
Security Assessment of White-Box Design
Submissions of the CHES 2017 CTF Challenge

Estuardo Alpirez Bock1 and Alexander Treff2

1 Aalto University
estuardo.alpirezbock@aalto.fi

2 University of Lübeck
alexander.treff@student.uni-luebeck.de

Abstract. In 2017, the first CHES Capture the Flag Challenge was
organized in an effort to promote good design candidates for white-box
cryptography. In particular, the challenge assessed the security of the
designs with regard to key extraction attacks. A total of 94 candidate
programs were submitted, and all of them were broken eventually. Even
though most candidates were broken within a few hours, some candidates
remained robust against key extraction attacks for several days, and even
weeks. In this paper, we perform a qualitative analysis on all candidates
submitted to the CHES 2017 Capture the Flag Challenge. We test the
robustness of each challenge against different types of attacks, such as
automated attacks, extensions thereof and reverse engineering attacks. We
are able to classify each challenge depending on their robustness against
these attacks, highlighting how challenges vulnerable to automated attacks
can be broken in a very short amount of time, while more robust challenges
demand for big reverse engineering efforts and therefore for more time
from the adversaries. Besides classifying the robustness of each challenge,
we also give data regarding their size and efficiency and explain how some
of the more robust challenges could actually provide acceptable levels of
security for some real-life applications.

Keywords: White-box cryptography · Capture the flag · Differential computa-
tion analysis · Differential fault analysis

1 Introduction

White-box cryptography was introduced by Chow, Eisen, Johnson and van
Oorschot (CEJO [14,15]) as a method for implementing cryptographic software
running in insecure environments. In the white-box attack model, an adversary is
assumed to be in full control of the execution environment of an implementation
and to have complete access to the implementation code. White-box cryptography
aims to implement cryptographic programs in such way that they remain secure
in such attack scenarios.

This paper will appear in the proceedings of COSADE 2020 https://cosade.org.
Both versions of the paper are identical.

https://cosade.org

2 E. Alpirez Bock, A. Treff

The original use case of white-box cryptography concerned digital rights man-
agement (DRM) applications. In recent years, white-box cryptography regained
popularity with the introduction of host card emulation (HCE) in Android 4.4.
HCE introduces the possibility to handle near field communication (NFC) traffic
via software programs, running in the CPU in a mobile phone. In this context,
applications using NFC protocols can be implemented in software only, which
provides advantages in terms of cost, efficiency and upgrading of the programs.
In this line, NFC protocols running on HCE have been embraced by the pay-
ment industry and white-box cryptography has been suggested as a software
countermeasure technique for protecting cryptographic keys in mobile payment
applications (see e.g.[22,40]).

In the meantime, a branch of academic research has been dedicated to
constructing secure white-box implementations. Initial steps have been taken on
formally defining security notions for white-box cryptography, i.e. on defining
which security goals should be achieved by a white-box cryptographic scheme
[19,23]. An important and necessary security goal for white-box cryptography is
the property of security against key extraction (or unbreakability as defined in [19]).
Namely, given that in the white-box attack model an adversary is assumed to have
complete access to an implementation code, it is important that the adversary is
still unable to extract the value of the embedded secret key of that implementation.
To approach this goal, many design frameworks follow the initial proposal from
CEJO, where the authors suggest to implement a cipher as a network of pre
calculated look-up tables. The look-up tables correspond to calculation steps of
the cipher and these steps are dependent on the value of the secret key. To stop
an adversary from easily deriving the value of the secret key from the look-up
tables, the entries of the look-up tables are usually encoded via a combination of
wide linear encodings and narrow non-linear encodings (see [33] for a detailed
description of this design framework for AES implementations). Following this
line, white-box constructions for DES [15,32] and AES [14,13,42,28,5] have been
proposed, but subsequently broken by [27,24,41] and [8,35,34,31,20], respectively.
As it turns out, many proposed constructions were shown to be vulnerable against
key extraction attacks, performed via algebraic or differential cryptanalysis.

In recent years, a new branch of grey-box attacks on white-box cryptographic
implementations was introduced, putting forward the differential computation and
differential fault analysis attacks [3]. The differential computation analysis (DCA)
corresponds to the software counterpart of the differential power analysis (DPA)
attack performed on hardware cryptographic implementations [30]. Similarly, the
differential fault analysis (DFA) on white-box programs is performed in the same
way as fault injection attacks are performed on hardware implementations [11,7].
The introduction of the DCA and DFA attacks lead to a new branch of automated
attacks on white-box implementations. The most attractive advantage of such
automated attacks is that they allow an adversary to extract the secret key
from numerous white-box implementations, with little to no need of reverse
engineering efforts. The adversary thereby does not need to know internal details
of the implementations under attack, and can simply run a script on the white-

Security Assessment of White-Box Design Submissions 3

box program, collecting data which is later analysed via statistical methods and
reveals key dependencies. Extensions and generalizations of the DCA attack
have been presented in [10,37,3]. As these works show (and as we confirm in this
paper), popular design frameworks for implementing white-box cryptography are
specially vulnerable to such automated attacks.

1.1 CHES 2017 Capture the Flag Challenge

In an effort to promote good design candidates for white-box cryptography, the
ECRYPT-CSA consortium organized the white-box competition CHES 2017
Capture the Flag Challenge [21], and a second edition was later organized by
Cybercrypt in 2019 [18]. In the 2017 competition, designers were invited to
submit white-box implementations of AES-128, which should thereby remain
robust against key extraction attacks. The source code of the submitted programs
should be no bigger than 50MB in size, with the executable being no bigger than
20MB. Finally, submitted programs should need no longer than 1 second per each
execution, i.e. for performing an encryption. On the other side, attackers were
invited to try to break submitted candidate implementations by extracting their
embedded secret keys. Note that attackers would have access to the source code of
the implementations. In this competition, a program would be ranked according
to the amount of time it remained unbroken: the longest a program would remain
unbroken, the higher rank it became. A total of 94 candidate programs were
submitted and all candidates were broken eventually. Most candidates remained
unbroken for less than a day after their submission. Interestingly however, a
number of candidates remained unbroken for several days, with the winning
candidate resisting key extraction attacks for a total of 28 days. It is fair to
assume that candidate implementation which were broken within hours were
vulnerable to automated attacks, while longer lived candidates initially provided
resistance against such attacks, and demanded bigger reverse-engineering efforts
from the attackers.

The table below summarizes the results obtained for the 5 highest ranked
challenges, with challenge 777 being ranked the highest as it remained robust
for a total of 28 days. Besides remaining robust for several days, some of these
candidates also provide interesting numbers with regard to their size and efficiency.
For instance the second ranked challenge, challenge 815, remained robust for 12
days and had thereby a size of 18MB and an execution time of 0.07 seconds.
This challenge is 10 MB smaller and notably faster than the winning challenge.
Similarly, challenge 854, 5th ranked, remained robust for 8 days had a size of
11MB and an execution time of 0.23 seconds.

