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Abstract. In modern era of computer science there are many applications of the polynomials over finite fields 

especially of the polynomials over extended Galois fields GF(p
q
) where p is the prime modulus and q is the 

extension of the said Galois field, in the generation of the modern algorithms in the computer science, the soft 

computation, the cryptology and the cryptanalysis and especially in generation of the S-boxes of the cryptographic 

block and stream ciphers. The procedure and the algorithms of the subtraction and the division of the two Galois 

field polynomials over the Galois field GF(p
q
) was remained untouched to the researchers of the applications of 

finite field theory in the computer science. In this paper the procedure and algorithms to subtract and divide the two 

Galois field polynomials over Galois field GF(p
q
) or the two Galois field numbers over the Galois field GF(p

q
) are 

introduced in detail. If a monic basic polynomial over the Galois field GF(p
q
) (BP) [1] is divisible by any of the 

monic elemental polynomials over the Galois field GF(p
q
) (EP) [1] except the constant polynomials (CPs) [1] over 

the Galois field GF(p
q
) then the monic BP over the Galois field GF(p

q
) is termed as the monic reducible polynomial 

(RP) [1] over the Galois field GF(p
q
) and if a monic BP over the Galois field GF(p

q
) is not divisible to any of the 

EPs over the Galois field GF(p
q
) except the CPs over the Galois field GF(p

q
) or more specifically to any monic EP 

over the Galois field GF(p
q
) with half of the degree of the concerned monic BP over the Galois field GF(p

q
) then the 

monic BP over Galois field GF(p
q
) is called as the irreducible polynomial (IP) [1] over the Galois field GF(p

q
). Here 

the common algorithm to generate all the monic IPs over the Galois field GF(p
q
) is introduced. The time complexity 

analyses of the algorithms prove the said algorithms to be less time consuming and efficient. 

1. Introduction and Scope. The polynomials over the finite fields especially the polynomials over the extended 

Galois field GF(pq) where p is the prime modulus and q is the extension of the said Galois field, have many important 

applications in computer science such as generation of 4-bit and 8-bit S-boxes of cryptographic block ciphers [1][2]. 

Specially irreducible polynomials (IPs) over the Galois field GF(p
q
) play such an important role [3]. Generation of 

the monic IPs over the Galois field GF(p
q
) for large values of p and q is the unbroken stone in this research scenario. 

To break this stone it is needed to generate the procedures and the algorithms for the subtraction, the multiplication 

and the division of the two Galois field polynomials over the same Galois field GF(p
q
). A small review of the 

relevant articles on generation of IPs over the Galois field GF(p
q
) is made in section 2. 

 To subtract two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two 

said polynomials and subtract each corresponding digit of the GFN with small decimal equivalent (DE) from the 

GFN with large DE and modulate the result with p to obtain the corresponding subtracted digit. If the subtracted 

digit is negative then add p as borrow to the next position GFN with small decimal equivalent (DE). If two GFNs 

have unequal numbers of digits then pad the GFN with small decimal equivalent (DE) with 0s in left.  A brief 

description of the procedure of the subtraction of the two Galois field polynomials over the Galois field GF(p
q
) and 

the algorithm for the procedure is detailed in section 3.2.  

 To divide two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but there are some 

important modifications in this division procedure. The product of divisor and each digit of quotient is subtracted 

from the same number of digits from most significant bit of the dividend to obtain the residue and the subtraction is 



made by the procedure defined in section 3.2. The total division procedure and algorithm two Galois field 

polynomials over the Galois field GF(p
q
) is described in sec 3.3. 

 Now to generate the DEs of all the monic IPs over the Galois field GF(p
q
) each monic BP over the Galois 

field GF(p
q
) is checked for positive residues for divisions over the Galois field GF(p

q
) with all the monic EPs except 

CPs over the Galois field GF(p
q
) with degree ≤  q/2. If residues are positive for all the divisions over the Galois field 

GF(p
q
) for the monic BP over the Galois field GF(p

q
) then the monic BP over the Galois field GF(p

q
) is termed as 

IPs. The detail procedure and the detail algorithm for the BPs over the Galois field GF(2
4
) are given in section 4.1 

and section 4.2 respectively. The detail algorithm for the BPs over the Galois field GF(p
q
) is given in section 4.3 and 

the comparison of the time complexities of the multiplication, division and Rabin’s algorithm are given in section 

4.4 to prove the said algorithm to be the best. 

