
Optimized and secure pairing-friendly elliptic
curves suitable for one layer proof composition

Youssef El Housni1,2,3 and Aurore Guillevic4

1 EY Blockchain, Paris, France
2 École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

3 Inria, équipe-projet GRACE, Université Paris–Saclay, France
youssef.el.housni@fr.ey.com

4 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
aurore.guillevic@inria.fr

Abstract. A zero-knowledge proof is a method by which one can prove
knowledge of general non-deterministic polynomial (NP) statements.
SNARKs are in addition non-interactive, short and cheap to verify. This
property makes them suitable for recursive proof composition, that is
proofs attesting to the validity of other proofs. Recursive proof composi-
tion has been empirically demonstrated for pairing-based SNARKs via
tailored constructions of expensive elliptic curves. We thus construct on
top of the curve BLS12-377 a new pairing-friendly elliptic curve which is
STNFS-secure and optimized for one layer composition. We show that it
is at least five times faster to verify a composed SNARK proof on this
curve compared to the previous state-of-the-art. We propose to name the
new curve BW6-761.

1 Introduction

Proofs of knowledge are a powerful tool that was introduced in [21] and is studied
both in theoretical and applied cryptography. Since then, a lot of work has been
conducted to design short non-interactive proofs that are cheap to verify, resulting
in succinct non-interactive arguments of knowledge (SNARKs). Zero-knowledge
(zk) SNARKs allow a prover to convince a verifier that they know a witness to
an instance being member of a language in NP, whilst revealing no information
about this witness. As of today, the most efficient scheme due to Groth [22] is a
pre-processing zk-SNARK that requires pairings of elliptic curves.

Besides efficiency, SNARKs’ succinctness makes them good candidates for
recursive proof composition. That is, proofs that could themselves verify the
correctness of other proofs, allowing a single proof to inductively attest to the
correctness of many previous proofs as suggested by Valiant in [34]. Unfortunately,
making recursive composition of Groth’s proofs practical requires expensive
elliptic curve constructions.

1.1 Previous work

Ben-Sasson et al. [5] presented the first practical setting of recursive proof
composition. This setting uses two MNT pairing-friendly elliptic curves [18,



Sec. 5]. These curves are constructed in a way such that proofs generated using
one of the curves can feasibly reason about proofs generated using the other
curve, but both are quite expensive at 128-bit security level. The two curves
have low embedding degrees making it necessary to build them over large fields
to achieve the standard security as it is implemented by Coda blockchain [30].
Moreover, Chiesa et al. [14] established some limitations on finding other suitable
curves.

On the other hand, Bowe et al. proposed the Zexe system [8] which uses
a suitable pair of elliptic curves for one layer proof composition. The authors
constructed a BLS12 curve that is suitable for both levels of recursion and on
top of it another curve via the Cocks–Pinch method [18, Sec. 4.1]. It is to note
that while the inner curve is efficient at 128-bit security level, the outer curve is
quite expensive.

1.2 Our contributions

We present a new secure and optimized pairing-friendly elliptic curve that is
suitable for one layer proof composition. Our curve can substitute Zexe’s outer
curve while enjoying more properties for very efficient implementation. The
curve is defined over a 761-bit prime field instead of 782 bits, we save one
machine-word of 64 bits. The curve has CM discriminant −D = −3, allowing
fast GLV scalar multiplication on G1 and G2. The curve has embedding degree 6
and a twist of degree 6, and G2 has coordinates in the same prime field as G1

(factor 6 compression). The curve also has fast subgroup check and fast cofactor
multiplication. Finally we obtain a very efficient optimal ate pairing on this curve.
In particular, it is at least five times faster to verify a Groth proof, compared to
Zexe.

1.3 Applications

We mention briefly some applications from the blockchain community projects
that can benefit from this work:

Zexe The authors introduced the notion of Decentralized Private Computation
(DPC) that uses one layer proof composition [8]. As an application, they
described in [8, § V] user-defined assets, decentralized exchanges and policy-
enforcing stablecoins.

Celo The project aims at developing a mobile-first oriented blockchain platform.
Celo is verifying BLS signatures by generating a single SNARK proof that
verifies a bunch of signatures [11].

EY Blockchain The firm released into the public domain its Nightfall tool [16],
a smart-contract based solution leveraging zkSNARKs for private transactions
of fungible and non-fungible tokens on the Ethereum blockchain. Recently,
EY unveiled its latest Nightfall upgrade allowing for transaction batching.
This work can be used to aggregate many Nightfall proofs into a single one
and thus reducing the overall gas cost.

2



Filecoin The protocol [31] is a decentralized storage blockchain. Protocol Labs
introduced Proof-of-Replication that can be used to prove that some data
has been replicated to its own uniquely dedicated physical storage. This
proof is then compressed using a SNARK proof but this results in a massive
arithmetic circuit. Filecoin is considering to split the circuit into 20 smaller
ones and generate small proofs that can be aggregated into a single one using
one layer proof composition.

Organization of the paper. The rest of the paper is organized as follows. First,
in section 2, we provide preliminaries on pairing-friendly elliptic curves and
recursive proof composition. Then, in section 3, we introduce our curve, discuss
the optimizations it allows and compare it to Zexe’s outer curve. Finally, before
concluding, we estimate in section 4 the security of Zexe’s inner curve and our
curve, taking into account the Special Tower NFS algorithm.

2 Preliminaries

2.1 Pairing-friendly elliptic curves

Background on pairings. We briefly recall here elementary definitions on
pairings and present the computation of two pairings used in practice, the Tate
and ate pairings. All elliptic curves are ordinary (i.e. non-supersingular).

Let E be an elliptic curve defined over a field Fq, where q is a prime power.
Let πq be the Frobenius endomorphism (x, y) 7→ (xq, yq). Its minimal polynomial
is X2 − tX + q where t is called the trace. Let r be a prime divisor of the curve
order #E(Fq) = q + 1 − t. The r-torsion subgroup of E is denoted E[r] :=
{P ∈ E(Fq), [r]P = O} and has two subgroups of order r (eigenspaces of φq
in E[r]) that are useful for pairing applications. Following [35], we define the
two groups G1 = E[r] ∩ ker(πq − [1]) with a generator denoted by G1, and
G2 = E[r] ∩ ker(πq − [q]) with a generator G2. The group G2 is defined over Fqk ,
where the embedding degree k is the smallest integer k ∈ N∗ such that r | qk − 1.

We recall the Tate and ate pairing definitions, based on the same two steps:
evaluating a function fs,Q at a point P (Miller loop), and then raising it to the
power (qk−1)/r (final exponentiation). The function fs,Q has divisor div(fs,Q) =
s(Q)− ([s]Q)− (s− 1)(O) and satisfies for integers i and j

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q

where `[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i + j]Q from
[i]Q and [j]Q (` through the two points, v the vertical). We compute fs,Q(P )
with the Miller loop presented in Algorithm 1.

The Tate and ate pairings are defined by

Tate(P,Q) := fr,P (Q)(q
k−1)/r

ate(P,Q) := ft−1,Q(P )(q
k−1)/r

3



Algorithm 1: MillerLoop(s, P,Q)
Output: m = fs,Q(P )

1 m← 1; S ← Q;
2 for b from the second most significant bit of s to the least do
3 `← `S,S(P ); S ← [2]S ; DoubleLine
4 v ← v[2]S(P ) ; VerticalLine
5 m← m2 · `/v; Update1
6 if b = 1 then
7 `← `S,Q(P ); S ← S +Q ; AddLine
8 v ← vS+Q(P ) ; VerticalLine
9 m← m · `/v ; Update2

10 return m;

where P ∈ G1 ⊂ E[r](Fq) and Q ∈ G2 ⊂ E[r](Fqk). The values Tate(P,Q) and
ate(P,Q) are in the ”target” group GT of r-th roots of unity in Fqk . In the sequel,
when abstraction is needed, we denote a pairing as follows e : G1 ×G2 → GT .

It is also important to recall some results with respect to the complex multipli-
cation (CM) discriminant −D. When D = 3 (resp. D = 4), the curve has CM by
Q(
√
−3) (resp. Q(

√
−1)) so that twists of degrees 3 and 6 exist (resp. 4). When

E has d-th order twists for some d | k, then G2 is isomorphic to E′[r](Fqk/d) for
some twist E′. Otherwise, in the general case, E admits a single twist (up to
isomorphism) and it is of degree 2.