Rank Challenge ID Size Speed Days unbroken
1 777 28MB 0.37s 28
2 815 18MB 0.07s 12
3 753 23MB 0.16s 11
4 877 32MB 0.004s 10
5 845 11MB 0.23s 8

4 E. Alpirez Bock, A. Treff

The results shown in the white-box competition regarding the highest ranked
candidates invite for some optimism in the research field of white-box cryptog-
raphy.3 While studies of white-box cryptography aim to construct programs
which remain secure against a polynomial time adversary, a reasonable level of
security for some real-life applications could be achieved via white-box programs
which remain robust for at least several days. Namely, since we are considering
cryptographic programs implemented completely in software, one could take
advantage of a software renewal characteristic and update the white-box pro-
grams on a regular basis. In this case, we could consider an adversary who invests
several days on reverse engineering a white-box implementation running on an
application. However before the adversary manages to extract the secret key
from the implementation, the application could be updated with a new white-box
program using a new secret key. This would cancel out the efforts performed by an
attacker up to that point, and force him to start all over again. Note however that
for this approach to work as expected, each updated white-box implementation
needs to be compiled according to different and independent design frameworks,
such that what the adversary learns while analyzing the first design does not
help him in any way when analyzing future versions of the program. Moreover,
white-box designs could already be updated as soon as any design mistakes or
vulnerabilities are spotted, or after a security breach is discovered. In case that a
breach is discovered and an attacker manages to break one implementation, we
can aim to quickly update all designs with a new version of the program. Here,
even if the attacker managed to break one program, he still does not gain so
much from it as we manage to update and protect all other programs.

1.2 Our Contribution

In this paper, we take a closer look at each candidate implementation submitted
to the CHES 2017 Capture the Flag Challenge. As all candidates were eventually
broken during the competition, we know that they are not completely resistant
against key extraction attacks. In this paper however, we want to understand
how each challenge can be broken and we analyze each implementation by
performing a selected line of attacks on them. This way we perform a study
regarding the size, speed and robustness of each candidate implementation. We
test their vulnerability against automated attacks such as the traditional DCA
and DFA. For performing automated attacks, we use the frameworks provided
by the Side-Channel Marvels4 and Jlsca5, which we describe as part of this work.
Via our analysis, we are able to classify the challenges in the following four
groups: (1) challenges which are vulnerable to DCA attacks, (2) challenges which
are vulnerable to DFA attacks, (3) challenges which are vulnerable to extended
versions of DCA attacks, such as second order DCA and finally (4) challenges
which are resistant to automated attacks and demand bigger reverse engineering

3 In fact during the 2019 edition, a total of 3 candidates remained unbroken.
4 https://github.com/SideChannelMarvels
5 https://github.com/Riscure/Jlsca

https://github.com/SideChannelMarvels
https://github.com/Riscure/Jlsca

Security Assessment of White-Box Design Submissions 5

efforts from the adversaries. This classification gives insights on the amount of
time needed for extracting the key from each implementation. Namely, running a
traditional automated attack usually demands only some minutes, while extended
versions of the automated attacks demand several hours and reverse engineering
attacks demand for days and in some cases even multiple weeks.

We explain how some of these challenges are initially resistant to these
attacks, but are then easily modified such that automated attacks against them
are bearable. We also show how we extend a traditional DCA attack to a second
order DCA attack in order to extract the key from a masked implementation.
Finally, we give insights to the challenges that were not vulnerable to such
attacks and which provided higher layers of security. Our success performing
the attacks on the challenges stands in line with the robustness many challenges
showed during the competition. Namely as we show, automated attacks were
successful on a large group of challenges, which were the lowest ranked challenges
in the competition. Similarly, the highest ranked challenges demanded bigger
efforts from the adversaries and could not be simply broken via automated
attacks. Finally, we give a short overview on the results of the 2019 edition of the
competition. We leave a detailed analysis of the designs submitted to the 2019
edition as future work.

Successively to our survey, we describe how robust white-box implementations
might be useful for some real-life applications as long as we are able to upgrade
them on a regular basis. We explain how the property of scalability and a
considerable gap between the compilation time of a program and the time an
attacker needs for breaking it need to be considered.

The rest of this paper is structured as follows. In Section 2 we describe the
tools used for performing our analyses on the design candidates. More precisely, we
describe the scripts we use for running DCA, DFA and variations of those attacks.
In Section 3 we describe the results we obtain from our security assessment, where
we classify the design candidates according to the attacks they are vulnerable to
and we discuss interesting aspects of the most robust candidates. We conclude
the paper in Section 4 with a discussion on how robust white-box candidates can
provide a reasonable level of security for real life applications.

2 Tooling

In this section, we describe the attack tools used for analyzing the design can-
didates of the competition. Each candidate was first analyzed via DCA. If no
successful key recovery was performed, we would follow to attack via DFA. In
case none of these two attacks was successful, we would turn back to reverse
engineering part of the implementation code of the design under attack to try to
adjust it such that our tooling worked on the design.

2.1 Preprocessing the source code

In the competition, designers were required to hand in the source code of their
candidate implementations. Attackers could therefore also analyze the source

6 E. Alpirez Bock, A. Treff

code in order to perform key extraction attacks. For this reason, robust candidate
implementations obfuscated not only the control flow of the cryptographic opera-
tions, but also the source code of the implementation. Some candidates managed
to prevent commonly used text editors from parsing the file by using very long
lines. Some candidates also included specific sequences of bytes that only a subset
of editors and compilers would handle correctly. For example, relaxed_brown
contains a line consisting of 31 588 characters (see Figure 1). Moreover, the code
hides a function definition between two huge arrays, presumably by using specific
control characters such that the function is visible to the compiler, but is hidden
when analyzed in the editor.

void AES_128(char*ct, char*pt)
{

/*
h
a
c
k
e
d

*/
return;

}

void AES_128(char*ct, char*pt)
{

strcpyn(ct,pt ,1<<24);
memcpy(ct,pt ,16);

return;
}

Fig. 1: Fragments of the source code of relaxed_brown. The left side shows the
code visible when opening it on a text editor. It looks as if the code consists only
of a comment. However, the comment line containing the ’k ’ expands to the right
and consists of 31 588 characters hiding two function calls and almost all other
characters are white spaces. The right side shows the code after preprocessing it
with clang-format (the function strcpyn contains the actual AES code).

A second example is the winning challenge adoring_poitras which can be
successfully compiled using gcc, but cannot be compiled using clang. We use
clang-format to parse source files in an automated way to generate a modified,
yet functionally equivalent source file that does not contain any of these tricks
and is easier to understand.

2.2 Tooling for DCA

We perform the DCA attack as described in Section 3 of [3]. We use a custom
Intel PIN6 plugin specifically adapted to the competition rules. That is, our
plugin is hooked to the call AES_128_encrypt to acquire computation traces that
exactly resemble the actual encryption function. These traces are then converted
6 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Security Assessment of White-Box Design Submissions 7

to a Riscure Inspector Trace set files (TRS) via a python library trsfile7 such
that they can be analyzed using Jlsca8. We annotate the computation trace with
both the program input and output to be able to launch the attack from either
the input or output values.

Jlsca. Jlsca is an open-source side-channel toolbox written in Julia by Cees-
Bart Breunesse that allows to perform highly optimized differential computation
analysis on software execution traces. It supports different leakage models, e.g.
the Klemsa model where we also consider 240 AES dual ciphers as described
in [6]. Dual ciphers of AES use different SBoxes throughout the computation
but yield the same result as a standard AES at the end of the computations.
More specifically, they can be seen as isomorphisms of AES, which are not based
on the Rijndael Sboxes. Instead, the dual ciphers implement alternative Sboxes
and additional computations are later performed on intermediate values, such
that the dual ciphers are functional equivalent to a standard AES cipher. We
refer to the Diploma thesis of Jakub Klemsa [29] for a more detailed explanation
and analysis of dual ciphers. Some submitted challenges were implementing dual
ciphers of AES. For such implementations, the SideChannelMarvels’ Daredevil
does not reveal the correct key. Namely, Daredevil is configured such that it
targets standard Rijndael Sboxes, so the predicted Sbox outputs do not match
when attacking dual cipher implementations. Jlsca on the other hand predicts
the intermediate values for all possible Sboxes and hence reveals the correct key
for challenges implementing dual ciphers as well.

Jlsca also implements optimization techniques such as Duplicate Column
Removal (DCR) and Conditional Sample Reduction (CSR). Such techniques
enable us to check these 240 dual ciphers in the same amount of time (or even
less) than Daredevil needs for running the analysis. For a more detailed discussion
on the above mentioned reduction techniques, we refer to the paper by Breunesse,
Kizhvatov, Muijrers and Spruyt [12].

Analyzing a single computation trace. Some implementations generated
very long traces, e.g. determined_goldwasser or friendly_wing. In some cases,
we were still able to launch the attack after some (very) limited manual effort in
locating the first (or last) round. We configured our tracing tool to allow tracing
just a specific region of interest by giving lower and upper bounds of sample
indices, thus speeding up the trace acquisition process. Sometimes, we were not
able to launch an automated DCA attack because the traces were too long and
we weren’t successful in locating a usable subset of samples of manageable size.
In cases this was not working, this was mostly caused by the design artificially
extending the execution time, for example by using a virtualization technique
(see [39] for insights on the virtualization technique and a generic approach on
how to recover a devirtualized code from a virtualized one). Specifically Tigress9

7 https://github.com/Riscure/python-trsfile
8 https://github.com/Riscure/Jlsca
9 http://tigress.cs.arizona.edu/

https://github.com/Riscure/python-trsfile
https://github.com/Riscure/Jlsca
http://tigress.cs.arizona.edu/

8 E. Alpirez Bock, A. Treff

was used in favour of code obfuscation throughout the competition (see e.g.
relaxed_allen). Our experience shows that automated DFA might be more
feasible in these cases as one usually will find a fault-sensitive look-up table using
the corresponding DFA scripts in a reasonable amount of time.

2.3 Tooling for DFA

We perform the DFA attack as described in Section 7 of [3]. We use the JeanGrey
tool from the (open source) SideChannelMarvels repository. This tool induces
faults by randomly flipping bits of different regions of the binary. In some cases,
we perform the DFA manually. That is, we inspect the source code and induce
faults by flipping bits in specific lines of code. As an example: state[0] ˆ= 1;
is used to flip one bit of a byte belonging to some state array.

3 Security Assessment and Classification

We evaluate the robustness of the design candidates by testing automated attacks
(DCA and DFA) on them, as well as modifications of such attacks. Our aim is
to find out how many candidates can actually be broken via automated attacks
and without big reverse engineering efforts. We classify the candidates in two
main groups: one group for automated vulnerable and one group for automated
resistant. These groups should reflect the difficulty an adversary might have when
attempting to break each white-box and the time we can expect each white-box
to remain unbroken. This also holds for recovery from a successful attack: if an
attacker succeeds at breaking an implementation using an automated attack,
a new implementation based on the same design can be broken by the same
automated attack. If on the other hand reverse engineering efforts are needed,
even a slightly different design already requires adaptations to the attack. In the
end of this section, we focus on the automated resistant candidates and classify
them according to their size and speed. Some candidates achieve robustness but
demand high numbers in terms of size and execution time. Other candidates,
on the other hand, reflect more useful designs as they provide a good trade-off
between efficiency and security.

In the following, we describe our assessment process. Given a candidate
implementation, we first assess its security via DCA. If we are able to extract the
key from that implementation via DCA, we classify the given candidate under
automated vulnerable, and in a subgroup thereof which we call DCA vulnerable.
If no successful DCA attack can be performed, we run a DFA attack on the
implementation and in case of success, we classify the candidate under DFA
vulnerable. Note that in some cases, a white-box design might resist a traditional
DCA attack by implementing masking countermeasures. In this case a higher
order DCA might be a successful way of attacking [10,9]. Therefore, if neither
first order DCA or DFA succeeds, we perform a second order DCA. Note that the
second order DCA can also be implemented in an automated way as we explain
later in this section.

Security Assessment of White-Box Design Submissions 9

A total of 94 challenges were submitted. One of these challenges,
thirsty_aryabhata, was not a valid submission as it didn’t implement any AES
operation. For this reason, our studies consider a total of 93 challenges.

3.1 DCA Vulnerable Designs

A total of 50 design candidates were vulnerable to a traditional DCA attack, which
we could perform in a completely automated way. That is, we were able to extract
the key from all 50 designs by simply running the DCA script, with no need
of adapting it for any implementation. All of these designs were broken within
minutes during the competition. In fact, a large number of these submissions
were not even white-box designs. 37 designs were reference AES implementations
(or similar) which did not implement any white-box countermeasures. 19 of these
37 designs were submitted by chaes and were all implemented using a total of six
lookup tables each consisting of 256 entries from which the key can be retrieved
directly by looking at the right offset. The remaining 13 candidates did implement
white-box countermeasures, such as code obfuscation or they were table based
implementations (e.g. following the approach proposed by CEJO [14]).

Table 1 lists the design candidates vulnerable to the DCA attack which
showed at least minimal effort of implementing countermeasures – reference
implementations were omitted to improve readability. In the table we rank the
candidates according to the time they remained unbroken during the competition,
where the candidate implementation on the top remained unbroken for the longest
and the candidate at the bottom remained unbroken for the shortest period of
time. We use the same ranking approach for the other tables shown in this paper.
Note however that this ranking does not necessarily reflect the robustness of
an implementation in comparison to other implementations listed in the same
table. Namely in some cases, candidate designs remained unbroken for certain
amounts of time due to the competition setup, and not due to the robustness
of their implementations (see Section 3.2). In the table, the entry size gives the
size of the source code of the implementation in megabytes. Runtime gives the
time in milliseconds needed for one execution of the program, i.e. for performing
one encryption. Time unbroken indicates the time (hours) the implementation
remained unbroken during the competition time.

Besides the 50 candidates mentioned above, 5 further candidates could be
broken via DCA after manually performing some simple modifications on the
source code of the programs. These candidates implemented countermeasures
against the DCA attack such as dummy operations which led to a misalignment
of the software traces, or implementation of the round functions in a non constant
way. That is, the sequence of the operations was performed differently depending
on the input message to be encrypted. However, in most of these cases, the code
was not heavily obfuscated on source level, and particularly the algorithmic part
was usually of magnitudes smaller than the data part of the code (tables, etc.).
Therefore, it was simple to identify the specific non-constant logic or dummy
operations by hand. For some challenges, the difference plots were used to estimate

10 E. Alpirez Bock, A. Treff

rank name id size runtime time unbroken
1 focused_gary 20 17.044 0.24 08:01
2 cranky_mccarthy 27 17.912 5.35 05:19
3 famous_stonebraker 55 1.336 0.02 04:29
4 youthful_hawking 150 18.509 0.34 03:23
5 elastic_brahmagupta 146 12.415 0.02 00:51
6 hopeful_liskov 3 4.702 ε 00:47
7 thirsty_fermat 57 8.404 2.21 00:44
8 happy_yalow 60 5.002 0.07 00:28
9 nostalgic_noether 61 4.97 0.07 00:26
10 lucid_roentgen 24 4.777 1.17 00:22
11 modest_clarke 30 7.559 1.26 00:18
12 zealous_ardinghelli 31 7.572 1.23 00:12
13 stupefied_varahamihira 16 4.704 ε 00:11

Table 1: DCA vulnerable designs. ε corresponds to a runtime of less than 0.01ms.

the position where the non-constant code is being placed (i.e., it occurs on all
rounds vs. only on the last round).

We then modified the codes in a way that they would have a constant
runtime, which enabled us to perform a DCA attack. As an example, we show in
Figure 2 fragments of the candidate pensive_shaw, which included instructions
for increasing the number of operations in order to artificially enlarge trace files
and slow down the attacking process.

switch (*((int *) _obf_3_MOD_AES_encrypt_$pc [0])) {
case 47:

// cT() is computationally expensive
// but always computes the same value
*((unsigned long *)(_obf_3_MOD_AES_encrypt_$locals + 856)) = cT();
break;

// several more cases , all similar to the one above
}

// we replace the computation with its result
u32 cT() { return 1262335309; }

Fig. 2: Source code of pensive_shaw. The code contains a computationally
expensive function cT(), yielding always the same result. We dump the value
and replace the function by its result. This reduces runtime and trace size to a
minimum, making DCA feasible again.

Table 2 lists the five challenges we could attack via DCA after small modifi-
cations. Some design candidates implemented virtualization, but it was simple to
de-virtualize the code and make it run without the virtualization layer.

Security Assessment of White-Box Design Submissions 11

rank name id size runtime time unbroken notes
1 dreamy_fermi 754 1.328 0.33 17:24 dummy code removal
2 relaxed_brown 852 18.461 121.93 05:32 devirtualization
3 reverent_beaver 48 6.187 1.12 01:51 variable to constant rewrite
4 cool_cori 791 1.61 37.16 00:15 dummy code removal
5 pensive_shaw 778 1.518 82.34 00:12 dummy code removal

Table 2: DCA vulnerable designs after minimal modifications

3.2 DFA Vulnerable Designs

DFA was only applied for analyzing candidate designs resistant against the
DCA attack. Namely, some designs implemented virtualization layers, where the
encryption program uses a virtual machine to execute part of the code [38]. In
this context, virtualization made it difficult to implement a traditional DCA
attack as it artificially blew up the number of samples per trace. Instead of a
single atomic operation, a large sequence of operations emulating this atomic
operation is being traced when virtualization is implemented. However in some
cases, virtualization did not represent a countermeasure against DFA, since DFA
works by inducing faults at the right spot of computation. Instead of inducing
a fault (e.g., flipping a single bit) on the aforementioned atomic operation, the
fault is induced at some point of the corresponding (large) sequence of operations.
The fault is propagated throughout the computation, yielding the desired effect
on the output. The following 14 designs could be broken using the JeanGrey tool
from the SideChannelMarvels repository. We could break each design by simply
running the script for (at most) one hour.

rank name id size runtime time unbroken notes
1 compassionate_albattani 816 26.135 174.66 05:46 virtualized
2 xenodochial_northcutt 106 21.969 5.16 04:09
3 smart_ardinghelli 846 3.016 367.99 03:09 virtualized
4 musing_lalande 813 2.562 147.38 02:42 virtualized
5 frosty_hypatia 812 2.575 206.28 02:11 virtualized
6 dazzling_panini 46 38.911 4.67 01:17
7 angry_jones 880 2.97 337.37 00:55 virtualized
8 determined_goldwasser 34 19.987 3.607 00:50
9 relaxed_allen 755 13.274 16.13 00:32 virtualized
10 smart_lamarr 749 13.159 11.79 00:22 virtualized
11 friendly_lewin 811 2.605 0.216 00:21 virtualized
12 friendly_edison 35 21.902 3.12 00:17
13 quirky_mayer 142 8.305 0.87 00:16
14 dazzling_neumann 143 8.302 0.99 00:03

Table 3: Automated DFA vulnerable designs

12 E. Alpirez Bock, A. Treff

Note that half of the designs in Table 3 were broken within minutes after they
were submitted to the competition. Interestingly the first 3 designs remained
unbroken for over three hours, with the first challenge remaining unbroken for
5:46 hours. The reason why some of these challenges remained unbroken for
several hours during the competition might have more to do with the setting
of the competition, and less with the robustness of the challenges themselves.
Namely during the competition, some attackers used automated scripts for con-
stantly checking if new challenges were submitted. The scripts would immediately
download the challenges upon their submission and attack them via DFA or
DCA in an automated way. This way, some attackers were able to break many
challenges within minutes. However the submission server implemented challenge-
response tests such as Captchas in order to stop the scripts from working in such
a fully automated way (see Philippe Teuwen’s talk during the WhibOx 2019
Workshop for notes on his experience attacking the challenges during the 2017
competition [36]). One might assume that the attackers were not always able
to react quickly to such challenge-response tests. This could explain why some
challenges in Table 3 remained unbroken for several hours, while we were able to
break them within an hour during our studies. Additionally, there might have
been cases where a large number of challenges were submitted at the same time,
thus delaying the automated assessment of some challenges.

Manual DFA. Some submissions implemented classic DFA countermeasures,
such as redundant computations (see e.g. [26,1]). Given such countermeasures, it
was not possible to run the DFA script from the SideChannelMarvels repository in
a fully automated way. However for some challenges, it was easy to deactivate such
countermeasures manually as their implementations were not highly obfuscated.
An example can be seen in Figure 3, where we show part of the source code of
silly_feynman. The program implements countermeasures checking for faulty
computations, but it is easy to locate the lines of the code which implement these
countermeasures. Table 4 lists 7 challenges which we successfully attacked via
a manual DFA. For these challenges, we either removed lines of the code such
that our DFA script would run successfully, or we added specific lines of code
which would help us identify the correct spots for injecting faults. We explain
the second approach below.

For some design candidates, running the DFA script did not work accordingly
due to the static nature of how JeanGrey works. JeanGrey modifies the binary
file prior to attempting to perform the DFA attack. The script XORs regions
of the binary file using a type of binary search to iteratively find the correct
spot to induce a fault by reacting to the outcome of the modification. This
approach works well when manipulating actual data such as lookup tables or
when just a simple adjustment of control flow is needed to induce useful faulty
outputs. However, this approach often does not yield a useful result when a more
complicated control flow change is needed.To deal with these shortcomings, we
opted for a slightly more complicated, yet non-automated approach for locating
the correct spot for inducing faults, which we refer to as conditional fault injection.

Security Assessment of White-Box Design Submissions 13

/* dummy round */
SubByte_aes2(dumst , AES2_Sprime[tindex], permu1 , permu2);
// S-box
ShiftRows(dumst , 1);
MixColumns(dumst , aes2_mixcolprod[tindex]); /* transformed mixcolprod table */
AddRoundKey_aes2(dumst , dumclef , permu1 , permu2);

/* real round */
SubByte_aes2(st , AES2_Sprime[tindex], permu1 , permu2);
// S-box
ShiftRows(st, 1);
MixColumns(st, aes2_mixcolprod[tindex]); /* transformed mixcolprod table */
AddRoundKey_aes2(st , clef , permu1 , permu2);

/* fault check round */
SubByte_aes2(fltst , AES2_Sprime[tindex], permu0 , permu0);
// S-box
ShiftRows(fltst , 1);
MixColumns(fltst , aes2_mixcolprod[tindex]); /* transformed mixcolprod table */
AddRoundKey_aes2(fltst , clef , permu0 , permu0);

Fig. 3: Source code of silly_feynman. The code included comments explaining
the purpose of the functions defined. This made it very easy to locate functions
implementing DFA countermeasures, such as redundant computation.

Conditional fault injection consisted on altering the source code in such way that
we would keep track of some internal variable (e.g. a counter), and we would inject
a fault only after the value of that variable would reach some threshold. The idea
here is that the repeated execution of some lines of code usually corresponds to
the execution of some round function and the value of the variable could help
us recognize the round that is being executed. For instance, one can observe
an internal loop counter which starts, say, at value 0 and reaches a value of 60
000 after all AES rounds have been computed. This internal loop counter might
already belong to the implementation itself or we can add it manually. The first
45 000 iterations will most probably not yield any useful fault injection, as we
usually target the eighth or ninth round for injecting faults. On the other hand,
one may assume that targeting one of the remaining 15 000 iterations might yield
a useful fault injection which can then be done in an automated way using the
internal counter as a trigger.

We implemented the approach mentioned above by adding a few lines to
the corresponding implementations, specifically crafted to the specific imple-
mentation, as outlined in Figure 4. One important aspect to consider is that
these modifications do not need to work for any specific input. It suffices to
obtain correctly faulted outputs for one specific plaintext-ciphertext pair chosen
beforehand to compute the last round key. In those cases, we took advantage
of the fact that we had access to the corresponding source code of the design
candidates. Namely in some cases a relatively simple inspection of the source
code helped us locate the precise spots for injecting faults and performing a
successful DFA attack.

Note that all challenges listed in Table 4 remained unbroken during the
competition for at least one hour. This suggests that attackers also needed to

14 E. Alpirez Bock, A. Treff

void AES_128_encrypt(char* ciphertext , char* plaintext)
{

int COUNTER = atoi(ARGV [1]); // injected code
for (int i = 0; i < 60000; i++) {

if (COUNTER == i) { // injected code
continue;

}
func(a,b,c,d); // original WB code

}
}

Fig. 4: Example for conditional fault injection. We add code to skip a specific
loop iteration. The exact iteration is given as a parameter to enable automated
search of useful values by repeated execution.

rank name id size runtime time unbroken notes/
1 festive_jennings 11 23.716 0.09 24:01 brute-forced last 4 bytes
2 eloquent_indiana 52 14.897 23.80 24:00 attacked loop structure
3 nifty_heisenberg 48 14.650 3.48 18:23 removed DFA protection
4 vigilant_wescoff 12 3.465 92.74 10:59 faulted 32-byte state array
5 friendly_wing 132 22.606 18.19 02:05 attacked loop structure
6 silly_feynman 742 0.072 0.10 01:09 removed DFA protection
7 agitated_wilson 141 11.599 43.43 01:01

Table 4: Manual DFA vulnerable designs. The top challenge festive_jennings
earned one strawberry point during the competition.

first inspect the code and implement some changes before actually attacking
them or extracting their secrets. This assumption is more evident when focusing
on the top four challenges, which remained unbroken for 11 to 24 hours. The
top challenge festive_jennings even managed to gain one strawberry point
during the competition, which was awarded if the challenge managed to remain
unbroken for at least 24 hours.

3.3 Second Order DCA

We were unable to recover the key of design candidate priceless_stallman
via DCA or DFA attacks. In particular, it achieved resistance against DCA
via a masking scheme, where intermediate values were masked with different
shares for each input plaintext. We were able, however, to successfully attack
this design candidate via second order DCA [10]. As it is known for higher-
order DCA, the number of samples used for performing an analysis increases
quadratically compared to a first order DCA attack. This is due to the nature
that all possible combinations of samples are evaluated, which results in a total
number of n(n− 1)/2 samples for second-order analysis compared to n samples
for first-order analysis. Using optimization techniques such as DCR and CSR [12],

Security Assessment of White-Box Design Submissions 15

this number can be heavily reduced and higher-order attacks become feasible.
Figure 5 shows a difference plot for the given challenge, showing periods of
execution where the data is heavily changed. Locating such regions helped us
identify the correct spot for recording software execution traces and perform a
second order DCA. We ran our analysis for about 8 hours in order to extract the
first 8 key bytes in parallel. Afterwards, the analysis for the other 8 key bytes
ran for another 8 hours resulting in a total runtime of about 16 hours using Jlsca.
Table 5 summarizes some details of the implementation.

Fig. 5: Difference plot for priceless_stallman. Accumulation of dark spots
indicates a change of data and control flow whereas green regions resemble
constant parts of the implementation. We successfully recovered the key using a
second-order analysis of the first quarter of the heavily changing region in the
beginning (approx. 20 000 samples).

rank name id size runtime time unbroken notes
1 priceless_stallman 738 5.386 0.29 01:18 implements masking

Table 5: Second order DCA vulnerable design

Interestingly, this challenge only remained unbroken for a bit more than one
hour during the competition. We assume that a more efficient attack path can
be taken to obtain the secret key, such as possibly a variation of a DFA attack.
Namely, such masking countermeasures, where the shares are determined by the
input message, do not imply robustness against DFA since some input plaintext
m will always use the same masking. Thus in theory, one could perform a DFA,
since one always uses the same input message and injects different faults. We refer
to [9] for alternative attack strategies on masked white-box implementations.

16 E. Alpirez Bock, A. Treff

3.4 Automated Resistant Challenges

A total of 16 challenges remained resistant to our attempts using DCA and DFA
attacks. 12 of these challenges earned strawberry points during the competition
time. These challenges implemented notably stronger layers of obfuscation, such
that we were not able to remove the virtualization or masking techniques as
described in the previous sections. Table 6 lists the candidate challenges that we
were not able to break. The first part of the table shows the candidates which
earned points during the competition, i.e. which remained unbroken for at least
24 hours. The bottom part of the table consists of candidates which did not earn
any points. Note however that the candidates in the bottom part of the table
also remained unbroken for a considerable amount of time, possibly confirming
that those candidates also provide some robustness against automated attacks.

rank name id size runtime time unbroken notes
1 adoring_poitras 777 27.252 379.83 685:42 winning challenge
2 competent_agnesi 815 17.359 6.923 290:15
3 bright_morse 753 22.649 163.14 283:50
4 vibrant_goldberg 877 30.126 5.15 254:59
5 hungry_clarke 845 10.925 230.76 196:44
6 jolly_davinci 751 18.299 47.77 190:09
7 nervous_montalcini 644 16.17 0.07 139:19 fastest challenge
8 sad_goldstine 786 10.401 143.83 61:09 smallest challenge*
9 mystifying_galileo 84 19.236 114.59 32:33
10 elastic_bell 49 20.709 261.05 27:11
11 practical_franklin 49 15.527 2.58 24:01
12 agitated_ritchie 44 22.946 20.33 24:00
13 clever_hoover 32 18.319 0.97 20:14
14 gallant_ramanujan 153 0.898 0.04 15:15
15 peaceful_williams 47 11.950 2.29 11:47
16 eager_golick 572 38.146 83.53 06:22

Table 6: Unbroken candidates. The first part of the table consists of challenges
which earned points during the competition phase. sad_goldstine was the
smallest challenge from those which earned any points.

Given that most of these challenges remained unbroken for a considerable
time during the competition phase, it is fair to assume that attackers were forced
to invest considerable reverse engineering efforts for breaking them. Consider for
instance the winning candidate adoring_poitras, which remained unbroken for
28 days. This challenge was submitted by the CryptoLux10 team consisting of
Biryukov and Udovenko and was subsequently broken by the CryptoExperts11
team consisting of Goubin, Paillier, Rivain and Wang. In [25] the CryptoExperts

10 https://www.cryptolux.org/index.php/Home
11 https://www.cryptoexperts.com/technologies/white-box/

Security Assessment of White-Box Design Submissions 17

team provides a step-by-step guide on their approach applied for breaking the
challenge. Their main techniques were based on reverse engineering and algebraic
attacks. The authors explain that the code uses different obfuscation techniques
such as name obfuscation (giving each function and variable random, unrelated
names) and virtualization. Additionally, the source code consists of many functions
which are never used (up to 80%). This was probably implemented with the
goal of making it difficult for an attacker to deobfuscate the code. In fact, the
process of deobfuscating and cleaning the code such that it consists only of
functions which are actually used demands large efforts as it can only be done
manually. Once this is done, more generalized methodologies can be followed in
order to break such obscure implementations (the authors list further steps such
as single static analysis, transformation of the circuit, circuit minimization, data
dependency analysis, etc.).

The high levels of obfuscation applied to adoring_poitras certainly implied
high costs in terms of size and efficiency of the design. While adoring_poitras
was the strongest design in terms of robustness, other designs presented better
numbers in terms of size and efficiency, while also achieving a notable level of ro-
bustness. For instance the 7th ranked challenge nervous_montalcini was notably
faster than all other designs listed in Table 6. Thereby, nervous_montalcini
remained unbroken for 5 days. In terms of size, the 5th and 8th ranked challenges
were notably smaller than the rest, with sizes of 10.9 and 10.4 MB respectively.
Note that the 5th ranked challenge, hungry_clarke remained unbroken for more
than 8 days. Figure 6 plots the top 7 ranked implementations of Table 6 according
to their size and execution time. The legend displays the corresponding challenge
names with the number of days they remained unbroken during the competition.
These 7 challenges remained unbroken for at least 5 days, which was significantly
longer than for the rest of the challenges.

As we observe in this plot, the winning challenge adoring_poitras largely
demands a longer execution time than the rest. In terms of size, only
vibrant_goldberg is slightly larger than adoring_poitras. Out of these 7
designs, challenge 7, nervous_montalcini is the fastest one and challenge 5,
hungry_clarke, is by far the smallest one. These two challenges however remained
unbroken for only 8 and 6 days respectively. On the other hand, the second
ranked candidate, competent_agnesi, remained unbroken for up to 12 days while
providing relatively good numbers in terms of size and efficiency, specially when
comparing it with the winning challenge.

A design such as competent_agnesi provides very useful steps towards white-
box implementations for real life applications due to its positive numbers in terms
of size and efficiency. Namely in some scenarios, it might be useful for a white-box
design to remain unbroken for 12 days, as long as one can update it regularly.
As mentioned before, if one chooses this avenue for achieving security, further
attention should be placed on how the updated versions are compiled. Namely,
if the recompiled version of the white-box program is similar to the first one,
an adversary might need much less time to attack the recompiled version. This
is because while analyzing the first program, the adversary learns a lot about

18 E. Alpirez Bock, A. Treff

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
·107

Time

Si
ze

28 adoring_poitras
12 competent_agnesi
11 bright_morse
10 vibrant_goldberg
8 hungry_clarke
8 jolly_davinci
6 nervous_montalcini

Fig. 6: Overview of the most robust candidates with regard to their size and
execution time

the structure, countermeasures and obfuscation techniques implemented by the
program. If the recompiled program applies the same techniques, the adversary
already has an advantage as he knows how the recompiled white-box can be
analyzed. The CryptoExperts team also makes this observation when saying that
breaking a re-compiled version of adoring_poitras (i.e. a program generated
with the same compiler, but using a different key and different randomness) would
certainly demand less time. The authors point out that a lot of the time needed
for breaking the challenge was spent trying out different reverse-engineering
techniques and attack strategies which turned out to be ineffective. Therefore
when analyzing a re-compiled version of adoring_poitras, the authors would
at least already know which attack strategies do not work for that class of
implementations. Moreover, part of their analyses could even be automated,
which would reduce the attacking time even more.

3.5 2019 Edition of the White-Box Competition

In 2019 Cybercrypt organized a second edition of the white-box capture the
flag challenge [18]. Here, designers were again invited to submit candidate im-
plementations and attackers were challenged with breaking them by extracting
their embedded secret keys. Additionally, candidate designs were also assessed
with regard to their one-wayness property (see [19]). That is, the white-box
encryption programs should not allow one to decrypt. This property was assessed
in the competition by asking the attackers to find a pre-image for certain target
ciphertexts. In this competition, the efficiency of the programs was also assessed.

Security Assessment of White-Box Design Submissions 19

Namely, the more efficient a program was, the most points it would obtain when
remaining robust over time. Efficiency was measured with regard to the running
time, code size and memory consumption of the programs.

A total of 27 challenges were submitted. 22 of these challenges resisted key
extraction attacks for at least one day, where some of those challenges were
submitted in the early stages of the competition. Impressively, 3 challenges
submitted by the CryptoLux team remained unbroken during the competition
time: hopeful_kirch, goofy_lichterman and elegant_turing. Later after the
competition ended, all three challenges were broken by the CryptoExperts team
(hopeful_kirch) and by the whiteCryption12 team (goofy_lichterman and
elegant_turing) [17]. However, they could only be broken 30, 50 and 51 days
after their publication. In comparison to the 2017 edition, the 2019 edition of the
white-box competition showed big improvements in terms of the security levels
achieved by the submitted candidates.

4 Real-life usefulness of white-box cryptography

In light of the state-of-the-art of academic research on white-box cryptography for
AES presented in this paper, the practical usefulness of white-box cryptography is
not immediate. In this section, we explore relevant parameters for the usefulness
of white-box cryptography in practice.

Mitigating attacks. There is a substantial difference between white-box imple-
mentations that can be attacked by automated attacks and those that require
substantial amounts of human reverse-engineering. As discussed in the last sec-
tion, white-box designs vulnerable to automated attacks could be broken within
minutes. However if one has a design paradigm that reliably generates white-
box implementations that require substantial reverse-engineering, then one can
achieve a meaningful level of security. Here, we can expect an adversary to need
a large amount of time for breaking the white-box design, and we can opt to
regularly updating the design implementation. As one only needs to update
software, renewability cycles can be short and thus avoid reverse-engineering
attacks.

A second important consideration for attack mitigation is the scalability of
an attack, as we have mentioned before. That is, reverse-engineering one instance
of a white-box implementation of generation X should not allow the attacker to
implement an automated attack that, with limited modifications, can attack all
instances of generation X. That is, for each new instance, the attacker should
again spend a considerable amount of reverse-engineering effort.

White-box implementations robust against code-lifting attacks. The designs sub-
mitted to the CHES 2017 CTF Challenge aim to achieve robustness against
key extraction attacks. However in practice, white-box designs also implement
countermeasures against code-lifting attacks, where an adversary simply copies
12 https://www.intertrust.com/products/application-shielding/

20 E. Alpirez Bock, A. Treff

a white-box design and runs it on an implementation of their choice. In the
literature (and in practice) properties achieved by white-box designs as means to
counter code-lifting attacks include the following: (1) incompressibility [19,23],
where a program is implemented such that it cannot be compressed and it only
remains functional on its complete form. The idea is that if the program is
implemented in a very large size, then transmitting it over the network should be
difficult, making it thus difficult for an adversary to copy it and run it on a device
of its choice. (2) Hardware-binding [4,2], where a program is configured such that
it is only functional on a precise hardware device. And (3) application-binding
[16,2], where a program should only be functional within a precise application.
Here, robustness against code-lifting can be aimed if the application implements,
for instance, authentication operations.

If the white-box under attack effectively implements one of these countermea-
sures, an adversary might need a significantly larger amount of time to attack
it. Namely in many cases, an adversary executes and analyzes the white-box
on a device of his choice. This is specially relevant when performing DCA or
DFA attacks where the adversary collects data over several executions of the
code. However the binding countermeasure would stop him from conducting such
analyses so easily and would to the least force the adversary to first reverse
engineer the program such that it can run on the device of the adversary.

Side-stepping attacks. Another way to side-step the powerful key extraction
attacks on white-box implementations is to use non-standard ciphers, as an
alternative AES (or DES). We are not aware of this avenue being widely followed
in practical applications.

Protection techniques not specific to white-box cryptography. Further anti-reverse
engineering techniques, such as binary packers or self-modifying code would
certainly increase the robustness of a white-box program, specially regarding to
its binary file. We note however that these techniques could not be considered
within the white-box competition. Namely, designers were required to upload the
source code of their design candidates, written in plain C without any further
includes, linked libraries or application of binary packers.

Acknowledgments. The analyses presented in this work were carried out while
Alexander Treff was an intern at Riscure B.V., where he was advised by Albert
Spruyt and Kevin Valk, which he hereby acknowledges. The authors are grateful
to Cees-Bart Breunesse and Ilya Kizhvatov, who provided additional support
during the internship. The authors would like to thank Chris Brzuska and Wil
Michiels for their helpful feedback during the preparation of this paper.

References

1. A. Aghaie, A. Moradi, S. Rasoolzadeh, A. R. Shahmirzadi, F. Schellenberg, and
T. Schneider. Impeccable circuits. Cryptology ePrint Archive, Report 2018/203,
2018. https://eprint.iacr.org/2018/203.

https://eprint.iacr.org/2018/203

Security Assessment of White-Box Design Submissions 21

2. E. Alpirez Bock, A. Amadori, C. Brzuska, and W. Michiels. On the security goals
of white-box cryptography. Cryptology ePrint Archive, Report 2020/104, 2020.
https://eprint.iacr.org/2020/104.

3. E. Alpirez Bock, J. W. Bos, C. Brzuska, C. Hubain, W. Michiels, C. Mune, E. San-
felix Gonzalez, P. Teuwen, and A. Treff. White-box cryptography: Don’t forget
about grey-box attacks. Journal of Cryptology, 32(4):1095–1143, Oct 2019.

4. E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, and W. Michiels. Security
reductions for white-box key-storage in mobile payments. Cryptology ePrint Archive,
Report 2019/1014, 2019. https://eprint.iacr.org/2019/1014.

5. C. H. Baek, J. H. Cheon, and H. Hong. White-box aes implementation revisited.
Journal of Communications and Networks, 18(3):273–287, June 2016.

6. E. Barkan and E. Biham. In how many ways can you write Rijndael? In Y. Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 160–175. Springer, Heidel-
berg, Dec. 2002.

7. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525.
Springer, Heidelberg, Aug. 1997.

8. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In H. Handschuh and A. Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 227–240. Springer, Heidelberg, Aug. 2004.

9. A. Biryukov and A. Udovenko. Attacks and countermeasures for white-box designs.
In T. Peyrin and S. D. Galbraith, editors, Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceed-
ings, Part II, volume 11273 of Lecture Notes in Computer Science, pages 373–402.
Springer, 2018.

10. A. Bogdanov, M. Rivain, P. S. Vejre, and J. Wang. Higher-order DCA against
standard side-channel countermeasures. In Constructive Side-Channel Analysis
and Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings, pages 118–141, 2019.

11. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In W. Fumy, editor, EU-
ROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer, Heidelberg, May
1997.

12. C.-B. Breunesse, I. Kizhvatov, R. Muijrers, and A. Spruyt. Towards fully automated
analysis of whiteboxes: Perfect dimensionality reduction for perfect leakage. Cryptol-
ogy ePrint Archive, Report 2018/095, 2018. https://eprint.iacr.org/2018/095.

13. J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another
attempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.
org/2006/468.

14. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryptography
and an AES implementation. In K. Nyberg and H. M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, Aug. 2003.

15. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box DES
implementation for DRM applications. In J. Feigenbaum, editor, Security and
Privacy in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume
2696 of LNCS, pages 1–15. Springer, 2003.

16. T. Cooijmans, J. de Ruiter, and E. Poll. Analysis of secure key storage solutions
on android. In Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM ’14, pages 11–20. ACM, 2014.

https://eprint.iacr.org/2020/104
https://eprint.iacr.org/2019/1014
https://eprint.iacr.org/2018/095
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468

22 E. Alpirez Bock, A. Treff

17. CryptoLux. White-box cryptography. https://www.cryptolux.org/index.php/
Whitebox_cryptography.

18. cybercrypt. Ches 2019 capture the flag challenge - the whibox contest - edition 2,
2019. https://www.cyber-crypt.com/whibox-contest/.

19. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security notions
for symmetric encryption schemes. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 247–264. Springer, Heidelberg, Aug. 2014.

20. P. Derbez, P.-A. Fouque, B. Lambin, and B. Minaud. On recovering affine encodings
in white-box implementations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(3):121–149, Aug. 2018.

21. ECRYPT. Ches 2017 capture the flag challenge - the whibox contest, 2017. https:
//whibox.cr.yp.to/.

22. EMV Mobile Payment. Software-based mobile payment security requirements v1.2,
2019. https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-
G01-V1.2_SBMP_Security_Requirements.pdf.

23. P.-A. Fouque, P. Karpman, P. Kirchner, and B. Minaud. Efficient and provable
white-box primitives. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 159–188. Springer, Heidelberg, Dec. 2016.

24. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of white box DES
implementations. In C. M. Adams, A. Miri, and M. J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 278–295. Springer, Heidelberg, Aug. 2007.

25. L. Goubin, P. Paillier, M. Rivain, and J. Wang. How to reveal the secrets of an
obscure white-box implementation. Journal of Cryptographic Engineering, Apr
2019.

26. X. Guo and R. Karri. Invariance-based concurrent error detection for advanced
encryption standard. In Proceedings of the 49th Annual Design Automation Con-
ference, DAC ’12, pages 573–578, New York, NY, USA, 2012. ACM.

27. M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher by injecting
faults. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Management,
ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18, 2002,
Revised Papers, volume 2696 of LNCS, pages 16–31. Springer, 2003.

28. M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee and
D. Nyang, editors, ICISC 10, volume 6829 of LNCS, pages 278–291. Springer,
Heidelberg, Dec. 2011.

29. J. Klemsa. Side-channel attack analysis of AES white-box schemes. Master’s
thesis, Czech Technical University in Prague, 2016. https://github.com/fakub/
DiplomaThesis.

30. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, Heidelberg,
Aug. 1999.

31. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two attacks on a
white-box AES implementation. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 265–285. Springer, Heidelberg, Aug. 2014.

32. H. E. Link and W. D. Neumann. Clarifying obfuscation: Improving the security
of white-box encoding. Cryptology ePrint Archive, Report 2004/025, 2004. http:
//eprint.iacr.org/2004/025.

33. J. A. Muir. A tutorial on white-box AES. Cryptology ePrint Archive, Report
2013/104, 2013. http://eprint.iacr.org/2013/104.

34. Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai white-box
AES implementation. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume
7707 of LNCS, pages 34–49. Springer, Heidelberg, Aug. 2013.

https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cyber-crypt.com/whibox-contest/
https://whibox.cr.yp.to/
https://whibox.cr.yp.to/
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://github.com/fakub/DiplomaThesis
https://github.com/fakub/DiplomaThesis
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2004/025
http://eprint.iacr.org/2013/104

Security Assessment of White-Box Design Submissions 23

35. Y. D. Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated white-box
AES implementation. In G. Gong and K. C. Gupta, editors, INDOCRYPT 2010,
volume 6498 of LNCS, pages 292–310. Springer, Heidelberg, Dec. 2010.

36. Philippe Teuwen. Grey-box attacks, four years later. 2019 WhibOx
Workshop, Darmstadt, Germany. https://www.cryptoexperts.com/whibox2019/
slides-whibox2019/Philippe_Teuwen.pdf.

37. M. Rivain and J. Wang. Analysis and improvement of differential computation
attacks against internally-encoded white-box implementations. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(2):225–255, Feb. 2019.

38. R. Rolles. Unpacking virtualization obfuscators. In Proceedings of the 3rd USENIX
Conference on Offensive Technologies, WOOT’09, pages 1–1, Berkeley, CA, USA,
2009. USENIX Association.

39. J. Salwan, S. Bardin, and M.-L. Potet. Symbolic deobfuscation: From virtualized
code back to the original. In C. Giuffrida, S. Bardin, and G. Blanc, editors, Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 372–392, Cham,
2018. Springer International Publishing.

40. Smart Card Alliance Mobile and NFC Council. Host card emulation 101. white
paper, 2014. https://www.securetechalliance.org/wp-content/uploads/HCE-
101-WP-FINAL-081114-clean.pdf.

41. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-
box DES implementations with arbitrary external encodings. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 264–277.
Springer, Heidelberg, Aug. 2007.

42. Y. Xiao and X. Lai. A secure implementation of white-box AES. In 2009 2nd
International Conference on Computer Science and its Applications, pages 1–6.
IEEE Computer Society, 2009.

https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Philippe_Teuwen.pdf
https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Philippe_Teuwen.pdf
https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf
https://www.securetechalliance.org/wp-content/uploads/HCE-101-WP-FINAL-081114-clean.pdf

	Security Assessment of White-Box Design Submissions of the CHES 2017 CTF Challenge

