Another Look at CBC Casper Consensus Protocol

Yongge Wang
UNC Charlotte

March 27, 2020

Abstract

Ethereum Research team has proposed a family of Casper blockchain consensus protocols. It has been shown
in the literature that the Casper Friendly Finality Gadget (Casper FFG) cannot achieve liveness property in partially
synchronous networks such as the Internet environment. The “Correct-by-Construction” family of Casper blockchain
consensus protocols (CBC Casper) has been proposed as a finality gadget for the future Proof-of-Stake (PoS) based
Ethereum blockchain. Unfortunately, no satisfactory/constructive finality rules have been proposed for CBC Casper
and no satisfactory liveness property has been obtained for CBC Casper. Though it is commonly/widely believed in
the community that CBC Casper could not achieve liveness property in asynchronous networks, this paper provides
a surprising result by proposing the first CBC Casper protocol that achieves liveness property against t = | ¢ ]
Byzantine participants in completely asynchronous networks. Our protocol can also be considered as an improvement
of the seminal work by Ben-Or. That is, Ben-Or’s BFT protocol converges in exponential steps in asynchronous
networks. Our result shows that the revised Ben-Or’s BFT protocol could converge in constant steps with the identical

Byzantine fault tolerance threshold.

1 Introduction

Consensus is hard to achieve in open networks such as partial synchronous networks. Several practical protocols
n—1

such as Paxos [9] and Raft [12] have been designed to tolerate L?j non-Byzantine faults. For example, Google,
Microsoft, IBM, and Amazon have used Paxos in their storage or cluster management systems. Lamport, Shostak, and
Pease [10] and Pease, Shostak, and Lamport [13]] initiated the study of reaching consensus in face of Byzantine failures
and designed the first synchronous solution for Byzantine agreement. For asynchronous networks, Fischer, Lynch, and
Paterson [[7] showed that there is no deterministic protocol for the BFT problem in face of a single failure. Several
researchers have tried to design BFT consensus protocols to circumvent the impossibility. The first category of efforts
is to use a probabilistic approach to design BFT consensus protocols in completely asynchronous networks. This kind
of work was initiated by Ben-Or [2] and Rabin [14] and extended by others such as Cachin, Kursawe, and Shoup [4]. It
should be noted that though probabilistic approach was used to design BFT protocols in asynchronous networks, some
researchers used probabilistic approach to design BFT protocols for complete synchronous networks. For example, the
probabilistic approach based BFT protocols [6}[11] employed in ALGORAND blockchain [8] assumes a synchronous
and complete point-to-point network. The second category of efforts was to design BFT consensus protocols in partial
synchronous networks which was initiated by Dwork, Lynch, and Stockmeyer [5].

Ethereum foundation has tried to design a BFT finality gadget for their Proof of Stake (PoS) based Ethereum
blockchain. It has been shown in Wang [16] that their first design Casper Friendly Finality Gadget (Casper FFG)
[3] does not achieve liveness property in partially asynchronous networks. Recently, Ethereum foundation has been
advocating the “Correct-by-Construction” (CBC) family of Casper blockchain consensus protocols [[17,|18]. The CBC
Casper the Friendly Ghost emphasizes the safety property. But it does not try to address the liveness requirement for
the consensus process. Indeed, it explicitly says that [[17] “liveness considerations are considered largely out of scope,
and should be treated in future work”. Thus in order for CBC Casper to be deployable, a lot of work needs to be
done since the Byzantine Agreement Problem becomes challenging only when both safety and liveness properties are
required to be satisfied at the same time. It is simple to design BFT protocols that only satisfy one of the properties. The
Ethereum foundation community has made several efforts to design safety oracles for CBC Casper to help participants
to make a decision when an agreement is reached (see, e.g., [15]). However, this problem is generally at least as hard
as coNP-complete problems. So no satisfactory solution has been proposed yet.

