
New Multi-bit Differentials to

Improve Attacks Against ChaCha

Murilo Coutinho
murilo9988@gmail.com

T. C. Souza Neto
tsouzaneto@gmail.com

March 2020

Abstract

The stream cipher ChaCha is an ARX type algorithm developed by
Daniel Bernstein in 2008. Since its development, ChaCha has received
a lot of attention and is currently being used in several systems. The
most powerful cryptanalysis of reduced versions of this cipher was pre-
sented by Choudhuri and Maitra on FSE 2017 by using differential-linear
cryptanalysis. In their work they show that is possible to obtain linear
relations between bits from different rounds with high probability and use
the proposed equations to create multi-bit differentials and improve pre-
vious attacks. In this work, we provide new linear approximations that
can be used in a similar fashion but with increased efficiency. Therefore,
we show that using these new equations is possible to improve the attacks
against 6 and 7 rounds of ChaCha.

1 Introduction

In 2005, Bernstein proposed the stream cipher Salsa20 [4] as a contender to
the eSTREAM [19], the ECRYPT Stream Cipher Project. As outlined by the
author, Salsa20 is an ARX type family of algorithms which can be ran with
several number of rounds, including the well known Salsa20/12 and Salsa20/8
versions.

In 2008, Bernstein proposed some modifications to Salsa20 in order to pro-
vide better diffusion per round and higher resistance to cryptanalysis. These
changes originated a new stream cipher, a variant which he called ChaCha
[3]. Although Salsa20 was one of the winners of the eSTREAM competition,
ChaCha has received much more attention through the years. Nowadays, we
see the usage of this cipher in several projects and applications.

ChaCha, along Poly1305 [2], is in one of the cipher suits of the new TLS 1.3
[14], which is actually used by Google on both Chrome and Android. ChaCha
is used not only in TLS but in many other protocols such as SSH, Noise, and
S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha in IKE
and IPsec. ChaCha is used not only for encryption, but also as a pseudo-random

1

murilo9988@gmail.com
tsouzaneto@gmail.com

number generator. For example, in any operating system running Linux kernel
4.8 or newer [18, 21]. Additionally, ChaCha is used in several applications, for
example, WireGuard (VPN), Keepass (password manager), and Veracrypt (disk
encryption). See [12] for a huge list of applications, protocols, and libraries using
ChaCha.

Related Work. Since ChaCha is so heavily used, it is very important
to understand its security level. Indeed, the cryptanalysis of ChaCha is well
understood and several authors studied its security [1, 11, 6, 10, 13, 16, 15, 17,
5, 20, 22, 8, 7, 9] which show weaknesses in the reduced rounds of the cipher.

The cryptanalysis of Salsa20 was introduced by Crowley [6] in 2005. Crowley
developed a differential attack against Salsa20/5, namely the 5-round version of
Salsa20, and received the $1000 prize offered by Bernstein for the most inter-
esting Salsa20 cryptanalasys in that year. In 2006, Fischer et al [10] improved
the attack against Salsa20/5 and presented an attack against Salsa20/6.

Probably the most important cryptanalysis in this regard was proposed by
Aumasson et al. at FSE 2008 [1] with the introduction of Probabilistic Neu-
tral Bits (PNBs), showing attacks against Salsa20/7, Salsa20/8, ChaCha20/6
and ChaCha20/7. After that, several authors proposed small enhancements
on the attack of Aumasson et al. The work by Shi et al [20] introduced the
concept of Column Chaining Distinguisher (CCD) to achieve some incremental
advancements over [1] for both Salsa and ChaCha.

Maitra, Paul and Meier [15] studied an interesting observation regarding
round reversal of Salsa, but no significant cryptanalytic improvement could be
obtained using this method. Maitra [16] used a technique of Chosen IVs to
obtain certain improvements over existing results. Dey and Sarkar [8] showed
how to chose values for the PNB to further improve the attack.

However, the best results known so far concerning attacks to Salsa and
ChaCha were given by Choudhuri and Maitra [5] in FSE 2017. They used the
technique of differential-linear cryptanalysis and investigated the mathematical
structure of both Salsa and ChaCha in order to find differential characteristics
with much higher biases.

Our Contribution. In this work, we provide new linear approximations
that can be used to improve attacks against ChaCha. At first sight, this linear
approximations seem useless leading to a worst differential-linear bias. However,
they have fewer terms which leads to fewer non-linear transitions when extending
the attack one round further and to many more neutral bits when applying
the techniques of Aumasson [1]. We summarize our findings along with other
significant attacks for comparison in Table 1. We should note that it is possible
to find attacks with less complexity for related key attacks, but we do not
consider them in this work.

Organization of the paper. In Section 2, we provide an overview of
previous results, including a description of ChaCha, a summary of differential-
linear cryptanalysis and a review of the techniques developed by Choudhuri and
Maitra in [5]. In Section 3, we theoretically develop new linear relations between
bits of different rounds for ChaCha and then show that these new results leads
to a better distinguisher for ChaCha reduced to 6 rounds. Then, in Section

2

Rounds Time Complexity Data Complexity Reference
4 26 26 [5]

4.5 212 212 [5]
5 216 216 [5]

2139 230 [1]
2136 228 [20]
2130 235 [5]

6 2127.5 237.5 [5]
2116 2116 [5]

2102.2 256 This work
275 275 This work
248 227 [1]

2246.5 227 [20]
7 2238.9 296 [16]

2237.7 296 [5]
2231.9 250 This work

Table 1: The best attacks against ChaCha with 256-bit key.

