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Abstract—Blockchain technologies enable decentralized appli-
cations (DApps) that run on distributed infrastructures without
any central authority. All transactions for communication and
data storage are public and can be verified by all participants.
DApps interacting with a smart contract typically require client-
side code, which is not part of the smart contract, and therefore
do not hold the same verifiability properties. Following the
vision of a verifiable DApp, we propose SmartDHX, a Diffie-
Hellman key exchange (DHKE) scheme, fully implemented as a
smart contract. That is, SmartDHX communicates only via the
Ethereum blockchain and provides both backend and client-side
code with the smart contract. The application code can therefore
be verified and deployed without external trust requirements.
By executing DHKE on-chain, we gain a number of properties,
including asynchronicity as well as message integrity and au-
thenticity. We generalize the two-party SmartDHX to emphasize
that our approach is able to handle complex cryptographic
protocols. In our analysis, we expose an efficiency tradeoff when
executed on chain. In particular, we provide a proof-of-concept
implementation and analyze the runtime and transaction fees.
Since DHKE is used by many cryptographic algorithms, Smart-
DHX contributes a fundamental building block in the domain
of DApps.

Index Terms—Key Exchange, Decentralized Application,
Smart Contract, Implementation, Blockchain

I. INTRODUCTION

Diffie-Hellman key exchange (DHKE) is a building block
for many cryptographic algorithms that is used in order to
establish a shared secret over an open channel. For example,
to facilitate secure web browsing, a client uses DHKE to
negotiate a secret key with a web server to encrypt subse-
quent communication. Even a (passive) eavesdropper cannot
reconstruct the secret key when DHKE is employed.

In this paper, we propose SmartDHX, a blockchain-based
DHKE scheme with multi-party capabilities. In SmartDHX,
all cryptographic operations are implemented in a smart con-
tract, without any client-side modifications or any additional
libraries. This enables participants to load the code directly
from the blockchain and to execute a DHKE verifiably on-
chain. With our scheme, clients load runtime code from the
SmartDHX smart contract and execute it locally in a Web3
JavaScript environment. Consequentially, the runtime code
handles the interaction with the smart contract. In order to
secure the key generation, a random seed is necessary. We
therefore utilize JavaScript for generating a random number
locally, without revealing it to the blockchain. We generalize
the two-party protocol and also provide a multi-party Smart-

DHX, which clearly shows that our approach is able to handle
complex cryptographic logic.

Due to the underlying blockchain infrastructure, the pre-
sented approach comes with a number of interesting prop-
erties: First, we can execute DHKE asynchronously as ex-
changed messages are stored on-chain, which enables DHKE
for participants who cannot be online simultaneously. Since
DHKE is designed to be secure in public networks, it will
also remain secure in a blockchain setting. Second, message
integrity and authenticity are provided by the blockchain,
therefore effectively mitigating Man-in-the-Middle (MitM)
attacks.

The main contribution of this paper is to show that all
logic for DHKE can be implemented in a smart contract
without any modifications to the Ethereum client. For this,
we provide an implementation of SmartDHX as Proof-of-
Concept (PoC). To this end, we implemented the crypto-
graphic logic in Solidity with the Truffle framework and
evaluated the approach using Ethereum’s test network. With
our PoC, we provide unit tests, which verify that multiple
participants can exchange a secret key without storing it
on-chain. The implementation can be tested locally. While
feasible, the key exchange requires additional time due to the
blockchain overhead. We also show that multi-party DHKE
reduces the number of transactions but involves computation-
ally expensive operations due to the key distribution logic in
the smart contracts.

In general, our approach contributes to a larger vision
of truly decentralized applications (DApp) which store their
logic on-chain without separating between a client and block-
chain side. At the moment, DApps are typically divided
into client-side code (frontend), and the smart contract in
the blockchain (backend). Taking this one step further, our
approach enables new cryptographical use cases, e.g., DApps
which are completely stored on-chain, but can communicate
with each other encrypted. That said, we deliberately refrain
from framing SmartDHX in a specific use case or applica-
tion domain, and consider it as fundamental cryptographic
building block and feasibility study, instead.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. In Section III, we
introduce SmartDHX, its multi-party capabilities, and outline
our PoC. In Section IV, we analyze its performance, security,
and discuss feasibility. Section V concludes the paper and
gives an outlook on future work.



II. RELATED WORK

Similar to our paper, McCorry et al. [1] utilize Bitcoin
for authenticated DHKE. To this end, the authors modified
the Bitcoin Core client and implemented the DHKE logic as
remote procedure commands, which are stored and executed
off-chain. In [2], Schindler et al. developed a distributed key
generation (DKG) scheme based on the Ethereum blockchain.
The approach is implemented as smart contract and uses
Shamir’s secret sharing [3] to realize DKG. Similar to [2],
the Orbs Network project provides a DKG smart contract
implementation using threshold signatures [4]. In the area of
IoT, Owoh and Singh [5] proposed to use DHKE to secure the
exchange of sensor data. Here, edge devices run a blockchain
as underlying IoT infrastructure, but clients perform DHKE
completely off-chain. While all previously mentioned contri-
butions exhibit some (methodical) similarities, to the best of
our knowledge, our paper is the first PoC that implements
DHKE on-chain as a smart contract in Ethereum.

III. SMARTDHX

In this section, we introduce SmartDHX, address the chal-
lenge of seeding it with a random number, and present our
PoC smart contract implementation.

A. Two-Party SmartDHX

Two-party Diffie-Hellman key exchange allows to estab-
lish a secret key between two participants for subsequent
encryption without revealing the key on the communication
channel [6]. The security is not compromised as long as
someone is passively listening. In order to exchange a secret
key, the participants have to agree on a prime number P and a
generator number G. Certain properties on the numbers have a
direct effect on the security of the whole cryptographical com-
putations [7], which we do not discuss further for the sake of
simplicity. There are also different cryptographic techniques
for making DHKE more secure, e.g., by using elliptic curve
cryptography [8]. After agreeing on P and G, the participants
choose private keys a, b randomly, and publicly exchange their

// Globals
uint public G, P, B; // set during initialization

// Call for generating private, random a and public A
based on a secret seed

function generateA(uint[] memory secretSeed) public
view returns (uint a, uint A) {

a = uint(keccak256(abi.encodePacked(secretSeed)));
A = G.bigMod(a, P); // RPC modulo

}

// Send transaction for transmitting public A to other
SmartDHX contract (as B)

function sendA(DHX other, uint A) public {
other.setB(A);

}

// Call for calculating secret key s
function calcS(uint a) public view returns (uint) {
s = B.bigMod(a, P);

}

Listing 1. Two-party DHKE implementation in Solidity.

results of A = Ga mod P and B = Gb mod P , which we call
public keys. Finally, the participants calculate the secret key
s = (GB)a mod P = (GA)b mod P independently, however
retrieving the same result.

Listing 1 shows how to generate a and A for one party
in Solidity, how to send the public key A to another smart
contract as a transaction, and how to retrieve the final secret
key s. For the sake of simplicity, we assume that the seed
is given. Later, we will provide a solution to generate a
random seed locally and securely without any additional
requirements. Under this assumption, a passive adversary is
unable to compute s, because she has neither learned a nor
b from any of the transactions. Only active MitM adversaries
or weak cryptographic parameters can weaken the security.
Hence, as long as the discrete logarithm problem is considered
difficult [7], DHKE—and therefore also SmartDHX—can be
used via untrusted channels such as blockchains.

For a deeper understanding of SmartDHX, it is important
to notice the difference between calling a smart contract
function locally and sending a transaction with a function
call. All functions which use the private key a are executed
locally (cf. contract.method.call(. . .)). By calling
a function locally, no transaction will be broadcasted, and
thus nobody can see that the function has been called, nor
will the parameters be disclosed. Likewise, any changes on
the blockchain’s storage variables will be discarded without
persistent change. The function can, however, return a value
based on the blockchain’s current storage. We use this feature
to generate the public key A (without revealing the private
key a) and to generate the secret key s. That way, we can
store protocol logic in the blockchain without revealing any
processed data. In contrast, “transmitting” the public A will
be executed as a transaction (cf. contract.method(. . .))
and therefore permanently written into the blockchain. Please
note, both parties involved in the DHKE have the exact same
view on the deployed smart contract, using the exact same
function for making their public key available to the other
party’s contract.

B. Multi-Party SmartDHX

DHKE can also be used for exchanging a single secret key
between more than two parties. Of course, all parties could
exchange keys bilaterally and then derive a common secret.
Alternatively, all parties could use multi-party DHKE to agree
on a shared secret key. In the following, we present multi-
party SmartDHX, which generalizes the two-party approach.