Some pairing-friendly constructions. We recall here some methods from
the literature for constructing pairing-friendly ordinary elliptic curves that will
be of interest in the sequel. We focus on Cocks–Pinch [18, Sec. 4.1], Barreto–
Lynn–Scott [18, Sec. 6.1] and Brezing–Weng [18, Sec. 6.1] methods.

Cocks–Pinch is the most flexible method and can be used to construct curves
with arbitrary embedding degrees but with ratio ρ = log2 q/ log2 r ≈ 2. It works
by fixing the subgroup order r and the CM discriminant D and then computing
the trace t and the prime q s.t. the CM equation 4q = t2 +Dy2 (for some y ∈ Z)
is satisfied (cf. Alg. 2).

Brezing and Weng[18, Sec. 6.1], and independently, Barreto, Lynn and
Scott [18, Sec. 6.1] generalized the Cocks–Pinch method by parametrizing t, r, q
as polynomials. This led to curves with ρ < 2. We sketch below the idea of the
algorithm in its generality for both BLS and BW constructions (cf. Alg. 3). A
particular choice of polynomials for k = 12 yields a family of curves with a good
security/performance tradeoff, denoted BLS12 [3]. The parameters are given in
Table 1.

Pairing-friendly chains and cycles. A chain of elliptic curves is a list of
curves defined over finite fields in which the number of points on one curve equals
the characteristic of the field of definition of the next curve. If this property is
cyclic, then it is called a cycle.

4



Algorithm 2: Cocks–Pinch method
Input: A positive integer k and a positive square-free integer D
Output: E/Fq with an order-r subgroup and embedding degree k

1 Fix k and D and choose a prime r s.t. k divides r − 1 and −D is a square modulo r;

2 Compute t = 1 + x(r−1)/k for x a generator of (Z/rZ)×;

3 Compute y = (t− 2)/
√
−D mod r;

4 Lift t and y in Z;
5 Compute q = (t2 +Dy2)/4 in Q;
6 if q is a prime integer then
7 Use CM method (D < 1012) to construct E/Fq with order-r subgroup;
8 else
9 Go back to 1;

10 return E/Fq with an order-r subgroup and embedding degree k

Algorithm 3: Idea of BLS and BW methods
Input: A positive integer k and a positive square-free integer D
Output: E/Fq(x) with an order-r(x) subgroup and embedding degree k

1 Fix k and D and choose an irreducible polynomial r(x) ∈ Z[x] with positive leading

coefficient1 s.t.
√
−D and the primitive k-th root of unity ζk are in K = Q[x]/(r(x));

2 Choose t(x) ∈ Q[x] be a polynomial representing ζk + 1 in K;

3 Set y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/
√
−D in K;

4 Compute q(x) = (t2(x) +Dy2(x))/4 in Q[x];
5 return E/Fq(x) with an order-r(x) subgroup and embedding degree k

1conditions to satisfy Bunyakovsky conjecture which states that such a polynomial
produces infinitely many primes for infinitely many integers.

Definition 1. Anm-chain of elliptic curves is a list of distinct curves E1/Fq1 , . . . ,
Em/Fqm where q1, . . . , qm are large primes and

#E1(Fq1) = q2, . . . ,#Ei(Fqi) = qi+1, . . . ,#Em−1(Fqm−1) = qm (1)

Definition 2. Anm-cycle of elliptic curves is a list of distinct curves E1/Fq1 , . . . ,
Em/Fqm where q1, . . . , qm are large primes and

#E1(Fq1) = q2, . . . ,#Ei(Fqi) = qi+1, . . . ,#Em−1(Fqm−1
) = qm,#Em(Fqm) = q1

(2)

In the literature, a 2-cycle of ordinary curves is called an amicable pair. Following
the same logic, we call pairing-friendly amicable chain a 2-chain of pairing-

BLS12, k = 12, D = 3, x = 1 mod 3

qBLS12(x) = (x6 − 2x5 + 2x3 + x+ 1)/3, x = 1 mod 3
rBLS12(x) = x4 − x2 + 1
tBLS12(x) = x+ 1

Table 1. Polynomial parameters of BLS12 curve family.

5



friendly ordinary elliptic curves. In this paper, we are interested in constructing
a pairing-friendly amicable chain of curves with efficient arithmetic.

2.2 Recursive proof composition

To date the most efficient zkSNARK is due to Groth [22]. Here, we briefly
sketch the construction and refer the reader to the original paper. The con-
struction consists of a trapdoored setup, a proof of 3 group elements and the
verification is one equation of pairings product (Eq. 3). Given an instance
Φ = (a0, . . . , al) ∈ Flq, a proof π = (A,C,B) ∈ G2

1 × G2 and a verification

key vk = (vkα,β , {vkπi}li=0, vkγ , vkδ) ∈ GT ×Gl+1
1 ×G2

2, the verifier must check
that

e(A,B) = vkα,β · e(vkx, vkγ) · e(C, vkδ) (3)

where vkx =
∑l
i=0 [ai]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ)

can be computed in the trusted setup for (vkα, vkβ) ∈ G1 ×G2.
It is also to note that for efficient implementation the subgroup order r is

chosen to allow efficient FFT-based polynomial multiplications, as proposed in [4].
To achieve this, we require high 2-adicity : r − 1 should be divisible by a ”large
enough” power of 2.

To allow recursive proof composition, one needs to write the verification
equation (3) as an instance in the prover language. In pairing-based SNARKs
such as [22], the verification arithmetic is in an extension of Fq up to a degree
k while the proving arithmetic is in Fr. Since a pairing-friendly curve with
q = r doesn’t exist2, one needs to simulate Fq operations via Fr operations
which results in a blowup of the order log q compared to native arithmetic. A
practical alternative was suggested in [5] using a pairing-friendly amicable pair.
The authors proposed two MNT curves [18, Sec.5] with embedding degrees 4 and
6 and primes q, r of 298 bits. While this solves the problem, the security level
of the curves is ”low”. To remediate this, Coda protocol [30] proposed another
MNT-based amicable pair that targets 128-bit security with primes q, r of 753
bits at the cost of expensive computations (cf. Fig. 1).

While an amicable pair allows an infinite recursion loop, an amicable chain
allows a bounded recursion. In some applications such as those we mentioned
a one layer composition is sufficient. To this end, Zexe’s authors proposed an
amicable chain consisting of an inner BLS12 curve called BLS12-377 and an
outer Cocks–Pinch curve called SW6 (for Short Weierstrass form, and embedding
degree 6). BLS12-377 was constructed in a way to have both r − 1 and q − 1
highly 2-adic while enjoying all the efficient implementation properties of the
BLS12 family. Once the inner curve is constructed, the authors looked for a
pairing-friendly curve with pre-determined subgroup order r equal to the field size
q of BLS12-377. The only construction from the literature to allow such flexibility
is Cocks–Pinch but it unfortunately results in a curve on which operations are at

2 r needs to divide qk − 1 for k ∈N∗ [[1, 20]], thus r = 1 is the only solution.

6



least two times more costly (in time and space) than BLS12-377. Furthermore,
SW6 doesn’t allow efficient pairing computation and efficient scalar multiplication
via endomorphisms.

In the sequel, we refer to BLS12-377 as EBLS12(FqBLS12
) with a subgroup of

order rBLS12, SW6 as ESW6(FqSW6) with a subgroup of order rSW6 and our curve

as Ẽ(Fq̃) with a subgroup of order r̃ (cf. Fig. 1).