 The conclusion and acknowledgement of the paper is given in section 5 and section 6 respectively. 

2. Review work. Short reviews on relevant and related articles are made in this section.  

 Rudolf Church [1935][4]. Here two monic EPs over the Galois field GF(p
q
) are multiplied by paper pen to 

generate all monic RPs over the Galois field GF(p
q
). All monic RPs over the Galois field GF(p

q
) are cancelled 

out from the list of the monic BPs over the Galois field GF(p
q
) to extract all monic IPs over the Galois field 

GF(p
q
). Here the value of p varies from 2 [q=2 to q=11] to 7 [q=2 to q=4]. 

 Zaman et. al [2014][5].  Here two monic EPs over the Galois field GF(p
q
) are multiplied and then divided by all 

monic BPs over the Galois field GF(p
q
) by matrix method. If for any division the residue is 1 then the two monic 

EPs over the Galois field GF(p
q
) are multiplicative inverses (MIs) of each other. 

 Dey and Ghosh [2017-a][6].  Here the procedure to multiply of GFNs of two polynomials over the Galois field 

GF(p
q
) is illustrated. The each digit of a GFN or the coefficients of each degree term of the polynomial over the 

Galois field GF(p
q
) are multiplied to all digits of other GFN consecutively. Then the obtained digits or 

coefficients with same degree terms are added and modulated with p to obtain the resultant GFN or the 

coefficients of the resultant polynomial over the Galois field GF(p
q
).  

 Dey and Ghosh [2017-b][7]. In this algorithm the decimal equivalents of each of two monic EPs over the Galois 

field GF(p
q
) at a time with highest degree d and (q-d) where d € {0,..,(q-1)/2} , have been split into the p-nary 

coefficients of each term of two said monic EPs over the Galois field GF(p
q
). The coefficients of each term in 

each two Monic EPs or two GFNs are multiplied, added respectively with each other and modulated to obtain the 

p-nary coefficients of each term of the RPs over the Galois field GF(p
q
).  The DE of the resultant monic BP over 

the Galois field GF(p
q
) is termed as the DE of an RP over the Galois field GF(p

q
). The DE of BPs over the Galois 

field GF(p
q
) belonging to the list of RPs over the Galois field GF(p

q
) have been cancelled leaving behind the 

monic IPs over the Galois field GF(p
q
). 

3. Procedure and Algorithm of subtraction and division over the Galois field GF(p
q
). 

The algorithms of subtraction, multiplication, division of the two GFNs [1] or polynomials over the Galois field 

GF(p
q
) is remained untouched by computer science community. The generation of the GFNs is described in 

subsection 3.1. The procedure to obtain the difference of two GFNs over the Galois field GF(p
q
) or subtraction of 

the two GFNs over the Galois field GF(p
q
) is described in subsection 3.2 and division of the two GFNs over the 

Galois field GF(p
q
) is described in subsection 3.3. 

3.1  Galois Field Numbers or GFNs. Coefficient of each degree term of a polynomial are arranged sequentially 

from highest to lowest degree in a decreasing sequence of degree terms (Coefficient of highest degree term is in 

MSB and coefficient of lowest degree term is in LSB) to obtain Galois Field Numbers (GFNs) for polynomials over 

the Galois fields GF(p
q
) where p is the prime modulus and q is the extension of the said Galois field. There are two 

special types of GFNs. Binary Coded Numbers or BCN for polynomials over the Galois field GF(2
q
) and Finite 

Field Numbers (FFNs) for polynomials over finite field GF(p
q
) where p is non-prime. Examples of some GFNs, 

BCNs and FFNs are given in table.1, table.2 and table.3 respectively below and the description of the said tables are 

also given below. 