1



CBC Casper has received several critiques from the community. For example, Ali et al [1] concluded that “the
definitions and proofs provided in [lI8|] result in neither a theoretically sound nor practically useful treatment of
Byzantine fault-tolerance....Importantly, it remains unclear if the definition of the Casper protocol family provides any
meaningful safety guarantees for blockchains. Though CBC Casper is not a complete deployable solution yet and it
has several fundamental issues yet to be addressed, we think these critiques as in [[1] may not be fair enough. Indeed,
CBC Casper provides an interesting framework for consensus protocol development. In particular, the algebraic
approach proposed by CBC Casper has certain advantages for describing Byzantine Fault Tolerance (BFT) protocols.
The analysis in this paper shows that efficiently constructive liveness concepts for CBC Casper could be obtained even
in a complete asynchronous network.

For the network setting, we assume a complete asynchronous network of Fischer, Lynch, and Paterson [7]]. That
is, we make no assumptions about the relative speeds of processes or about the delay time in delivering a message.
We also assume that processes do not have access to synchronized clocks, so algorithms based on time-outs cannot be
used. However, we assume that all messages are eventually delivered if the sender makes infinitely trials to send the
messages.

The structure of the paper is as follows. Section 2] provides a brief review of the CBC Casper framework. The au-
thor of [17] mentioned in several talks that CBC Casper does not guarantee liveness in asynchronous networks. Section
[3| presents a surprising result which shows that CBC Casper can INDEED provide liveness property in asynchronous
networks. The solution in Section[3]employs finality rules for CBC Casper protocol by leveraging the underlying ideas
within Ben-Or’s seminal probabilistic BFT protocol. By integrating Ben-Or’s protocol in CBC Casper framework, we
are able to improve the performance of Ben-Or’s protocol from exponential steps to linear steps.

2 CBC Casper the Friendly Binary Consensus (FBC)

In this paper, we only consider Casper the Friendly Binary Consensus (FBC). Our discussion can be easily extended
to general cases. For the Casper FBC protocol, each participant repeatedly sends and receives messages to/from other
participants. Based on the received messages, a participant can infer whether a consensus has been achieved. Assume
that there are n participants Py, - - -, P, and let¢ < n be the Byzantine-fault-tolerance threshold. The protocol proceeds
from step to step (starting from step 0) until a consensus is reached. Specifically the step s proceeds as follows:

* Let M; ; be the collection of valid messages that P; has received from all participants until step s. P; determines
whether a consensus has been achieved. If a consensus has not been achieved yet, P; sends the message

mis = (P, €56, M s) (D
to all participants where e; s is P;’s estimated consensus value based on the received message set M, ;.

In the following, we describe how a participant P; determines whether a consensus has been achieved and how a
participant P; calculates the value e; ; from M, .

For a message m = (P;, e; 5, M, s), let J(m) = M, ;. For two messages my, mo, we write mq < mg if mg
depends on m;. That is, there is a sequence of messages m/, - - -, m/, such that

m!, € J(ms)
For a message m and a message set M = {mgy,---,m,}, we say that m < M if m € M orm < m; for some
j = 1,---,v. The latest message m = L(P;, M) by a participant P; in a message set M is a message m < M

satisfying the following condition:
* There does not exist another message m’ < M sent by participant P; with m < m/.

It should be noted that the “latest message” concept is well defined for a participant P; if P; has not equivocated,
where a participant P; equivocates if P; has sent two messages m; # mg with the properties that “m; A mso and
mo 74 ml”.

2



For a binary value b € {0, 1} and a message set M, the score of a binary estimate for b is defined as the number
of non-equivocating participants P; whose latest message voted for b. That is,

score(b, M) = Z AP, M)

L(P;,M)=(P;,b,x)

where
0 if P; equivocates in M,
1 otherwise.