MNT4

MNT6

rMNT6

= qMNT4

rMNT4

= qMNT6

MNT4-753

MNT6-753

rMNT6−753

= qMNT4−753

rMNT4−753

= qMNT6−753

SW6

BLS12-377

rSW6 = qBLS12

BW6-761

BLS12-377

r̃ = qBLS12

Fig. 1. Examples of pairing-friendly amicable cycles and chains

3 The proposed elliptic curve: BW6-761

The authors in [8] proposed two curves for the one-layer proof-composition:
BLS12-377 and SW6 whose parameters are given in Table 2. Note that because
the Cocks–Pinch method has a ratio ρ ≈ 2, the SW6 curve characteristic qSW6 is
782-bit long (832 bits in Montgomery domain). Since qSW6 is already very large, an
embedding degree k = 6 is sufficient for the security of FkqSW6

. Moreover, because
D = 339, ESW6 has only a quadratic twist E′ and thus G2 ⊂ E(Fq6SW6

)[rSW6]

is isomorphic to E′(Fq3SW6
)[rSW6], and G2 elements can be compressed to only

3× 832 = 2496 bits.
Since we are stuck with ρ ≈ 2, we searched for a Cocks–Pinch curve Ẽ with

k = 6 and smallest q̃ less or equal to 768 bits. We restricted our search to curves
with CM discriminant D = 3 to allow optimal G2 compression (a sextic twist
Ẽ′/Fq̃ of Ẽ s.t. G2 is isomorphic to Ẽ′(Fq̃)[r] of 768 bits) and GLV fast scalar
multiplication [20] on G1 and G2. Then, following the work [23], we computed
the polynomial form of q̃ which allowed us to compute the coefficients of an

7



name curve type k D r q compressed
G1 in bits

compressed
G2 in bits

EBLS12 BLS12 12 3 rBLS12 qBLS12 384 768

ESW6 short Weierstrass 6 339 rSW6 = qBLS12 qSW6 832 2496

prime value size in bits 2-adicity

rBLS12 0x12ab655e9a2ca55660b44d1e5c37b00159aa76f

ed00000010a11800000000001

253 47

qBLS12 =
rSW6

0x1ae3a4617c510eac63b05c06ca1493b1a22d9f3

00f5138f1ef3622fba094800170b5d44300000008

508c00000000001

377 46

qSW6 0x3848c4d2263babf8941fe959283d8f526663bc5

d176b746af0266a7223ee72023d07830c728d80f9

d78bab3596c8617c579252a3fb77c79c13201ad53

3049cfe6a399c2f764a12c4024bee135c065f4d26

b7545d85c16dfd424adace79b57b942ae9

782 3

Table 2. Parameters of BLS12-377 and SW6 curves

optimal lattice-based final exponentiation as in [19] and also faster subgroup
checks. Finally, the constructed curve has a 2-torsion point allowing fast and
secure Elligator 2 hashing-to-point [6]. We investigate also Wahby and Boneh
work [36] as an alternative hashing method.

The short Weierstrass forms of the curve Ẽ and its sextic twist Ẽ′ are

Ẽ/Fq̃ : y2 = x3 − 1 (4)

Ẽ′/Fq̃ : y2 = x3 + 4 (5)

and the parameters are given in Table 3.

name curve type k D r q compressed
G1 in bits

compressed
G2 in bits

Ẽ short Weierstrass 6 3 r̃ = qBLS12 q̃ 768 768

prime value size in bits 2-adicity

r̃ = qBLS12 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f3

00f5138f1ef3622fba094800170b5d44300000008

508c00000000001

377 46

q̃ 0x122e824fb83ce0ad187c94004faff3eb926186a

81d14688528275ef8087be41707ba638e584e9190

3cebaff25b423048689c8ed12f9fd9071dcd3dc73

ebff2e98a116c25667a8f8160cf8aeeaf0a437e69

13e6870000082f49d00000000008b

761 1

Table 3. Parameters of our curve

Given that qBLS12 is parameterized by a polynomial q(u) with u = 0x8508c00000000,
we can apply the Brezing–Weng method (cf. Alg. 3) with k = 6, D = 3 and

8



r̃(x) = (x6 − 2x5 + 2x3 + x+ 1)/3. There are two primitive 6-th roots of unity in
Q[x]/r̃(x), and two sets of solutions{

t̃0(x) = x5 − 3x4 + 3x3 − x+ 3
ỹ0(x) = (x5 − 3x4 + 3x3 − x+ 3)/3

or

{
t̃1(x) = −x5 + 3x4 − 3x3 + x
ỹ1(x) = (x5 − 3x4 + 3x3 − x)/3

Unfortunately neither (t̃0(x) + 3ỹ0(x))/4 nor (t̃1(x) + 3ỹ1(x))/4 are irreducible
polynomials, and we cannot construct a polynomial family of amicable 2-chain
elliptic curves. But following [23], with well-chosen lifting cofactors ht and hy, we
can obtain valid parameters t̃ = r̃×ht + t̃i(u) and respectively ỹ = r̃×hy + ỹi(u)
for i ∈ {0, 1}. We found i = 0, ht = 13, hy = 9. We summarize the polynomial
form of the parameters in Table 4. We propose to name our curve BW6-761 as it
is a Brezing–Weng curve of embedding degree 6 over a 761-bit prime field.

Our curve, k = 6, D = 3, r̃ = qBLS12

r̃(x) = (x6 − 2x5 + 2x3 + x+ 1)/3
t̃(x) = x5 − 3x4 + 3x3 − x+ 3 + htr̃(x)
ỹ(x) = (x5 − 3x4 + 3x3 − x+ 3)/3 + hy r̃(x)
q̃(x) = (t̃2 + 3ỹ2)/4
q̃ht=13,hy=9(x) = (103x12 − 379x11 + 250x10 + 691x9 − 911x8

−79x7 + 623x6 − 640x5 + 274x4 + 763x3 + 73x2 + 254x+ 229)/9
Table 4. Polynomial parameters of our curve.

3.1 Optimizations in G1

GLV scalar multiplication. We have q̃ ≡ 1 (mod 3) and Ẽ(Fq̃) has j-invariant 0.

Let ω be an element of order 3 in Fq̃. Then the endomorphism φ : Ẽ → Ẽ defined

by (x, y) 7→ (ωx, y) (and O 7→ O) acts on a point P ∈ Ẽ(Fq̃)[r̃] as φ(P ) = [λ]P
where λ is an integer satisfying λ2 + λ+ 1 ≡ 0 mod r̃. Since we expressed q̃ and
r̃ as polynomials, we find ω(x) and λ(x) such that

ω(x)2 + ω(x) + 1 ≡ 0 (mod q̃(x)) (cube root of unity)

λ(x)2 + λ(x) + 1 ≡ 0 (mod r̃(x))

where λ1(x) = x5−3x4+3x3−x+1, λ2(x) = −λ1−1, ω1(x) = (103x11−482x10+
732x9 + 62x8− 1249x7 + 1041x6 + 214x5− 761x4 + 576x3 + 11x2− 265x+ 66)/21,
ω2(x) = −ω1(x)− 1. Evaluating the polynomials at u = 0x8508C00000000001,
we find that for P (x, y) ∈ Ẽ(Fq̃) of order r̃,

[λ1]P = (ω1x, y) (6)

[λ2]P = (ω2x, y)

9



where

λ1 = 0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc9000

00008508c00000000001

λ2 = -0x9b3af05dd14f6ec619aaf7d34594aabc5ed1347970dec00452217cc900

000008508c00000000002

ω1 = 0x531dc16c6ecd27aa846c61024e4cca6c1f31e53bd9603c2d17be416c5e44

26ee4a737f73b6f952ab5e57926fa701848e0a235a0a398300c65759fc4518315

1f2f082d4dcb5e37cb6290012d96f8819c547ba8a4000002f962140000000002a

ω2 = 0xcfca638f1500e327035cdf02acb2744d06e68545f7e64c256ab7ae14297a

1a823132b971cdefc65870636cb60d217ff87fa59308c07a8fab8579e02ed3cdd

ca5b093ed79b1c57b5fe3f89c11811c1e214983de300000535e7bc00000000060

Hashing-to-point. Elligator 2 [6] is an injective map to any elliptic curve of the
form y2 = x3 + Ax2 + Bx with AB(A2 − 4B) 6= 0 over any finite field of odd
characteristic. Since the point (1, 0) ∈ Ẽ(Fq̃) is of order 2, we can map Ẽ to a

curve of Montgomery form, precisely M̃(Fq̃) : y2 = x3 + 3x2 + 3x (cf. Alg. 4).
We denote hash2base(.) in Algorithm 4 a cryptographic hash function to Fq̃,

Algorithm 4: Elligator 2
Input: Θ an octet string to be hashed, A = 3, B = 3 coefficients of the curve M̃ and

N a constant non-square in Fq̃
Output: A point (x, y) in M̃(Fq̃)

1 Define g(x) = x(x2 +Ax+B);
2 u = hash2base(Θ);
3 v = −A/(1 +Nu2);
4 e = Legendre(g(v), q̃);
5 if u 6= 0 then
6 x = ev − (1− e)A/2;

7 y = −e
√
g(x);

8 else
9 x = 0 and y = 0;

10 return (x, y);

and Legendre(a, q̃) is the Legendre symbol of an integer a modulo q̃ which takes
values 1,−1, 0 for when the input is a quadratic residue, non-quadratic-residue,
or zero respectively. Elligator 2 is parametrized by a non-square N . Finding a
non-square is an easy computation in general since about half of the elements
of Fq̃ are non-squares. For efficiency it is desirable to choose N to be small, or

10



otherwise in a way to speed up multiplications by N . In our case, we can choose
N = −1 because q̃ ≡ 3 (mod 4).