 

 

 



 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 14406 6x
4
 60000 

2 14407 6x
4
+1 60001 

3 2443 x
4
+6x 10060 

4 2414 x
4
+x+6 10016 

Table.1. GFNs of four Galois field polynomials over the Galois field GF(7
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 16 x
4
 10000 

2 17 x
4
+1 10001 

3 18 x
4
+x 10010 

4 19 x
4
+x+1 10011 

5 20 x
4
+x

2
 10100 

6 21 x
4
+x

2
+1 10101 

7 22 x
4
+x

2
+x 10110 

8 23 x
4
+x

2
+x+1 10111 

9 24 x
4
+x

3
 11000 

A 25 x
4
+x

3
+1 11001 

B 26 x
4
+x

3
+x 11010 

C 27 x
4
+x

3
+x+1 11011 

D 28 x
4
+x

3
+x

2
 11100 

E 29 x
4
+x

3
+x

2
+1 11101 

F 30 x
4
+x

3
+x

2
+x 11110 

G 31 x
4
+x

3
+x

2
+x+1 11111 

Table.2. BCNs of 16 Galois field polynomials over the Galois field GF(2
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 768 3x
4
 30000 

2 770 3x
4
+2 30002 

3 264 x
4
+2x 10020 

4 267 x
4
+2x+3 10023  

Table.3. FFNs of four Galois field polynomials over the Galois field GF(4
4
). 

  

Description of Table.1, Table.2, and Table.3: 

Table.1: Examples of four GFNs over the Galois field GF(7
4
) are given in row 1 through 4 of Table.1. DEs 

of the polynomials, the polynomials itself and the respective GFNs are given in column 1, 2 and 3 of the 

respective rows.  

Table.2: Examples of four BCNs over the Galois field GF(2
4
) are given in row 1 through 16 of Table.2. 

DEs of the polynomials, the polynomials itself and the respective BCNs are given in column 1, 2 and 3 of 

the respective rows. 

Table.3: Examples of four FFNs over the Galois field GF(4
4
) are given in row 1 through 4 of Table.3. DEs 

of the polynomials, the polynomials itself and the respective FFNs are given in column 1, 2 and 3 of the 

respective rows. 

 

 

 



 

3.2 Procedure and Algorithm of Subtraction of two GFNs: 

To subtract two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials and subtract each corresponding digit of the GFN with small decimal equivalent (DE) from the 

GFN with large DE and modulate the result with p to obtain the corresponding subtracted digit. If the subtracted 

digit is negative then add p as borrow to the next position GFN with small decimal equivalent (DE) and 

modulate with p. If two GFNs have unequal numbers of digits then pad the GFN with small decimal equivalent 

(DE) with 0s in left.  A brief description of the procedure of the subtraction of the two Galois field polynomials 

over the Galois field GF(p
q
) is given in subsection 3.2.1 and the algorithm for the procedure is detailed in 

section 3.2.2. 

3.2.1 Procedure:  

To subtract two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials and subtract each corresponding digit of the GFN with small decimal equivalent (DE) from the 

GFN with large DE and modulate the result with p to obtain the corresponding subtracted digit. If the subtracted 

digit is negative then add p as borrow to the next position GFN with small decimal equivalent (DE) and 

modulate with p. If two GFNs have unequal numbers of digits then pad the GFN with small decimal equivalent 

(DE) with 0s in left. Example for two BCNs and two GFNs are given below, 

Key Definitions. 

Basic polynomials (BPs) over Galois field GF(2
4
).  Polynomials over the Galois field GF(2

4
) with highest 

degree 4 are termed as BPs over Galois field GF(2
4
). 

Elemental polynomials (EPs) over Galois field GF(2
4
).  Polynomials over Galois field GF(2

4
) with highest 

degree less than 4 are termed as EPs over Galois field GF(2
4
). 

Binary Coded Numbers (BCNs) or Galois field Numbers (GFNs) over Galois field GF(2
4
). If it is 

considered that coefficient of highest degree term of the concerned polynomial is the MSB of the number and 

coefficient of lowest degree term of the concerned polynomial is the LSB of the number and other coefficients 

of highest degree to lowest degree term are arranged sequentially from MSB to LSB in the number then the 

number constructed with coefficients of the concerned polynomial is termed as BCN or which is also a GFN 

over Galois field GF(2
4
). 