4, we show how these new results may be applied to attack ChaCha using the
Probabilitic Neutral Bits technique, introduced by Aumasson [1], effectively
improving attack against ChaCha reduced to 6 and 7 rounds. Finnaly, Section
5 presents the conclusion.

2 Specifications and Preliminaries

The main notation we will use through out the paper is defined in Table 2. Next
we define the algorithm ChaCha.

2.1 ChaCha

The stream cipher Salsa20 was proposed by Bernstein [4] to the eSTREAM
competition and latter Bernstein proposed ChaCha [3] as an improvement of
Salsa20. ChaCha consists of a series of ARX (addition, rotation, and XOR)
operations on 32-bit words, being highly efficient in software and hardware.
Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232

and 16 constant-distance rotations.
ChaCha operates on a state of 64 bytes, organized as a 4×4 matrix with 32-

bit integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1 and
a 64-bit counter t0, t1 (we may also refer to the nonce and counter words as IV
words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For ChaCha, we have the following initial state matrix:

3

Notation Description
X a 4× 4 state matrix of ChaCha
X(0) initial state matrix of ChaCha
X(R) state matrix after application of R round functions
Z output of ChaCha, Z = X +X(R)

x
(R)
i ith word of the state matrix X(R) (words arranged in row major)

x
(R)
i,j jth bit of ith word of the state matrix X(R)

x+ y addition of x and y modulo 232

x− y subtraction of x and y modulo 232

x⊕ y bitwise XOR of x and y
x≪ n rotation of x by n bits to the left
x≫ n rotation of x by n bits to the right

∆x XOR difference of x and x′. ∆x = x⊕ x′

∆
(R)
i differential ∆

(R)
i = x

(R)
i ⊕ x′(R)

i

∆
(R)
i,j differential ∆

(R)
i,j = x

(R)
i,j ⊕ x′

(R)
i,j

Pr(E) probability of occurrence of an event E
ε(x1⊕...⊕xm) bias of event E = {∆x1 ⊕ ...⊕∆xm = 0}
ID input differential
OD output differential

Table 2: Notation

X(0) =


x

(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 . (1)

The state matrix is modified in each round by a Quarter Round Function

(QRF), named QR
(
x

(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which receives and updates

4 integers in the following way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b

x
(r−1)
d′ = (x

(r−1)
d ⊕ x(r−1)

a′) ≪ 16

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′

x
(r−1)
b′ = (x

(r−1)
b ⊕ x(r−1)

c′) ≪ 12

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′

x
(r)
d = (x

(r−1)
d′ ⊕ x(r)

a) ≪ 8

x
(r)
c = x

(r−1)
c′ + x

(r)
d

x
(r)
b = (x

(r−1)
b′ ⊕ x(r)

c) ≪ 7

(2)

One round of ChaCha is defined as 4 applications of QR. There is, however,
a difference between odd and even rounds. For odd rounds r ∈ {1, 3, 5, 7, ...},

4

X(r) is obtained from X(r−1) by applying(
x

(r)
0 , x

(r)
4 , x

(r)
8 , x

(r)
12

)
= QR

(
x

(r−1)
0 , x

(r−1)
4 , x

(r−1)
8 , x

(r−1)
12

)(
x

(r)
1 , x

(r)
5 , x

(r)
9 , x

(r)
13

)
= QR

(
x

(r−1)
1 , x

(r−1)
5 , x

(r−1)
9 , x

(r−1)
13

)(
x

(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14

)
= QR

(
x

(r−1)
2 , x

(r−1)
6 , x

(r−1)
10 , x

(r−1)
14

)(
x

(r)
3 , x

(r)
7 , x

(r)
11 , x

(r)
15

)
= QR

(
x

(r−1)
3 , x

(r−1)
7 , x

(r−1)
11 , x

(r−1)
15

) .

On the other hand, for even rounds r ∈ {2, 4, 6, 8, , ...} X(r) is calculated from
X(r−1) by applying(

x
(r)
0 , x

(r)
5 , x

(r)
10 , x

(r)
15

)
= QR

(
x

(r−1)
0 , x

(r−1)
5 , x

(r−1)
10 , x

(r−1)
15

)(
x

(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12

)
= QR

(
x

(r−1)
1 , x

(r−1)
6 , x

(r−1)
11 , x

(r−1)
12

)(
x

(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13

)
= QR

(
x

(r−1)
2 , x

(r−1)
7 , x

(r−1)
8 , x

(r−1)
13

)(
x

(r)
3 , x

(r)
4 , x

(r)
9 , x

(r)
14

)
= QR

(
x

(r−1)
3 , x

(r−1)
4 , x

(r−1)
9 , x

(r−1)
14

) .

The algorithm ChaCha20/R is then defined as the sum of the initial state
with the state after R rounds

Z = X +X(R).

One should note that it is possible to parallelize each application of the QRF
on each round and also that each round is reversible. Hence, we can compute
X(r−1) from X(r). For more information on ChaCha, we refer to [3].