Wahby and Boneh introduced in [36] an ”indirect” map for the BLS12-381
curve [7] based on the simplified SWU map [10], which works by mapping to
an isogenous curve with nonzero j-invariant, then evaluating the isogeny map.
We hence check if Ẽ has a low-degree rational isogeny. Since 2 × 11 divides
ỹ (CM equation 4q̃ = t̃2 + Dỹ2), there should be isogenies of degree 2 and
11. Noting that the point (1, 0) is a 2-torsion point, we obtain the rational 2-
isogeny (x, y) 7→ ((x2 − x + 3)/(x − 1), y(x2 − 2x − 2)/(x − 1)2) to the curve
y2 = x3− 15x− 22 of j-invariant 54000. A 2-torsion point on this curve is (−2, 0)
and the dual isogeny to work with Wahby–Boneh hash function is (x′, y′) 7→
((x′2 + 2x′ − 3)/(x′ + 2), y(x′2 + 4x′ + 7)/(x′2 + 2)2).

Clearing cofactor. Another important step is clearing the cofactor. Our curve has
a large 384-bit long cofactor due to the Cocks–Pinch method. The cofactor has a
polynomial form in the seed u like the other parameters, c̃(x) = (103x6−173x5−
96x4 + 293x3 + 21x2 + 52x+ 172)/3 and c̃(x)r̃(x) = q̃(x) + 1− t̃(x). Because the
curve has j-invariant 0, it has a fast endomorphism φ : (x, y) 7→ (ω1x, y) and such
that φ2 +φ+ 1 is the identity map. We apply the same technique as in [19]. First
we compute the eigenvalue λ(x) of the endomorphism modulo the cofactor. We
obtain λ(x) = (−385941x5 + 1285183x4 − 1641034x3 − 121163x2 + 1392389x−
1692082)/1250420 mod c̃(x). Then we reduce with LLL the lattice spanned by

the rows of the matrix M =

[
c̃(x) 0

λ(x) mod c̃(x) 1

]
. We obtain a reduced matrix[

m00 m01

m10 m11

]
=

1

103

[
103x3 − 83x2 − 40x+ 136 7x2 + 89x+ 130
−7x2 − 89x− 130 103x3 − 90x2 − 129x+ 6

]
We check thatmi0(x)+λ(x)mi1(x) = 0 mod c̃(x) and gcd(mi0(x)+λ(x)mi1(x), r̃(x)) =
1. Now x = u and for clearing the cofactor, we first precompute uP, u2P, u3P
which costs three scalar multiplications by u = 0x8508c00000000, then we com-
pute R = 103(u3P )− 83(u2P )− 40(uP ) + 136P + φ(7(u2P ) + 89(uP ) + 130P ),
and R has order r̃. This formula is compatible with ω1 to compute φ.

Subgroup check. Subgroup check can benefit of the same technique. We need to
check if a point P ∈ Ẽ(Fq̃) has order r̃, that is, r̃P = O. Instead of multiplying
by r̃ of 377 bits, we can use the endomorphism φ as above. This time we
need λ1(x) = x5 − 3x4 + 3x3 − x + 1 modulo r̃(x). We reduce the matrix

M =

[
r̃(x) 0

−λ1(x) mod r̃(x) 1

]
and obtain

[
x+ 1 x3 − x2 + 1

x3 − x2 − x −x− 1

]
and check that

(x+ 1) + λ1(x)(x3− x2 + 1) = 0 mod r̃(x). For a faster subgroup check of a point
P , one can precompute uP, u2P, u3P with three scalar multiplications by u, and
check if uP + P + φ(u3P − u2P + P ) is the point at infinity.

3.2 Optimizations in G2

Compression of G2 elements. The curve Ẽ/Fq̃ has CM discriminant D = 3 so it
has a twist of degree d = 6 and because the embedding degree is k = 6 the r̃-torsion

11



of G2 ⊂ Ẽ[r̃](Fq̃6) is isomorphic to Ẽ′[r̃](Fq̃k/d) = Ẽ′[r̃](Fq̃). Thus, elements in
G2 can be compressed from 4608 bits to 768 bits. We choose the irreducible
polynomial x6 + 4 in Fq̃[x] and construct the M-twist curve Ẽ′/Fq̃ : y2 = x3 + 4.

To map a point Q(x, y) ∈ Ẽ(Fq̃6) to a point on the M-twist curve we use
ξ : (x, y) 7→ (x/ν2, y/ν3) where ν6 = −4.

GLV scalar multiplication. Since the group G2 is isomorphic to the r̃-torsion in
Ẽ′(Fq̃) (Eq. (5)), we can apply the same GLV decomposition as in equation (6).

Hashing-to-point. The curve Ẽ′(Fq̃) : y2 = x3 + 4 doesn’t have a point of order 2
so Elligator 2 doesn’t apply. Furthermore, we didn’t find a low-degree rational
isogeny and thus Wahby–Boneh method is not efficiently applicable. However,
we can apply the more generic Shallue–Woestijn algorithm [32] that works for
any elliptic curve over a finite field Fq of odd characteristic with #Fq > 5. It
is based on a generalization of Skalba identity [33] and runs deterministically
in time O(log4 q) or in time O(log3 q) if q ≡ 3 mod 4 (a square root costs an
exponentiation). Fouque and Tibouchi [17] adapted this algorithm to BN curves
(j = 0) assuming that q ≡ 7 mod 12 and that the point (1, y) 6= (1, 0) lies on
the curve. Noting that Ẽ′ : y2 = f(x) = x3 + 4 satisfies these assumptions, we
propose to use Fouque–Tibouchi map for our curve:

g : F∗q̃ → Ẽ′(Fq̃)

z 7→
(
xi(z), Legendre(z, q̃)×

√
f(xi(z))

)
i∈{1,2,3}

where

x1(z) =
−1 +

√
−3

2
−
√
−3 · z2

5 + z2

x2(z) =
−1−

√
−3

2
+

√
−3 · z2

5 + z2

x3(z) = 1− (5 + z2)2

3z2

Because of Skalba identity y2 = f(x1) · f(x2) · f(x3), at least one of the xi is an
abscissa of a point on Ẽ′ — we choose the smallest index such that f(xi) is a
square in Fq̃.

Clearing cofactor. We apply the same technique as for G1. The co-factor is
c̃′(x) = (103x6−173x5−96x4+293x3+21x2+52x+151)/3. The choice of λ′(x) =
(−1413572x5+3625805x4−1877140x3−2124857x2+1372633x−2268778)/296619
is compatible with ω1. We obtain after LLL reduction the matrix[

−7x2 + 117x+ 109 103x3 − 90x2 − 26x+ 136
103x3 − 83x2 − 143x+ 27 7x2 − 117x− 109

]
Given a point P ′ ∈ Ẽ′(Fq̃), we precompute uP ′, u2P ′, u3P ′ with three scalar
multiplications, then the point R′ has order r̃, with

R′ = (103u3P ′ − 83u2P ′ − 143uP ′ + 27P ′) + φ(7u2P ′ − 117uP ′ − 109P ′) .

12



Subgroup check. We obtain similar formulas as for G1. Note that since the twist
has order 6, the untwist-Frobenius-twist endomorphism corresponds to ψ where
ψ2 − ψ + 1 = 0 and whose eigenvalue is a 6-th root of unity. This is almost the
same as considering φ, where φ2 + φ + 1 = 0 (we have φ = −ψ). The formula
compatible with ω1 for φ is

−uP ′ − P ′ + φ(u3P ′ − u2P ′ − uP ′) = 0 ⇐⇒ r̃P ′ = O .