- |

To estimate consensus value: Now we are ready to define P;’s estimated consensus value e; s based on the received
message set M,  as follows:

0 if score(0, M; ) > score(l, M; )
eis =4 1 ifscore(l,M;,) > score(0, M, ;) 2)
b otherwise, where b is coin-flip output

To infer consensus achievement: For a protocol execution, it is required that for all 7, s, the number of equivocating
participants in M, ; is at most ¢. A participant P; determines that a consensus has been achieved at step s with the
received message set M, , if there exists b € {0, 1} such that

Vs’ > s: score(b, M; ) > score(l — b, M; & ). 3)

3 Liveness of CBC Casper FBC

From CBC Casper protocol description, it is clear that CBC Casper is guaranteed to be safe against equivocating par-
ticipants. However, the “inference rule for consensus achievement” requires a mathematical proof based on infinitely
many message sets M s for s’ > s. This requires each participant to verify that for each potential set of ¢ Byzantine
participants, their malicious activities will not be able to overturn the inequality in (3). This problem is at least co-NP
hard. Thus even if the system reaches a consensus, the participants may not realize this fact. In order to address this
challenge, Ethereum community provides three “safety oracles” (see [15]]) to help participants to determine whether
a consensus is obtained. The first “adversary oracle” simulates some protocol execution to see whether the current
estimate will change under some Byzantine attacks. As mentioned previously, this kind of problem is co-NP hard and
the simulation cannot be exhaustive generally. The second “clique oracle” searches for the biggest clique of participant
graph to see whether there exist more than 50% participants who agree on current estimate and all acknowledge the
agreement. That is, for each message, the oracle checks to see if, and for how long, participants have seen each other
agreeing on the value of that message. This kind of problem is equivalent to the complete bipartite graph problem
which is NP-complete. The third “Turan oracle” uses Turan’s Theorem to find the minimum size of a clique that
must exist in the participant edge graph. In a summary, currently there is no satisfactory approach for CBC Casper
participants to determine whether finality has achieved. Thus no liveness is guaranteed for CBC Casper.

CBC Casper does not have an in-protocol fault tolerance threshold and does not have any timing assumptions.
Thus the protocol works well in complete asynchronous settings. Furthermore, it does not specify when a participant
P; should stop waiting for more messages (to be added to M; ;) and when he should broadcast his protocol message
to other participants? We believe that CBC Casper authors do not specify the time for a participant to send protocol
messages because they try to avoid any timing assumptions. In fact, there is a simple algebraic approach to specify
this without any timing assumptions. First, we revise the message set M, ; as the valid step s — 1 messages that P;
receives from other participants. That is, the message set M, , is a subset of E; where E is defined recursively as
follows:

E(] =

El—{<Pj,b7®>.j:1, ,n,b:O,l}

E2—{<Pj,b7Mj,1> 17 =1, ,n;bZO,l;MLl CEl}
Es={(Pj,b,Mjs-1):j=1,-,mb=0,1; M1 C Es_1}

Then we can specify the time that a participant P; to send his protocol messages as follows:
3



* A participant P; should wait for at least n — ¢t + F (M, ;) messages m; s—1 from other participants before he
can broadcast his step s message m; s where E (M, ) is the number of equivocating participants within M, .
That is, P; should wait until | M; s|> n —t + E(M, ;) to broadcast his step s protocol message.

* In case that a participant P; receives n — ¢ + E(M, ;) messages m, s_1 from other participants (that is, he is
ready to send step s protocol message) before he posts his step s — 1 message, we have two potential choices.
Either choice should be OK for most of the protocols.

— Choice 1: the participant P; will not send step s protocol message before he sends step s — 1 protocol
message.

— Choice 2: let s’ be the last step that he has sent a protocol message. Then P; sends step s’ +1,---,s — 1
step protocol messages using all messages that he has received without further waiting for the condition
|M; o |> n —t+ E(M, ¢ ) being satisfied.

» After a participant P; posts his step s protocol message, it will still record protocol messages received from
other participants for steps s — 1 or less for consensus finality purpose.

It is clear that these specifications does not have any restriction on the timings. Thus the protocol works in full asyn-
chronous networks. With these preparation, we can use CBC Casper framework to improve Ben-Or’s BFT protocol
[2]] from exponential steps to constant steps with the identical Byzantine threshold for fully asynchronous networks.

In Ben-Or’s BFT protocol, the participants autonomously toss a coin until more than "TH participant outcomes
coincide (the full protocol is briefly reviewed in Section[A]). For Ben-Or’s maximal Byzantine fault tolerance threshold
t < | 2], it takes exponential rounds of coin-flipping to converge. It is noted that, for ¢ = O(/n), Ben-Or’s protocol
takes constant rounds to converge. If CBC Casper framework is used for Ben-Or’s protocol, then it only requires
that the majority (instead of ”TH) of honest participant coin-flips coincide. Note that each equivocating participant
can only make one convergence process fail since the equivocating Byzantine participant will be flagged and not be
included in the score calculation in the next step. Thus Ben-Or BFT protocol in CBC Casper framework takes at most
constant steps.

At the start of Ben-Or’s protocol, each participant P; holds an initial value z; € {0,1}. At step s = 0, each
participant P; broadcasts the message (P;, x;, #). The step s > 0 proceeds as in the revised CBC Casper framework
in the preceding paragraphs (of this Section[3). The “consensus value estimation” process for step s is defined in the
same way as in Section[2] The “consensus achievement inference” process is revised as follows:

To infer consensus achievement for Ben-Or Protocol: A participant P; determines that a consensus has been
achieved at step s + 1 if there exists a value b € {0, 1} that satisfies the following conditions:

* P, receives at least n — t + E(M,; s_1) messages for step s — 1 from other participants (including himself) and

at least % participants’ estimated consensus value is b.

* P, receives at least n —t + E/(M, ;) messages for step s from other participants (including himself) and at least
”TH participants’ estimated consensus value is b.
After a participant conclude that a consensus on the value b is obtained, he should decide on the value b and broadcast
the decision together with evidence messages.

The safety of the above protocol could be proved in the same way as in [2]. Here we give a brief review without
details. Assume that n = 5t + 1. If a participant receives at least n — t messages and at least [ 2] = [2£H] = 3t +1
messages among them contain the estimate b. That means that, among the 5¢ + 1 participants, there are at most 2¢
participants (including the potential ¢ Byzantine participants) whose estimate is 1 — b for step s protocol messages.
Since a participant will only submit the protocol message after receiving at least 5t + 1 —¢ = 4t + 1 messages, it means
that an honest participant will receive at least 2¢ + 1 step s protocol messages with an estimate b. In other words, all
honest participants should estimate the consensus value to b.

Rabin’s BFT protocol [14] employs Shamir’s secret sharing schemes to establish a common coin for all participants
(a brief review of the Rabin’s protocol is available in Section[B]). A trusted third party is required to distribute Shamir
secret shares for Rabin’s protocol. In recent years, new technologies (such as VRF based techniques) have been
developed to establish a common coin for distributed participants without a trusted third party. Thus a common coin
could be used in the above Ben-Or CBC Casper protocol to improve the performance. The details are omitted here.

4



References

[1] M. Ali, J. Nelson, and A. Blankstein. Peer review: CBC Casper. available at: https://medium.com/
@muneeb/peer—-review—cbc-casper—-30840a98c89a, December 6, 2018.

[2] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended ab-
stract). In Proc. 2nd ACM PODC, pages 27-30, 1983.

[3] V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437v4, 2019.

[4] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asynchronous byzantine
agreement using cryptography. Journal of Cryptology, 18(3):219-246, 2005.

[5] C.Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. JACM, 35(2):288-323,
1988.

[6] P.Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM Journal
on Computing, 26(4):873-933, 1997.