2.2 Differential-Linear Analysis

In this section, we describe the technique of Differential-Linear cryptanalysis
as used to attack ChaCha. Let X(r) and X ′(r) be two state matrices after r
rounds. We denote the differential of the state matrix as ∆X(r) = X(r) ⊕X ′(r)
and the differential of individual words as ∆x

(r)
i = x

(r)
i ⊕x

′(r)
i . The cryptanalysis

starts by defining a differential for the initial state, called input differential ID.
Then, we try to find biases after a certain number of rounds r, denoted as

output differential OD. Let x
(r)
i,j denote the j-th bit of the i-th word of the state

matrix after r rounds and let J be a set of bits. Also, let σ and σ′ be linear
combinations of bits in the set J

σ =

 ⊕
(i,j)∈J

x
(r)
i,j

 , σ′ =

 ⊕
(i,j)∈J

x
′(r)
i,j

 .

Then

∆σ =

 ⊕
(i,j)∈J

∆x
(r)
i,j


5

is the linear combination of the differentials. We can write

Pr
[
∆σ = 0|∆X(0)

]
=

1

2
(1 + εd), (3)

where εd is a differential bias.
Using linear cryptanalysis, it is possible to go further and find new relations

between the initial state matrix and the state matrix after R > r rounds. To
do so, let L denote another set of bits and define

ρ =

 ⊕
(i,j)∈L

x
(R)
i,j

 , ρ′ =

 ⊕
(i,j)∈L

x
′(R)
i,j

 .

Then, as before,

∆ρ =

 ⊕
(i,j)∈L

∆x
(R)
i,j

 .

We can define

Pr[σ = ρ] =
1

2
(1 + εL),

where εL is the linear bias. We want to find γ such that

Pr
[
∆ρ = 0|∆X(0)

]
=

1

2
(1 + γ).

To compute γ, we write (to simplify the notation we make the conditional
to ∆X(0) implicit):

Pr[∆σ = ∆ρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′

]
=

1

2
(1 + εL) · 1

2
(1 + εL) +

1

2
(1− εL) · 1

2
(1− εL)

=
1

2

(
1 + ε2

L

)
.

Then,

Pr[∆ρ = 0] = Pr[∆σ = 0] · Pr[∆σ = ∆ρ] + Pr[∆σ = 1] · Pr[∆σ = ∆ρ]

=
1

2
(1 + εd) ·

1

2

(
1 + ε2

L

)
+

1

2
(1− εd) ·

1

2

(
1− ε2

L

)
=

1

2

(
1 + εd · ε2

L

)
.

Therefore, the differential-linear bias is given by γ = εd · ε2
L, which defines a

distinguisher with complexity O
(

1

ε2
dε

4
L

)
.

6

2.3 Multi-bit Differential for Reduced Round ChaCha

In this section we review the work presented in [5], which is the basis for our
attack. We note that the paper works with Salsa and ChaCha, but here we
focus only on ChaCha. In their work, it was developed the theory for selecting
specific combination of bits to give high biases for Chacha. To do that the
authors analyze the QRF directly, representing each equation in its bits. For
example, from the first line of Eq. (2) we can write

x
(r−1)
a′,i = x

(r−1)
a,i ⊕ x(r−1)

b,i ⊕ C1
i ,

where C1
i denotes the i-th bit of the carry for the first sum, this equation follows

from the well known fact that x+ y = x⊕ y ⊕ Carry(x, y).
After working with all the equations from the QRF, is possible to write bits

from round m−1 in terms of linear equations from bits from round m and carry
bits:

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
c,i ⊕ C

4
i (4)

x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ C

4
i ⊕ C1

i ⊕ C3
i (5)

x
(m−1)
c,i = x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i ⊕ C

2
i ⊕ C4

i (6)

x
(m−1)
d,i = x

(m)
d,i+24 ⊕ x

(m)
a,i+16 ⊕ x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
b,i+7 ⊕ C

3
i (7)

From this equations, we can derive the following Lemma:

Lemma 1. Let

∆A(m) = ∆x
(m)
α,0 ⊕∆x

(m)
β,7 ⊕∆x

(m)
β,19 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆B(m) = ∆x
(m)
β,19 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
γ,12 ⊕∆x

(m)
δ,0

∆C(m) = ∆x
(m)
δ,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
δ,8 ⊕∆x

(m)
α,0

∆D(m) = ∆x
(m)
δ,24 ⊕∆x

(m)
α,16 ⊕∆x

(m)
α,0 ⊕∆x

(m)
γ,0 ⊕∆x

(m)
β,7

After m rounds of ChaCha, the following holds:∣∣ε(A(m))

∣∣ =

∣∣∣∣ε(x(m−1)
α,0

)∣∣∣∣ , ∣∣∣ε(B(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
β,0

)∣∣∣∣
∣∣∣ε(C(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
γ,0

)∣∣∣∣ , ∣∣∣ε(D(m))

∣∣∣ =

∣∣∣∣ε(x(m−1)
δ,0

)∣∣∣∣
The tuples (α, β, γ, δ) vary depending on whether m is odd or even.

• Case I. m is odd:

(α, β, γ, δ) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 14, 2), (3, 7, 11, 15)}.

7

• Case II. m is even:

(α, β, γ, δ) ∈ {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

Proof. See [5].

Additionally, using the linear approximations for addition proposed by [23],
we can use Eqs. (4)-(7) to construct a series of linear approximations for one
round of ChaCha:

Lemma 2. For one active input bit in round m− 1 and multiple active output
bits in round m, the following holds.