3.3 Pairing computation

The verification equation of proof composition (3) requires three pairing computa-
tions. When an even-degree twist is available, the denominators v[2]S(P ), vS+Q(P )
in Algorithm 1 are in a proper subgroup of Fqk and can be removed as they be-
come one after the final exponentiation. This is the case for BLS12, SW6 and our
curve. We estimate in terms of multiplications in the base fields FqBLS12

,FqSW6
,Fq̃

a pairing on the curves BLS12-377 and SW6 (see Appendix A), and an optimal
ate pairing on our curve. We follow the estimate in [23]. We model the cost
of arithmetic in a degree 6, resp. degree 12 extension in the usual way, where
multiplications and squarings in quadratic and cubic extensions are obtained
recursively with Karatsuba and Chung–Hasan formulas, summarized in Table 5.
We denote by mk, sk, ik and fk the costs of multiplication, squaring, inversion,
and q-th power Frobenius in an extension Fqk , and by m = m1 the multiplication
in a base field Fq. We neglect additions and multiplications by small constants.

k 1 2 3 6 12

mk m 3m 6m 18m 54m
sk m 2m 5m 12m 36m
fk 0 0 2m 4m 10m

scyclok 6m 18m
ik − i1 0 4m 12m 34m 94m

ik, with i1 = 25m 25m 29m 37m 59m 119m

Table 5. Cost from [23, Table 6] of mk, sk and ik for finite field extensions involved.

k D curve
DoubleLine
and AddLine

Update1
and Update2

ref

6 | k −3
y2 = x3 + b
sextic twist

2mk/6 + 7sk/6 + (k/3)m
10mk/6 + 2sk/6 + (k/3)m

sk + 13mk/6

13mk/6
[15, §5]

6 | k −3
y2 = x3 + b
sextic twist

3mk/6 + 6sk/6 + (k/3)m
11mk/6 + 2sk/6 + (k/3)m

sk + 13mk/6

13mk/6
[1, §4,6]

Table 6. Miller loop cost in Weierstrass model from [15,1], homogeneous coordinates.

13



Miller loop for our curve. For our curve, the Tate pairing has Miller loop length
r̃(x) = (x6 − 2x5 + 2x3 + x + 1)/3, and the ate pairing has Miller loop length
t̃(x) − 1 = (13x6 − 23x5 − 9x4 + 35x3 + 10x + 19)/3, hence the ate pairing
will be slightly slower. Recall that thanks to a degree 6 twist, the two points
P ∈ G1 and Q ∈ G2 have coordinates in Fq̃, hence swapping the two points
for the ate pairing does not slow down the Miller loop in itself. We can apply
Vercauteren’s method [35] to obtain a minimal Miller loop. We define the lattice

spanned by the rows of the matrix M =

[
r̃(x) 0

−q̃(x) mod r̃(x) 1

]
and reduce it

with LLL. We obtain the short basis

[
x+ 1 x3 − x2 − x

x3 − x2 + 1 −x− 1

]
. We check that

(x+ 1) + (x3 − x2 − x)q̃(x) ≡ 0 mod r̃(x). The optimal ate pairing on our curve
can be computed as

ateopt(P,Q) = (fu+1,Q(P )f q̃u3−u2−u,Q(P )`[u3−u2−u]π(Q),[u+1]Q(P ))(q̃
6−1)/r̃

and since (u+1)+q̃(u3−u2−u) = 0 mod r̃, we have [u+1]Q+πq̃([u
3−u2−u]Q) =

O. The line `[u3−u2−u]π(Q),[u+1]Q is vertical and can be removed. Finally,

ateopt(P,Q) = (fu+1,Q(P )f q̃u3−u2−u,Q(P ))(q̃
6−1)/r̃ . (7)

More precisely, fu+1,Q(P ) = fu,Q(P ) · `[u]Q,Q(P ). We can re-use fu,Q(P ) to
compute the second part fu(u2−u−1),Q since fuv,Q = fvu,Qfv,[u]Q. We obtain

Algorithm 5. We can write u2−u−1 in 2-non-adjacent-form (2-NAF) to minimize
the addition steps in the Miller loop, and replace Q by −Q in the algorithm when
the bit bi is −1. The scalar u2 − u− 1 is 127-bit long and has HW2-NAF = 19.

CostMillerLoop = (nbits(u)− 1)CostDoubleLine + (nbits(u)− 2)CostUpdate1

+ (HW(u)− 1)(CostAddLine + CostUpdate2)

+ (nbits(u2 − u− 1)− 1)(CostDoubleLine + CostUpdate1)

+ (HW2-NAF(u2 − u− 1)− 1)(CostAddLine + CostUpdate2 + m6)

+ i + 2m + i6 + f6 + m6

We compute (64 − 1)(3m + 6s + 2m) + (64 − 2)(s6 + 13m) + (7 − 1)(11m +
2s + 2m + 13m) + (127− 1)(3m + 6s + 2m + 13m + s6) + (19− 1)(11m + 2s +
2m + 13m + m6) + i + 2m + i6 + 13m + f6 + m6 = 7861m + 2i ≈ 7911m with
m = s and i ≈ 25m. We note that since q̃(x) ≡ t̃(x) − 1 ≡ λ(x) + 1 mod r̃(x),
the formulas are similar as for subgroup check in G1 in Section 10, where we
found that (x+ 1) + λ(x)(x3 − x2 + 1) = 0 mod r̃(x).

Final exponentiation for our curve. Given that q̃ has a polynomial form, we can
compute the coefficients of a fast final exponentiation as in [19]. As for SW6
curve, the easy part is raising to (q̃3− 1)(q̃+ 1) and costs 99m (see Appendix A).
For the hard part σ = (q̃2 − q̃ + 1)/r̃, we raise to a multiple σ′(u) of σ with r̃ - σ.

14



Algorithm 5: Miller Loop for our curve
1 m← 1; S ← Q;
2 for b from the second most significant bit of u to the least do
3 `← `S,S(P ); S ← [2]S ; DoubleLine
4 m← m2 · `; Update1
5 if b = 1 then
6 `← `S,Q(P ); S ← S +Q ; AddLine
7 m← m · ` ; Update2

8 Qu ← AffineCoordinates(S) ; Homogeneous (H) : i + 2m; Jacobian (J ) : i + s + 3m
9 m−u ← 1/mu; S ← Qu; mu ← m ; i6

10 `← `Qu,Q(P ); Qu+1 ← Qu +Q ; AddLine
11 mu+1 ← mu · ` ; Update2
12 for b from the second most significant bit of (u2 − u− 1) to the least do
13 `← `S,S(P ); S ← [2]S ; DoubleLine
14 m← m2 · `; Update1
15 if b = 1 then
16 `← `S,Qu(P ); S ← S +Qu ; AddLine
17 m← m ·mu · ` ; m6+Update2

18 else if b = −1 then
19 `← `S,−Qu(P ); S ← S −Qu ; AddLine
20 m← m ·m−u · ` ; m6+Update2

21 return mu+1 ·mq̃ ; f6 + m6

Following [19], we find that σ′(x) = R0(x) + q̃ ×R1(x) with

R0(x) = −103x7 + 70x6 + 269x5 − 197x4 − 314x3 − 73x2 − 263x− 220

R1(x) = 103x9 − 276x8 + 77x7 + 492x6 − 445x5 − 65x4 + 452x3 − 181x2 + 34x+ 229

and a polynomial cofactor 3(x3−x2+1) to σ(x). The exponentiation is dominated
by exponentiations to u, u2, . . . , u9. With the same analysis as for BLS12-377
in Appendix A (this is the same u), raising to u costs expu = 4(nbits(u) −
1)m + (6 HW(u) − 3)m + (HW(u) − 1)m6 + 3(HW(u) − 1)s + i = 4 · 63m +
39m + 6m6 + 18s + i = 417 + i = 442m; and nine such u-powers cost 3978m.
Eight Frobenius powers f6 = 4m occur, and exponentiations to the small co-
efficients of R0, R1. They do not seem suited for short addition chain so we
designed a multi-exponentiation in 2-NAF in Algorithm 6 (Appendix B) which

costs 9scyclo6 +51m6 = 972m. The total count is (99+3978+32+972)m = 5081m.

Finally, according to Table 7, our curve is much faster than SW6. We obtain
a pairing whose cost in terms of base field multiplications is two times cheaper
compared to the Tate pairing on SW6 and four times cheaper than the ate pairing
available in Zexe Rust implementation [27], and moreover the multiplications
take place in a smaller field by one 64-bit machine word. Particularly, it is at
least five times cheaper to compute on our curve the product of pairings needed
to verify a Groth proof (Eq. (3)). The verification would be even more cheaper
if we include the GLV-based multi-scalar multiplication in G1 needed for vkx

15



Curve Prime Pairing Miller loop Exponentiation Total

BLS12 377-bit qBLS12 ate 6705m384 7063m384 13768m384

Tate 21510m832 10521m832 32031m832

SW6 782-bit qSW6 ate 47298m832 10521m832 57819m832

opt. ate 21074m832 10521m832 31595m832

Our curve 761-bit q̃ opt. ate 7911m768 5081m768 12992m768

Table 7. Pairing cost estimation in terms of base field multiplications mb, where b is
the bitsize in Montgomery domain on a 64-bit platform.

and subgroup checks in G1 and G2 needed for the proof and the verification
keys. Finally, We note that proof generation is also faster on our curve but we
chose to base the comparison on the verification equation for two reasons: The
cost of proof generation depends on the NP-statement being proved while the
verification cost is constant for a given curve, and in blockchain applications,
only the verification is performed on the blockchain, costing execution fees.

