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Abstract. Head mounted displays bring eye tracking into daily use and
this raises privacy concerns for users. Privacy-preservation techniques
such as differential privacy mechanisms are recently applied to the eye
tracking data obtained from such displays; however, standard differential
privacy mechanisms are vulnerable to temporal correlations in the eye
movement features. In this work, a transform coding based differential
privacy mechanism is proposed for the first time in the eye tracking lit-
erature to further adapt it to statistics of eye movement feature data
by comparing various low-complexity methods. Fourier Perturbation Al-
gorithm, which is a differential privacy mechanism, is extended and a
scaling mistake in its proof is corrected. Significant reductions in corre-
lations in addition to query sensitivities are illustrated, which provide
the best utility-privacy trade-off in the literature for the eye tracking
dataset used. The differentially private eye movement data are evalu-
ated also for classification accuracies for gender and document-type pre-
dictions to show that higher privacy is obtained without a reduction in
the classification accuracies by using proposed methods.

Keywords: Eye tracking · Differential Privacy · Eye movements · Pri-
vacy protection · Virtual reality.

1 Introduction

Recent advances in the field of smart glasses, computer hardware, head mounted
displays (HMDs), and eye tracking enable easy access to pervasive eye trackers
along with modern HMDs. The decrease in the cost of such devices might cause a
significant increase in the amount of eye tracking and movement data. Although
a large amount of eye tracking data generation is helpful for user assistive and
comfort providing tasks especially in the domain of augmented and virtual reality
(AR/VR), since eyes are not fully controlled consciously, it is also possible to
derive plenty of sensitive information about users from such data.
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It has been shown that human activities can be recognized in everyday tasks
[32], e.g., during conditional automated driving [5], or while wearing a Google
glass [16] with the help of variety of eye tracking features. While pupillometry,
blink rates, and microsaccades are related to the cognitive load of people [1,24],
mental fatigue can be also detected accurately not only in specific cognitive tasks
but also in natural viewing situations by using eye tracking data [35]. Similarly,
assessment of situational and visual attention can be made by using eye tracking
features [3]. Analysis for expert-novice can be made with the help of eye tracking
in areas such as medicine [7] and sports [25]. Furthermore, personality traits and
human intent during robotic hand-eye coordination can be also predicted by
using eye tracking data [2], [31].

Eye movement data can be also used for biometric authentication, which can
be claimed to be a highly sensitive task [13]. A task-independent authentication
using eye movement features and Gaussian mixtures is, for example, discussed
in [20]. Biometric identification and authentication using an oculomotor plant
model and eye movements are introduced in [22,23]. Moreover, [11] discusses that
eye movement features can be used reliably for authentication both in consumer
level devices and various real world tasks. Recently, continuous authentication
using eye movements for VR headsets is also studied in [36].

One can obtain sensitive information from eye tracking and eye movement
data, and it is important to protect it from adversaries. This is also verified by a
recent survey conducted in a VR user study [33] that shows that people agree to
share their eye tracking data if a governmental health agency is involved in own-
ing data or if the purpose is research. Therefore, privacy-preserving techniques
are needed especially on the data sharing side of eye tracking. In the data shar-
ing area, the most natural way to protect privacy of individuals is anonymiza-
tion by simply removing personal identifiers. However, it is possible to deduce
information from anonymized datasets by using other background information
and databases via linkage attacks [29]. Thus, more sophisticated techniques for
achieving user level privacy are necessary. Differential privacy [9,10] is one of
the most popular and effective frameworks especially in the database applica-
tions area. Differential privacy achieves protection of users’ privacy by adding
randomly generated noise for a given sensitivity and desired privacy. However,
high dimensionality of the data and temporal correlations can reduce utility and
privacy, respectively. Since eye tracking data and eye movement features are high
dimensional, temporally correlated, and usually contain recordings with longer
durations as compared to other time series data, it is important to tackle these
problems and to provide privacy simultaneously.

In the eye tracking area, both local and global differential privacy can be
applied. Local differential privacy adds user level noise to the data but assumes
that each user sends its data to a central data collector after adding local noise
[12,8]. For this work, we consider global differential privacy, because there should
be a user level data collector and publisher in an eye tracking with HMD scenario.

To apply differential privacy to the eye movement feature data, we evaluate
the standard Laplacian Perturbation Algorithm (LPA) [9] and Fourier Pertur-
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bation Algorithm (FPA) [30], the latter of which is suitable for time series data
such as the eye movement feature signals. The used dataset consists of 52 eye
movement features [6] related to fixations, saccades, blinks, and pupil diame-
ter, collected in a VR setup [33]. We propose two different methods that apply
the FPA to chunks of data using original eye movement feature signals or con-
secutive difference signals. While preserving differential privacy using parallel
compositions, chunk-based methods decrease query sensitivity and complexity.
On the other hand, difference-based method further decreases the correlations
between the eye movement features of an individual at different time instances
in addition to the decorrelation provided by the FPA algorithm that uses the
discrete Fourier transform (DFT) as, e.g. in [14,15]. The difference-based method
provides higher level of privacy since applying differential privacy to correlated
data compromises differential privacy and consecutive differences are observed
to be less correlated than original consecutive data. Furthermore, we evaluate
our methods in the gender and document type classification tasks by using a
similar configuration as in [33]. We use the complete data instead of applying a
subsampling step used in [33], applied to reduce the sensitivity and to improve
the classification accuracies in the gender and document type. We are the first
to propose differential privacy solutions for eye tracking by taking the temporal
correlations into account. Furthermore, the previous work in [33] applies the ex-
ponential mechanism for differential privacy on the eye movement feature data.
The exponential mechanism is useful for situations where the best enumerated
response needs to be chosen [10]. However, in the eye movement data, we are
not interested in the “best” response but in the value of a feature vector itself.
Therefore, we apply the Laplacian mechanism for differential privacy.

Our main contributions are as follows. We propose chunk-based and difference-
based differential privacy methods for eye movement features to reduce query
sensitivity, complexity, and temporal correlations. Furthermore, we compare our
methods with standard techniques such as LPA and FPA by using the inverse of
the normalized mean square error (NMSE) as the new utility metric, and gender
and document type classification accuracies as the classification metric for the
eye movement feature data. We illustrate significantly better performance of our
methods as compared to state-of-the-art methods. Our solutions are capable of
handling correlation in the data and decrease sensitivity by dividing the data
into smaller chunks, so they form the fundamental baseline for privacy-preserving
eye tracking using differential privacy.

This paper is organized as follows. In Section 2, we give an overview of the
privacy-preserving eye tracking literature. Fundamental definitions and theorems
related to the differential privacy and the proposed utility metric are discussed
in Section 3. We list the proposed methods in Section 4. Using a public eye
tracking dataset, performance of the proposed methods in terms of utility and
classification accuracies are shown in Section 5 to significantly improve on all
previous methods. Section 6 concludes the paper.
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2 Related Work

It is possible to obtain a high amount of sensitive information about individuals
by using eye tracking data. However, there are not many works that focus on
privacy-preserving eye tracking. In [21], key issues from social, legal, and ethical
points of view are addressed to enable socially acceptable body-worn cameras.
Eye trackers also lie within the definition of body-worn cameras. More partic-
ular to eye tracking research, why privacy considerations are needed for eye
tracking world are discussed in [26], where they focus on gaze and pupillome-
try. Recently, practical solutions are introduced for protecting user identity and
sensitive stimuli by degrading iris authentication by introducing optical defo-
cus in the eye tracking setup [17] and automated enable/disable mechanism for
eye tracker’s first-person camera with the help of mechanical shutter depend-
ing on the detection of privacy sensitive content [34], respectively. Furthermore,
a function-specific privacy model for privacy-preserving gaze estimation task,
which could also be further extended to other eye tracking related problems, is
proposed in [4].

While previous methods can be helpful, they are not directly relevant for
the data sharing applications. Differential privacy is a useful framework when
user identities should be protected. Recently, in the eye tracking community
the differential privacy is applied to eye movements in VR [33] and heatmap
data [27]. These works do not address the effects of temporal correlations with
eye tracking data over time in the differential privacy context. We discuss these
effects and propose methods to reduce them.

3 Background

In this section, we define the differential privacy, basic mechanisms, and utility
metric we use throughout the paper.

Differential privacy is a measure for privacy risk of an individual participating
in a database. One classical example is a dataset with weights of N people and
a mean function. When an adversary queries the mean function for N people,
the average weights of N people is obtained. However, after querying mean
function for N people, when adversary queries the dataset for N − 1 people, the
weight of the remaining person will be automatically leaked. Using differential
privacy, noise is added to the outcome of a function so that the outcome does not
significantly change based on whether or not a random individual participated
in the dataset. The amount of noise that is added should be calibrated carefully
since high amount of noise might decrease the utility, which means that data
could be useless for further analyses when it is differentially private. We define
differential privacy in Definition 1.

Definition 1. ε-Differential Privacy (ε-DP) [9]. A randomized mechanism M is
ε-differentially private if for all databases D and D′ that differ at most in one
element for every S ⊆ Range(M), we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S]. (1)
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For differential privacy, the variance of the added noise depends on a metric
called query sensitivity, so we define the query sensitivity as follows.

Definition 2. Query sensitivity [9]. For a random query Xn and w ∈ {1, 2},
the sensitivity ∆w of Xn is the smallest number for all databases D and D′ that
differ at most in one element such that

||Xn(D)−Xn(D′)||w ≤ ∆w(Xn) (2)

where

||Xn||w = w

√√√√ n∑
i=1

(
|Xi|

)w
. (3)

We list theorems that are used in the proposed methods.

Theorem 1. Sequential Composition Theorem [28]. Consider n independent
mechanisms Mi for i = 1, 2, ..., n. If M1,M2, ...,Mn are ε1, ε2, ..., εn-differentially

private, respectively, then their joint mechanism is

(
n∑
i=1

εi

)
-differentially pri-

vate.

Theorem 2. Parallel Composition Theorem [28]. Consider n mechanisms as
Mi for i = 1, 2, ..., n that are applied to disjoint subsets of a dataset. If M1,M2, ...,
Mn are ε1, ε2, ..., εn-differentially private, respectively, then their joint mecha-

nism is

(
max
i∈[1,n]

εi

)
-differentially private.

Next, we define the Laplacian Perturbation Algorithm (LPA) [9]. In order to
guarantee differential privacy, the LPA generates the noise according to a Laplace
distribution. Lap(λ) denotes a random variable drawn from a Laplace distribu-
tion with probability density function (PDF): Pr[Lap(λ) = h] = 1

2λe
−|h|/λ,

where Lap(λ) has zero mean and variance 2λ2. We denote the noisy and differ-

entially private values as X̃i = Xi(D) +Lap(λ) for i = 1, 2, . . . , n. Since we have
a series of eye movement observations, the final noisy eye movement observations
are generated as follows.

X̃n = Xn(D) + Lapn(λ) (4)

where Lapn(λ) is a vector of n independent Lap(λ) random variables and Xn(D)
is the eye movement observations without noise. The LPA algorithm is ε-differen-

tially private for λ =
∆1(Xn)

ε
[9].

Next, we define the error function that we use to measure the differences
between original Xn and noisy X̃n observations. For this purpose, we use the
metric NMSE defined as

NMSE =
1

n

n∑
i=1

(Xi − X̃i)
2

XX̃
(5)
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where

X =
1

n

n∑
i=1

Xi , X̃ =
1

n

n∑
i=1

X̃i. (6)

We define the utility metric as

Utility =
1

NMSE
. (7)

Since differential privacy is achieved by adding random noise to the data,
there is a utility-privacy trade-off. If too much noise is introduced, the adversary
will not be able to infer any information from the differentially private data.
However, this might mean that the data are perturbed too much and no fur-
ther analyses could be done due to reduced utility. When the eye tracking and
movements data are considered, it is important to have high utility especially
for further analyses.

4 Methods

Standard mechanisms used for differential privacy are vulnerable to temporal
correlations since the independent noise realizations that are added to temporally
correlated data could be useful for adversaries. One straightforward approach is
to decorrelate the data before adding the noise. However, a strong decorrelation
can remove important eye movement patterns, which might be bad for further
eye movement analyses by standard classification algorithms. On the other hand,
many eye movement features are extracted by using time windows, as in [33],
which makes the features highly correlated. Furthermore, another challenge is
that the duration of eye tracking recordings could change depending on the
skills or personalities of the users. The longer duration causes an increased query
sensitivity, which means that higher amount of noise should be added to achieve
differential privacy. In addition, when the data are correlated, as in [37], ε′ is
defined as the actual privacy metric that is obtained when considering the fact
that correlation can be used to obtain more information about the differentially
private data by filtering, instead of ε. In this work, we discuss and propose generic
low-complexity methods to keep ε′ low for eye movement feature signals. To
deal with correlated eye movement feature data, we propose different methods:
FPA, chunk-based FPA (C-FPA) for original signal and chunk-based FPA for
difference based sequences (DC-FPA). The sensitivity of each eye movement
feature signal is calculated by using the Lw-distance such that