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i−1 w.p. 1

2

(
1 + 1

2

)
x

(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕

x
(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−2 ⊕ x

(m)
d,i+6 w.p. 1

2

(
1 + 1

24

)
x

(m−1)
c,i = x

(m)
d,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i ⊕ x

(m)
a,i−1⊕

x
(m)
d,i+7 ⊕ x

(m)
d,i−1 w.p. 1

2

(
1 + 1

22

)
x

(m−1)
d,i = x

(m)
d,i+24 ⊕ x

(m)
a,i+16 ⊕ x

(m)
a,i ⊕ x

(m)
c,i ⊕

x
(m)
b,i+7 ⊕ x

(m)
c,i−1 ⊕ x

(m)
b,i+6 w.p. 1

2

(
1 + 1

2

)
Proof. See [5].

Finally, using Lemmas 1 and 2 is possible to find linear approximations for
two rounds of ChaCha.

Lemma 3. Each of the following holds with probability 1
2

(
1 + 1

2

)
x

(3)
8,0 = x

(5)
13,24 ⊕ x

(5)
1,16 ⊕ x

(5)
1,0 ⊕ x

(5)
9,0 ⊕ x

(5)
5,7 ⊕ x

(5)
12,0 ⊕ x

(5)
8,0⊕

x
(5)
12,8 ⊕ x

(5)
0,0 ⊕ x

(5)
2,0 ⊕ x

(5)
6,7 ⊕ x

(5)
6,19 ⊕ x

(5)
10,12 ⊕ x

(5)
14,0⊕

x
(5)
13,0 ⊕ x

(5)
1,24 ⊕ x

(5)
1,8 ⊕ x

(5)
9,8 ⊕ x

(5)
5,15 ⊕ x

(5)
9,7 ⊕ x

(5)
5,14

x
(3)
9,0 = x

(5)
14,24 ⊕ x

(5)
2,16 ⊕ x

(5)
2,0 ⊕ x

(5)
10,0 ⊕ x

(5)
6,7 ⊕ x

(5)
13,0 ⊕ x

(5)
9,0⊕

x
(5)
13,8 ⊕ x

(5)
1,0 ⊕ x

(5)
3,0 ⊕ x

(5)
7,7 ⊕ x

(5)
7,19 ⊕ x

(5)
11,12 ⊕ x

(5)
15,0⊕

x
(5)
14,0 ⊕ x

(5)
2,24 ⊕ x

(5)
2,8 ⊕ x

(5)
10,8 ⊕ x

(5)
6,15 ⊕ x

(5)
10,7 ⊕ x

(5)
6,14

x
(3)
10,0 = x

(5)
15,24 ⊕ x

(5)
3,16 ⊕ x

(5)
3,0 ⊕ x

(5)
11,0 ⊕ x

(5)
7,7 ⊕ x

(5)
14,0 ⊕ x

(5)
10,0⊕

x
(5)
14,8 ⊕ x

(5)
2,0 ⊕ x

(5)
0,0 ⊕ x

(5)
4,7 ⊕ x

(5)
4,19 ⊕ x

(5)
8,12 ⊕ x

(5)
12,0⊕

x
(5)
15,0 ⊕ x

(5)
3,24 ⊕ x

(5)
3,8 ⊕ x

(5)
11,8 ⊕ x

(5)
7,15 ⊕ x

(5)
11,7 ⊕ x

(5)
7,14

x
(3)
11,0 = x

(5)
12,24 ⊕ x

(5)
0,16 ⊕ x

(5)
0,0 ⊕ x

(5)
8,0 ⊕ x

(5)
4,7 ⊕ x

(5)
15,0 ⊕ x

(5)
11,0⊕

x
(5)
15,8 ⊕ x

(5)
3,0 ⊕ x

(5)
1,0 ⊕ x

(5)
5,7 ⊕ x

(5)
5,19 ⊕ x

(5)
9,12 ⊕ x

(5)
13,0⊕

x
(5)
12,0 ⊕ x

(5)
0,24 ⊕ x

(5)
0,8 ⊕ x

(5)
8,8 ⊕ x

(5)
4,15 ⊕ x

(5)
8,7 ⊕ x

(5)
4,14

8

Proof. See [5].

With these results, in [5], the authors show that using as ID at x
(0)
13,13 and

OD at x
(3)
11,0, is possible to obtain εd = −0.0272 ≈ − 1

25.2 , experimentally. And
from Lemma 1 is possible to extend to a 4-round differential-linear bias with

εL = 1 when the OD is x
(4)
1,0 ⊕ x

(4)
11,0 ⊕ x

(4)
12,8 ⊕ x

(4)
12,0. Further, is possible to

extend to a 5-round differential linear bias using the last equation from Lemma
3 with probability 1

2

(
1 + 1

2

)
. This gives a total differential-linear 5th round

bias of εd · ε2
L ≈ −0.0068 = − 1

27.2 . This leads to a 5 round distinguisher with
complexity ≈ 216.

Extending the linear approximation for 3 rounds come at a cost. As discussed
prior to the above lemma, for ChaCha, setting i = 0 in Lemma 1 allows linear
approximation of probability 1 for LSB variables. The cost is thus determined
by the non LSB variables. A simple count of the non LSB variables in the
form (Variable Type, # non LSB occurrence) gives (xa, 3) , (xb, 5) , (xc, 3) , and
(xd, 2) . Now, using the probabilities of Lemma 2 and Lemma 3 (to attach the
corresponding weight to each variable), the linear bias is

εL =
1

2 · 1 + 3 · 4 + 5 · 1 + 3 · 2 + 2 · 1
=

1

226
.