Implementation. We provide a Sagemath script to check the formulas and
algorithms of this section. We also provide, based on libff library [26], a C++
implementation of the curve arithmetic for Ẽ and Ẽ′, and of the optimal ate
pairing described in Alg. 5 and Alg. 6. The open source code is available under
MIT public licence at: https://github.com/EYBlockchain/zk-swap-libff/
tree/ey/libff/algebra/curves/bw6_761.

For benchmarking, we choose to compare the timings of a pairing computa-
tion, and an evaluation of Eq. (3) which costs mainly 3 Miller loops and 1 final
exponentiation (cf. Tab. 8). Since SW6 original implementation is in Rust [27],
we implemented both SW6 and our curve in C++ for a like-for-like comparison.
It is to note that the Rust code implements an ate pairing with affine coordinates
as those should lead, for SW6, to a slightly faster Miller loop than the projective
coordinates, as suggested in [28,29]. For completeness, we report also timings for
SW6 ate pairing in projective coordinates.
This was tested on a 2.2 GHz Intel Core i7 x86 64 processor with 16 Go 2400
MHz DDR4 memory running macOS Mojave 10.14.6. C++ compiler is clang
10.0.1. Profiling routines use clock gettime and readproc calls.

Curve Pairing Miller loop Exponentiation Total Eq. 3

SW6 ate (projective) 0.0388s 0.0110s 0.0499s 0.1274s

SW6 ate (affine) 0.0249s 0.0110s 0.0361s 0.0857s

Our curve opt. ate 0.0053s 0.0044s 0.0097s 0.0203s
Table 8. C++ implementation timings of ate pairing computation on SW6 and optimal
ate pairing on our curve.

16

https://github.com/EYBlockchain/zk-swap-libff/tree/ey/libff/algebra/curves/bw6_761
https://github.com/EYBlockchain/zk-swap-libff/tree/ey/libff/algebra/curves/bw6_761


We conclude that using this work, a pairing computation is 3.7 times faster
(or 5 times faster with projective SW6 coordinates) and the verification of a
Groth16 proof is 6.27 times faster (or respectively 4.22 times), compared to the
curve SW6. Finally, one should also include the cost to check that the proof and
the verification key elements are in the right subgroups G1 and G2, which should
also be faster on our curve as described in §10, §3.2.

4 Security estimate of the curves

We estimate the security in GT against a discrete logarithm computation for
BLS12-377, SW6, and our curve. BLS12-377 has a security of about 2125 in Fq12BLS

,

SW6 has security about 2138 in Fq6SW6
and our curve has a security of about 2126

in Fq̃6 , taking into account the Special Tower NFS algorithm and the model of
estimation in [24]. For SW6, the characteristic qSW6 has not a special form and
we consider the TNFS algorithm with the same set of parameters as for a MNT
curve of embedding degree 6. The security on the curve BLS12-377 (G1 and G2)
is 126 bits because rBLS12 is 253-bit long. The security in G1 and G2 for SW6
and our curve is 188 bits as rSW6 = r̃ is 377-bit long.

The curve parameters are given in Tables 1 and 2 for BLS12-377 and SW6,
and 4, 3 for our curve. The parameters for the estimation are given in Tables 9
and 10. In [24, Table 5], the BLS12-381 curve has a security in GT estimated
about 2126. We obtain a very similar result for BLS12-377: 2125, indeed the curves
are almost the same size. Very luckily, we also obtained a security of 2126 in Fq̃6 .

4.1 A note on Cheon’s attack

Cheon [13] showed that given G, [τ ]G and [τT]G, with G a point in a subgroup

G of order r with T|r − 1, it is possible to recover τ in 2
(⌈√

r−1
T

⌉
+
⌈√

T
⌉)
×

(ExpG(r) + log r × CompG) where ExpG(r) stands for the cost of one exponentiation
in G by a positive integer less than r and CompG for the cost to determine if two
elements are equal in G. According to Theorem 2 in [13], if T ≤ r1/3, then the
complexity of the attack is about O(

√
r/T) exponentiation by using O(

√
r/T)

storage.
In zkSNARK settings such as in [22], the preprocessing phase includes elements

[τ i]τ=T
i=0 G1 ∈ G1 and [τ i]τ=T

i=0 G2 ∈ G2 for T ∈ N∗ the size of the arithmetic
circuit related to the NP-statement being proved where τ is a secret trapdoor
(usually called a toxic waste in SNARK language and is generated by a trustworthy
party or in a multi-party computation ceremony [9]). The T | r−1 also holds since
we need r to be highly 2-adic. So, given these auxiliary inputs, an attacker would
consider to recover the toxic waste using Cheon’s algorithm in O(

√
r/T) allowing

him thus the possibility of breaking the zkSNARK soundness. This attack is
directly related to the specific T-sized circuit being proved, so we estimate the
security of the curves for the circuits of the applications we mentioned, precisely
Nightfall fungible tokens transfer circuit (TG1 = 222 − 1,TG2 = 221) and Filecoin

17



curve

q (bits)
r (bits)

pk(bits)
u (bits)

polynomials
deg h
deg fy
deg gy
‖fy‖∞
‖gy‖∞ (≈ u for STNFS)
1/ζKh(2)
α(fy, h, 103)
α(gy, h, 103)

A
B
average Nf (bits)
average Ng (bits)
average NfNg (bits)

av. B-smooth proba
relation collection space
factor base size
relations obtained

total cost

BLS12-377

377
253
4521
64

STNFS
6
12
2
2

263.06

0.9648
2.5374
1.7625

648
264.804

731
493
1224

2−62.5755

2123.092

260.3480

260.4645

2125

SW6

782
377
4691
64

TNFS-Conj
2
6
3
7

≈ 2391

0.8608
0.5611
0.1522

13530839279
271.149

401
978
1380

2−69.9728

2137.622

266.5555

267.4331

2138

Our curve

761
377
4562
64

STNFS
6
12
1

911
263.06

0.9399
0.9921
1.8305

648
265.016

774
436
1210

2−62.2275

2123.092

260.5555

260.7747

2126

Table 9. Summary of parameters and estimated data for the simulation of STNFS
([24, Alg. 6.1], average over 105 samples) for BLS12-377 curve, k = 12 and D = 3, SW6
curve k = 6, D = 339 and our Cocks–Pinch curve, k = 6 and D = 3.

curve seed u = 0x8508c00000000001, polynomials

BLS12 h = Y 6 − 2Y 4 + Y 3 + 2Y 2 − 1
377 fy = X12 − 2yX10 + 2y3X6 + y5X2 + 2y4 − y3 − 2y2 + 1
STNFS gy = X2 − uy = X2 − 9586122913090633729y

SW6 h = Y 2 + Y − 1
782 fy = x6 + x5 − 3x4 − x3 + 7x2 + 5x+ 1
TNFS gy = dX3 − cX2 − (c+ 3d)X − d, c/d root of s2 + s+ 2 mod qSW6

Our h = Y 6 + Y 3 − 2Y 2 + 2Y − 1
curve fy = 103X12 − 379X11 + 250X10 + 691X9 − 911X8 − 79X7

761 +623X6 − 640X5 + 274X4 + 763X3 + 73X2 + 254X + 229
STNFS gy = X − u = X − 9586122913090633729

Table 10. Polynomials h, fy, gy chosen to minimize the total estimated cost of STNFS.
The simulation of STNFS of [24, Alg. 6.1] with 105 samples produced the data of
Table 9.

18



circuit (TG1 = 228 − 1,TG2 = 227) which is the biggest circuit of public interest
in the blockchain community.

We recall that our curve is designed for proof composition and that the verifier
circuit of a Groth’s proof can be expressed in T̃ = 40000 constraints. Hence, the
complexity of Cheon’s attack on our curve, in the case of composing Groth’s

proofs, would be O

(√
r̃/T̃

)
≈ 2237 which is worse than the generic attack.