∆fw(Xn) = max
p, q

∣∣∣∣∣∣Xn,(p,f) −Xn,(q,f)
∣∣∣∣∣∣
w

= max
p, q

w

√√√√ n∑
t=1

(∣∣∣X(p,f)
t −X(q,f)

t

∣∣∣)w (8)
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where Xn,(p,f) and Xn,(q,f) denote observation vectors for a feature f from two
random participants p and q, n denotes the maximum length of the observation
vectors, and w ∈ {1, 2}.

4.1 Fourier Perturbation Algorithm (FPA)

The main aim of the FPA is to represent a signal with a small number of trans-
form coefficients such that the query sensitivity of the representative signal de-
creases. A smaller query sensitivity decreases the noise power required to make
the noisy signal differentially private. In the FPA, the signal is transformed
into the frequency domain by applying the standard Discrete Fourier Transform
(DFT), which is commonly applied as a non-unitary transform. Furthermore, the
frequency domain representation of a signal consists of less correlated transform
coefficients as compared to the time domain signal due to the high decorrela-
tion efficiency of the DFT. One therefore reduces the correlation between the
eye movement feature signals by applying a Fourier transform. After applying
the DFT, the noise sampled from the LPA is added to the first k elements
of DFT (Xn) that correspond to k lowest frequency components, denoted as
F k = DFT k(Xn). Once the noise is added, the remaining part (of size n− k) of

the noisy signal F̃ k is zero padded. The obtained signal is denoted as PADn(F̃ k).
Then, using the Inverse DFT (IDFT), the padded signal is transformed back into
the time domain. We can show that ε-differential privacy is satisfied by the FPA
for

λ =

√
n
√
k∆2(Xn)

ε
(9)

unlike the value claimed in [30], as observed independently in [19]. The procedure
is summarized in Algorithm 1.

Algorithm 1: Fourier Perturbation Algorithm (FPA)

Inputs: Xn, λ, k
Output: X̃n

1) F k = DFT k(Xn).

2) F̃ k = LPA(F k, λ).

3) X̃n = IDFT (PADn(F̃ k)).

Since not all coefficients are used, in addition to the perturbation error caused
by the added noise, a reconstruction error caused by the lossy compression is
introduced. It is important to determine the number of used coefficients k to
minimize the total error. We discuss how we choose k values for FPA based
methods in Section 4.4 in addition to shortcomings of this selection method.
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4.2 Chunk-based FPA (C-FPA)

One of the drawbacks of directly applying the FPA to the eye movement feature
signals is having large query sensitivities for each feature f due to long signal
sizes. To solve this problem, [33] proposes to subsample the signal using non-
overlapping windows, which simply means to remove many data points. While
subsampling decreases the query sensitivity, it also decreases the amount of data.
Instead of subsampling, we propose to split each signal into smaller chunks, and
then we apply the FPA as discussed in Section 4.1 to each chunk. We choose the
chunk sizes of, e.g., 64 and 128 since there exist divide-and-conquer type of tree
based implementation algorithms for fast DFT calculations that can be applied
when the transform size is a power of 2. When the signals are split into chunks,
chunk level query sensitivities are calculated and used rather than the sensitivity
of the whole sequence. Differential privacy for the complete signal is preserved by
Theorem 2 since the chunks are non-overlapping. As the chunk size decreases,
the chunk level sensitivity decreases as well as the computational complexity.
However, the parameter ε′ that is calculated according to the correlation level
becomes larger with smaller chunk sizes due to the fact that correlations between
neighboring data elements are larger in an eye movement dataset. Therefore, it
is important to obtain a good trade-off between computational complexity and
correlations to determine the optimal chunk size.

4.3 Difference- and chunk-based FPA (DC-FPA)

To tackle temporal correlations, we propose to convert the original eye movement
feature signals into difference signals where differences between consecutive eye
movement feature observations are calculated as

X̂
(f)
t =

{
X

(f)
t −X(f)

t−1

}∣∣∣n
t=2

and X̂
(f)
1 = X

(f)
1 . (10)

Using the difference signals denoted by X̂n,(f), we aim to decrease the corre-

lations before applying a differential privacy method. We claim that the ratio
ε′

ε
becomes lower in the difference based method as compared to the FPA method
applied to the original dataset. To support this claim, we show that the correla-
tions in the difference signals decrease significantly as compared to the original
signal in Section 5.1. This results in lower ε′ and better privacy for the same
ε. The low level eye movement characteristics are preserved by the difference
signals.

We propose to apply the difference based method together with the C-FPA.
Therefore, the differences are calculated inside chunks. The first element of each
chunk is preserved. Then, the FPA mechanism discussed in Section 4.1 is applied
to the difference signals by using query sensitivities that are calculated based on
differences and chunks. For each chunk, the noisy difference signals are propa-
gated to obtain the final noisy signals. This mechanism is differentially private
by Theorem 1 and overall procedure is summarized in Algorithm 2.



Differential Privacy for Eye Tracking with Temporal Correlations 9

Algorithm 2: Difference- and chunk-based FPA (DC-FPA)

Inputs: Xn, λ, k
Output: X̃n

1) X̂t =
{
Xt −Xt−1

}∣∣∣n
t=2

and X̂1 = X1.

2)
˜̂
X

n

= FPA(X̂n, λ, k).

3) X̃t =
{˜̂
Xt +

˜̂
Xt−1

}∣∣∣n
t=2

and X̃1 =
˜̂
X1.

Since Theorem 1 can be applied to the difference-based method when con-
secutive differences are assumed to be independent, which is a valid assumption
for eye movement feature data as we illustrate below, there is also a trade-off be-
tween the chunk sizes and utility for the DC-FPA. If a large chunk size is chosen,
then the total ε value could be very large, which reduces privacy. Therefore, we
choose chunk sizes of, e.g., 32 and 64 for the DC-FPA, which are chosen because
they provide better performance for the DC-FPA as compared to larger chunk
sizes used for the C-FPA.

4.4 Choice of the number of transform coefficients used

All proposed methods require a selection of a value for k. A small k value in-
creases the reconstruction error, while a very large k value results in an increase
in the perturbation error. Therefore, it is important to find the best k value that
minimizes the sum of the two errors. In this work, we compare a large set of
possible k values to choose the best values.

We apply the differential privacy mechanisms that are discussed in Sections
4.1, 4.2, and 4.3 by using 100 noisy evaluations in order to find optimal k values
applied to features or chunks. Optimal k values are the ones with the mini-
mum NMSE for each chunk, eye movement feature, and document type. In a
distributed setting, in which there are multiple parties that apply the same mech-
anisms, each user needs to know k values in advance. However, in a centralized
setting, where one server applies the differential privacy, it is crucial to choose
the k values in a differentially private way as well. In order to evaluate the dif-
ferential privacy in the eye tracking area while taking the temporal correlations
into account, we focus on optimal k values for this work. One shortcoming of this
approach is that the optimal k value compromises some information about the
data, which leaks privacy [30]. Our observation is that the information leaked by
optimizing the parameter k is negligible as compared to the privacy reduction
due to high data correlation. Therefore, we illustrate only the results with opti-
mal k values. For a differentially private selection of k, one can use the Sampling
Perturbation Algorithm (SPA) proposed in [30].
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5 Evaluations

In this section, we describe the data and metrics we use to compare different
methods. For each method, we average the results over 100 noisy evaluations.
The differential privacy methods are applied separately to each document type
(comic, newspaper, and textbook) on the dataset which is discussed in Section
5.1. Applying differential privacy separately to each document type preserves
ε-differential privacy by Theorem 2. In addition, for the utility calculations and
classifier training, the optimal k values are used.

5.1 Eye Tracking Dataset

We evaluate our methods by using the public eye tracking dataset from [33] ded-
icated to privacy-preserving eye tracking that is collected with Oculus DK2 VR
headset and Pupil eye-tracking add-on [18] from 20 participants (10 female, 10
male) for a reading task of three different document types (a comic, newspaper,
and textbook) in a VR environment. For each recording and participant, the
dataset consists of 52 eye movement feature sequences that are computed with
a sliding window size of 30 seconds and a step size of 0.5 seconds. The feature
extraction process that is applied makes the extracted eye movement features
independent of the eye tracker device used for data collection.