This leads to a 6 round bias of ε2
Lεd ≈ 1

257.2 . The distinguisher for this bias has
a complexity of 2116 which was, until now, the currently best known 6 round
attack on ChaCha.

3 New Linear Approximations for ChaCha

The attack presented in this section follows the techniques used in [5]. More pre-
cisely, we derive a new linear approximation that leads to a better distinguisher
for 6 rounds of ChaCha. We start by defining the following lemma:

Lemma 4. Let
∆E(m) = ∆x

(m)
α,0 ⊕∆x

(m)
β,7 ⊕∆x

(m)
γ,0

After m rounds of ChaCha, the following holds:∣∣ε(E(m))

∣∣ =
∣∣∣ε(x

(m−1)
α,0 ⊕x(m−1)

β,0)

∣∣∣
The tuples (α, β, γ) vary depending on whether m is odd or even.

• Case I. m odd: (α, β, γ) ∈ {(0, 4, 8), (1, 5, 9), (2, 6, 10), (3, 7, 11)}

• Case II. m even: (α, β, γ) ∈ {(0, 5, 10), (1, 6, 11), (2, 7, 8), (3, 4, 9)}

Proof. The proof follows directly from Lemma 1, by doing

∆E(m) = ∆A(m) ⊕∆B(m).

9

Lemma 5. When m is even, each of the following holds with probability 1
2 (1+ 1

2)

x
(m−2)
0,0 ⊕ x(m−2)

4,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
4,26 ⊕ x

(m)
5,7 ⊕ x

(m)
5,19⊕

x
(m)
8,0 ⊕ x

(m)
9,7 ⊕ x

(m)
9,19 ⊕ x

(m)
10,12 ⊕ x

(m)
13,0⊕

x
(m)
13,8 ⊕ x

(m)
14,6 ⊕ x

(m)
14,7 ⊕ x

(m)
15,0⊕

x
(m−2)
1,0 ⊕ x(m−2)

5,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
5,26 ⊕ x

(m)
6,7 ⊕ x

(m)
6,19⊕

x
(m)
9,0 ⊕ x

(m)
10,7 ⊕ x

(m)
10,19 ⊕ x

(m)
11,12 ⊕ x

(m)
12,0⊕

x
(m)
14,0 ⊕ x

(m)
14,8 ⊕ x

(m)
15,6 ⊕ x

(m)
15,7⊕

x
(m−2)
2,0 ⊕ x(m−2)

6,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
6,26 ⊕ x

(m)
7,7 ⊕ x

(m)
7,19⊕

x
(m)
8,12 ⊕ x

(m)
10,0 ⊕ x

(m)
11,7 ⊕ x

(m)
11,19 ⊕ x

(m)
12,6⊕

x
(m)
12,7 ⊕ x

(m)
13,0 ⊕ x

(m)
15,0 ⊕ x

(m)
15,8⊕

x
(m−2)
3,0 ⊕ x(m−2)

7,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,7 ⊕ x

(m)
4,19 ⊕ x

(m)
7,26⊕

x
(m)
8,7 ⊕ x

(m)
8,19 ⊕ x

(m)
9,12 ⊕ x

(m)
11,0 ⊕ x

(m)
12,0⊕

x
(m)
12,8 ⊕ x

(m)
13,6 ⊕ x

(m)
13,7 ⊕ x

(m)
14,0⊕

and when m is odd, each of the following also holds with probability 1
2 (1 + 1

2)

x
(m−2)
0,0 ⊕ x(m−2)

5,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
4,7 ⊕ x

(m)
4,19 ⊕ x

(m)
5,26⊕

x
(m)
8,12 ⊕ x

(m)
9,7 ⊕ x

(m)
9,19 ⊕ x

(m)
10,0 ⊕ x

(m)
12,0⊕

x
(m)
13,6 ⊕ x

(m)
13,7 ⊕ x

(m)
14,0 ⊕ x

(m)
14,8⊕

x
(m−2)
1,0 ⊕ x(m−2)

6,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
5,7 ⊕ x

(m)
5,19 ⊕ x

(m)
6,26⊕

x
(m)
9,12 ⊕ x

(m)
10,7 ⊕ x

(m)
10,19 ⊕ x

(m)
11,0 ⊕ x

(m)
13,0⊕

x
(m)
14,6 ⊕ x

(m)
14,7 ⊕ x

(m)
15,0 ⊕ x

(m)
15,8⊕

x
(m−2)
2,0 ⊕ x(m−2)

7,0 = x
(m)
0,0 ⊕ x

(m)
2,0 ⊕ x

(m)
6,7 ⊕ x

(m)
6,19 ⊕ x

(m)
7,26⊕

x
(m)
8,0 ⊕ x

(m)
10,12 ⊕ x

(m)
11,7 ⊕ x

(m)
11,19 ⊕ x

(m)
12,0⊕

x
(m)
12,8 ⊕ x

(m)
14,0 ⊕ x

(m)
15,6 ⊕ x

(m)
15,7⊕

x
(m−2)
3,0 ⊕ x(m−2)

4,0 = x
(m)
1,0 ⊕ x

(m)
3,0 ⊕ x

(m)
4,26 ⊕ x

(m)
7,7 ⊕ x

(m)
7,19⊕

x
(m)
8,7 ⊕ x

(m)
8,19 ⊕ x

(m)
9,0 ⊕ x

(m)
11,12 ⊕ x

(m)
12,6⊕

x
(m)
12,7 ⊕ x

(m)
13,0 ⊕ x

(m)
13,8 ⊕ x

(m)
15,0⊕

Proof. Let

X = {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}

and
Y = {(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

Using Eqs. (4) and (5) with i = 0 we get that

x
(m−2)
a,0 ⊕ x(m−2)

b,0 = x
(m−1)
a,0 ⊕ x(m−1)

b,7 ⊕ x(m−1)
c,0 ,

10

with (a, b, c, d) ∈ X when m is even, and with (a, b, c, d) ∈ Y when m is odd.