However, for completeness, we state that under this attack, the curve still has at
least 126-bit security as previously stated, for circuits of size up to 246 which is,
to the authors’ knowledge, ”large enough” for all the published applications.

For BLS12-377 curve, because the subgroup order is 253-bit, the estimated
security for Nightfall setup is ≈ 116-bit in G1 and for Filecoin is ≈ 113-bit in G1.
While this curve has a standard security under generic attacks (without auxiliary
inputs), one should use it with small SNARK circuits or look for alternative inner
curves, which we set as a future work.

5 Conclusion

In this work, we construct on top of Zexe’s inner curve a new pairing-friendly
elliptic curve suitable for one layer proof composition. We discuss its security and
the optimizations it allows. We conclude that it is at least five times faster for
verifying Groth’s proof compared to the previous state-of-the-art, and validate
our results with an open-source C++ implementation.

We mentioned several projects in the blockchain community that need one
layer proof composition and therefore can benefit from this work. Applications
such as Zexe, EY Nightfall, Celo or Filecoin can consequently reduce their
operations cost.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López-Hernández, J.C.:
Faster explicit formulas for computing pairings over ordinary curves. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg
(May 2011). https://doi.org/10.1007/978-3-642-20465-4 5

2. Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the
tate pairing. Journal of Number Theory 131(5, Elliptic Curve Cryptography), 842–
857 (2011). https://doi.org/10.1016/j.jnt.2010.05.013, http://cryptojedi.org/

papers/#edpair

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (Sep 2003). https://doi.org/10.1007/3-
540-36413-7 19

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40084-1 6

19

https://doi.org/10.1007/978-3-642-20465-4_5
https://doi.org/10.1016/j.jnt.2010.05.013
http://cryptojedi.org/papers/#edpair
http://cryptojedi.org/papers/#edpair
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-642-40084-1_6


5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44381-1 16

6. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013. pp. 967–980. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516734

7. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction (2017), https:
//electriccoin.co/blog/new-snark-curve/

8. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: En-
abling decentralized private computation. In: 2020 IEEE Symposium on Secu-
rity and Privacy (SP). pp. 1059–1076. IEEE Computer Society, Los Alamitos,
CA, USA (may 2020), https://www.computer.org/csdl/proceedings-article/
sp/2020/349700b059/1i0rIqoBYD6, https://ia.cr/2018/962

9. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK pa-
rameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050
(2017), http://eprint.iacr.org/2017/1050

10. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Ef-
ficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7 13

11. Celo: BLS-ZEXE: BLS signatures verification inside a SNARK proof. (2019),
https://github.com/celo-org/bls-zexe

12. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in
projective coordinate over general characteristic fields. In: Park, C., Chee, S. (eds.)
ICISC 04. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (Dec 2005)

13. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. Journal of Cryp-
tology 23(3), 457–476 (Jul 2010). https://doi.org/10.1007/s00145-009-9047-0

14. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic
curves. SIAM Journal on Applied Algebra and Geometry 3(2), 175–192 (2019).
https://doi.org/10.1137/18M1173708

15. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on
curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (May 2010).
https://doi.org/10.1007/978-3-642-13013-7 14

16. EY-Blockchain: Nightfall: An open source suite of tools designed to enable private
token transactions over the public ethereum blockchain. (2019), https://github.
com/EYBlockchain/nightfall

17. Fouque, P.A., Tibouchi, M.: Indifferentiable hashing to Barreto-Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (Oct 2012)

18. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (Apr 2010). https://doi.org/10.1007/s00145-
009-9048-z

19. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer,
Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-642-28496-0 25

20. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,

20

https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2508859.2516734
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://www.computer.org/csdl/proceedings-article/sp/2020/349700b059/1i0rIqoBYD6
https://www.computer.org/csdl/proceedings-article/sp/2020/349700b059/1i0rIqoBYD6
https://ia.cr/2018/962
http://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-642-14623-7_13
https://github.com/celo-org/bls-zexe
https://doi.org/10.1007/s00145-009-9047-0
https://doi.org/10.1137/18M1173708
https://doi.org/10.1007/978-3-642-13013-7_14
https://github.com/EYBlockchain/nightfall
https://github.com/EYBlockchain/nightfall
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/978-3-642-28496-0_25


vol. 2139, pp. 190–200. Springer, Heidelberg (Aug 2001). https://doi.org/10.1007/3-
540-44647-8 11

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012

22. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5 11

23. Guillevic, A., Masson, S., Thomé, E.: Cocks–Pinch curves of embedding degrees
five to eight and optimal ate pairing computation. Des. Codes Cryptogr. pp. 1–35
(March 2020). https://doi.org/10.1007/s10623-020-00727-w, https://hal.inria.
fr/hal-02305051

24. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. ePrint 2019/885 (2019), https://ia.cr/2019/885

25. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579
(2013). https://doi.org/10.1090/S0025-5718-2012-02625-1

26. scipr lab: libff: C++ library for finite fields and elliptic curves. (2018), https:

//github.com/scipr-lab/libff
27. scipr lab: ZEXE rust implementation. (2018), https://github.com/scipr-lab/

zexe
28. Lauter, K., Montgomery, P.L., Naehrig, M.: An analysis of affine coordinates for pair-

ing computation. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) PAIRING 2010. LNCS,
vol. 6487, pp. 1–20. Springer, Heidelberg (Dec 2010). https://doi.org/10.1007/978-
3-642-17455-1 1

29. Le, D.P., Tan, C.H.: Speeding up ate pairing computation in affine coordinates.
In: Kwon, T., Lee, M., Kwon, D. (eds.) ICISC 12. LNCS, vol. 7839, pp. 262–277.
Springer, Heidelberg (Nov 2013). https://doi.org/10.1007/978-3-642-37682-5 19

30. Meckler, I., Shapiro, E.: Coda: Decentralized cryptocurrency at scale.
O(1) Labs whitepaper (2018), https://cdn.codaprotocol.com/v2/static/

coda-whitepaper-05-10-2018-0.pdf
31. ProtocolLabs: Filecoin: A decentralized storage network. (2017), https://filecoin.

io/filecoin.pdf
32. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic

curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS VII. LNCS,
vol. 4076, pp. 510–524. Springer (2006). https://doi.org/10.1007/11792086 36

33. Skalba, M.: Points on elliptic curves over finite fields. Acta Arithmetica 117(3),
293–301 (2005), http://eudml.org/doc/278782

34. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (Mar 2008). https://doi.org/10.1007/978-3-540-78524-8 1

35. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1),
455–461 (Jan 2010). https://doi.org/10.1109/TIT.2009.2034881, https://ia.cr/
2008/096

36. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to
the BLS12-381 elliptic curve. IACR TCHES 2019(4), 154–179 (2019).
https://doi.org/10.13154/tches.v2019.i4.154-179, https://tches.iacr.org/index.
php/TCHES/article/view/8348

A Pairing computation for BLS12-377 and SW6 curves

We report here the cost of computing a pairing on BLS12-377 and SW6 curves
from Zexe. We estimate the cost of Miller loop and final exponentiation for both

21

https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/s10623-020-00727-w
https://hal.inria.fr/hal-02305051
https://hal.inria.fr/hal-02305051
https://ia.cr/2019/885
https://doi.org/10.1090/S0025-5718-2012-02625-1
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/zexe
https://github.com/scipr-lab/zexe
https://doi.org/10.1007/978-3-642-17455-1_1
https://doi.org/10.1007/978-3-642-17455-1_1
https://doi.org/10.1007/978-3-642-37682-5_19
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1007/11792086_36
http://eudml.org/doc/278782
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1109/TIT.2009.2034881
https://ia.cr/2008/096
https://ia.cr/2008/096
https://doi.org/10.13154/tches.v2019.i4.154-179
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348


ate and Tate pairing in the case of SW6 and ate pairing in the case of BLS12-377.

Miller loop for BLS12-377. For BLS12-377, the ate pairing is ate(P,Q) =

(fu,Q(P ))(q
k
BLS12−1)/rBLS12 and it is optimal in the sense of Vercauteren [35], the

Miller loop is the shortest thanks to the trace tBLS12 − 1 = u. The cost of Miller
loop is given by Eq. (9), where nbits is the bitlength and HW is the Hamming
weight, and the costs of main steps are given in Table 6.