Subtraction of two BCNs over Galois field GF(2
4
): 

Two EPs over Galois field GF(2
4
) are, 

EPs BCNs or GFNs 

x 0010 

x
3
+1 1001 

 

Now,  

BCN(x) < BCN(x
3
+1). If we subtract BCN(x) from BCN(x

3
+1) we get, subtract in decimal each digit of 

BCN(x) from BCN(x
3
+1) and modulate the result with 2 when result is negative add borrow 1 to next position 

of the BCN(x) and modulate with 2. 

A. 1-0-0-1 

B. 0-0-1-0 

Difference.   0-1-1-1 

 

 

 

 

 

 

 



 

3.2.2 Algorithm: 

The algorithm is given below,   

Start. 

Step 1: The four bits of the 1
st
 BCN or BCN(x

3
+1) with greater value of DE are stored at bcn_large.bit0, 

bcn_large.bit1, bcn_large.bit2, bcn_large.bit3 from MSB to LSB respectively and The four bits of the 2
nd

  BCN 

or BCN(x) with smaller value of DE are stored at bcn_small.bit0, bcn_small.bit1, bcn_small.bit2, 

bcn_small.bit3 from MSB to LSB respectively. 

Step 2: The subtraction is started from LSB. 

Step 3: bcn_small.bit3 is subtracted from bcn_large.bit3 and the obtained digit is modulated with 2. If the result 

is negative then add borrow 1 to the bcn_small.bit2 and subtract it from bcn_large.bit2 and modulate the 

obtained digit with 2 to obtain the 2
nd

 subtracted digit of the difference. The procedure is going on till the 

subtraction of bcn_small.bit0 from bcn_large.bit0. 

Step 4: The obtained four corresponding digits are stored in diff.bit0, diff.bit1, diff.bit2 and diff.bit3 

respectively. 

Stop.    

3.3 Procedure and Algorithm of Division of two GFNs: 

To divide two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two said 

polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but there are 

some important modifications in this division procedure. The product of divisor and each digit of quotient are 

subtracted from the same number of digits from most significant bit of the dividend to obtain the residue and the 

subtraction is made by the procedure defined in section 3.2. The total division procedure is given in subsection 

3.3.1 and the algorithm to divide two Galois field polynomials over the Galois field GF(p
q
) is described in 

subsection 3.3.2. 

3.3.1 Procedure. 

In division of the two Galois field polynomials over the Galois field GF(p
q
) generate the GFNs [1] of the two 

said polynomials at first. Division over the Galois field GF(p
q
) procedure is same as decimal division but there 

are some important modifications in this division procedure. The product of divisor and each digit of quotient 

are subtracted from the same number of digits from most significant bit of the dividend to obtain the residue and 

the subtraction is made by the procedure defined in section 3.2. The procedure for the two GFNs more 

specifically for the two BCNs is as follows, 

 

Two Polynomials over the Galois field GF(2
4
) are, 

Polynomials BCNs or GFNs 

x 0010 

x
3
+1 1001 

 

Now,  

BCN(x) < BCN(x
3
+1). The division of the BCN(x

3
+1) by BCN(x) would result as follows, 

          10)1001(100 

 10 

 000 

   00 

                 01 

                 00 

                    1 

In this division the division is similar to decimal division but the subtraction is according to subtraction of two 

BCNs over Galois field GF(2
4
). 



 

3.3.2 Algorithm. 

The algorithm for the division of the two BCNs over the Galois field GF(2
4
) is given below, 

Start. 

Step 0. Let us take the DEs of the two polynomials A and B over Galois field GF(2
4
). 

Step 1. Convert the two numbers into two BCNs, BCN(A) and BCN(B). 

Step 2. If (BCN(A)>BCN(B) then [avoid zero padding], 

Step 3. divide BCN(A) by BCN(B) with decimal division to obtain quotient D(A/B) and residue R(A/B) but the 

only difference is the subtraction used in division is according to subtraction of two BCNs over Galois field GF(2
4
). 