From this point, we can use Eq. (5) and Eq. (6) to replace x
(m−1)
a,0 and x

(m−1)
c,0 ,

respectively, by a linear approximation with probability 1. Also, using Lemma

2, we replace x
(m−1)
b,7 by a linear approximation with probability 1

2 (1+ 1
2). There-

fore, the resultant equation will hold with probability 1
2 (1 + 1

2). The indexes
of the equations are derived by noticing that when making these substitutions
we use the opposite set of indexes, since we are now in a different round. For

example, when replacing x
(m−1)
c,0 , we use Eq. (6), which we can rewrite as

x
(m−1)
c,0 = x

(m)
γ,0 = x

(m)
δ,0 ⊕ x

(m)
γ,0 ⊕ x

(m)
δ,8 ⊕ x

(m)
α,0 ,

where (α, β, γ, δ) ∈ Y such that γ = c when m is even, and (α, β, γ, δ) ∈ X such

that γ = c when m is odd. The cases for x
(m−1)
a,0 and x

(m−1)
b,7 are analogous.

3.1 Improved Distinguishers

Using Lemma 5 we can derive a distinguisher for 5 rounds of ChaCha using the
attack described in Section 2.2. To do that, we need to find an input differential
∆X(0) with high probability, i.e.

Pr
(

∆x
(3)
a,0 ⊕∆x

(3)
b,0 = 0|∆X(0)

)
=

1

2
(1 + εd),

where (a, b) ∈ {(0, 5), (1, 6), (2, 7), (3, 4)}. Like in previous works [1, 5], we found
this differential empirically by testing all possible single bit input differentials
for each output possibility. The best bias we found was εd = 0.00048 for (a, b) =

(3, 4) when the input differential is given by ∆x
(0)
14,6 = 1, and 0 for all remaining

bits. Therefore, from Lemma 5 and Section 2.2 we get that

Pr(∆x
(5)
1,0 ⊕∆x

(5)
3,0 ⊕∆x

(5)
4,26 ⊕∆x

(5)
7,7 ⊕∆x

(5)
7,19⊕

∆x
(5)
8,7 ⊕∆x

(5)
8,19 ⊕∆x

(5)
9,0 ⊕∆x

(5)
11,12 ⊕∆x

(5)
12,6⊕

∆x
(5)
12,7 ⊕∆x

(5)
13,0 ⊕∆x

(5)
13,8 ⊕∆x

(5)
15,0 = 0|∆x(0)

14,6 = 1) = 1
2 (1 + γ)

(8)

where γ = εdε
2
L ≈ 0.00012.

We tested this result empirically by randomly selecting initial values for
ChaCha and executing 5 rounds for the initial matrix X(0) and for X ′(0) =
X(0) ⊕∆X(0), and then checking if the equation holds. We executed this pro-
cedure for N = 238 iterations and got an estimated value of γ = 0.000117. This
lead to an attack against 5 rounds of ChaCha with complexity 227.

As the reader may have noticed, this complexity is higher than the attack
for 5 rounds proposed in [5]. However, there is an advantage: the equations of
Lemma 3 have many more terms than the equations of Lemma 5, this means
that when expanding for 6 rounds we may have an advantage using Lemma 5.
Indeed, as presented in Section 2.3, we can compute the aggregated bias from
the expansion by counting the number of substitutions of each type, in the case
of Lemma 3 we have (xa, 3), (xb, 5), (xc, 3) and (xd, 2). In Section 2.3 we had

11

weights 4, 1, 2, 1 for xa, xb, xc and xd, respectively, leading to εL = 1
226 . On the

other hand, from Lemma 5 we have (xa, 0), (xb, 3), (xc, 3) e (xd, 3), with the
same weights. Then, the linear bias is

εL =
1

21+0·4+3·1+3·2+3·1 =
1

213
,

therefore we have εdε
2
L ≈ 2−37.02, which leads to an attack against 6 rounds of

ChaCha with complexity 275 which is the currently best known 6 round attack
on ChaCha.

4 Improved Attacks using Probabilistic Neutral
Bits (PNBs)

The only cryptanalytic attack known for reduced round ChaCha is using the
proposal of Aumasson [1]. The attack first identify good choices of truncated
differentials, then it uses probabilistic backwards computation with the notion of
PNBs, finally it estimate the complexity of the attack. This attack is described
in several previous works [1, 16, 15], thus in our description we skip several
details.

Let ∆
(R)
i be the differential for the ith word of state matrix X(R), thus

∆
(R)
i = x

(R)
i ⊕ x′(R)

i and let ∆
(R)
i,j be the differential for the jth bit of the ith

word, thus ∆
(R)
i,j = x

(R)
i,j ⊕ x′

(R)
i,j . In [1] the input differential ID is defined for

a single-bit difference ∆
(0)
i,j = 1 and consider a single-bit output difference OD

after r rounds ∆
(R)
p,q , such differential is denoted

(
∆

(R)
p,q |∆(0)

i,j

)
. For a fixed key,

the bias εd of the OD is defined by

Prv,t

(
∆(R)
p,q = 1|∆(0)

i,j

)
=

1

2
(1 + εd), (9)

where the probability holds over all nonces v and counters t. Furthermore,
considering the key as a random variable, we denote the median value of εd by
ε?d. Hence, for half of the keys, this differential have a bias of at least ε?d.

Now, assume that the differential
(

∆
(r)
p,q|∆(0)

i,j

)
of bias εd is fixed, and we

observe outputs Z and Z ′ of R = l + r rounds for nonce v, counter t and
unknown key k. If we guess the key k we can invert l rounds of the algorithm

to get X(r) and X ′(r) and compute ∆
(r)
p,q, let call f the function which executes

this procedure. Hence, f(k, v, t, Z, Z ′) = ∆
(r)
p,q. From Eq. (9), we expect that

Pr(f(k̂, v, t, Z, Z ′) = 1) =

{
1
2 (1 + εd), if k̂ = k

0.5, if k̂ 6= k
,

thus, if we have several pairs of Z and Z ′, its possible to test our guesses for k.
Obviously, it is not useful to test all keys since this attack would be slower

than exhaustive search, but we can search only over a subkey of m = 256 − n

12

bits, provided we can find a function g that is an approximation of f but only
uses m key bits as input. Then, let k̄ correspond to the subkey of m bits of key
k and let f to be correlated to g with bias εa i.e.:

Pr(f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)) =
1

2
(1 + εa). (10)

Denote the bias of g by ε, i.e. Pr(g(k̄, v, t, Z, Z ′) = 1) = 1
2 (1 + ε), and ε? the

median bias of g over all keys, we can approximate ε by εdεa.
The problem that remains is how to efficiently find such a function g. In [1],

this is done by first identifying key bits that have little influence on the result of
f(k, v, t, Z, Z ′), these are called probabilistic neutral bits (PNBs). This is done
by defining the neutrality measure of a key bit ki,j :

Definition 1. The neutrality measure of the key bit ki,j with respect to the
function f(k, v, t, Z, Z ′) is defined as γi,j, where

Pr(f(k, v, t, Z, Z ′) = f(k∗, v, t, Z, Z ′)) =
1

2
(1 + γi)

and k∗ is computed from key k by inverting the bit ki,j, over all possible values
of k, v and t.

After computing γi,j , for all i = (0, 1, ..., 7) and j = (0, 1, ..., 31), we can
define the the set of significant key bits as Ψ = {(i, j) : γi,j ≤ γ} where γ is
a threshold value, and then define our approximation g as g(kΨ, v, t, Z, Z

′) =
f(k∗, v, t, Z, Z ′) where kΨ is defined as the subkey with key bits in the set Ψ
and k∗ is computed from kΨ by setting ki,j = 0 for all (i, j) /∈ Ψ. Thus, the
attack can be evaluated with the following steps:

1. Compute a good differential for r rounds
(

∆
(r)
p,q|∆(0)

i,j

)
by estimating the

bias εd for all single-bit ID with several random combinations of keys,
nonces, and counters.

2. Empirically estimate the neutrality measure γr,s for each key bit kr,s.

3. Construct the function g by setting all key bit such that γr,s > γ to zero
and estimate the median bias ε? by empirically measuring bias of g using
many randomly chosen keys, nonces, and counters.

4. Estimate the data and time complexity of the attack.

In the following we show that the linear approximations presented in Section
3 actually improves the attacks presented in [5]. This happens, because the
fewer terms in the approximations leads to attacks with many more PNBs,
hence, improving efficiency.

13

4.1 ChaCha20/6

For the 6-round cryptanalysis, as in [5], we run each experiment for 234 randomly
chosen IV’s to get the average and then go for 256 such runs to obtain the median
values. We used the linear approximations from the attack presented in Section
3. First, consider (

∆
(4)
3,0 ⊕∆

(4)
4,7 ⊕∆

(4)
9,0|∆

(0)
14,6

)
.

Here go forward 4 rounds and come back 2 rounds. Using γ = 0.4 we have 210
PNBs, and we obtained εa = 0.000127. From that, since we have εd = 0.00048
from Section 3, we get an attack with data complexity of 256 and time complexity
2102.2.

We also computed the complexity for the attack using the same ID but using
the 5 round approximation of Eq. (8). Here go forward 5 rounds and come back
1 round. Using γ = 0.4 we have 212 PNBs, and we obtained εa = 0.000107.
From that, since we have εd = 0.00012 (here we have to take the bias εL into
account), we get an attack with data complexity of 261 and time complexity
2104.68.

4.2 ChaCha20/7

For the 7-round cryptanalysis, we used the same linear approximations. First,
consider (

∆
(4)
3,0 ⊕∆

(4)
4,7 ⊕∆

(4)
9,0|∆

(0)
14,6

)
.

Here go forward 4 rounds and come back 3 rounds. Using γ = 0.35 we have 74
PNBs, and we obtained εa = 0.000567. From that, we get an attack with data
complexity of 250 and time complexity 2231.92. We also computed the complexity
for the attack using the same ID but using the 5 round approximation of Eq.
(8). Here go forward 5 rounds and come back 2 rounds. Using γ = 0.35 we have
77 PNBs, and we obtained εa = 0.000319. Therefore, get an attack with data
complexity of 256 and time complexity 2234.45.

5 Conclusion

In this paper, we improve the theoretical results of Choudhuri and Maitra by
showing new linear approximations and improving the attacks against ChaCha
reduced to 6 and 7 rounds. The improvement is counter-intuitive since the linear
approximations presented have worst linear-differential bias than in previous
works. Because of that, we get an attack against 5 rounds of Chacha with
higher complexity. However, the proposed linear equations have fewer terms,
which leads to fewer non-linear transitions when extending the attack one round
further. Also, having fewer terms, the attack using PNBs are improved, since
we are able to find many more neutral key bits.

14

References

[1] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: analysis of salsa,
chacha, and rumba. In International Workshop on Fast Software Encryp-
tion, pages 470–488. Springer, 2008.

[2] Daniel J Bernstein. The poly1305-aes message-authentication code. In In-
ternational Workshop on Fast Software Encryption, pages 32–49. Springer,
2005.

[3] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of
SASC, volume 8, pages 3–5, 2008.

[4] Daniel J Bernstein. The salsa20 family of stream ciphers. In New stream
cipher designs, pages 84–97. Springer, 2008.

[5] Arka Rai Choudhuri and Subhamoy Maitra. Significantly improved multi-
bit differentials for reduced round salsa and chacha. IACR Transactions
on Symmetric Cryptology, pages 261–287, 2016.

[6] Paul Crowley. Truncated differential cryptanalysis of five rounds of salsa20.
The State of the Art of Stream Ciphers SASC, 2006:198–202, 2006.

[7] Sabyasachi Dey, Tapabrata Roy, and Santanu Sarkar. Revisiting design
principles of salsa and chacha. Advances in Mathematics of Communica-
tions, 13(4), 2019.

[8] Sabyasachi Dey and Santanu Sarkar. Improved analysis for reduced round
salsa and chacha. Discrete Applied Mathematics, 227:58–69, 2017.

[9] Lin Ding. Improved related-cipher attack on salsa20 stream cipher. IEEE
Access, 7:30197–30202, 2019.

[10] Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and
Matthew JB Robshaw. Non-randomness in estream candidates salsa20
and tsc-4. In International Conference on Cryptology in India, pages 2–16.
Springer, 2006.

[11] Julio Cesar Hernandez-Castro, Juan ME Tapiador, and Jean-Jacques
Quisquater. On the salsa20 core function. In International Workshop on
Fast Software Encryption, pages 462–469. Springer, 2008.

[12] IANIX. Chacha usage & deployment. https://ianix.com/pub/

chacha-deployment.html, 2020. Accessed: 2020-01-13.

[13] Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake. Latin dances
revisited: new analytic results of salsa20 and chacha. In International
Conference on Information and Communications Security, pages 255–266.
Springer, 2011.

15

https://ianix.com/pub/chacha-deployment.html
https://ianix.com/pub/chacha-deployment.html

[14] Adam Langley, W Chang, Nikos Mavrogiannopoulos, Joachim Stromberg-
son, and Simon Josefsson. Chacha20-poly1305 cipher suites for transport
layer security (tls). RFC 7905, (10), 2016.

[15] S Maitra, G Paul, and W Meier. Salsa20 cryptanalysis: New moves and
revisiting old styles. wcc 2015. In the Ninth International Workshop on
Coding and Cryptography, 2015.

[16] Subhamoy Maitra. Chosen iv cryptanalysis on reduced round chacha and
salsa. Discrete Applied Mathematics, 208:88–97, 2016.

[17] Nicky Mouha and Bart Preneel. A proof that the arx cipher salsa20 is
secure against differential cryptanalysis. IACR Cryptology ePrint Archive,
2013:328, 2013.

[18] Stephan Muller. Documentation and analysis of the linux ran-
dom number generator - federal office for information secu-
rity (germany’s), 2019. https://www.bsi.bund.de/SharedDocs/

Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.

pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__

blob=publicationFile&v=19.

[19] Matthew Robshaw and Olivier Billet. New stream cipher designs: the
eSTREAM finalists, volume 4986. Springer, 2008.

[20] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved
key recovery attacks on reduced-round salsa20 and chacha. In Interna-
tional Conference on Information Security and Cryptology, pages 337–351.
Springer, 2012.

[21] Linus Torvalds. Linux kernel source tree, 2016. https://git.kernel.

org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=

818e607b57c94ade9824dad63a96c2ea6b21baf3.

[22] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and
Hiroki Nakashima. Differential cryptanalysis of salsa20/8. In Workshop
Record of SASC, volume 28, 2007.

[23] Johan Wallén. Linear approximations of addition modulo 2 n. In Inter-
national Workshop on Fast Software Encryption, pages 261–273. Springer,
2003.

16

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf;jsessionid=6B0F8D7795B80F5EADA3DB3DB3E4043B.1_cid360?__blob=publicationFile&v=19
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3

	Introduction
	Specifications and Preliminaries
	ChaCha
	Differential-Linear Analysis
	Multi-bit Differential for Reduced Round ChaCha

	New Linear Approximations for ChaCha
	Improved Distinguishers

	Improved Attacks using Probabilistic Neutral Bits (PNBs)
	ChaCha20/6
	ChaCha20/7

	Conclusion