[7] M.J. Fischer, N. A Lynch, and M.S. Paterson. Impossibility of distributed consensus with one faulty process.
JACM, 32(2):374-382, 1985.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proc. the 26th Symposium on Operating Systems Principles, pages 51-68. ACM, 2017.

[9] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133-169, 1998.

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382—-401, 1982.

[11] Silvio Micali. Byzantine agreement, made trivial, 2016.

[12] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual
Technical Conference, pages 305-319, 2014.

[13] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM, 27(2):228-234,
1980.

[14] M.O. Rabin. Randomized byzantine generals. In 24th IEEE FOCS, pages 403—409. IEEE, 1983.

[15] Ethereum Research. CBC Casper FAQ. available at: https://github.com/ethereum/cbc-casper/
wiki/FAQ, November 27, 2018.

[16] Yongge Wang. Byzantine fault tolerance in partially connected asynchronous networks. http://eprint.
lacr.org/2019/1460,2019.

[17] V. Zamfir. Casper the friendly ghost: A correct by construction blockchain consensus protocol. Whitepaper:
https://github.com/ethereum/research/tree/master/papers,2017.

[18] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras. Introducing the minimal cbc casper family of consensus
protocols. DRAFT v1.0: \https://github.com/cbc—casper/, 2018.

A Ben-Or’s BFT protocol

At the start of Ben-Or’s protocol [2] , each participant P; holds an initial value x; € {0,1}. The protocol proceeds
from round to round. Specifically, the round r proceeds as follows:

1. P; sends the message (P;,r, 1 : x;) to all participants.

5


https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a
https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a
https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/ethereum/cbc-casper/wiki/FAQ
http://eprint.iacr.org/2019/1460
http://eprint.iacr.org/2019/1460
https://github.com/ethereum/research/tree/master/papers
https://github.com/cbc-casper/

2. P; waits until receiving n — t messages of the type (P;,r,1 : *). If more than "T"‘t messages have the same

value b, then P; sends the message (P;,r,2 : b, D) to all participants. Else, P; sends the message (P;, 7,2 :7)
to all participants.

3. P; waits until receiving n — ¢ messages of the type (P;,r,2 : x). P; distinguishes the following three cases

* If there are at least ¢ + 1 D-messages (P;j,r,2 : b, D), then sets x; = b and go to next round.
¢ If there are more than "T'H D-messages, then P; decides b.

* Else set x; = 1 or 0 each with probability % and go to next round.

B Rabin’s BFT protocol

Rabin’s BFT protocol [14] employs Shamir’s secret sharing schemes to establish a common coin for all participants.
Thus a trusted third party is required to distribute the secret shares before the protocol starts. This seems to be
an unrealistic requirement since if we have a trusted third party, then we can use the trusted third party to help to
solve the Byzantine agreement problem. However, some other techniques such as Verifiable Random Function (VRF)
techniques may be used to replace the Shamir’s secret sharing scheme in Rabin’s protocol. In the following discussion,
we will assume that there is a common coin shared by all participants. The common coin could be implemented using
existing techniques such as VRF which we will not go into details. Rabin’s protocol tolerates ¢ < {; Byzantine faults
in asynchronous networks and ¢ < 7 Byzantine faults in synchronous networks. At the start of the protocol, each
participant P; holds an initial value x; € {0, 1}. The round r of the protocol proceeds as follows:

1. P; sends the message (P;,r, 1 : x;) to all participants.

2. P; waits until receiving n — ¢ messages of the type (P;,r,1 : x). Let T; ,. be value that appears in most messages
and C; ;. be the count of messages that T; , appears in these messages.

3. All participants jointly flip the common coin and obtain a random bit s,..

4. If“s, = 0and 5 < ;7 or “s, = 1and n — 2t < C; . then let z; = T; ;.. Else return error.



	Introduction
	CBC Casper the Friendly Binary Consensus (FBC)
	Liveness of CBC Casper FBC
	Ben-Or's BFT protocol
	Rabin's BFT protocol