Stop.  

4. Procedure and Algorithm to Generate all the monic IPs over the Galois field GF(2
4
) and the Galois field 

GF(p
q
). 

The procedure to generate all the monic IPs over the Galois field GF(2
4
) is described in subsection 4.1. The 

algorithm for the said procedure for the IPs over the Galois field GF(2
4
) is given in subsection 4.2. Finally the 

algorithm for the said procedure for the IPs over the Galois field GF(p
q
) is given in subsection 4.3. 

4.1 Procedure. 

Now to generate the DEs of all the monic IPs over the Galois field GF(p
q
) each monic BP over the Galois field 

GF(2
4
) is checked for positive residues for divisions over the Galois field GF(p

q
) with all the monic EPs except CPs 

over the Galois field GF(p
q
) with degree ≤  q/2. If residues are positive for all the divisions or incomplete division 

for all the time over the Galois field GF(p
q
) for the monic BP over the Galois field GF(p

q
) then the monic BP over 

the Galois field GF(p
q
) is termed as IPs.  

4.2 Algorithm to generate all the monic IPs over the Galois field GF(2
4
). 

The Algorithm over the Galois field GF(2
4
) for the procedure given in subsection 4.1 is given below, 

Start. 

Step 1. Take the DEs of all the monic BPs one by one i.e. 16 to 31 one by one. 

Step 2. Convert each DE to its BCN over the Galois field GF(2
4
).  

Step 3. Divide each monic BP with BCNs over the Galois field GF(2
4
) of the all monic EPs from 2 to 7 (2

1
 to 2

3-1
) 

but the division is according to the procedure given in section 3.1. 

Step 4. If for a particular monic BP all the divisions are incomplete or there is a residue. Then the BP is termed as 

the monic IP otherwise monic RP. 

Stop. 

4.3 Algorithm to generate all the monic IPs over the Galois field GF(p
q
). 

The algorithm over the Galois field GF(p
q
) for the procedure given in subsection 4.1 is given below, 

Start. 

Step 1. Take the DEs of all the monic BPs one by one i.e. p
q
 to p

q+1
-1 one by one. 

Step 2. Convert each DE to its BCN over the Galois field GF(p
q
).  

Step 3. Divide each monic BP with BCNs over the Galois field GF(p
q
) of the all monic EPs from (p

1
 to p

q-1
-1) but 

the division is according to the procedure given in section 3.1. 

Step 4. If for a particular monic BP all the divisions are incomplete or there is a residue. Then the BP is termed as 

the monic IP otherwise monic RP. 

Stop. 

4.4 Comparison of time complexity of the given algorithm with Rabin’s Algorithms. 

The new division algorithm to find the monic IPs over Galois field GF(p
q
) have a time complexity of O(n

2
). Since 

time complexity of Rabin’s algorithm and its modification depends upon the value of prime modulus p so it 

becomes slower for large value of p. Now in this algorithm the complexity depends upon the value of extension q so 

they are faster and eligible to find monic IPs for very large value of p as well as extension q. 

 

 
 



 

Algorithms 
Division 

Algorithm 

Rabin’s 

Algorithm 

Rabin’s 

Algorithm(mod) 

Time Complexity O(n2) O(n4(log P)3) 0(n4(log p)2 + n3(log P)3) 

Table.4. Comparison of Time Complexity of the division algorithm with  

Rabin’s and Modified Rabin’s Algorithm. 

 

5. Conclusion. From the last few decades computer scientists try to break the untouched stone of division algorithm 

to reduce the time complexity of many algorithms in computer science and artificial intelligence. In this paper this 

stone is broken to find the large numbers of monic IPs over the extended Galois field GF(p
q
) where prime 

modulus p is very large with a very large value of extension q. The algorithm reduces the required time almost 

100 times rather than the previous algorithms and the excellence of the algorithm is also increased for 100 times 

than the previous ones. The time complexity analysis proves the previous statements true and the division 

algorithm to be the best algorithm ever to find the large numbers of monic IPs over the extended Galois field 

GF(p
q
) where prime modulus p is very large with a very large value of extension q. 
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