For multi-party SmartDHX, we follow the same philos-
ophy and implemented the complete logic to perform the
key exchange in a smart contract. Specifically, the logic
to provide prime P and generator G, and the logic for
calculating the random private keys a, b, c, . . . (with a ran-
dom seed), the public keys A,B,C, . . ., and the secret key
s = G(A·B·C·...) mod P are implemented in a smart contract.
Since we need to coordinate the message exchange between
all parties, we implemented an extra “control” smart contract.
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Figure 1. Multi-party SmartDHX for n = 3. Lower-case values remain secret, upper-case values are publicly stored in the blockchain.

Figure 1 shows an example for a three-party SmartDHX,
including all calculations and smart contract interactions
required to compute the secret key s. The first block contains
the smart contract deployment, and thus the runtime code as
well as the common parameters P and G. The arrows leading
from the smart contract to the clients (right to left) indicate a
local execution. Inversely, arrows pointing towards the smart
contract (left to right) represent persisting transactions. The
annotations on the right summarize the number of required
transactions. Please note that a block can hold multiple
transactions issued by different parties.

Even though the control smart contract could act as a
MitM, it is unable to obtain (or derive) the secret key. While
the smart contract could actually manipulate the exchanged
messages between parties, all transactions are publicly avail-
able in the blockchain. Each party can therefore verify the
correct execution of the smart contract. Thus, as long as all
transactions are executed correctly and the program code of
the smart contract is not malicious, a MitM attack is not
possible.

C. Seeding SmartDHX

In order to generate a private key for DHKE, a client has
to generate a secret random number, which is not trivial to
achieve when accepting smart contract inherent code only.
For one, the fundamental requirement of the Ethereum Virtual
Machine (EVM) is a deterministic execution of all commands.
Consequentially, Solidity does not offer a pseudo random
number generator (PRNG). Smart contract developers instead
retrieve a random number usually by using hash values of pre-
vious blocks or implement a commit-reveal scheme [9]. Such
a random number, however, would not be secret anymore and
therefore is not usable for DHKE.

Our solution to the problem is to use JavaScript’s PRNG.
In particular, we deliver a JavaScript snippet with the smart
contract that generates a 256 bit random number (as shown
in Listing 2). Since this snippet is executed locally, it will not
disclose the random number to the blockchain. For improved
security, it would also be possible to import an NPM library
with a cryptographically secure PRNG, because the JavaScript
is actually executed in a Web3/Node.js environment.

D. Proof-of-Concept

We implemented SmartDHX in Solidity 5.8 with the Truffle
framework 5.0.22 and make the code publicly available on
GitHub1. The implementation’s purpose is to showcase and
analyze SmartDHX’s feasibility only and does not implement
any additional security measures against hijacking the smart
contracts. In order to initiate the key exchange, each party de-
ploys SmartDHX and executes JavaScript code locally, which
is stored in and retrieved from the smart contract as shown in
Listing 2. This script is executed in a Web3 environment dur-
ing a Truffle migration and invoked by JavaScript’s runtime
evaluation command eval(. . .) as shown in Listing 3. After
all parties executed the script, it returns the exchanged secret
key. The main advantage of storing the key exchange script in
a smart contract is that no third-party is needed, e.g., a web
server, that provides the script. This makes the program code
verifiable and has the potential to improve user experience,
because no additional client software is required.

IV. ANALYSIS

In this section, we analyze the performance and security
aspects of SmartDHX and discuss its feasibility including
exemplary application areas.

1https://github.com/robmuth/smart-dhx



// Generate local secret seed (32 byte == uint256)
let secretSeed = [...Array(32)].map(() =>

parseInt(Math.random() * 256));

// Generate private a and public A (local call)
let dhxKeys = await dhx.generateA.call(secretSeed);

// Send public A to other participant via blockchain
(transaction)

await dhx.sendA(dhxPartner.address, dhxKeys.A);

// Calculate secret key (local call)
return await dhx.calcS.call(dhxKeys.a);

Listing 2. Two-party key exchange implemented in JavaScript. The script
is loaded from the SmartDHX smart contract, handles the blockchain
communication, and returns the exchanged secret key.

A. Performance

In the following, we analyze blockchain specific metrics
instead of network metrics like latencies or bandwidths.
Accordingly, we do not compare the execution time of off-
chain DHKE with SmartDHX, as mining can be expected to
induce significant delays.

In Table I, the number of exchanged secret keys, issued
transactions, and blocks are compared between two-party and
multi-party SmartDHX. In order to exchange bilateral keys
between n clients, two-party SmartDHX needs at least

(
n
2

)
secret keys and twice as many transactions, i.e., n (n − 1).
Since all key exchanges can run independently from each
other, two-party SmartDHX can be completed in a minimum
of three blocks (one block for the deployment and two blocks
for the two-way handshake between clients).

For multi-party SmartDHX, let us revisit Figure 1. The
deployment of the smart contract and providing P and G
requires one block. In the following blocks, the key exchange
will be step-by-step completed by each client, always adding
another public key. For example as shown in the figure, the
public keys A,B,C are exchanged in Block #2. Next, clients
can calculate the public keys AB,AC,BC, and publish them
in Block #3. In each round, another client terminates, because
of the redundancy in the public keys, which eventually leads
to a decreasing number of transactions every block. For
example in Block #3, Client C could calculate AC and BC,
but they are also calculated by Client A and B. As a result,
multi-party SmartDHX needs a minimum of n+1 blocks and∑n
k=1 k transactions.
In a best-case scenario, two-party SmartDHX can exchange

secret keys faster than multi-party SmartDHX for more than
two clients, if all transactions are mined in the minimum
number of blocks. Multi-party SmartDHX, however, needs
less transactions, but the number of blocks increases by 1 per
participant.

The overall time for a key exchange with SmartDHX
depends on the average block generation rate. That is, for
a number of blocks β and the average block rate λβ , the
execution time t is given by t = β ·λβ . In terms of economic
performance, however, the number of transactions might be
more interesting than blocks: With an increasing number of
clients, two-party SmartDHX requires more transactions than

// SmartDHX deployment
let dhx = await deployer.deploy(SmartDiffieHellman);
let dhxPartner = await SmartDiffieHellman.at(0x...);

// Generate secret and exchange public A with
dhxPartner

let jsGenerateExchangeKeys = await
dhx.jsInitTransmit();

let dhxKeys = await eval("(async (dhx, dhxPartner) =>
{" + jsGenerateExchangeKeys + "})(dhx,
dhxPartner)");

// Calculate exchanged key
let jsCalcSecret = await dhx.jsCalcSecret();
let secret = await eval("(async (dhx, dhxKeys) => {" +

jsCalcSecret + "})(dhx, dhxKeys)");

Listing 3. Two-party SmartDHX Truffle migration script.

multi-party SmartDHX, which can be seen in Figure 2. In
case of Ethereum, more transactions do not necessarily lead
to higher total costs, because transaction fees depend on
the computational complexity. Even though the number of
transactions for two-party SmartDHX surpasses multi-party
SmartDHX, the overall gas price for our PoC multi-party
SmartDHX is higher (cf. Table I). The reason are the many
on-chain key distributions (i.e., write operations) in the smart
contract. In the end, there are two axis that influence the
decision: First, one has to decide whether parties should
exchange separate keys or a single shared key. Second, we
need to tradeoff speed (i.e., number of required blocks) and
costs (i.e., number of required transactions).

B. Security

Besides the security of “plain” DHKE, as described in [6,
7, 8], the blockchain’s security also directly influences the
secrecy of the final exchanged key. We already pointed out
that DHKE is safe as long as no MitM can actively and
secretly manipulate the communication between the partic-
ipants. But permissionless blockchains with longest-chain
consensus rules can be attacked with the so-called 51%-
attack [10], which allows changes in the blockchain retrospec-
tively. That way, an attacker could actively change blockchain
transactions, which is the worst-case scenario for DHKE. For-
tunately, an attacker cannot manipulate transactions without
also tampering the sender’s identity or transactions signature.
With the identity management of blockchains, transactions
can be authenticated as shown by McCorry et al. [1]. They
analyzed the security of DHKE via Bitcoin, that can also
be applied to Ethereum’s transaction authentication. For that,
they sketched proofs in their security analysis for the private
key security and session key security, which also applies to
our approach. So, as long as all participants can trust and
verify each other’s transaction signatures a 51%-attack does
not threaten the SmartDHX security.

C. Discussion and Application Areas

We generally observe that SmartDHX is executable in a
reasonable amount of time and offers some very interesting
properties, including asynchronicity as well as message in-
tegrity and authenticity. By establishing a secure channel,



Table I
COMPARING TWO-PARTY AND MULTI-PARTY SMARTDHX FOR n CLIENTS

SmartDHX
Two-party Multi-party

Secret keys
(
n
2

)
1

Transactions n (n− 1)
∑n

k=1
k

Blocks (minimum) 3 1 + n

PoC runtime, n = 2 75 s 165 s
PoC runtime, n = 9 1,275 s 375 s
PoC fees, n = 2 2,813,350 gas 7,184,970 gas
PoC fees, n = 9 11,443,649 gas 125,366,493 gas

1 2 3 4 5 6 7 8 9 10
1

20

40

60

80

100

n clients

Tr
an

sa
ct

io
ns

Two-party SmartDHX

Multi-party SmartDHX

Figure 2. Number of transactions for two-party and multi-party SmartDHX.

SmartDHX enables encrypted on-chain communication. As
described in [1], this can be used to provide end-to-end
encrypted communication for post-payment scenarios. An-
other potential application, which emphasizes a feature of
our approach, might be plausible deniability as in Off-the-
Record Messaging [11]. In addition to encrypted on chain
communication, the blockchain can be used to disclose a
user’s MAC keys to a wider audience.

Likely, the costs to perform DHKE on-chain become an
issue. In particular the costs for multi-party SmartDHX seem
high. Depending on the use case, the additional costs can
be negligible, e.g., exchanging a shared key to enable an
encrypted broadcasting. For instance, in situations where
many users receive encrypted data as broadcast messages, it
could be beneficial to have a single shared key. With a shared
key and using the blockchain as a broadcast medium, only a
single transaction is needed for broadcasting an encrypted
message to many recipients. Therefore, transactions fees
can be reduced and might compensate (break even) for the
expensive key exchange.

While many other application areas, including on-chain
voting, offer interesting opportunities as well, we consider
SmartDHX as a building block and a step towards fully
verifiable DApps. Our PoC and our results confirm the general
feasibility.

V. CONCLUSION

In this paper, we presented SmartDHX. We showed that it
is possible to implement DHKE completely in an Ethereum
smart contract, enabling participants to establish a secure
communication channel via blockchains. To this end, we did
not only implement the cryptographic logic in Solidity, but

also the client-side logic for interacting with the smart con-
tracts. With our proposed scheme, clients fetch their program
logic from the smart contract directly and execute it locally
in a Web3 environment. Thus, we provide a building block
that contributes to the vision of storing DApps completely
in smart contracts without dividing them into blockchain-side
and client-side code. In the future, we are going to investigate
secure and verifiable DApps further. In particular, we envisage
a framework for fetching generic DApp logic from a smart
contract to establish secure communication channels for arbi-
trary applications. Additionally, we are interested in making
SmartDHX production ready, which involves improving the
security by using Elliptic-curve Diffie-Hellman (ECDH).

REFERENCES

[1] P. McCorry, S. F. Shahandashti, D. Clarke, and F. Hao,
“Authenticated key exchange over Bitcoin,” in SSR ’15:
International Conference on Research in Security Stan-
dardisation, 2015.

[2] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl,
“Distributed key generation with Ethereum smart con-
tracts,” in CIW ’19: Cryptocurrency Implementers’
Workshop, 2019.

[3] A. Shamir, “How to share a secret,” Communications of
the ACM, 1979.

[4] Orbs-Network, “DKG for BLS threshold signature
scheme on the EVM using solidity,” github.com/orbs-
network/dkg-on-evm, 2018, accessed: 2019-06-13.

[5] N. P. Owoh and M. M. Singh, “Applying Diffie-Hellman
algorithm to solve the key agreement problem in mobile
blockchain-based sensing applications,” 2019.

[6] W. Diffie and M. E. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information Theory,
1976.

[7] B. den Boer, “Diffie-Hellman is as strong as discrete
log for certain primes,” in CRYPTO ’88: Advances in
Cryptology, 1988.

[8] V. S. Miller, “Use of elliptic curves in cryptography,” in
CRYPTO ’85: Advances in Cryptology, 1985.
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