We first show how the data is correlated using correlation coefficients ob-
tained from the eye movement feature data. Since there are 52 eye movement
features, it is not feasible to show all of them. Therefore, we have chosen the
feature called ratio large saccade for illustration. The correlation coefficients of
ratio large saccade for three document types over a time difference ∆t with re-
spect to the signal samples at, e.g., the fifth time instance for eye movement
features and differences for all participants are depicted in Figs. 1 (a) and (b),
respectively.

Correlations between the difference signals are significantly smaller than the
correlations between the original eye movement feature signals. Therefore, the
DC-FPA is less vulnerable to privacy reduction due to temporal correlations,
affecting the value of ε′. In addition, we observe that values of four features,
namely minimum values of wordbook features from 1 to 4, are all zeros in the
entire dataset. Therefore, we exclude them in the error and total ε calculations.

5.2 Utility Results

We now evaluate the utility given in (7). We apply our methods separately to
different document types; therefore, we report the utility results separately as
well. Furthermore, the utilities of FPA-based methods are calculated by using
the optimal k values.

Remark 1. The contributions of each time instance to the query sensitivity are
observed to be close for the eye movement dataset used. Therefore, by using
k values such that k ≤

√
n, we assume that ε-differential privacy is preserved
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(a) Correlation coefficients of eye movement features.

(b) Correlation coefficients of difference signals.

Fig. 1: Correlation coefficients of the eye movement feature ratio large saccade
for three document types over a time difference of ∆t (Each time instance step
corresponds to 0.5s) with respect to the samples at the fifth time instance.

with λ =

√
k∆2(Xn)

ε
for this dataset. Furthermore, the actual privacy metric ε′

rather than ε should be analyzed for evaluations, as discussed above.

As we apply the proposed methods separately to each eye movement fea-
ture, we first calculate the mean utility of each eye movement feature and then
calculate the average utility over all features. For the C-FPA and DC-FPA, we
calculate the average over all eye movement features for each chunk. To obtain
the global utility of the signal, we average the chunk level utilities. The utility
results for an ε range of [0.48, 2.4, 4.8, 24, 48] for LPA and FPA, C-FPA, and
DC-FPA are given in Figs. 2 (a), (b), and (c), respectively.

While a high NMSE, i.e., low utility, does not necessarily mean that the
model is completely wrong, higher utility means that the model would perform
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(a) Utility of the LPA and FPA.

(b) Utility of the C-FPA.

(c) Utility of the DC-FPA.

Fig. 2: Utility results for various ε values.

better than low utility in many tasks. Fig. 2 (a) shows that the LPA performs
poorly for all document types and privacy levels. This is expected as the query
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sensitivity is large for the LPA as compared to FPA based methods. The C-FPAs
depicted in Fig. 2 (b) for chunk sizes of 64 and 128 perform similarly. Since a
higher chunk size reduces the temporal correlations better, it is better to use a
higher chunk size as long as the utilities are comparable. The C-FPAs with both
chunk sizes outperform the LPA and FPA. In addition, applying FPA based
methods to small chunks decreases the calculation complexity, which is another
advantage of chunk-based methods.

The DC-FPA methods shown in Fig. 2 (c) outperform C-FPA methods in
high privacy regions, i.e., for small ε. For less private regions, utility results are

similar. Due to lower correlations in the DC-FPA,
ε′

ε
is smaller for difference

based methods as compared to the methods that use the original data.

5.3 Gender and Document Type Classifications

We evaluate gender and document type classification results for the differentially
private data. For a fair comparison, we employ the same setup as in [33]. We
train support vector machine (SVM) classifiers with radial basis function (RBF)
kernel, bias parameter of C = 1, and automatic kernel scale in a leave-one-
person-out cross-validation setup both with majority voting by summarizing
classifications from different time instances for each participant and without
majority voting. In the previous work, only majority voting based results are
reported. However, a strong adversary might also train the models with different
settings such as without majority voting. Therefore, we report the results for
both cases. We normalize the training data to zero mean and unit variance,
and apply the same parameters to the test data. Although we do not apply
subsampling with a window size of 10 while generating the differentially private
data, which is applied in [33], we use the subsampling in choosing training and
testing data from each person and document type to have similar amount of data
for training and testing to have a fair comparison. The results of the prediction
accuracies of the methods for the gender and document type classification tasks
using majority voting for various ε values are depicted in Figs. 3 (a) and (b),
respectively.

While classification results could not be treated directly as the utility, they
still provide insights into the usability of the differentially private data. In the
majority voting setting, it is also possible to compare our classification results
with the results in [33]. For the document type classification, all of our methods
result in higher than the 0.33 guessing probability, even when ε < 1. In addition,
when ε is set to larger values such as 2.4 or 4.8, except DC-FPA methods all
methods perform least at ≈ 55% and 65% accuracy, respectively. The method
in the previous work only performs ≈ 40% for these privacy levels. Furthermore,
when ε is set to larger values such as 24 or 48, our methods, except DC-FPA, re-
sult in accuracies greater than 85%, which significantly outperforms the previous
work that has accuracies of ≈ 60− 70%, for the same privacy regions. Although
the DC-FPA methods do not outperform the previous work in terms of ε, they
provide smaller ε′ than the other methods. While we use the whole data rather
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(a) Accuracy of gender classification with majority voting.

(b) Accuracy of document type classification with majority voting.

Fig. 3: Gender and document type classification accuracies with majority voting
for various ε values.

than applying subsampling to generate differentially private data and handle the
temporal correlations in a more robust way, we provide higher accuracies in the
same privacy regions as compared to the results in [33].

Next, we analyze the gender classification results. While previously gender
information is categorized as a feature that should be protected from adversaries,
it could be interpreted in two ways. In order to compare our results with the
previous work in [33] from the classification point of view, it could be argued
that an adversary could not distinguish the genders when a certain amount
of noise is added. In the majority voting setting, gender classification results
are around 0.5, i.e., guessing probability, for ε ≈ 4.8 for the FPA and C-FPA
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(a) Accuracy of gender classification without majority voting.

(b) Accuracy of document type classification without majority voting.

Fig. 4: Gender and document type classification accuracies without majority vot-
ing for various ε values.

methods. Since the classification results for the gender prediction are almost
always below 0.5 for the DC-FPA methods, in the majority voting setting poor
accuracy results are obtained. However, this effect is due to the majority voting
setting and further validated by without majority voting setting as in Fig. 4
(a), since in this setting classification accuracies significantly approach to the
guessing probability. In the previous work, the gender classification is performed
around the guessing probability when ε ≈ 15. This shows that even if the gender
classification is considered as a private task, we provide the privacy with lower
ε values, which makes our methods more private. However, gender classification
could be also interpreted as a part of utility. In this case, since we perform over
the guessing probability for ε > 4.8 with the C-FPA methods, it is reasonable
to say that our methods are robust.

We perform the same experiments without majority voting as well. Since an
adversary does not have to follow one path to infer sensitive information, we
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also report the classification results without majority voting. While the similar
trends are observed for some methods, it is visible that especially the gender clas-
sification results of the DC-FPA methods improve as compared to the majority
voting setting. The prediction results for gender and document type classification
without majority voting are shown in Figs. 4 (a) and (b), respectively.

For high privacy regions, i.e., for ε = 0.48, the DC-FPA outperforms C-FPA
in the document type classification task both for with and without majority
voting setting as it is the case in the utility results in Section 5.2, and performs
similarly to the FPA applied to the complete signal. It is clear that there are
trade-offs which should be optimized to apply differential privacy in eye tracking
area such as chunk sizes and correlations that affect ε′. We outperform previous
work in the differentially private eye tracking literature also in terms of the
classification accuracies.

6 Conclusion

We proposed different methods to achieve differential privacy by correcting, ex-
tending, and adapting the FPA method. Since eye movement features are cor-
related over time and are high dimensional, the standard privacy-preserving
methods give low utility and are vulnerable to attacks. Taking these into consid-
eration, we proposed privacy solutions for temporally correlated eye movement
data. Our methods can be applied to the other human computer interaction
data as well since the methods proposed are independent of the used data. We
compared our methods with the previous work, and while taking care of the cor-
relations robustly, we outperformed them in terms of utility and also the gender
and document type classification accuracies. We also observed that to achieve
higher privacy levels in the eye tracking and movements data, the high dimen-
sional feature sequences that are obtained from the feature extraction processes
should be transformed into more compact features since high dimensionality
affects differential privacy negatively.

In future work, we will analyze the actual privacy metric ε′ as the right pri-
vacy metric to compare different methods. Furthermore, since the eye movement
features are extracted from fixed window and step sizes, these features are more
correlated than standard signals. Therefore, we will use the actual measurements
for ε′ analyses with k values chosen in a private manner for the centralized set-
ting.
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