CostMillerLoop =(nbits(u)− 1)CostDoubleLine + (nbits(u)− 2)CostUpdate1 (8)

+ (HW(u)− 1)(CostAddLine + CostUpdate2) (9)

The Hamming weight of u = 263 +258 +256 +251 +247 +246 +1 is HW(u) = 7
and its length is nbits(u) = 64. We obtain CostMillerLoop = 63(3m2 +6s2 +4m)+
62(s12+13m2)+6(11m2+2s2+4m+13m2). With m2 = 3m, s2 = 2m, s12 = 36m
(applying recursively Karatsuba and Chung–Hasan formulas for multiplication and
squaring in quadratic and cubic extensions), we obtain CostMillerLoop = 6705m.
The count is reported in Table 7.

Final exponentiation for BLS12-377. The final exponentiation for BLS12 curves is
decomposed in (q12BLS− 1)/rBLS = (q12BLS− 1)/Φ12(qBLS)×Φ12(qBLS)/rBLS, where
the first ratio simplifies to (q6BLS−1)(q2BLS+1), and the second ratio is a polynomial
of degree 20 that can be decomposed in basis qBLS12, because Frobenius powers are
much faster. One can use cyclotomic squarings where scyclo12 = 18m, or compressed
cyclotomic squarings (method of Karabina [25]) where scomp

12 has a cost dominated
by 4s2. Applying [25, Corollary 4.1], the cost of raising to the power u costs expu =
4(nbits(u)− 1)m2 + (6 HW(u)− 3)m2 + (HW(u)− 1)m12 + 3(HW(u)− 1)s2 + i2.

The final count is i12+2scyclo12 +12m12+4f12+5 expu. Reusing the script provided
with [23], we obtain a final count of 7063m, reported in Table 7.

Miller loop for SW6 curve. We consider the ate and the Tate pairing on the
curve SW6. The Miller loop of the ate pairing iterates over T = tSW6 − 1 which
is 388-bit long,

CostMillerLoop ate =(nbits(T )− 1)CostDoubleLine + (nbits(T )− 2)CostUpdate1

+ (HW2-NAF(T )− 1)(CostAddLine + CostUpdate2)

where the costs of line and update are given in Table 11, indeed aSW6 = 5 and a
quadratic twist is available. With nbits(T ) = 388, HW2-NAF(T ) = 107, we obtain
(388−1)(5m3+6s3+6m)+(388−2)(m6+s6)+(107−1)(10m3+3s3+6m+m6) =
47298m. The Miller loop of the Tate pairing is over rSW6 which is 377-bit long
and HW2-NAF(rSW6) = 98. The costs of line computation are slightly changed:
the point operations are now in the base field, and one can save one multiplication
m when evaluating the line at Q. We obtain (377− 1)(6m + 6s + 6m) + (377−
2)(m6 + s6) + (98− 1)(9m + 3s + 6m + m6) = 21510m. There are other formulas
in Jacobian coordinates with other trade-off of m and s, however, if we assume

22



s ≈m, the costs stay the same. From [2], on Weierstrass curves a doubling an
line evaluation costs m + 11s + km, if a = −3 this is 6m + 5s + km, and if a = 0,
this is 3m + 8s + km. Mixed addition and line evaluation costs 6m + 6s + km.

k D
curve with

quadratic twist

Tate
DoubleLine
AddLine

ate
DoubleLine
AddLine

Update1
Update2

ref

2 | k any y2 = x3 + ax+ b
6m + 6s + km
9m + 3s + km

5mk/2 + 6sk/2 + km
10mk/2 + 3sk/2 + k/2m

mk + sk
mk

[12]

2 | k any y2 = x3 − 3x+ b
7m + 4s + km
9m + 3s + km

6mk/2 + 4sk/2 + km
10mk/2 + 3sk/2 + k/2m

mk + sk
mk

[12]

Table 11. Miller loop cost in Weierstrass model from [12] in Jacobian coordinates.

Optimal ate Miller loop for SW6 curve. Like for our curve, an optimal ate pairing
is available for SW6. We have (x3 − x2 − x) + qSW6(x+ 1) = 0 mod rSW6(x) and
πqSW6(Q) = [q]Q for all Q ∈ G2. An optimal ate pairing is

ateopt(P,Q) = (fu3−u2−u,Q(P )fqSW6

u+1,Q(P ))(q
6
SW6−1)/rSW6 . (10)

The same trick as in Algorithm 5 applies to further optimize the computation of
fu3−u2−u,Q(P ) = fu(u2−u−1),Q(P ). We apply the formula of estimated cost (8)
and obtain (64 + 127− 2)(5m3 + 6s3 + 6m) + (64 + 127− 3)(m6 + s6) + (7 + 19−
1)(10m3+3s3+3m+m6+m6)+i6+f6+m6+i+s+3m = 21024m+2i ≈ 21074m
with m = s and i ≈ 25m. The difference between Tate and optimal ate Miller
loop for SW6 is ≈ 2%; this is within the error margin. Indeed the number of
base-field multiplications m does not capture 100% of the total cost of a pairing
computation. Since a Tate pairing is actually easier to implement as it does not
involve curve arithmetic in G2, it could turn out to be faster than the optimal
ate pairing.

Final exponentiation for SW6 curve. The final exponentiation raises the Miller
loop result to the power (q6SW6−1)/r. The easy part is raising to (q3SW6−1)(qSW6+
1) with one Frobenius qSW6, one Frobenius q3SW6 which is a conjugation, one
inversion and two multiplications, costing f6 + i6 + 2m6 = 4m+ 34m+ i+ 36m =
74m + i ≈ 99m. The hard part e = (q2SW6 − qSW6 + 1)/r is decomposed in
basis qSW6 so that −W0 + W1qSW6 = e, where W0 is 721-bit long and W1 is
406-bit long. At this stage, inversions are free as f−1 = fq

3
SW6 , and cyclotomic

squarings scyclo6 = 6m are available. A multi-exponentiation would cost at least

720scyclo6 + 478m6 = 12924m. Writing W0,W1 in HW2-NAF form, this is reduced

to 720scyclo6 + 339m6 = 10422m, for a total count of 10521m.

23



B Optimized hard part of final exponentiation for our
curve

We include here the algorithm that we designed to optimize the hard step in the
final exponentiation for our curve.

Algorithm 6: Optimized hard part of final exponentiation
Input: f in Fq̃6
Output: f ← fσ

′(u) in Fq̃6
1 f0 ← f ; f0p ← f q̃0 ;
2 for (i = 1, i ≤ 7, i = i+ 1) do

3 fi ← fui−1 ; fpi ← f q̃i ;
4 f8p ← fu7p ; f9p ← fu8p ;

5 f ← f3p ∗ f6p ∗ (f5p)
q̃3 ;

6 f ← f2; f4,2p ← f4 ∗ f2p; f ← f ∗ f5 ∗ f0p ∗ (f0 ∗ f1 ∗ f3 ∗ f4,2p ∗ f8p)q̃
3

;

7 f ← f2; f ← f ∗ f9p ∗ (f7)q̃
3

;
8 f ← f2; f2,4p ← f2 ∗ f4p; f4,2p,5p ← f4,2p ∗ f5p;

f ← f ∗ f4,2p,5p ∗ f6 ∗ f7p ∗ (f2,4p ∗ f3 ∗ f3p)q̃
3

;

9 f ← f2; f ← f ∗ f0 ∗ f7 ∗ f1p ∗ (f0p ∗ f9p)q̃
3

;

10 f ← f2; f6p,8p ← f6p ∗ f8p; f5,7p ← f5 ∗ f7p; f ← f ∗ f5,7p ∗ f2p ∗ (f6p,8p)
q̃3 ;

11 f ← f2; f3,6 ← f3 ∗ f6; f1,7 ← f1 ∗ f7 ; f ← f ∗ f3,6 ∗ f9p ∗ (f1,7 ∗ f2)q̃
3

;

12 f ← f2; f ← f ∗ f0 ∗ f0p ∗ f3p ∗ f5p ∗ (f4,2p ∗ f5,7p ∗ f6p,8p)q̃
3

;

13 f ← f2; f ← f ∗ f1p ∗ (f3,6)q̃
3

;

14 f ← f2; f ← f ∗ f1,7 ∗ f5,7p ∗ f0p ∗ (f2,4p ∗ f4,2p,5p ∗ f9p)q̃
3

;
15 return f

24


	Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition

