious linear
function evaluation using the RNS variant of BFV [23] (which
we use in our implementation). Their technique, based on a
special RNS modular-reduction and rounding, generalizes to
non-linear functions and can be used in our context.

2) Arithmetic Circuits: The MHE-based MPC solution is
indeed limited to arithmetic functions over the plaintext space
ring of the MHE scheme (in our case, (Rt,+,×)). Whereas
analytic function such sin(x) or ex can be efficiently eval-
uated through polynomial approximation, it is not the case
for non-arithmetic functions such as comparisons. In LSSS-
based MPC, however, several solutions are already available to
compute such functions and enable branching programs at the
cost of leaking (information about) the conditional variable.
Hence, the ability to switch between the two representations
with the Enc2Share and Share2Enc protocols is currently
pivotal, as this enables LSSS-based approaches to cover for the
current limitations of the MHE-based approach. Indeed, these
limitations are being increasingly mitigated, as MHE-based
solutions directly benefit from the advances in homomorphic
encryption research that make HE schemes increasingly ver-
satile.

MHE-based solution can also cover for limitations of the
LSSS-based approaches. In the rest of this section, we discuss
the particular features of the MHE-based solution and relate
these features to the efficient system models they enable.

B. Public Non-interactive Circuit Evaluation

Although the homomorphic operations of HE schemes
are computationally more expensive than local operations of
secret-shared arithmetic, the former do not require private
inputs from the parties. Hence, as long as no output or collec-
tive bootstrapping is needed, the circuit evaluation procedure
is non-interactive and can be performed by any semi-honest
entity. This not only enables the evaluation to be efficiently
distributed among the parties in the usual peer-to-peer setting,
but also enables new computation models for MPC:

Cloud-Outsourced Model: The homomorphic circuit
evaluation can be outsourced to a cloud-like service, by
providing it with the inputs and necessary evaluation keys.
The parties can arbitrarily go offline during the evaluation and
reconnect for the final output phase. In this model, resource-

constrained parties can take part in MPC tasks involving
thousands of other parties.

Smart Contracts: A special case of an outsourced MPC
task is the execution of a smart contract over private data,
which becomes feasible by means of the MHE-based MPC
solution. In this scenario, the contract shareholders are the
MHE secret-key owners, and the smart-contract platform acts
as an oblivious contract evaluator. Indeed, depending on the
platform, further adaptation would be required beyond the
system and threat models of this work.

C. Public-Transcript Protocols

All the protocols of Section IV have public transcripts,
which removes the need for direct party-to-party communi-
cation. Hence, not only the evaluation step, but the whole
MHE−MPC protocol can be executed over any public authen-
ticated channel. This also brings new possibilities in designing
MPC systems:

Efficient Peer-to-Peer Communication Pattern: The pre-
sented protocols rely solely on the ability for the parties to
publicly disclose their shares and to aggregate them. This
gives flexibility for using efficient communication patterns:
The parties can be organized in a topological way, as nodes
in a tree, where each node interacts solely with its parent and
children nodes. We observe that for all the protocols, the shares
are always combined by computing their sum. Hence, for a
given party in our protocols, a round consists in

Gen: computing its own share in the protocol,
Agg: collecting and aggregating the share of each of its

children and its own share,
Out: sending the result up the tree to its parent, or outputting

it.
Such an execution enables the parties to compute their shares
in parallel and results in a network traffic that is constant at
each node. By trading-off some latency, the inbound traffic
can be kept low by ensuring that the branching factor of the
tree (i.e., the number of children per node) is manageable for
each node. As the share aggregation can also be computed by
any semi-honest third-party, the tree can contain nodes that
are not part of P (i.e., nodes that would not have input in
the MPC problem and have no share of the ideal secret key)
and are simply aggregating and forwarding their children’s
shares. We demonstrate the efficiency of the tree topology
in the multiplication triple generation example benchmark in
Section VI-D.

Cloud-Assisted MPC Model: The special case of a single
root node holding no share of the key can be mapped to a
cloud-assisted setting where parties run the protocols interact-
ing solely with a central node. This model complements the
circuit evaluation outsourcing feature by removing the need for
synchronous and private party-to-party communication and the
need for the input parties to be online and active for the pro-
tocol to progress. Hence, the cloud-assisted MHE−MPC pro-
tocol has a clear advantage in terms of tolerance to unreliable
parties, which is a significant step toward large-scale MPC. We
use the cloud-assisted model for the first two example circuits



of Section VI and demonstrate its practicality for computations
involving thousands of parties. Adapting the multiparty BFV
scheme (Section IV) to a T -out-of-N threshold scheme is a
natural next step (provided that the system tolerates the weaker
threat-model) to address the challenge of parties going offline
for an arbitrary amount of time.

VI. PERFORMANCE ANALYSIS

We implemented the multiparty BFV scheme and integrated
it in the Lattigo open-source library [1]. It provides Go
implementations of the two most widespread RLWE homo-
morphic schemes: BFV and CKKS, along with their multiparty
versions. The library uses state-of-the-art optimizations based
on the Chinese remainder theorem [8]. In order to analyze the
performance of the MHE−MPC protocol in both the cloud-
assisted and the peer-to-peer settings, we chose to evaluate
three generic yet powerful circuits. Thus, we can compare the
results with those of a baseline system for generic MPC in
a reproducible way. Indeed, these circuits represent common
building blocks for more complex functionalities that we
briefly discuss. All the parameters we used have an equivalent
security of at least 128 bits [3].

In the cloud-assisted setting, we consider two example
circuits: (i) The element-wise product of integer vectors, and
its application as a simple multiparty private-set-intersection
protocol (Section VI-B). (ii) A multiparty input selection
circuit, and its application to multiparty private-information-
retrieval (Section VI-C). We compare the performance for
both circuits against a baseline system that uses a LSSS-
based approach: The MP-SPDZ library implementation [2]
of the Overdrive protocol [32] for the semi-honest, dishonest
majority setting. In the peer-to-peer setting, we consider the
generation of multiplication triples, commonly referred to
as the "offline" phase of data-level LSSS-based approaches
(Section VI-D). We compare the performances against the
SPDZ2K [19] Oblivious-Transfer-based and the Overdrive
[32] HE-based triple-generation protocols.

A. Experimental Setup

For the cloud-assisted setting, the client-side timings were
measured on a MacBook Pro with a 3.1 GHz Intel i5 processor.
The server-side timings were measured on a 2.5 GHz Intel
Xeon E5-2680 v3 processor (2x12 cores). For the peer-to-
peer setting, we run all parties on the latter machine. We do
not include the network-related delays in our measurements
and, instead, evaluate the network-related cost in terms of
number of communicated bytes (upstream + downstream), to
make it independent from the actual setting. Hence, we run the
benchmarks over the localhost interface (note that this could
slightly favor the baseline system, as its online phase is more
sensitive to the round-trip time delays).

B. Element-Wise Vector Product

We consider a scenario in which each of the N input parties
holds a private vector xi of 32-bit integers. The ideal function-
ality consists in providing an external receiver R (with secret

TABLE I: Element-wise product: Baseline comparison
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

[2]
Offline 0.21 1.19 5.33 3.42 29.13 156.06
Online 0.02 0.04 0.10 1.05 6.29 29.36
Total 0.24 1.24 5.52 4.47 35.42 185.42

MHE Setup 0.18 0.20 0.25 25.17 25.17 25.17
Circ. 0.29 0.41 0.64 4.72 4.72 4.72

TABLE II: Element-wise product: Phases costs
Party Cloud

Time [ms] Com. [MB] Wall time/CPU time [s]

#Parties indep. indep. 32 64 128
Setup 96.41 25.17 0.49 0.85 1.99
In 20.02 1.57 0.04 0.04 0.15
Eval 0.00 0.00 0.8/4.5 1.0/10.3 1.5/22.7
Out 25.38 3.15 0.05 0.10 0.21

key sR), with the element-wise product between the N private
vectors. Thus, fR(x1,x2, . . . ,xN ) = x1�x2�· · ·�xN = y
where � denotes the element-wise product over integer vec-
tors. This is a demanding circuit, as its multiplicative depth is
equal to dlogNe.
The steps in the MHE−MPC protocol unfolds as follows:

Setup: The parties use the EncKeyGen and RelinKeyGen pro-
tocols to produce the public encryption and relineariza-
tion keys for to their joint secret key sP .

In: Each input party Pi ∈ P encodes its input vector xi

as a polynomial xi using packed plaintext encoding.
Then, it encrypts this vector under the collective public
key and sends EncsP (xi) to the cloud.

Eval: The cloud computes the overall product using
the BFV.Mul operation (with intermediary
BFV.Relinearize operations). This results in EncsP (y)
where y is the packed representation of y. The cloud
sends EncsP (y) to the input parties.

Out: The input parties use the PubColKeySwitch protocol to
reencrypt EncsP (y) into EncsR(y), which the receiver
retrieves.

We set the vector size to d = 214. The baseline system [2]
was configured for computation over the domain Zp with a
32-bit p. The MHE system computes the same circuit with
the multiparty BFV scheme, instantiated with n = 214, 438-
bit q and plaintext modulus t of 32 bits. The input vectors
are encoded in the plaintext space using packed encoding.
Table I reports the evaluation of our implementation of the
MHE solution against the baseline, for up to 8 parties. We
report the cost per phase of the MHE−MPC protocol for up
to 128 parties in Table II. The setup is the same as for Table
I, only with a 16-bit plaintext modulus. This illustrates how
the MHE−MPC protocol can solve large secure-multiparty-
computation problems, even for resource-constrained clients,
by delegating all the heavy computation and the storage.
We also show that parallelizing the homomorphic evaluation
can yield even lower response times. Finally, we run the
experiment for N = 1024 parties, which represents a circuit
of multiplicative depth 10. The above parameterization of the
MHE scheme would not enable such a large depth, so we



TABLE III: Element-wise product: N = 1024 parties
Party Cloud

CPU Time [ms] Com. [MB] Wall/CPU Time [h:m:s]

(i) (ii) (i) (ii) (i) (ii)
Setup 467.5 110.2 121.8 25.2 57s 13s
In 78.4 21.6 6.3 1.6 3s 1s
Eval 0.00 202.4 0.0 18.9 29s/19m14s 6s/3m45s
Out 107.5 27.2 12.6 3.1 4.3s 1.2s

have two options. The first one (i) is to adapt the parameters
to enable larger depth; more specifically, we use a polynomial
degree n = 215, and a coefficient size q of 880 bits. The
second option (ii) is to keep the same parameters and use the
ColBootstrap protocol to refresh the ciphertexts. The results in
Table III illustrate how the ColBootstrap protocol introduces
a trade-off between network usage and CPU usage. In this
case, for an additional 4.7 MB of communication per party in
the online phase, refreshing ciphertexts is more cost-effective
(for bandwidth and CPU, by a factor between 4× and 5×)
than using larger parameters, even if it requires one more
communication round.

This circuit could be used, for example, to implement effi-
cient multiparty private-set-intersection for very large number
of parties. In its most simple instantiation, the parties could
encode their sets as binary vectors and use this functionality
to compute the bit-wise AND between them. Transferring the
results to this application, we can compare with the special
purpose multiparty PSI protocol by Kolesnikov et al. [33].
For the standard semi-honest model with dishonest majority,
the set size 212 and 15 parties (the largest evaluated value
in [33]), the MHE solution was 1029× faster (in the LAN
setting) and required 15.3× less communication to compute
the intersection. However, our encoding of sets limits the
application to finite sets. More advanced encodings should
be investigated to match the flexibility of the approach by
Kolesnikov et al.

C. Multiparty Input Selection

We consider a simple yet powerful multiparty input selec-
tion functionality where a party P1 selects one among N − 1
other parties’ P2, . . . , PN inputs x2, . . . , xN while keeping the
selector r private. This corresponds to the ideal functionality
f1(r, x2, . . . , xN ) = xr for player P1.

This selection circuit can be seen as a generalization of an
oblivious transfer functionality to the N -party setting, and can
directly implement an N -party PIR system where a requester
party retrieves a row in a database partitioned across multiple
provider parties. We represent inputs as d-dimensional vectors
in Zdp for p a 32-bit prime. We denote ui the polynomial having
all-zero coefficients but its degree i one, which is 1.

To compute the ideal functionality, the parties engage in the
MHE−MPC protocol, the steps of which unfold as follows:
Setup: The parties run EncKeyGen, RelinKeyGen and

RotKeyGen to produce the encryption, relinearization
and rotation keys for their joint secret key s.

In: Each Provider Pi encodes its input in Rt, encrypts it
using the cpk as cti and sends it to the cloud.

TABLE IV: Input selection: Baseline comparison
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

[2]
Offline 0.35 1.04 3.56 6.58 25.74 101.82
Online 0.02 0.04 0.07 1.31 4.72 17.83
Total 0.37 1.08 3.66 7.89 30.46 119.65

MHE Setup 0.59 0.58 0.69 42.93 42.93 42.93
Circ. 0.27 0.28 0.31 1.31 1.31 1.31

TABLE V: Input selection: Phase costs
Party Cloud

Time [ms] Com. [MB] Wall time/CPU time [s]

#Parties indep. indep. 32 64 128
Setup 262.58 42.93 0.85 1.68 3.38
In 6.22 0.52 0.01 0.01 0.02
Eval 0.00 0.00 0.4/8.1 0.8/23.4 1.6/62.1
Out 3.34 0.79 0.01 0.02 0.02

The Requester generates its selector as the ur vector,
encrypts it as ctr and sends it to the cloud.

Eval: For each provider input i, the cloud computes an en-
crypted mask mi by (1) multiplying ctr with ui using
ciphertext-plaintext multiplication and (2) replicating
the i-th encrypted slot to the other slots by repeated
column rotation and addition. Hence, mi always en-
crypts the zero vector, except for i = r, for which it is
all-ones. The cloud then multiplies each provider input
xi with the mask mi using BFV.Mul, aggregates all
N resulting ciphertexts with BFV.Add and applies the
BFV.Relinearization to the resulting ciphertext ctout.

Out: The providers engage in the ColKeySwitch protocol
(excluding the receiver) with target ciphertext ctout, in-
put key s and output key 0. They send their decryption
shares to the cloud, that can then aggregate them to
produce an output ciphertext encrypting xr under the
receiver secret-key share (as he did not participate in
the ColKeySwitch protocol).

We set the vector size to d = 213 and a p of 32 bits. The
communication is the sum of upstream and downstream. We
used the same parameters for the baseline as in Section VI-B.
The MHE system was instantiated with n = 213, 218-bit q
and 32-bit plaintext modulus t. Table IV shows a comparison
with the baseline system. The MHE-based system matches the
response time of the baseline in the two-party setting, and it
is more efficient in terms of network usage. The generation
of rotation keys accounts for approximately 75% of the setup
cost and is the main overhead of the protocol. However, they
enable the unpacking of the receiver query filter from a single
ciphertext during the evaluation phase. In the 8 parties case,
the MHE setup cost is already 5.2× faster and requires 2.4×
less communication than the baseline’s offline phase, yet is a
one-time setup.

Table V shows the per-phase cost for the MHE-based
solution for larger number of parties. Again, the parallelization
of the circuit computation over multiple threads yields a very
low response-time, regardless of the algorithmic complexity
of homomorphic operations. Our choice for t enables 32.8
kilobytes to be packed into each ciphertext. For the 8-party



setting, this yields a throughput of 105.7 kB/s (baseline: 9.0
kB/s) and an expansion of only ∼ 40× (baseline: ∼ 3650×)
w.r.t. the communication cost of an insecure plaintext system.
We ran the same experiment for N = 8000 parties and the
response time was 61.7 seconds.

D. Multiplication Triples Generation

We evaluated how the MHE-based system can be used to
produce multiplication triples in a peer-to-peer setting. This is
of particular interest, as triple generation is the bottleneck cost
for LSSS-based MPC approaches. We consider the following
functionality:

Let xi = (ai,bi) ∈ Zn×2p be the input of party Pi, where n
is the number of generated triples and p is a prime. The joint
ideal functionality is FP(x1,x2, . . . ,xi) = (c1, c2, . . . , cN)
such that c =

∑N
i=1 ci = (

∑N
i=1 ai) � (

∑N
i=1 bi) =

a � b, where � denotes the coefficient-wise product. The
MHE−MPC protocol is instantiated as follows:
Setup The parties run the RelinKeyGen protocol to generate

a relinearization key rlk.
In: The parties use the Share2Enc protocol to produce

encryptions of a and b. Hence, this phase ends with
the root node holding cta=Enc(a) and ctb=Enc(b).

Eval: The root computes ctc = Relin(Mult(cta, ctb),rlk) and
sends it down the tree.

Out: The parties use the Enc2Share protocol to produce an
additive sharing of c from Enc(c). The aggregation is
done along the tree with the root being P1.

Figure 1 shows a comparison with two currently prevalent
techniques: oblivious-transfer-based and plain homomorphic-
encryption-based. We implemented both the plain HE and
our MHE-based approaches with the Lattigo library [1]. For
the OT-based one, we used the Multi-Protocol SPDZ library
[2] that provides an implementation of the SPDZ2K [19]
in the semi-honest setting. Both HE-based generators where
parameterized to produce triples in Zp for p a 32-bit prime and
the OT-based generator to produce triples in Z232 .1. For the
HE-based generators, we used polynomial degree n = 213,
coefficient modulus size of 218 bits, and plaintext modulus
t = p. Thus, after the setup phase, the parties can loop over
the In-Eval-Out steps to produce a stream of triples in batches
of 213. To report on the steady regime of the systems, we
do not include the setup phase costs of all methods in the
measurements.

E. Discussion

We observe that, in general, the main cost of MHE-based
solutions is the network load of their setup phase, primarily
due to the generation of evaluation keys (e.g., relinearization,
rotation). Hence, in scenarios where a single evaluation of a
circuit with few multiplication gates and small number of input
parties, the MHE-based solution would not be as efficient as a
LSSS-based approach generating triples on-the-fly. However,

1At the time of writing, the MP-SPDZ library does not implement a
standalone benchmark for OT-based generation of triples in a prime field.

Fig. 1: Number of generated triples per second (throughput,
left) and per megabyte of communication (efficiency, right).

since the MHE setup is only performed once, it is quickly
amortized when considering circuits with a few thousands
multiplication gates and more than two parties; in that sce-
nario, the cost of the LSSS-based approach is dominated by
the generation of multiplication triples. Evaluating where the
decision-boundary stands regarding which system to use for
smaller use-cases is a crucial question to be investigated as a
future work.

VII. CONCLUSIONS

In this work, we have introduced a novel MHE scheme
based on the BFV cryptosystem, and demonstrated its capacity
to solve multiparty computation problems. We have analyzed
the features of the proposed solution, and observed how the
public-transcript nature of the MHE−MPC protocol enables
new computation models for MPC that go beyond the tradi-
tional peer-to-peer setting. Notably, this includes outsourced
cloud-assisted models that reduce the communication cost per
party to be constant in the number of parties without relying on
non-collusion assumptions. We also analyzed the performance
of the cloud-based solution, and noticed a net improvement
ranging between 1 and 2 orders of magnitude in both response
time and communication complexity compared to the LSSS-
based approaches. Hence, this cloud-assisted model enables
new opportunities for large scale MPC-as-a-service, which we
view as a promising application and a driver for adoption of
HE and MPC solutions in privacy-enhancing technologies.

ACKNOWLEDGMENTS

The authors would like to thank Henry Corrigan-Gibbs for
the valuable reviews and comments. This work was supported
in part by the grant #2017-201 of the Strategic Focal Area
“Personalized Health and Related Technologies (PHRT)” of
the ETH Domain.

REFERENCES

[1] Lattigo 1.3.0. Online: http://github.com/ldsec/lattigo, December 2019.
EPFL-LDS.

[2] MP-SPDZ. Online: https://github.com/data61/MP-SPDZ/, January 2020.
[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-

wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic
Encryption Security Standard. Technical report, HomomorphicEncryp-
tion.org, Toronto, Canada, November 2018.

http://github.com/ldsec/lattigo
https://github.com/data61/MP-SPDZ/


[4] Andreea B Alexandru, Manfred Morari, and George J Pappas. Cloud-
based MPC with encrypted data. In 2018 IEEE Conference on Decision
and Control (CDC), pages 5014–5019. IEEE, 2018.

[5] David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt
Nielsen, Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright.
From Keys to Databases—Real-World Applications of Secure Multi-
Party Computation. The Computer Journal, 61(12):1749–1771, 2018.

[6] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 483–501. Springer, 2012.

[7] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. Blake2: simpler, smaller, fast as md5. In Inter-
national Conference on Applied Cryptography and Network Security,
pages 119–135. Springer, 2013.

[8] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca.
A full RNS variant of FV like somewhat homomorphic encryption
schemes. In International Conference on Selected Areas in Cryptog-
raphy, pages 423–442. Springer, 2016.

[9] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Annual International Cryptology Conference, pages 420–432.
Springer, 1991.

[10] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the
estonian tax and customs board evaluated a tax fraud detection system
based on secure multi-party computation. In International Conference
on Financial Cryptography and Data Security, pages 227–234. Springer,
2015.

[11] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework
for fast privacy-preserving computations. In European Symposium on
Research in Computer Security, pages 192–206. Springer, 2008.

[12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure
multi-party computation for financial data analysis. In International
Conference on Financial Cryptography and Data Security, pages 57–
64. Springer, 2012.

[13] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation
goes live. In International Conference on Financial Cryptography and
Data Security, pages 325–343. Springer, 2009.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. ACM Transac-
tions on Computation Theory (TOCT), 6(3):13, 2014.

[15] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Annual International Cryptology Conference, pages 19–40. Springer,
2001.

[16] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. Bootstrapping for approximate homomorphic encryption.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 360–384. Springer, 2018.

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 409–437. Springer, 2017.

[18] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scal-
able computation of aggregate statistics. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17), pages
259–282, 2017.

[19] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPDZ2k : Efficient mpc mod 2k for dishonest ma-
jority. In Annual International Cryptology Conference, pages 769–798.
Springer, 2018.

[20] Ronald Cramer, Ivan Damgård, and Jesper B Nielsen. Multiparty
computation from threshold homomorphic encryption. In International
Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 280–300. Springer, 2001.

[21] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P Smart. Practical covertly secure MPC for dishonest
majority–or: breaking the SPDZ limits. In European Symposium on
Research in Computer Security, pages 1–18. Springer, 2013.

[22] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Ad-
vances in Cryptology–CRYPTO 2012, pages 643–662. Springer, 2012.

[23] Leo de Castro, Chiraag Juvekar, Analog Devices, and Vinod Vaikun-
tanathan. Fast vector oblivious linear evaluation from ring learning with
errors. IACR Cryptology ePrint Archive, 2020.

[24] Yvo G Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449–458, 1994.

[25] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive, 2012:144,
2012.

[26] Matthew Franklin and Stuart Haber. Joint encryption and message-
efficient secure computation. Journal of Cryptology, 9(4):217–232,
1996.

[27] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J. Hubaux.
Drynx: Decentralized, secure, verifiable system for statistical queries
andmachine learning on distributed datasets. IEEE Transactions on
Information Forensics and Security, pages 1–1, 2020.

[28] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme,
volume 20. Stanford University Stanford, 2009.

[29] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve
Zdancewic. SoK: General purpose compilers for secure multi-party
computation. In Symposium on Security and Privacy (SP), pages 1220–
1270. IEEE, 2019.

[30] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh,
and Gill Bejerano. Deriving genomic diagnoses without revealing patient
genomes. Science, 357(6352):692–695, 2017.

[31] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster
malicious arithmetic secure computation with oblivious transfer. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 830–842, 2016.

[32] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making
SPDZ great again. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 158–189. Springer,
2018.

[33] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In ACM Conference on Computer and Communications
Security, pages 1257–1272, 2017.

[34] J Kroll, E Felten, and Dan Boneh. Secure protocols for accountable
warrant execution. 2014.

[35] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof
technique. In Tutorials on the Foundations of Cryptography, pages 277–
346. Springer, 2017.

[36] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-
Assisted Multiparty Computation from Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive, 2011:663, 2011.

[37] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, pages 1219–1234. ACM, 2012.

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 1–
23. Springer, 2010.

[39] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 38th IEEE Symposium on
Security and Privacy (SP), pages 19–38. IEEE, 2017.

[40] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 334–348. IEEE, 2013.

[41] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. PALISADE lattice
cryptography library. https://git.njit.edu/palisade/PALISADE, 2018.

[42] Jean Louis Raisaro, Juan Troncoso-Pastoriza, Mickaël Misbach, João Sá
Sousa, Sylvain Pradervand, Edoardo Missiaglia, Olivier Michielin,
Bryan Ford, and Jean-Pierre Hubaux. MedCo: Enabling secure and
privacy-preserving exploration of distributed clinical and genomic data.
IEEE/ACM transactions on computational biology and bioinformatics,
16(4):1328–1341, 2018.

[43] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

[44] Dragos Rotaru, Nigel P Smart, Titouan Tanguy, Frederik Vercauteren,
and Tim Wood. Actively secure setup for spdz. IACR Cryptol. ePrint
Arch., 2019:1300, 2019.

[45] Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL,
February 2019. Microsoft Research, Redmond, WA.

https://git.njit.edu/palisade/PALISADE
https://github.com/Microsoft/SEAL


[46] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[47] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica.
Helen: Maliciously secure coopetitive learning for linear models. In
2019 IEEE Symposium on Security and Privacy (SP), pages 724–738.
IEEE, 2019.

APPENDIX

We analyze the security of the proposed multiparty BFV
scheme in the passive adversary model. This section provides
an intuition of the security argument for our specific protocols
that are based on the decision ring-learning-with-errors prob-
lem [38]. For a more thorough analysis, we refer the reader
to the works by Asharov et al. [6]. We provide arguments in
terms of the ideal/real simulation formalism [35].

We prove by construction that, for every possible A defined
as a subset of at most N−1 corrupted polynomial-time parties
in P , there exists a simulator program S that, when provided
only with A’s input and output, can simulate A’s view in
the protocol. To achieve the privacy requirement, we require
that A must not be able to distinguish the real view from
the simulated one. For a given value x, we denote x̃ its
simulated equivalent. Unless otherwise stated, we consider
computational indistinguishability between distributions, de-
noted x̃

c≡ x.
Our threat model implies that there is at least one honest

player that we denote Ph. The choice for Ph, among multiple
honest parties, does not reduce generality. It does, however,
help simplify the formulation of the security argument. We
denote H the set P \ (A ∪ {Ph}) of all other honest par-
ties. Hence, the tuple (A,H) can represent any partition of
P \ {Ph}. In particular, both A and H can be empty in the
following arguments.

A. Collective-Key Generation

We consider an adversary A that attacks the EncKeyGen
protocol defined in Protocol 2. Along with si, we consider
ei as private inputs to the protocol for each party Pi (as
if they were sampled before the protocol starts). Thus, we
model the ideal functionality of the EncKeyGen protocol as
fCKG({si, ei | Pi ∈ P}) = cpk, where cpk = (p0, p1) is the
output for all parties, as in Eq. (4).

We observe that the view of each party in the ex-
ecution of the EncKeyGen protocol comprises the tuple
(p0,1, p0,2, . . . , p0,N ) of all the players’ shares, which corre-
sponds to an additive sharing of p0. S can simulate these shares
by randomizing them under two constraints: (1) the simulated
shares must sum up to p0, and (2) the adversary shares must
be equal to the real ones (otherwise, it could easily distinguish
them). S can generate the share p̃0,i of party Pi as

p̃0,i =


[−(sip1 + ei)]q if Pi ∈ A
← Rq if Pi ∈ H
[p0 −

∑
Pj∈A∪H

p̃0,j ]q if Pi = Ph .

To show that (p̃0,1, p̃0,2, . . . , p̃0,N )
c≡ (p0,1, p0,2, . . . , p0,N ),

we observe that any probabilistic-polynomial-time adversary

that distinguishes, with non-negligible advantage, between real
and simulated shares of those players in H would directly
yield a distinguisher for the decision-RLWE problem [38].
For the share of player Ph, we consider two cases: (1) When
H 6= ∅, the share p0,h is uniformly random in Rq because
[
∑
Pj∈H p0,j ]q is itself so, and the same indistinguishability

argument as above applies. (2) In the presence of N − 1
adversaries, H = ∅, and S computes the real value for the
share of Ph, hence outputting the real view.

B. Collective Key-Switching

The security argument for the ColKeySwitch protocol is
inherently more complex than the previous ones, as the real
protocol output only approximates the ideal one. As we show
below, this enables us to formally express and characterize
the need for smudging in multiparty lattice-based schemes.
We show the analysis for the ColKeySwitch protocol only.
However, the argument transfers to the other protocols that
perform some form of decryption (either of messages or
of the involved noise terms), such as the special case of
collective decryption, the PubColKeySwitch and ColBootstrap
protocols.

Given a ciphertext ct = (c0, c1) decrypting under s, the
ideal functionality of the ColKeySwitch protocol (Protocol 4)
is to compute ct′ = (c′0, c1) decrypting under secret key s′. We
first formulate this functionality implicitly as the computation
of c′0 that satisfies c0 + sc1 − e = c′0 + s′c1 − e′, where e
and e′ are the noise terms that result from the decryption of
ct and ct′, respectively. We consider its explicit form as an
equivalent minimal ideal multiparty functionality f̂CKS, such
that
f̂CKS({si, s′i, e′i|∀Pi ∈ P}) = c′0−c0 = (s−s′)c1− ê+e′ = ĥ,

where c0, c1 are considered public, s =
∑
i si, s

′ =
∑
i s
′
i,

and ê = e is an ideal error term cancelling e. This is because,
ideally, the output ciphertext must look fresh, even for an
adversary that knows all shares of s′; this is allowed in the
ColKeySwitch protocol. As this term cannot be efficiently
computed in practice, the real output differs from the ideal
one. Simulation-based proofs permit this difference, as long
as it can be proven that the ideal and real outputs are undis-
tinguishable for the adversary (Property 1). This formalizes
the need of smudging within the security argument. Then,
we show that, even when the adversary has access to the
real output, it cannot distinguish the simulated view from the
real one (Property 2). Therefore, Properties (1) and (2) imply
(h̃1, h̃2, ..., h̃N , ĥ)

c≡ (h1, h2, ..., hN , h): that ColKeySwitch
securely computes its functionality.

1) Output indistinguishability: We want to show that

(s+ s′)c1 − ê+ e′ = ĥ
c≡ h = (s+ s′)c1 + e′,

where h denotes the real protocol output. As the adversary
is allowed to know s′, we cannot rely on computational
indistinguishability of the RLWE-like structure of h. Such an
adversary can extract the noise from the decryption of the
key-switched ciphertext, as e + e′ = c′0 + h + s′c1 − ∆m.



Hence, we require this extracted noise to be statistically
indistinguishable (denoted

s≡) from the fresh noise of the ideal
output: e′ = e− ê+ e′

s≡ e+ e′.
As e is the key-switched ciphertext error, it follows a

centered Gaussian distribution whose variance we denote
σ2
ct. The second term e′ is the sum of all the noise terms

protecting the key-switching shares. It contains the smudging
noise and are sampled according to the χColKeySwitch(σct)
distribution with variance σ2

ColKeySwitch. Thus, as long as the
ratio σ2

ct/σ
2
ColKeySwitch is negligible, the two distributions are

statistically indistinguishable, which implies that ĥ
c≡ h.

2) View Indistinguishability: The view of any party in the
ColKeySwitch protocol is an additive sharing (h1, h2, ..., hN )
of h, which S can simulate as

h̃i =


[(−si + s′i)c1 + e′i]q if Pi ∈ A
ai ← Rq if Pi ∈ H
[h−

∑
Pi∈A∪H

h̃i]q if Pi = PH .

When considering the distribution of the simulated and real
views alone, the usual decision-RLWE assumption suffices:
(−sic1 + e′i, c1) is undistinguishable from (a ← Rq, c1) for
an adversary that does not know si and e′i. However, we need
to consider this distribution jointly with that of the real output.
We recall that an adversary who has access to s′ can extract
e + e′ from the output and might be able to estimate e′i for
i /∈ A. Thus, we need to make sure that the uncertainty the
adversary has in estimating e′i is sufficiently large to protect
each share hi in the ColKeySwitch protocol. We formalize this
application-related requirement as:

Condition 1. An input ciphertext (c0, c1) to the ColKeySwitch
protocol is such that c0 + sc1 = ∆m+ ect where ect = eA +
eh includes a term eh that is unknown to, and independent
from, the adversary. Furthermore, eh follows a distribution
according to the RLWE hardness assumptions.

If Condition 1 holds, we know that A can only approximate
the term eh up to an error ect,h, which is enough to make
(hh, c1) indistinguishable from (a← Rq, c1). In the scope of
the MHE−MPC protocol, as long as all parties provide at least
one input (for which the noise will be fresh), the requirement
of Condition 1 is satisfied.

C. Collective Relinearization-Key Generation Security

The private input for each party Pi in the RelinKeyGen
protocol is the tuple xi = (si, ui, e0,i, e1,i, e2,i, e3,i): its ideal
secret-key share si, its ephemeral secret ui, and the error
terms added in each round. The output for each party is
f(x1, . . . , xN ) = (r0, r1), the generated relinearization key
defined in Eq. (5). Throughout the protocol execution, the
parties compute the public values h = (h0,h1) and h′ =
(h′0,h

′
1). These values can be simulated, with the constraints

r0 = h′0 +h′1 and r1 = h1. For every round, the parties’ view

in the protocol comprises additive sharings of these values,
which S can simulate as

h̃i =


([−uia + siw + e0,i]q , [sia + e1,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(← Rlq , [r1 −

∑
Pj∈A∪H

h̃1,j ]q) if Pi = Ph
,

h̃′i =


([sih̃0 + e2,i]q , [(ui − si)h̃1 + e3,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(b← Rlq , [r0 − b−

∑
Pj∈A∪H

h̃′j ]q) if Pi = Ph
,

The indistinguishability argument for the shares is similar
to the one of Section A. To prove indistinguishability for their
composition, we consider the combined view of the adversary,

h0

h1

h′0
h′1

 =


−ua + sw + e0

sa + e2
−sua + s2w + se0 + e1

(u− s)sa + (u− s)e2 + e3

 .

Lemma 1 extracts the sought property for the transcript
(note that h′0 − h′1 ≈ s2a + s2w).

Lemma 1. Let a ← Rq , s1, s2 ← R3 be two RLWE
secrets, and e1, e2, e3, e4 ← χ be four RLWE error terms.
The distribution

(a, s1a+ e1, s2a+ e2, s2s1a+ e3, s21a+ e4) (8)

is computationally indistinguishable from the uniform distri-
bution over R5

q for any adversary not knowing the secrets
and error terms.

We omit the proof for Lemma 1, as the assumption that we
can chain RLWE sample generators is already required by all
mainstream RLWE-based cryptosystems. For an intuition, note
that the first two elements of Eq. (8) correspond to a public
key with secret key s = s1, and the next two (together) can
be seen as an encryption of 0 under this key, with randomness
u = s2.

We analyze the effect that distributing the BFV cryptosys-
tem has on the ciphertext noise. As distribution affects only
the magnitude of the scheme’s secrets (key and noise), the
original cryptosystem analysis [25] directly applies, though
with a larger worst-case error norm that we express as a
function of the number of parties N in the following.

Ideal Secret-Key and Encryption-Key: As a result of the
secret-key generation procedure, where each additive share si
is sampled from R3 (see Section IV-A), we know that ‖s‖ ≤
N .

As a result of the EncKeyGen protocol, the collective public
key noise is ecpk =

∑N
i=1 ei (see Eq. (4)), which implies that

‖ecpk‖ ≤ NB, where B is the worst-case norm for an error
term sampled from χ.

Fresh Encryption: Let ct= (c0, c1) be a fresh encryption
of a message m under a collective public key. The first step



TABLE VI: Benchmarking parameter sets
Set n log2 q log2 w

P8192 8192 218 60
P16384 16384 438 110
P32768 32756 881 180

of the decryption (Eq. (1)) under the ideal secret key outputs
c0 + sc1 = ∆m+ efresh, where

‖efresh‖ ≤ B(2nN + 1). (9)

Thus, for a key generated by the EncKeyGen protocol, the
worst-case fresh ciphertext noise is linear in the number N of
parties.

Collective Key-Switching: Let ct = (c0, c1) be an encryp-
tion of m under the collective secret key s, and ct′ = (c′0, c1)
be the output of the ColKeySwitch protocol on ct with target
key s′. Then, c′0 + s′c1 = m+ efresh + eCKS with

‖eCKS‖ ≤ BsmgN, (10)

where Bsmg is the bound of the smudging distribution. We
observe that the additional noise does not depend on the
destination key s′.

Public Collective Key-Switching: Let ct = (c0, c1) be an
encryption of m under the collective secret key s, and ct′ =
(c′0, c

′
1) be the output of the PubColKeySwitch protocol on ct

and target public key pk′ = (p′0, p
′
1), such that p′0 = −sp′1 +

epk′ . Then, c′0 + s′c′1 = m+ efresh + ePCKS with
‖ePCKS‖ ≤ N(nBpk′ + n‖s′‖B +Bsmg), (11)

where ‖epk′‖ ≤ Bpk′ , and Bsmg is the bound on the smudging
noise. Note that in this case, the smudging noise should
dominate this term.

We executed our benchmarks on an Intel i5 processor at
3.1 GHz, with 16 GB of memory, running Go 1.13.4 (dar-
win/amd64), on a single core. Table VI shows the parameter
sets used in our benchmarks, all guaranteeing a security level
of at least 128 bits [3]. These parameters are application
dependent, but their choice represents typical sizes of q that
correspond to different homomorphic capacities. Table VII
shows the timings for the operations of the centralized scheme
that are used in our MHE-based solution. For each protocol
of the distributed scheme, Table VIII shows the following
values: Gen is to the cost for a given party to generate its
own public share in the protocol (aggregated over all rounds
for RelinKeyGen). Agg corresponds to the cost of combining
two shares in the protocol. Out corresponds to the cost of
computing the final output of the protocol when provided with
the aggregate of all the shares Table IX shows the share size for
each protocol, from which the network cost of a given system
model can be easily derived: In peer-to-peer settings, a party
having Nc children in the tree will receive and aggregate Nc
shares, aggregate its own share if it is in P , and send 1 share
to its parent. In the cloud-assisted model, the cloud takes care
of the aggregation for all the N parties, so parties do not have
inbound traffic and only need to send a single share.

TABLE VII: Centralized BFV operation performance (ms)
P8192 P16384 P32768

Encryption Encrypt 4.91 18.16 69.42
Decrypt 1.93 8.06 34.58

Evaluation

Add 0.07 0.29 1.26
Multiply 15.15 71.59 390.53
Relin 5.64 30.03 157.31
Rotate 5.77 31.15 154.67

TABLE VIII: Distributed BFV local operations performance
(ms)

P8192 P16384 P32768

EncKeyGen
Gen 1.80 5.72 19.65
Agg 0.05 0.18 0.68
Out 0.11 0.37 1.45

RelinKeyGen
Gen 21.95 70.46 319.61
Agg 0.55 2.27 11.34
Out 0.62 2.78 13.68

RotKeyGen
Gen 6.07 20.45 90.62
Agg 0.14 0.54 2.92
Out 0.27 1.20 6.09

ColBootstrap
Gen 5.97 21.20 82.43
Agg 0.07 0.28 1.17
Out 2.13 8.60 36.43

ColKeySwitch
Gen 3.73 11.69 41.16
Agg 0.03 0.14 0.55
Out 0.03 0.14 0.60

PubColKeySwitch
Gen 7.33 25.39 97.59
Agg 0.07 0.27 1.14
Out 0.05 0.21 0.93

TABLE IX: Cryptographic objects size (MB)
P8192 P16384 P32768

Ciphertext 0.39 1.57 6.29
Public key 0.39 1.57 6.29
Relin. key 1.57 6.29 31.46
Rot. key 1.57 6.29 31.46
EncKeyGen-share 0.26 1.05 3.93
RelinKeyGen-share 3.15 12.58 62.91
RotKeyGen-share 0.79 3.15 15.73
ColBootstrap-share 0.39 1.57 6.29
ColKeySwitch-share 0.20 0.79 3.15
PubColKeySwitch-share 0.39 1.57 6.29


	Introduction
	Related Work
	Background
	Problem and Security Models
	Multiparty Homomorphic Encryption
	MHE-Based MPC Protocol
	Mathematical Notation
	The BFV Encryption Scheme

	The Multiparty BFV Scheme
	Ideal-Secret-Key Generation
	Collective Encryption-Key Generation
	Collective Relinearization-Key Generation
	Collective Key-Switching Protocols
	Collective Key-Switching (ColKeySwitch)
	Collective Public-Key Switching (PubColKeySwitch)

	Bridging MPC approaches
	Encryption-to-Shares (Enc2Share)
	Shares-to-Encryption (Share2Enc)

	Collective Bootstrapping (ColBootstrap)
	Packed-Encoding and Rotation Keys

	Features Analysis
	Introduced trade-offs
	Circuit Privacy
	Arithmetic Circuits

	Public Non-interactive Circuit Evaluation
	Public-Transcript Protocols

	Performance Analysis
	Experimental Setup
	Element-Wise Vector Product
	Multiparty Input Selection
	Multiplication Triples Generation
	Discussion

	Conclusions
	References
	Appendix
	Collective-Key Generation
	Collective Key-Switching
	Output indistinguishability
	View Indistinguishability

	Collective Relinearization-Key Generation Security


